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APPENDIX

In this Appendix, the pairs of random variables f(�u; �u)ju 2
U

n=1 Im ;n; T
? = Ntg are proven to be i.i.d. To simplify the

notation, define the set

C := (�u; �u)ju 2

U

n=1

Im ;n; T
? = Nt

(a)
= (�u; �u)ju 2

U

n=1

Im ;n; jIm ;nj � 18 1 � n � Nt

where (a) follows from the definition of T ? in (1). Consider an index
a 2 Im ;k . By using Bayes’ rule, the PDF of C defined before can be
written as

f(C)=f ((�a; �a)ja 2 Im ;k; jIm ;kj�1;

C= f(�a; �a)g)�f (C= f(�a; �a)g)
(b)
=f ((�a; �a)ja 2 Im ;k; jIm ;kj�1g)

� f (C= f(�a; �a)g)
(c)
=f ((�a; �a)j�a�
; �a��)�f (C= f(�a; �a)g) (11)

where (b) results from the fact that multiuser channels are independent
and, thus, (�a; �a) are independent of C=f(�a; �a). The equality (c)
follows from the definition in [1, (6)]. By repeatedly applying Bayes’
rule using (11)

f(C) =

N

n=1 a2I

f ((�a; �a)j�a � 
; �a � �) : (12)

Since the multiuser channels are identically distributed ([1, Assump-
tion 1]), (�u; �u) 8 u follow the same distribution. Let (�; �) denote a
pair of random variables having the same distribution as (�u; �u) for
an arbitrary index u. Thus, (12) can be rewritten as

f(C) = [f ((�; �)j� � 
; � � �)]jCj : (13)

The desired result follows from the aforementioned equation.
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A Jump Markov Particle Filter for Localization of Moving
Terminals in Multipath Indoor Scenarios

M. Nicoli, Member, IEEE, C. Morelli, and V. Rampa

Abstract—This correspondence describes an efficient Bayesian frame-
work for localization of moving terminals (MTs) in wideband wireless net-
works. In a previous paper, the authors have presented a grid-based tech-
nique, based on a hidden Markov model, that used the power delay profiles
of the received signals to track the MT position. This grid-based Bayesian
method has proved its efficacy in reducing localization errors in realistic
indoor environments with multipath effects and mixed line-of-sight/non-
line-of-sight (LOS/NLOS) conditions. However, the computational power
and the memory storage requirements limit its use in practical wireless net-
works. To improve the computational efficiency, here we propose a jump-
Markov particle-filter approach as an extension of the previous work; the
LOS/NLOS sight process is the jumping feature that drives the MT motion
dynamics, while the particle filter is used to track the MT position. Perfor-
mance analyses, carried out for realistic multipath indoor environments,
show that, with respect to the previous grid-based algorithm, this novel ap-
proach greatly reduces the tracking filter complexity still preserving the
same localization accuracy. Simulation results prove also the robustness of
the proposed method with respect to the uncertainty of sight statistics in-
formation.

Index Terms—Bayesian estimation, hidden Markov model, mobile posi-
tioning, particle filter, source localization, tracking algorithms, ultra-wide-
band communications.

I. INTRODUCTION

For a long time, ultra-wideband (UWB) systems have been used in
radar and military applications for their improved signal resolution
and power spectrum characteristics [1]. In recent years, they have
been considered by the Federal Communications Commission for
unlicensed-band applications, generating a lot of interest that has been
supported also by the IEEE 802.15 personal area network standardiza-
tion group. New applications, such as logistics, safety, environmental
monitoring, require transparent radio localization. In environments
covered by wireless networks, this task can be carried out by exploiting
different type of measurements [2], [3]: times of arrival (TOA), time
differences of arrival (TDOA), angles of arrival (AOA), and received
signal strength (RSS). In particular, UWB short-range localization
based on TOA/TDOA observations offers advantages in terms of
positioning accuracy with respect to other narrowband systems [4],
[5].
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Fig. 1. Example of localization of a MT in mixed LOS/NLOS conditions: (a) indoor scenario and (b) signal received over the `th link.

In this correspondence, we propose an extension of a previous work
[6] where a UWB infrastructure has been considered for tracking mo-
bile terminals (MTs) in realistic indoor environments. A Bayesian filter
based on RSS-delay profile observations has been introduced therein
to exploit the high resolution of the UWB signal even in presence
of multipath effects and mixed line-of-sight/non-line-of-sight (LOS/
NLOS) conditions. This method uses a hidden Markov model (HMM)
to describe the dynamics of the MT location and the evolution of the
sight conditions with respect to the access points (APs), and a grid-
based filter (GF) to jointly track them. Performance analyses in [6] have
demonstrated the ability of this method in reducing localization errors
with respect to local methods based on maximum-likelihood multi-lat-
eration. However, the computational power and the memory storage re-
quirements of the GF approach limit its use to complex and expensive
network-based localization systems only. On the contrary, here we are
interested in terminal-oriented real-time localization systems based on
simple and inexpensive hardware devices. To accomplish this task, we
propose an extension of the GF algorithm based on the following new
features: a jump Markov system (JMS) [7] that jointly describes the
MT dynamics and the sight-condition evolution, and a particle filter
(PF) [8] that efficiently tracks the position of the moving target. In
[9], an experimental study on wireless sensor networks has already
proved the PF approach effectiveness (without JMS) for localization
based on scalar RSS measurements (instead of RSS-versus-delay mea-
surements). Here, PF is applied for the first time to joint RSS-delay
measurements in a wideband wireless infrastructure with mixed LOS/
NLOS conditions.

The use of PF for JMS state estimation has been previously investi-
gated in [10] and [11] for target tracking. In this paper, we propose a
new application for the localization of moving terminals in UWB net-
works with mixed LOS/NLOS conditions. Performance analyses, car-
ried out in realistic multipath indoor environments, show that the joint
use of JMS (to handle the sight conditions) and PF (to track the MT lo-
cation) is an effective approach for radio localization in time dispersive
UWB systems. Furthermore, since the statistics of LOS/NLOS condi-
tions are usually unknown in practical applications, this paper investi-
gates the robustness of the proposed method in case of uncertainty on
the sight condition probabilities’ knowledge. To summarize, the orig-
inal contributions with respect to the previous work [6] and to other
localization methods in the literature are as follows: the use of a JMS
model to separate location and sight dynamics (instead of dealing with
the joint location-sight state as in [6]); the introduction of the PF ap-
proach for a more efficient position sampling (compared to GF [6]) for
localization from raw power-versus-delay UWB measurements; and

the robustness analysis with respect to the uncertainty on sight con-
dition statistics information.

The correspondence is organized as follows. The localization model
is discussed in Section II, where signal measurements and network
models are proposed. Section III introduces the JMS Bayesian frame-
work and the PF tracking algorithms, whose performances are studied
in Section IV in realistic LOS/NLOS indoor environments and com-
pared with the GF ones. Finally, Section V draws some conclusions.

II. PROBLEM DEFINITION

We consider the terminal-oriented indoor localization scenario
sketched in Fig. 1(a): An MT moves within an UWB infrastructured
area Q � 2 and it estimates its position using the signals received
from L � 3 fixed APs. The APs are assumed to be placed in known
positions and to be perfectly synchronized so that estimated delays can
be used for ranging and combined by multilateration. In our frame-
work, at the ith time instant, for i = 1; . . . ; I , the MT is characterized
not only by the unknown spatial position qi = [qi;1; qi;2] 2 Q,
but also by the unknown sight conditions si = [si;1 � � � si;L] 2 S

computed with respect to the L known AP positions fq(`)APg
L
`=1, with

q
(`)
AP 2 Q. Each sight condition is represented by a binary random

variable si;`, with value si;` = 0 for LOS and si;` = 1 for NLOS
situations. The set S = f0; 1gL collects all the possible L-tuples of
the LOS/NLOS binary variables. To simplify the analysis, we will
assume that each sight condition si;` evolves with the time i according
to a dynamic system that is independent of the position qi and of the
other AP’s sight conditions fsi;kgk6=`.

A. Signal Model

We briefly recall here the UWB signal model introduced in [6]; the
interested reader can refer to this paper for further details. At the ith
time instant, the real-valued discrete-time signal received over the `th
MT–AP link is modeled as the sum of two independent real-valued
zero-mean white Gaussian signals:

ri;`(t) = xi;`(t) + wi;`(t) (1)

where t 2 T = f0;�t; 2�t; . . . ; (K � 1)�tg denotes the time vari-
able sampled with sampling interval �t while K is the number of sam-
ples. The first term xi;`(t) in (1) represents the wideband signal propa-
gated over a dense multipath channel linking q

(`)
AP to qi, while wi;`(t)

is an additive white Gaussian noise with mean power E[w2
i;`(t)] = �2w .

The multipath signal xi;`(t) is modeled as a non-stationary Gaussian
random process having instantaneous power yi;`(t) = r2i;`(t) that
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varies along the delay axis t according to an exponential power delay
profile (PDP), as shown in the example of Fig. 1(b). The mean power
is assumed to be

E [yi;`(t)] =
�2w; t < ��i;`
�2w + �2x(�i;`)�

t�� ; t � ��i;`:
(2)

This PDP depends on the following quantities (see Fig. 1): the
delay ��i;` and the power �2x(�i;`) of the first arrival; the multi-
path delay spread �rms or, equivalently, the PDP attenuation factor
� = exp(�1=�rms) � 1 [12]. Notice that the first-arrival delay ��i;` is
proportional to the MT–AP distance di;` = jqi � q

(`)
APj only in case

of LOS (si;` = 0), as it equals the direct-path delay �i;` = di;`=c
where c is the propagation velocity. On the other hand, in case of
NLOS (si;` = 1), the propagation time is increased by the excess
delay ��i;` > 0, as shown in the example of Fig. 1(b):

��i;` = �i;` + si;` ���i;` =
di;`
c

+ si;` ���i;`: (3)

The NLOS excess delay ��i;` is assumed to be a random variable with
known distribution f�� (��) [12]. Moreover, the first-arrival power
�2x(�i;`) depends on the MT–AP distance, as it is ruled by the path-loss
law [2]–[12]:

�2x(�i;`) = �2ref
�ref
�i;`

�

= �2ref
dref
di;`

�

(4)

where �2ref is the power received at the reference distance dref = c�ref
and � is the path-loss exponent (typical values are in the range � 2
[2; 4]). The signal-to-noise ratio (SNR) at the reference distance dref is
defined as �ref = (�2ref=�

2
w).

Both the first-arrival delay (3) and the RSS (4) depend on the dis-
tance di;` and thus they are functions of the position qi (note that both
functions are nonlinear, as the delay depends linearly on the distance
but nonlinearly on the position). Thereby, we may select the complete
PDP of the received signal vector, yi;` = [yi;`(0) � � � yi;`((K�1)�t)]
[see the example in Fig. 1(b)], as measurement for our Bayesian lo-
calization framework. Such a measurement may be considered as a
joint observation of delay and power. The complete measurement set
yi = [yi;1 � � �yi;L]T includes all the KL samples collected by the L
APs at time i and modeled as described above.

III. BAYESIAN TRACKING

In this section, we design a real-time state-space technique to esti-
mate qi every time a new observed set of signals yi becomes available.
The MT motion is modeled as a first-order HMM whose state qi is
hidden into the measurement yi. This dynamic model is used together
with the measurement model defined in Section II-A to compute the op-
timal Bayesian estimate of qi. However, the statistics of the observed
signal yi change over the time due to the variations of the LOS/NLOS
variable si. In such a scenario, optimal estimation of the state qi re-
quires the definition of an additional dynamic model that describes
the evolution of the sight state si. This leads to a composite dynamic
model having as state the joint sight-position variable xi = (qi; si)
with xi 2 X = Q � S .

The composite localization model is formulated in Section III-A as
a jump Markov system [7]. This is defined as an HMM where the state
and/or the measurement models depend on a driving Markov chain
called the jumping feature. Following our assumptions, in the particular
case herein considered, only the measurement model (yi) depends on
the jumping feature (si): in fact, the probability density function (pdf)
of the measurement yi is driven by the discrete process si, while the

state qi is assumed to be independent of si. Once the JMS has been
defined, the evolution of the sight-position state xi can be tracked by
means of a Bayesian filter, as described in Section III-B.

A. JMS Dynamic Model

The Markov models describing the location and sight dynamics are
defined according to [6], as briefly recalled in this paragraph. The MT
location qi is modeled as a first-order Markov process ruled by the
system equation qi = qi�1 + vi, where vi 2 Q is the motion
driving process with known distribution fv(vi) (this can be, in general,
non-Gaussian, as in the examples given in [6] and in the localization
scenario simulated in Section IV). The motion transition probabilities
are then given by p(qijqi�1) = fv(qi�qi�1). In the same way, each
jumping variable si;` is modeled as a binary Markov chain described
by a 2 � 2 transition probability matrix [6] which is completely de-
fined by the couple of transition probabilities P (si;` = 0jsi�1;` =
0) = p0 and P (si;` = 1jsi�1;` = 1) = p1. Under the assump-
tion of independence between the L MT–AP links, the whole sight
process si is a first-order Markov chain with transition probabilities
P (si = kjsi�1 = h) = L

`=1 P (si;` = k`jsi�1;` = h`), for
k = [k1 � � � kL], h =[h1 � � �hL] 2 S . The transition pdf from the
position-sight state xi�1 = (qi�1; si�1) to the next one xi = (qi; si)
is finally given by p(xijxi�1) = p(qijqi�1)P (sijsi�1). The initial
state distribution p(x0) = p(q0)P (s0) can be chosen according to the
available a priori information about the position q0 and the sight s0 at
the starting time.

The JMS position-sight state xi is hidden into the L-link ob-
servation vector yi composed by the conditionally independent
measurements fyi;`gL`=1. The conditioned pdf of the observation is
thus p(yijxi) = L

`=1 p(yi;`jqi; si;`), where each pdf p(yi;`jqi; si;`)
has to be evaluated according to the signal model in Section II-A.
Here, we have selected as measurements the power samples yi;`(t)
instead of the Gaussian signals ri;`(t) as described in [6]. Thereby,
yi;` is a vector of K independent chi-square variables with one degree
of freedom. When conditioned to a given position qi and a sight value
si;` (i.e., to the geometrical distance di;` = jqi�q(`)j, the LOS delay
�i;` = di;`=c and the first-arrival delay ��i;` = �i;` + si;` � ��i;`),
the mean values, and thus the pdfs, of the chi-square variables are
completely defined by (2). For the two LOS/NLOS sight cases, the
conditioned pdf can be written as

p(yi;`jqi; si;`=0)= p yi;`j�i;`= qi � q
(`) =c; ��i;`=�i;`

=� yi;`; qi � q
(`) =c; 0 ;

p(yi;`jqi; si;`=1)=
��

p yi;`j�i;`= qi � q
(`) =c;

��i;`=�i;` +�� ) f�� (��)

=
��

� yi;`; qi � q
(`) =c;�� f�� (��)

where �(y; �;�� ) is the pdf of a generic K � 1 signal vector y =
[y(0) � � � y((K�1)�t)]T, modeled as in Section II-A, with LOS delay
� , first-arrival delay �+�� and NLOS additional delay�� having pdf
f�� (��). Let �(y) = exp(�y=2)=p2�y be the pdf of a chi-square
random variable with one degree of freedom and mean value E[y] = 1,
from the above considerations the pdf of y is the product of K chi-
square pdfs having mean values (2):

�(y; �;�� ) =
t<�+��

� y(t)

�

�w
t��+��

� y(t)

� +� (�)�

�2w + �2x(�)�t��
: (5)
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B. Bayesian Filters

The local (i.e., without tracking) maximum-likelihood (LML)
estimate of the state xi can be obtained by applying the max-
imum-likelihood estimation criterion to the measurement yi:
x
LML
i = arg max

x 2X
p(yijxi). However, this local method is prone

to localization errors and it should be avoided. On the other hand,
an optimal estimate of xi can be extracted from the whole set of
measurements y1:i = fy1; . . . ;yig available at time i, by exploiting
the dynamic model shown in Section III-A. This estimate is obtained
by evaluating the a posteriori pdf p(xijy1:i), which embodies all the
statistical information that can be extracted from y1:i about the state
xi. According to the Bayes’ rule, the a posteriori pdf depends on the
conditioned pdf p(yijxi) and the a priori pdf p(xijy1:i�1) as

p(xijy1:i) / p(yijxi)p(xijy1:i�1): (6)

For each i > 0, the a priori pdf can be computed by the Chapman–Kol-
mogorov equation [8] as

p(xijy1:i�1)� p(qi; sijy1:i�1) =
s 2S

P (sijsi�1)

�

Q

p(qijqi�1)p(qi�1; si�1jy1:i�1)dqi�1 (7)

while, for i = 1, p(x1jy0) = p(x1) can be obtained from (7) by setting
p(qi�1; si�1jy1:i�1) = p(q0)P (s0).

The recursive computation of (6) and (7) yields the a posteriori pdf
p(xijy1:i) for any i; then, the optimal Bayesian estimate of the state xi
can be obtained from p(xijy1:i) by using the maximum a posteriori
(MAP) or the minimum mean-square error (MMSE) criterion. How-
ever, in the general case of non-Gaussian nonlinear dynamic systems,
as the one considered in this paper, the a posteriori pdf cannot be deter-
mined analytically from (6), (7). Suboptimal algorithms are required,
using the GF or the PF, in order to approximate the continuous state
space by a discrete finite set and to reduce the evaluation of the a pos-
teriori pdf to the computation of a finite set of probabilities.

1) Grid-Based Filter: Grid-based Bayesian methods rely on a uni-
form sampling of the continuous state space X . For the specific local-
ization problem herein considered, GF tracking can be obtained as pro-
posed in [6], by quantizing the location spaceQ into a finite regular 2-D
grid QN �N composed of N1 � N2 bins. The overall state-space X
reduces to the discrete finite setXN = fx(n)g

N

n=1 of Ng = N1N22
L

states, each state being defined as x(n) = (q(n); s(n)) with q
(n) 2

QN �N and s(n) 2 S . The pdf (6) is thus approximated by the finite
sum

p(xijy1:i) �

N

n=1

w
(n)
i � qi � q

(n) � si � s
(n) (8)

where w
(n)
i = P (xi = x

(n)jy1:i) denotes the probability that xi
belongs to the nth bin given the measurements y1:i, while �(�) and
�[�] represent the continuous and discrete Dirac’s pulses, respectively.
The a posteriori distributionw(n)

i can be calculated recursively through
the update-prediction stages (6), (7) discretized as shown in [6, Eq.
38–40], with a computational complexity O(Ng) proportional to the
grid size Ng (O(�) stands for “in the order of”). The disadvantage of
this approach is that the uniform grid must be dense enough to get
high localization resolution, thus leading to unfeasible computational
burden for practical real-time localization systems.

2) Particle Filter: The key idea of particle filtering [8] is to approx-
imate the a posteriori pdf by a set of samples with associated weights
as in (8), but with samples that are randomly distributed over the state

space according to a given distribution (i.e., the importance density).
Compared to the GF method, random sampling is a more efficient ap-
proach as it allows to concentrate the samples only where they are really
needed (i.e., where the location probability is higher).

At first, let us approximate the a priori pdf p(xijy1:i�1) =
p(qi; sijy1:i�1) as the sum of a large number of Dirac’s pulses
equally weighted and centered around Np samples (or particles)
fq

(n)
i ; s

(n)
i g

N

n=1 with q
(n)
i 2 Q and s

(n)
i 2 S . The Np samples are

independent and identically distributed (i.i.d.) random variables with
distribution p(qi; sijy1:i�1); this will be indicated in the following as:
(q

(n)
i ; s

(n)
i ) � p(qi; sijy1:i�1). The pdf approximation is

p(qi; sijy1:i�1) �
1

Np

N

n=1

� qi � q
(n)
i � si � s

(n)
i : (9)

The particle subset fq(n)i ; s
(n)
i g

N

n=1 is finite and discrete, but not de-
terministic and fixed as in the GF approach. In particular, each sight
particle s(n)i is still defined on the finite and discrete set S , but the lo-
cation particle q(n)i can now potentially assume any (continuous) value
in Q. The a posteriori pdf can be similarly approximated using (6):

p(qi; sijy1:i)/ p(yijqi; si)p(qi; sijy1:i�1)

�
1

Np

N

n=1

p(yijqi; si)� qi�q
(n)
i � si�s

(n)
i

=

N

n=1

~w
(n)
i � qi�q

(n)
i � si�s

(n)
i (10)

with weight ~w
(n)
i defined as ~w

(n)
i = p(yijq

(n)
i ; s

(n)
i )=Np. Equality

holds when normalization is introduced, i.e., for

p(qi; sijy1:i) =

N

n=1

w
(n)
i � qi � q

(n)
i � si � s

(n)
i (11)

with w
(n)
i = ~w

(n)
i =

N

m=1 ~w
(m)
i . Here, the terms w

(n)
i are dif-

ferent from those in (8); the same name has been retained to
stress similarities between the GF and the PF approach. The
main advantage of this approximation is that expectations of qi

and si are easily computed, being, for the generic function f(�):
E[f(qi; si)] �

N

n=1 w
(n)
i f(q

(n)
i ; s

(n)
i ). It follows that the MMSE

estimates can be calculated through the weighted means:

q̂
PF
i =

N

n=1

w
(n)
i q

(n)
i (12)

s
PF
i =dec

N

n=1

w
(n)
i s

(n)
i (13)

where dec(x) = 1 for x � 1=2 and dec(x) = 0 for x < 1=2.
At the (i + 1)th time step, the a priori particle distribu-

tion fq
(n)
i+1; s

(n)
i+1g

N

n=1 is computed through the sequential im-
portance resampling variant [8] of PF. At first, the current
particles fq

(m)
i ; s

(m)
i g

N

m=1 are resampled (either deterministi-
cally or randomly [8]) in a new set f~q(n)i ; ~s

(n)
i g

N

n=1 such that
P (~q

(n)
i = q

(m)
i ; ~s

(n)
i = s

(m)
i ) = w

(m)
i , 8n. Through this resampling

step, particles with negligible weight are dropped while particles with
strong weight are dismantled in a set of particles with uniform values
~w
(n)
i = 1=Np. The next step (forwarding step) consists in sampling the

position and sight transition distributions according to the state equa-
tions, in order to obtain the new particle set: q(n)i+1 = ~q

(n)
i +v

(n)
i+1 with

v
(n)
i+1 � fv(vi+1) and s

(n)
i+1 � P (si+1) =

s
P (si+1jsi)P (si),

8n. At the first iteration, the particle distribution is sampled as
q
(n)
0 � p(q0) and s(n)0 � P (s0), 8n. Please note that the overall
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Fig. 2. Sight conditions s for AP number ` = 1, 2, 3, 4 and for MT position q ranging over the whole 2-D space Q: Gray bins indicate LOS condition
(s = 0), white bins NLOS (s = 1).

computational complexityO(Np) required by the PF algorithm is lin-
early related to the number of particles Np.

IV. NUMERICAL RESULTS

Positioning performances are assessed by simulating the localization
scenario in Fig. 2: the MT, while moving within an indoor environ-
ment of 40 m� 30 m, is localized by means of an UWB infrastructure
composed of L = 4 APs. Within the allowed 2-D space (walls and
areas close to the APs are not permitted), the MT trajectory fqigIi=1
is simulated according to the first-order HMM in Section III, using a
non-Gaussian driving process vi with conic-shaped pdf fv(v) of base
radius 2 m as the one shown in [6, Fig. 9(c)]. Sight conditions are gen-
erated by accessing the LOS/NLOS maps, shown in Fig. 2(a)–(d) for
the four APs, according to the simulated MT trajectory. These cov-
erage maps have been obtained by performing ray tracing from each
MT position qi 2 Q with respect to the AP positions fq(`)APg

4
`=1: for

each MT–AP link, the sight condition is set to si;` = 1 when the line
linking the AP and the MT positions crosses a wall (NLOS), otherwise
it is si;` = 0 (LOS). It can be noticed that most of the area is covered
by only one AP (in the room corners) or, at most, two (along the strips
connecting two APs) while the central part of the corridor is not cov-
ered at all. This makes the localization task particularly complicated
and requires MT tracking in order to avoid large errors due to poor
coverage. Furthermore, in this realistic scenario, position and sight are
no longer independent, as, for any value of qi, the corresponding sight
conditions are deterministically assigned by the layout geometry. Nev-
ertheless, the Bayesian methods in Section III (based on the simplifying
assumption of independence between position and sight) will be shown
to provide good localization performances.

Measurements fyigIi=1 are simulated according to the signal model
(1)–(4), thereby they are nonlinearly related to the MT location qi. The
received signal vector yi is sampled at fs = 1=�t = 1 GHz and has
length K = 150. For each position along the MT trajectory, the associ-
ated measurement is generated by evaluating the propagation time �i;`
according to the layout geometry in Fig. 2. In case of NLOS, an addi-
tional delay ��i;` is simulated using an exponential pdf f�� (��) /

exp(���=10 ns) [12]. The signal power �2x(�i;`) is derived according
to the path-loss law (4), assuming path-loss exponent � = 2:4 and
SNR �ref = 40 dB at the reference distance dref = 1 m. Multipath
components have exponential PDP with �� = exp(��t=�rms) = 0:9

(�rms = 10 ns). All these parameters are assumed to be perfectly
known by the localization algorithm.

The MT transition probabilities are assumed to be known for
tracking. As far as the sight tracking is concerned, the values to be
used for fp0; p1g are drawn directly from the layout in Fig. 2 as
follows. A training trajectory of I = 2� 104 steps is simulated across
the considered layout. Then, the relative frequencies of transition from
LOS to LOS (p0) and from NLOS to NLOS (p1) are evaluated by
counting the two events occurrences along the MT trajectory for the
four APs. The resulting frequencies, for the specific layout herein
considered, yield p0 � p1 � 0:9 (under the assumption of transition
probabilities equal for all the four APs and independent of the MT
position). Notice that this approach for the estimation of p0 and p1 can
always be used when the layout planimetry is known.

For the estimation of the MT trajectory, we compare the LML, GF
and PF methods. MT tracking is implemented using the simplifying
assumption of independence between sight and position and taking into
account the locality of the MT motion (i.e., the fact that the probabilities
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Fig. 3. Example of MT tracking: (a)–(c) localization by (a) LML, (b) GF and (c) PF; (d) sight conditions along the path with respect to all APs. Straight lines
connecting dots to the MT trajectory indicate the localization errors for each algorithm along the MT path.

p(qijqi�1) are non-null only within a circle of 2m radius centered on
the positionqi�1). The 2-D gridQN �N used for GF tracking is com-
posed of 81 � 61 bins (the spatial sampling interval is �q = 0.5 m),
thus leading to an overall number of discrete states Ng = 81 �61 �24 �

7:9� 104. On the contrary, a much smaller number of particles is used
for PF tracking: Np = 103 � Ng .

A tracking example is shown in Fig. 3. Here, the MT path has been
generated smoother and shorter (I = 75) for visualization purposes
only. This figure compares the true trajectory (thick line) with the esti-
mated ones (markers) obtained by (a) LML estimate, (b) GF, and (c) PF.
The localization errors can be appreciated by looking at the lines that
connect the true and the estimated positions in Fig. 3(a)–(c). Sight con-
ditions with respect to all APs are represented in Fig. 3(d) for each posi-
tion of the MT along the path. It can be seen that, for position number
i = 16; . . . ; 39, almost all APs are shadowed by the corridor walls,
thus leading to large localization errors.

For the same tracking example, Fig. 4 shows the 75 UWB signals
received over each AP–MT link as the MT moves along the trajectory
shown in Fig. 3. Looking at this trajectory, it can be noticed that the
MT position is always far away from AP2 and AP4, while it gets closer
to AP1/AP3 at the beginning/end of the MT path. Thereby, we expect
the SNR experienced by AP2 and AP4 measurements to be particularly
low, as it is indeed in the two plots on the right of Fig. 4. To allow a clear
visualization of the measurement sets, notwithstanding the unbalanced
SNR, in this figure, the measurements collected by AP1, AP2, and AP4
have been amplified by an amplitude factor equal to, respectively, 3, 7,
and 6 (AP3 is the one with the higher SNR values). Gray background
denotes NLOS condition, while the superimposed dashed and solid

lines indicate the actual MT–AP range di;` and the apparent one ex-
tracted from the first arrival LOS/NLOS delay di;` +�di;` = ��i;` � c,
respectively. The two lines differ when NLOS conditions occur: in this
case the received UWB signal is highly attenuated and the background
noise is dominant. On the other hand, the power of the first-arrival
signal increases when the AP is not shadowed and it is close to the
MT, such as for AP1 in Fig. 4(a) for i = 1; . . . ; 20 and for AP3 in
Fig. 4(c) for i = 40; . . . ; 60.

For AP1 only, Fig. 5 shows the MT–AP distance di;1 (lines) and the
corresponding estimate (markers) obtained by (a) LML, (b) GF, and (c)
PF localization. The number of shadowed APs is given in Fig. 5(d) as a
function of the position index i along the MT path. In all the four plots,
gray areas are related to the position numbers i for which more than two
APs are shadowed with respect to the MT. In these areas, the localiza-
tion accuracy is poor, especially in the corridor for i = 25; . . . ; 38 (see
also the corridor localization results in Fig. 3); still, the NLOS bias is
successfully compensated by the Bayesian tracking using the a priori
information about the location dynamics and the excess delay statistics.
In this example, the compensation in the corridor area is more effective
for GF than PF, due to the moderate number of particles.In the rest of
the path, both PF and GF have similar accuracy and they largely out-
perform LML localization. The estimate results in Fig. 5, compared
to the biased range values (solid lines) in Fig. 4(a), highlight also the
performance improvement that can be obtained with respect to con-
ventional localization based on separate ranging and multilateration.
In the NLOS area, separate ranging over the MT–AP1 link would give
rise to higher estimation errors, as shown by the two diverging lines in
Fig. 4(a).
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Fig. 4. UWB signals measured over the four AP–MT links as the MT moves along the path of length I = 75 in Fig. 3. Gray background denotes NLOS.
Superimposed dashed and solid lines indicate the true MT–AP range and the apparent MT–AP range drawn from the first arrival delay, respectively. (a) r (t)�3;
(b) r (t) � 7; (c) r (t); (d) r (t) � 6.

Fig. 5. Ranging performance (for AP1) as a function of the MT position along the path shown in Fig. 3: (a)–(c) MT–AP distance (line) and corresponding estimate
(marker) obtained by (a) LML, (b) GF, and (c) PF, respectively; (d) number of shadowed APs.
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Fig. 6. RMSE of the location estimate as a function of the MT position for (a),(d) LML; (b),(d) GF, and (c),(d) PF . The RMSE is plotted in grayscale as a function
of the MT position over the whole 2-D space Q (a)–(c) and over the 1-D section fq = [q ; q ] : q = 15 mg (d).

Fig. 6 shows the average localization accuracy evaluated by simulating
a longer random walk trajectory composed by I = 3 � 104 steps, all
around the considered indoor layout. The average performance is com-
puted in terms of root mean-square error (RMSE) of the location esti-
mate as a function of the MT position: for each position qi 2 Q, the
RMSE is obtained as RMSE (qi) = [ j2I(q ) jqi�q̂ij

2=jI(qi)j]
1=2,

where I(qi) is the set of all the instants i in which the simulated trajec-
tory flows across qi and jI(qi)j is its cardinality. In Fig. 6(a)–(c), the
RMSE is plotted for (a) LML, (b) GF, and (c) PF using a gray color map
to represent the RMSE values. A more detailed view can be found in
Fig. 6(d) where the RMSE is shown for the MT positions qi restricted
along the 1-D section fqi = [qi;1; qi;2] : qi;2 = 15 mg. The RMSE
values in Fig. 6(a)–(d) are quite large due to the poor coverage of the
considered scenario. In such a critical condition, the performance of
LML turns out to be totally unsatisfactory, while Bayesian tracking still
provides acceptable accuracy. As shown in the RMSE map in Fig. 6(a),
the LML error is particularly large in poorly covered areas, i.e., out-
side of the white stripes connecting two APs and in the central corridor
where all the APs are in NLOS conditions. On the other hand, both GF
and PF [see Fig. 6(b)–(c)] yield a more uniform error map all over the
layout (apart from the completely shadowed corridor). The advantage
of Bayesian localization in mixed LOS/NLOS conditions can be better
appreciated in Fig. 6(d); in the corridor section the LML error ranges
from 5 m to 12 m, while the RMSE is around 3 m for GF and 5 m for
PF. Please note also that a priori information on the topology of the
layout (e.g., the positions of walls) is not used here for tracking, but it
could be exploited to increase the localization accuracy.

As far as the computational complexity of the tracking example of
Fig. 6 is concerned, we recall that the complexity required by the es-
timate of each MT position is linearly related to the number of grid
samples or particles, i.e., O(Ng) for GF or O(Np) for PF tracking.
This means that PF localization has a complexity approximately two
orders of magnitude smaller than that of GF tracking, but still it pre-
serves almost the same localization accuracy. The RMSE of PF and GF
are indeed comparable over the whole layout, apart from the corridor
area where the PF error is slightly larger due to the complete lack of
LOS coverage (that would require a larger number of particles).

Fig. 7 investigates the robustness of the PF method with respect to
the uncertainty of sight statistics information. The sensitivity with re-
spect to LOS/NLOS transition probabilities is tested by evaluating the
location RMSE when the MT motion takes place in environments char-
acterized by parameters fp0; p1g and it is tracked using fp̂0; p̂1g, with
p̂0 6= p0 or p̂1 6= p1. Specifically, in Fig. 7(a), we use p̂1 = p1 = 0:5,
p0 = f0:1; 0:5; 0:7; 0:9g for scenario generation and p̂0 ranging
from 0 to 1 for localization; in Fig. 7(b), p̂0 = p0 = 0:5, p1 =

f0:1; 0:5; 0:7; 0:9g for scenario generation and p̂1 ranging from 0 to
1 for localization. The other parameters are chosen as in the previous
examples. The RMSE for each parameter set is evaluated by averaging
the error over ten trajectories of I = 300 steps each. Numerical re-
sults in Fig. 7 indicate that the localization accuracy reduces for low
p0 or high p1 (i.e., for high probability of being in NLOS). The op-
timum choice for fp̂0; p̂1g is close to the true value fp0; p1g, but the
curves are quite flat around the optimum values denoting moderate mis-
modeling errors. The flatness of the RMSE curves shows that the pro-
posed method is robust enough even in case of nonperfect knowledge
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Fig. 7. Sensitivity analysis of the sight parameters for PF localization: (a) sensitivity of the parameter p for p̂ = p = 0:5; (b) sensitivity of the parameter p

for p̂ = p = 0:5. Symbols fp ; p g and fp̂ ; p̂ g denote the parameters used for measurement generation and tracking.

of the sight condition statistics, as good localization performance can
be obtained for rough estimates of the model parameters. Furthermore,
looking at Fig. 7(a) for p0 = 0:1 and at Fig. 7(b) for p1 = 0:9, it is
apparent that for small values of p0 it is more convenient to overes-
timate p0 (i.e., to choose p̂0 � p0), while for large values of p1 it is
more convenient to underestimate p1 (i.e., to choose p̂1 � p1). This in-
dicates that the performance is optimized when tracking is carried out
assuming that the MT stays for long time intervals in LOS and short
time intervals in NLOS.

V. CONCLUSION

A novel Bayesian approach based on PF with JMS modeling has
been successfully applied to wireless localization in realistic indoor
UWB environments. PDP measurements are used by the Bayesian lo-
calization framework to jointly estimate the MT position and its sight
conditions with respect to the APs. This approach shows localization
performances that are comparable to those of the previously proposed
grid-based method without its computational problems. In fact, pre-
liminary results in typical scenarios show that it is possible to obtain
the same localization accuracy with computational complexity require-
ments about 100 times less than the grid-based one. Thereby, such
a solution can be considered as a good candidate for real-time ter-
minal-based localization systems.
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