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Abstract—Object localization defines an important 
application for wireless sensor networks. In this paper, we 
present a hybrid of dual-modal mobile localization system to 
support the object tracking in indoor environment. In order 
to decrease the  system cost and simplify the sensor 
deployment, we implement the localization by the received 
radio signal strength approach and the unscented Kalman 
filter (SPKF) algorithm in active and passive dual-modal 
architecture. We realize the system by employing the wireless 
sensor network and the LAN medium Zigbee/802.15.4. 
Experimental results demonstrate that the hybrid mobile 
localization system can significantly improve the localization 
accuracy and robustness, and reduce the cost of 
communication among sensor nodes while mobile user is 
moving in the indoor environments. 

Keywords-mobile localization system; dual-modal; 
Unscented Kalman Filter; 

I.  INTRODUCTION 
The localization, locating a mobile object, is a 

fundamental problem in mobile motion supervision and 
control. Typically the outdoor localization uses Global 
Positioning System (GPS) [1], which is widely applied for 
navigation of the vehicles, ships, and airplanes. However, 
the GPS signal is not available for locating the object inside 
the building. Recently, many applications demand the 
location messages in indoor environments, e.g., locating 
patients in a hospital [2,3,4], tracking a robot in a room, and 
guiding a visitor in a public building. The importance and 
promise of location-aware applications has led to the design 
and implementation of such systems for indoor localization. 

Several indoor location and tracking systems have been 
developed. The Active Badge [5] is developed at Olivetti 
Research Laboratory (now AT&T Cambridge). In this 
system, objects are tracked by attaching a badge, which 
periodically transmits its unique ID using an infrared 
transmitter. Fixed infrared receivers pick up this 
information and the object location is computed. But its 
line-of–sight requirement and short-range signal 
transmission are two major limitations that suggest it to be 
less effective in practice for indoor location with a room-
sized precision per about 15 seconds. Cricket system uses 
the time difference of arrival (TDOA) between radio 
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frequency (RF) and ultrasound to estimate distance and 
adopts the triangulation method to calculate location [6,7]. 
It can accurately locate 4 4 square-feet regions with an 
average error nearly 10cm, yet the cost is so exorbitant that 
it is inaccessible to most applications. Additionally, it is 
proved easily affected and sensitive to the direction for 
adopting ultrasound to localization in experiments. RADAR 
[8], developed by Microsoft Research group, is an RF based 
system for locating and tracking object inside building. It 
uses RF signal strength information gathered at multiple 
receiver locations to triangulate the target’s coordinates. 
Triangulation is done using both empirically determined 
and theoretically-computed signal strength information. 
The major merit is that it is easy to setup, the drawback is 
that it cannot guarantee the location precision and Omni-
direction. It determinates objects’ location within about 3-
4.3 meters of their actual location with 50 percent 
probability. LANDMARC [9] presents a location-sensing 
prototype system based on active Radio Frequency 
Identification (RFID) that carried by objects to provide their 
location. It improves the overall localization accuracy by 
utilizing the concept of reference tags. Nevertheless, its 
lethal drawback is that it needs to take 30 seconds to locate 
an object, which is unendurable in an environment with lots 
of mobiles.  The Cicada system [10] is based on TDOA 
algorithm to measure distances, and uses the slide window 
filter and least square fitting for the rough distance 
correction. It can provide the coordinates within 5cm 
average deviation, but its applications are also limited by 
the ultrasound signal and its energy cost is unacceptable. So 
in order to supply a good performance, the indoor 
localization system should satisfy the requirements of 
precision, robustness and cost effective. 

Being different from those architectures above, we try 
to build a RF localization system for tracking short distance 
objects. The main objective is to improve the localization 
precision and reduce the energy cost. In this paper, we 
present the location estimation problem of a moving device 
in indoor location environment and a hybrid mobile 
localization system, which combines active and passive 
architecture. It is an adaptive system that can select the 
different architecture for various motions of the mobile 
device. This dual-modal system is nearly as accurate as the 
active mobile architecture system while reduces a great deal 
of communications between anchor nodes. The experiments 
show that this system has good performance, especially in 
the following aspects: higher precision, higher robustness, 
and lower energy cost. 

The rest of this paper is organized as follows: in section 
2, we describe the system structure and the hardware. In 
section 3, we discuss the radio frequency signal model, 

978-1-4244-3608-8/09/$25.00 © 2009 IEEE. 236

Proceedings of the 2009 IEEE
International Conference on Information and Automation

June 22 -25, 2009, Zhuhai/Macau, China



localization algorithm and the architecture of the dual-
modal localization system. In section 4, we present several 
experiments and evaluation criterion, followed by 
conclusions in section 5. 

II. THE SYSTEM STRUCTURE FOR DUAL-MODAL 
LOCALIZATION   

In the proposed localization system, we choose Micaz 
mote of Crossbow Technology INC. as our sensor node, 
which is shown as Fig.1. Each node is a small hardware 
platform consisting: an RF transceiver CC2420 for sending 
or receiving RF signal which is used for both object 
localization and data transmission, a microcontroller 
ATMega128L that runs various algorithms, and other 
associated hardware such as Logger flash and 51-pin 
Expansion Connector for interfacing with a host device. 
The software running on the nodes provides both RF 
transmission and an Application Program Interface (API) to 
set different system parameters. 

 

 

 

 

 

 

 

 

 

 

There are two types of sensor nodes: beacons and 
listeners. More than four beacons are fixed on the indoor 
ceilings with their own definite coordinates that are 
measured and stored in advance, while the listener is 
installed on the mobile device. In addition, a particular 
beacon is used as the base station to collect the location 
information and transmit it to the computer. The coordinate 
of listener is unknown before being computed whether it is 
moving or static. In addition, there is a particular beacon 
unit used as the base station to collect the location 
information. The structure is shown in Fig.2, the mobile 
device is moving into the lab while 5 beacons are deployed 
in the ceiling, and the communication among beacons, 
listener and base station is wireless. 

 

 

 

 

 

 

 

III. THE ALGORITHMS AND SOFTWARE 

A. Structure of the hybrid system 
The underlying localization problem requires three 

components that are combined in different ways depending 
on the architecture. The first component is the signal 
strength predictor, wherein SPKF [11] algorithm is applied 
to accurately achieve next received signal strength (RSS). 
The second component is a modal discriminator, which 
realizes the transition from the active mode to the passive 
mode, and vice versa. It also sets the covariance threshold 
to select localization architecture. The third component is a 
position estimator, which includes dynamic triangular 
algorithm (DTN) [12] and least-squares method (LSM) for 
the localization, which is selected depending on the modal 
discriminator. 

B. Strength prediction and localization algorithm  
1) The radio signal model: we record the sRSS and 

distances between the sensor nodes and mobile device, and 
use Maximum Likelihood method to find a propagation 
model for the fading channel. The Measured signal strength 
meets the channel model that is obtained by using the 
following equation 
 0 0( ) ( ) 10 log( )RSS d RSS d n d d= −  (1) 
Where ( )RSS d  is the mean signal strength that is received 
form the mobile user, 0( )RSS d is the received signal 
strength in dB at a reference distance, and n  is the path 
loss exponent. 

The estimation of the distance is written as 

                   
( ) ( )0

10
0

ˆ 10
RSS d RSS d

nd d
−

=  (2) 

2) SPKF prediction algorithm: For tracking mobile 
device, the SPKF approach utilizes the unscented Kalman 
filter (UKF) to predict received signal strength. The UKF is 
an application of the scaled unscented transformation; it 
uses a recursive minimum mean-square-error (RMMSE) 
estimation to propagate the sigma points through the state 
equation to obtain some high order information by the first 
order approximation.  

The SPKF addresses the problem to estimate the state 
and measurement function modeled as the following 
nonlinear auto-regression process: 

 ( ) 1, kv −+ ⋅k k -1X = F X w A  (3) 
 k k -1 kY = H(X ,r)+ n  (4) 
Where ( ), 1,...,nk kx RSS k= =  denotes the true RSS at step k , 
and sequence ky  is the thk measurement. w and r  are the 
weight vector. 

The SPKF algorithm can be described as follows: 

Initialization states of mean value and autocorrelation 
as equation (5) and (6): 

 [ ]0 0ERSS RSS=  (5) 

 ( )( )T
0 00 0 0EP RSS RSS RSS RSS� �= − −� �� �

 (6) 
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Figure 2. The framework of the hybrid system 
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The Procedure is implemented as: 

Updating the iterative counter, let 1k k= +  and generate 
sigma points: 

 ( )1 11 1

a aa a
k kk a kRSS RSS n Pχ λ− −− −

� �= ± +� �� �
 (7) 

Then calculate the time update procedure: 
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Where, 1k kRSS −  is the estimated posteriori state, 1k k −P  
is the covariance estimates 
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From (11) and  update the measurement state: 
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From equation  and (14), we get the Kalman gain: 

 1
x y y yk k k k

−=kK P P  (15) 
Using  the posteriori state estimate the kRSS can be 

concluded as: 

 ( )1 1k k k k k kRSS RSS y y− −= + −kK  (16) 
Then calculate the posteriori error covariance estimate 

as: 
 T

1k k k y y kk k−= − kP P K P K  (17) 
If Mk < , where M is the number of iteration, go on iteration. 
Then output the prediction result kRSS  of the moving 
object at t k=  and pred

k
kkRSS RSS=  

3) Descript the two localization algorithmss: When the 
mobile device is static or moving in a regular way, the 
least-square method is applied to optimize the position 
estimation of the multilateral measurement. It minimizes 
the mean-squared error of a set of simultaneous non-linear 

equations as: ( )
2

1
ˆ

n

i i i
i

p p d
=

− −� � � , where ˆ ip  is the estimated 

position of the mobile device, ˆ i ip p−� � is the estimated 
distance of the beacon and listener, id  is the true distance. 

  While the mobile device is moves in an irregular way, 
such as sudden acceleration, deceleration or circle motion, 

the dynamic triangular algorithm is applied to estimate the 
position. The DTN includes the following step: 

• Beacons broadcast sRSS  from mobile device, and 
the beacon that receives the strongest strength 
becomes the master node, while other beacons 
become slave nodes. Then they build the local 
coordinate system and set the coordinate of mobile 
as 1 1 1 1( cos , sin )x d y dθ θ+ + . 

• The location server calculates the cost functions 
2 2

1 2CF Error Errorθ θ θ= + at each angle on the 
mapping circle and searches Minθ  to achieve the 
minimum cost function, and calculate the 
estimation location of mobile device by 

( ) ( )1 1 Min 1 Min
ˆ ˆ ˆ 1D = x,y = x + d cos ,y + d sinθ θ . 

C. Dual-modal architecture 
The active mobile architecture, as illustrated in Fig.3 

(a), has an active transmitter on each mobile device, which 
periodically broadcasts a message on a wireless channel. 
Receivers are deployed to acquire the signals from listens 
for such broadcasts. Typically, each receiver propagates 
this location information to a central database that then 
updates the location of each mobile device. In contrast, the 
passive mobile architecture is illustrated in Fig.3 (b), inverts 
the transmitter and receiver locations. Here, beacons are 
deployed at known positions in the infrastructure 
periodically and transmit their message on a wireless 
channel, while the receivers on mobile devices listen to 
each beacon passively.  

 
  

 

 

 

 

 

Generally, in an active mobile mode, the system has a 
good performance in tracking mobile device, as the listener 
on the mobile device can easily compute a position 
estimation using simultaneous distance samples received 
from multiple beacons. Moreover, we selected DTN 
algorithm as the estimator. However, in this modal, the 
communications among nodes increase greatly. Contrastly, 
in a passive mobile approach, the listener feeds the non-
simultaneous distance samples to LSM estimator to 
compute the position estimation; the LSM estimation is 
subject to large errors because there is a time delay for its 
estimation works with distance samples, which may have 
been obtained when the device was in a different position. 
Therefore, we choose DTN algorithm, as it has good 
performance in this situation.  

We develop the following solution for the transition 
between passive and active mode on the mobile device: 

Beacon

Mobile

Beacon

Mobile

 (a) Passive mode                                  ( b) Active mode 
Figure 3. Passive and Active Mode Schematic Diagram 
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1) As long as the covariance of UKF is smaller than the 
threshold, the listener on mobile device does not transmit 
any information, only beacons can do so. In this situation, 
the estimator judges the mobile is in a regular motion, we 
use the passive mobile system due to its scalability and 
guaranteed user-privacy. 

2) When the device experiences a sudden non-linear 
acceleration or a turn, the covariance of UKF is deemed 
large, and then it becomes an active transmitter. The 
listener then generates a concurrent RF message, with the 
message having no information in it other than a randomly 
generated nonce. 

3) If a beacon receives an RF message generated by a 
mobile device, it waits for a short random period and 
broadcasts the nonce (set by the mobile) together with the 
RSS. During the broadcast, the beacons use a simple 
CSMA scheme with randomized back-off to avoid RF 
collisions. After receiving this information from nearby 
beacons, the listener can compute its position accurately 
since the simultaneity condition holds for these distance 
samples. Next, the listener uses this position estimation to 
reset its location modal. The flow chart of the dual-modal 
tracking algorithm is shown in Fig.4.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to avoid time synchronization among the 
beacons and the listeners, when the mobile and the beacons 
have competition for transmitting the message requesting 
ranging information, we have not set aside a unique time 
slot, but simply choose a CSMA scheme to enable a passive 
listener to transit to an active mode. One disadvantage of 
this scheme is that beacons need continuously to listen to 
the RF channel for possible mobile transmissions. Since the 
hybrid system would typically contain a mixture of both 
active and passive listeners at any given time, an 
appropriate balance between the two modes which can be 
achieved with some tuning. 

IV. EXPERIMENTS AND EVALUATION 
We have implemented the proposed location system on 

Micaz sensor motes. The experiments are conducted in our 
experiment lab. With the implementation of different 
tracking schemes, users of the dual-modal system can take 
advantage of a variety of predictive tracking techniques for 
applications involving continual or unpredictable device 
motion. 

A. Metrics and Setup 
We conduct a series of experiments to evaluate 

performance of the proposed dual-modal position 
estimation system. The available radio frequency channels 
are scanned to avoid interference from Wireless LAN at the 
test area. We adopt the event-driven mode to change the 
coordinates of mobile device. In the experiment, the 
sampling period is 50millisecond, and the localization 
period is 200millisecond. 

In the standard setup, we place several static RF 
beacons (n > 4) in the ceil of the 6m 10m lab 
environment, while the mobile device as objects being 
tracked is moving into the lab as illustrated in Fig.5. 

 

 

 

 

 

 

1) The setup-uniform-acceleration & deceleration 
motion: The velocity of mobile device is initialized as 0m/s 
and the acceleration as 0.15 2m s . After 6 seconds, it moves 
with the constant velocity of 0.9m/s for 4 seconds. Then the 
mobile device moves at deceleration of 0.3 2m s  until stop. 
The whole process cost 13 seconds. The mobile moves in 
five orientation of radical motion to experience the whole 
monitoring region. There are 56 localization results in each 
motion, and we get 280 localization results totally.  

2) The circular motion: 
In this experiment, the mobile device moves at three 

circular trajectories with the radius of 0.7m, 0.9m and 1.2m 
separately, and at each time the mobile’s velocity is 
0.1 rad s , 0.2 rad s  and 0.3 rad s . It costs 60 seconds, 30 
seconds and 20 seconds separately in each velocity. In all, 
there are 525 localization results. 

B. Performance Analysis and Experiment Result 
We now look at three important architectural properties 

and discuss how well the hybrid approach performs in each 
case. 

1) Convenience for deployment:  
In the proposed hybrid system, beacons are placed on 

the ceiling, the listeners are only need to be taken; these 
nodes are wireless connected, so it is easy to deploy and 
portable.          

2) Position precision and robustness: 

Set Kalman Covariance 
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measurement Build local 
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End
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Figure 4. The Procedure of Location Estimation System 

Figure 5. Deployment of  the lab 
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The key metric for evaluating a localization technique is 
the accuracy of the location estimates. Our main result is 
that the hybrid system is nearly as accurate as the active 
mobile system in tracking moving devices, while 
maintaining the advantages of the passive mobile system.  

a) Mean Square Error (MSE): 
The MSE is used to determine the prediction 

performance comparison between the SPKF algorithm, 
WGP algorithm and the EKF algorithm. At the Run-time 
stage we put the measured sRSS which generated from 
mobile to the SPKF, WGP and EKF, then get the 
predicted RSS . MSE can be obtained by the following 
equations: 

 

2
SPKF preds

1

2
WGP predw

1

2
EKF prede

1

1MSE ( )

1MSE ( )

1MSE ( )

N
i i

i

N
i i

i

N
i i

i

RSS RSS
N

RSS RSS
N

RSS RSS
N
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=

=

= −

= −

= −

�
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 (18) 

Where, the SPKFMSE , WGPMSE and EKFMSE  is on behalf 
the MSE of SPKF, WGP and EKF algorithm respectively. 

preds
iRSS , pred

i
wRSS and prede

iRSS is the thi predicted RSS of the 

SPKF, WGP and EKF algorithm, the iRSS is the thi  truth 
RSS which is received from the mobile device. Fig.6 
demonstrate the experiment results, it is obvious that the 
SPKF algorithm gets the minimum MSE. 

 

 

 

 

 

 

 

 

 

  

b) Mean Distance Error (MDE): 
In order to evaluate the high accuracy of dual-modal 

localization system, we use the MDE to determine the 
performance of the proposed architecture, and compare the 
passive architecture with the active architecture. The MDE 
can be described by the following equation: 

 

2
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2
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= −

= −

= −
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 (19) 

Where activeMDE , passiveMDE and dualMDE  is the MDE of 
the active, the passive and the dual-modal architecture 
separately; the active

id , passive
id  and dual

id  demonstrate the thi  

estimate distance under the three above architectures 
respectively. And id  is the thi  true distance of the mobile 
to beacon. 

As shown in the Fig.7, the proposed dual-modal 
localization system performs quite well, and its MDE is 
between 1.5m to 2m. Although this tracking result is not as 
well as the active architecture, it is smaller than 0.5m after 
inputting 200, but it performs much better than the passive 
architecture and maintains high position estimation 
accuracy and high robustness with lower energy cost of the 
system. 

 

 

 
 

 

 

 

 

 

 

3) Computational complexity and communication cost: 
In the proposed dual-modal localization system, we 

adopted the SPKF for prediction, the UKF captures the 
posterior mean and covariance accurately to between 2nd 
and 3rd order (Taylor series expansion) for any nonlinearity. 
Contrastly, in extended Kalman filter (EKF) variables 
propagate analytically through the first-order linearization 
of the nonlinear system. This can lead to sub-optimal 
performance and sometimes divergence of the filter. 
Theoretically, EKF is suitable for the nearly linear system, 
and our location system is non-linear, so the precision of 
UKF is higher than EKF in the proposed system. It displays 
the value of kP  versus the iteration in Fig.8, and the UKF is 

almost convergence by the th15  iteration. Therefore, it can 
achieve high accuracy with relative low computational 
complexity. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Comparison of mean square error 
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V. CONCLUSION 
We present an indoor RF localization system by using 

the hybrid dual-modal architecture. It has an adaptive 
structure that can select the different architecture for 
various motions of the object, and a transition method of 
setting the unscented Kalman filter’s covariance as the 
threshold. Moreover, we use SPKF algorithm to reduce the 
reflection and scattering effect on radio signal propagation 
in the indoor environment. In our experiment, it compares 
the performances of the active mobile architecture, the 
passive mobile architecture and the dual-modal architecture 
system. The results demonstrate that the hybrid approach 
can significantly reduce the energy cost of the system, 
while preserve quite acceptable precision and robustness. In 
conclusion, this method is a dependable cost-effective 
localization system for accurate indoor location sensing. 
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