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ABSTRACT 

The rapid progress of wireless communication and 
embedded systems has made wireless sensor networks a 
valuable backbone for numerous applications, mainly with 
monitoring purposes. In this field, the need for location 
aware systems has growth rapidly in the last few years. 
Most research efforts have been done in node localization 
but less attention has been paid on the localization and 
tracking of passive (that do not belong to the network 
infrastructure) objects. In this paper, the problem of passive 
object localization is dealt with an innovative methodology 
based on support vector machine exploiting the received 
signal strength indicator measured by the nodes. Some 
preliminary results chosen from the assessment of the 
proposed approach are presented. 

Index Terms— Wireless sensor network, support 
vector machine, received signal strength indicator, target 
localization, tracking.

1. INTRODUCTION 

Localization and tracking play a key role in several 
applications both civilian and military [1]. The growing 
needs of monitoring private and public areas has fostered a 
fast development of wireless and pervasive systems. In such 
a framework, the availability of low-power devices 
integrating on-board processing and wireless 
communication allowed the development of efficient 
collaborative signal processing algorithms for tracking 
purposes. Most of them are based on the exploitation of data 
collected by dedicated sensor or they assume that the target 
is equipped with a transmitting device [2]. Assuming an 
active target, different properties of the received signal, like 
the time of arrival (TOA) and the direction of arrival (DOA) 
could be exploited to solve the localization problem [3]. 
However, these kinds of solutions are strongly related to the 
synchronization among the nodes and to the hardware 
quality. Wireless sensor network (WSN) architectures are 
characterized by low-cost sensor nodes with limited 
computational  resources and  in case of severe  multipath  
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Fig. 1.  Geometry of the localization problem. 

propagation and shadow fading the DOA and TOA 
estimations become inaccurate, thus requiring complex 
signal processing technique for large errors correction. 
Other modalities to locate active targets are based on the 
received signal strength (RSS) as a measure of distance 
between two nodes [4]. This easily measurable quantity has 
been exploited to localize a transmitting node that is linked 
with at least other three reference nodes. The distance 
between nodes is estimated through classic radio 
propagation models and the position is computed by means 
of some triangulation strategies. 
In case of transceiver-free targets, state of the art 
approaches are based on Doppler radar as common 
microwave sensor to estimate the distance between the 
target and the sensor [5]. Moving target can be tracked 
exploiting the Doppler signature induced by the object 
motion [6]. Unfortunately, drawbacks like the high 
instability in real environments and the invisibility of slow-
moving target [7] affect the measure provided by the radar. 
Even if widely employed, this methodology leads to a lot of 
false alarms.  
In this work, an innovative approach based on a learning by 
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Fig. 2.  Nodes deployment in real environment. 

example (LBE) strategy to localize and track passive objects 
is presented. The localization problem is addressed only by 
considering the available received signal strength indicator 
(RSSI) at the nodes of a wireless sensor network deployed 
in the environment and without any additional on board 
sensor.

2. MATHEMATICAL FORMULATION 

Without loss of generality, let us consider a WSN 
deployment in an indoor environment as shown in Fig. 1. 
Let the network be composed by K  nodes. A set of 
unknown targets move throughout the two-dimensional 
investigation domain III YyXxD 0,0 .

Each node kN , located in a known position 

Kkyx kk ,...,1);,(  both transmits and measures a signal 
at different time instants. Under the assumption that each 
node communicates with all the remaining 1K  nodes, a 
total amount of )1(KKZ  wireless links exists. The 
received signal strength indicator )(

)(
i
jRSSI  of the z -th link, 

related to the transmitted power from the i -th
),...,1( Ki node to the j -th )1,...,1( Kj

receiving node, also depends on the interactions among the 
electromagnetic signal radiated by the i -th source, the 
scenario in ID , and the targets to be localized. In order to 
quantify the impact of the scenario where the targets move, 

a reference measurement 

1,...,1;,...,1;)(
)( KjKiRSSI

voidi
jij         (1) 

without the targets is taken into account to filter out the 
environment contribution by the calculation of differential 
measurements 

1,...,1;,...,1; KjKi
ij

ijij
ij          (2) 

where the term  

1,...,1;,...,1;)(
)( KjKiRSSI

fulli
jij     (3) 

refers to the real-time data collected by the sensor nodes in 
the presence of the moving target. 
Starting from the differential measurements 

1,...,1;,...,1; KjKiij , the problem at 
hand is recast as the definition of the probability that the 
targets are lied in a position inside ID . Towards this end, a 
classification approach based on support vector machines 
(SVM) is applied [8]. By assuming the knowledge of a set 
of R  training configurations 

RrNnsyx rnnn ,...,1,...,1;,,,      (4) 

being nn yx ,  a randomly-chosen position whose status ns
is known ( 1ns  if the target is present, 1ns  otherwise), 
a suitable decision function  is determined during a 
training phase by means of a SVM strategy [9]. In order to 
find the best decision function, the SVM model selection 
has been done to choose good hyperparameters so that the 
classifier can accurately predict unknown data during the 
test phase. Since the localization problem has been recast to 
a binary classification problem, the sign of the 
unthresholded output of the decision function gives the 
binary states s sign , where  is whatever input 

data test and Ccsc ,...,1;s  the class indexes of the 

C  test points lying in ID . Instead of the sign of the 
decision function, let us consider the a-posteriori probability 

s |1Pr  [10] to construct a location-probability map of 
the monitored area. The a-posteriori probability gives 
information about the degree of membership of test data to a 
particular class even if sign  does not correctly 
classify the input pattern. This behavior is mainly due to the 
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Fig. 3.  Probability map of target presence. 

Fig. 4.  Actual and estimated path of moving target. 
 

 
generalization capabilities of the SVM approach that, in 
presence of highly non-separable data, constructs the best 
separating hyperplane even if the optimal solution to the 
optimization problem [9] does not exists. In this way, the 
input test data could belong to the wrong half-plane 
identified by the decision function, but taking into 
consideration the a-posteriori probability it is still possible 
to compute the distance of that example to each class means 
[11]. 
 

 
3. EXPERIMENTAL RESULTS 

 
The feasibility and the effectiveness of the proposed 
approach have been assessed through a preliminary 
experimental validation carried out in an indoor 
environment. A set of 8K  Corex nodes [12], indicated 
by the black rectangles in Fig. 1, has been installed as 

Fig. 5.  Probability map retrieved when no objects are 
located in ID . 

shown in Fig. 2 on the walls of a office room with size 
55IX  and 45IY ,  being the wavelength at a 

working frequency GHzf 4.2 . The training set is 
composed by 250R  randomly chosen samples and the 
test data are concerned with object positions not belonging 
to those of the training set. The reference measurements 

1,...,1,,...,1, KjKiij  have been performed without 
any target inside the room before starting the training 
acquisitions. For illustrative purposes, let us consider the 
case of a single target traveling in ID  from the position 

55startx , 10starty  to 5stopx , 11stopy .
Figure 4 shows the actual path and the estimated one. The 
estimated position of the target has been calculated starting 
from the evaluated probability map as follows  
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To quantify the localization accuracy, let us define the 
localization error 

2
argarg

2
argarg

~~
ettettettett yyxx      (7) 

as  the  geometrical  distance  between  the  actual  and  the
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ss
min ss

max ss
mean ss

var

92.0 31.24 76.2 44.5

Tab. I.  Statistical analysis of localization error. 

5. REFERENCES 

[1] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, 
opportunities, and challenges,” Proc. IEEE, vol. 91, no. 8, pp. 
1247–1256, Aug. 2003. 

estimated position. As a representative result, the 
probability map related to the last position stopstop yx ,  of 
the target is displayed in Fig. 3. As it can be observed, the 
moving target is quite carefully localized with a maximum 
value of the localization error  of about some 
wavelengths. In order to further analyze the precision of the 
proposed approach, a set of  tests has been 
successively executed and a statistical analysis of 

50S

Sss ,...,1;  has been performed and reported in Tab. I. 
Beyond the information on the position and on the trajectory 
of the target inside the area, the knowledge of 
presence/absence of objects also plays a relevant role. The 
capability of the proposed method to identify the reference 
configuration (i.e. the absence of moving targets) has been 
verified by testing the algorithm with input pattern  when 
no objects are present. The obtained probability map is 
shown in Fig. 5. As it can be seen, only some low-
probability clutters randomly distributed and without a 
significant distribution have been obtained, showing a good 
behavior of the methodology in detecting the presence of 
targets. 

[2] G. Latsoudas and N. D. Sidiropoulos, “A fast and effective 
multidimensional scaling approach for node localization in 
wireless sensor networks,” IEEE Trans. Geosci. Remote Sens., vol. 
55, no. 10, pp. 5121–5127, Oct. 2007. 

[3] K. Pahlavan, X. Li, and J. Makela, “Indoor geolocation science 
and technology,” IEEE Commun. Mag., vol. 40, no. 2, pp. 112-
118, Feb. 2002. 

[4] X. Li, “Collaborative localization with received-signal strength 
in wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 56, 
no. 6, pp. 3807-3817, Nov. 2007. 

[5] W. Butler, “Design considerations for intrusion detection wide 
area surveillance radars for perimeters and borders,” IEEE Conf. 
Tech. Homeland Security, pp. 47-50, May 2008. 

[6] A. S. Bugaev, V. V. Chapurski, S. I. Ivashov, V. V. Razevig, 
A. P. Sheiko, I. A. Vasilyev, “Through wall sensing of human 
breathing and heart beating by monochromatic radar,” Proc. Tenth 
Int. Conf. on Ground Penetrating Radar, vol. 1, pp. 291-294, Jun. 
2004.

[7] P. Withington, H. Fluhler, and S. Nag, “Enhancing homeland 
security with advanced uwb sensors,” IEEE Microw. Mag., pp. 51-
58, Sept. 2003. 

4. CONCLUSIONS [8] A. Massa, A. Boni, and M. Donelli, “A classification approach 
based on SVM for electromagnetic subsurface sensing,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 9, pp. 2084-2093, Sept. 
2005.

In this work, the localization of transceiver-free targets by 
means of a SVM-based strategy has been considered. The 
localization problem has been recast as a binary 
classification problem for determining an occupation 
probability map of the considered area. A suitable classifier 
has been trained exploiting the easily measurable RSSI 
parameter available on the nodes of a wireless sensor 
network. Differential quantities have been considered in 
order to filter out the environment contribution and to 
estimate in real-time the position of the object moving 
inside the monitored area. Some experimental results 
obtained in an indoor environment showed the effectiveness 
of the proposed approach in dealing with the tracking of a 
human being moving  in an area of interest. 

[9] V. Vapnik, Statistical Learning Theory. New York: Wiley, 
1998.

[10] J. Platt, “Probabilistic outputs for support vector machines and 
comparison to regularized likelihood methods,” in “Advances in 
large margin Classifiers”, (MIT Press, Cambridge, MA, 1999), 
Eds. A. J. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans. 

[11] B. Scholkopf and A. J. Smola, Learning with kernels. MIT 
Press. Cambridge, MA. 2002. 

[12] ArsLogica Corex Datasheet. 
http://www.arslogica.it/projects/vigilia/vigilia.html.

II - 721


