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1 Introduction

Bayesian methods provide a rigorous general framework for dynamic state estimation problems. The
Bayesian approach is to construct the pdf of the state vector based on all available information. This pdf
summarises the current state of knowledge about the state vector and from it the optimal (with respect
to whatever cost function the user chooses) course of action can be determined. For the linear/Gaussian
estimation problem, the required pdf remains Gaussian at every iteration of the filter, and the Kalman
filter relations propagate and update the mean and covariance of the distribution. For a nonlinear/ non-
Gaussian problem there is in general no analytic (closed form) expression for the required pdf. However,
for many applications these modelling assumptions are strongly implied by considerations of realism.
For example, bearings only tracking in a Cartesian co-ordinate system implies a nonlinear relationship
between the state and the measurement. Similarly, if measurement sensors produce occasional gross

errors (eg radar glint), a heavy-tailed non-Gaussian error model could be appropriate.

In the following notes we begin with a description of the nonlinear/non-Gaussian tracking problem and
its optimal Bayesian solution. Since the optimal solution is intractable, several different approximation
strategies are then described. These approaches include the extended Kalman filter and particle filters.
These notes are of a tutorial nature and so, to facilitate easy implementation, ‘pseudo-code’ for algorithms
has been included at relevant points.

*©Copyright QinetiQ Ltd 2001. Published with the permission of QinetiQ Ltd. This paper is a condensed version of [1].



2 Nonlinear Bayesian Tracking

To define the problem of tracking, consider the evolution of the state sequence {xi,k € N} of a target,
given by

xp, = £ (Xp—1, Vi-1), (1)
where fj : R x R — R™= is a possibly nonlinear function of the state x;_1, {vg_1,%k € N} is an i.i.d
process noise sequence, n;,n, are dimensions of the state and process noise vectors, respectively and N
is the set of natural numbers. The objective of tracking is to recursively estimate x; from measurements

zp = hp(xg,np), (2)

where hy, : 7= x R"» — R"= is a possibly nonlinear function, {n, k € N} is an i.i.d measurement noise
sequence, and n, n, are dimensions of the measurement and measurement noise vectors, respectively. In
particular, we seek filtered estimates of x; based on the set of all available measurements z1., = {z;,7 =
1,...,k} up to time k.

(From a Bayesian perspective, the tracking problem is to recursively calculate some degree of belief in
the state x, at time k, taking different values, given the data z;.;. Thus, it is required to construct the
pdf p(xk|z1.1)- It is assumed that the initial pdf, p(x¢|zo) = p(xo), of the state vector, also known as the
prior, is available (zo being the set of no measurements). Then, in principle, the pdf p(x|z1.x) may be
obtained recursively in two stages: prediction and update.

Suppose that the required pdf p(xg_1|z1.,—1) at time k — 1 is available. The prediction stage involves
using the system model (1) to obtain the prior pdf of the state at time k via the Chapman-Kolmogorov

equation:

p(xk|z1:k71) = /p(xklxkfl)p(xkfl|z1:k71)dxk71 (3)

At time step k, a measurement zy becomes available, and this may be used to update the prior (update
stage) via Bayes’ rule:

(2 |Xk)P(Xk|Z1:6—1)
Xr|Z1. = R 4
p( kl Lk) P(Zk|21:k71) ( )
where the normalising constant
ploalmis) = [ plonipixilze)dxi (5)

depends on the likelihood function p(zy|xx). In the update stage (4), the measurement z is used to
modify the prior density to obtain the required posterior density of the current state.

The recurrence relations (3) and (4) form the basis for the optimal Bayesian solution. This recursive
propagation of the posterior density is only a conceptual solution in that in general, it cannot be de-
termined analytically. Solutions do exist in a restrictive set of cases, including the Kalman filter. We
now describe how, when the analytic solution is intractable, extended Kalman filters and particle filters
approximate the optimal Bayesian solution.

3 Extended Kalman Filter

The most well known, and certainly the most popular, approach to implementing recursive nonlinear
filters is the extended Kalman filter (EKF), see [19]. This approach is applicable to nonlinear models



with additive Gaussian noise. It is a linearisation technique based on a first order Taylor series expansion
of the nonlinear system and measurement functions about the current estimate of the state. This requires
that both f}, and hy be differentiable functions of their vector arguments.

pP(Xp-1|z1:6-1) ~ N(Xe-1;Mk—1/k—1, Pr—1]p-1) (6)
p(Xk|z1k-1) = N(Xk;mppk—1, Prjp—1) (7
N (s B (mp_ 1) -1)> Q-1 + FiPy_y k1 FY) (8)

p(xXplz1k) ~ N (Xk; Mgk, Pejr)
= N(xp;mpjp—1 + Ki(zx — hg(mpgp—1)), Prjr—1 _Kkﬁkpk\k—l) 9)

where f},(.) and hy(.) are nonlinear functions and F, and Hj are local linearisations of these nonlinear

functions (ie. matrices):

2~ dfy, (:c)

B = dx |w:mk—1\k—1 (10)
5 dhy(z)

Hk = dx |$=mk|k—1 (11)
S = HyPywH + Ry, (12)
Ky = Py HIS,! (13)

The EKF as described above utilises the first term in a Taylor expansion of the nonlinear function. A
higher order EKF that retains further terms in the Taylor expansion exists, but the additional complexity
has prohibited its widespread use.

Recently, the unscented transform has been used in an EKF framework [20, 31, 32]. The resulting filter,
known as “Unscented Kalman Filter”, considers a set of points that are deterministically selected from
the Gaussian approximation to p(Xx|z1.x). These points are all propagated through the true nonlinearity
and the parameters of the Gaussian approximation are then re-estimated. For some problems, this
filter has been shown to give better performance than a standard EKF since it better approximates the
nonlinearity; the parameters of the Gaussian approximation are improved.

However, the EKF always approximates p(xx|z1.r) to be Gaussian. If the true density is non-Gaussian
(eg. if it is bi-modal or heavily skewed) then a Gaussian can never describe it well. In such cases,
approximate grid-based filters and particle filters will yield an improvement in performance in comparison
to that of an EKF [2].

4 Particle Filtering Methods

4.1 The Sequential Importance Sampling (SIS) Algorithm

The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo (MC) method that forms the
basis for most sequential Monte Carlo filters developed over the past decades — see [13, 14]. This sequen-
tial Monte Carlo (SMC) approach is known variously as bootstrap filtering [17], the condensation algo-
rithm [25], particle filtering [6], interacting particle approximations [10, 11] and survival of the fittest [21].
It is a technique for implementing a recursive Bayesian filter by Monte Carlo simulations. The key idea is



to represent the required posterior density function by a set of random samples with associated weights
and to compute estimates based on these samples and weights. As the number of samples becomes very
large, this Monte Carlo characterisation becomes an equivalent representation to the usual functional
description of the posterior pdf, and the SIS filter approaches the optimal Bayesian estimate.

In order to develop the details of the algorithm, let {x} ,,wi}Y:, denote a Random Measure that charac-
terises the posterior pdf p(xo:x|z1:x), where {x¢ ,,i =0,..., N,} is a set of support points with associated
weights {wi,i=1,...,N,} and xo.1 = {x;,7 =0,..., k} is the set of all states up to time k. The weights
are normalised such that )", w}'ﬂ = 1. Then, the posterior density at k& can be approximated as

N,
p(xok|z1:k) & Y wid(Xon — X1, (14)

i=1

We therefore have a discrete weighted approximation to the true posterior, p(xg.x|z1.x). The weights are
chosen using the principle of Importance Sampling [3, 12]. This principle relies on the following: Suppose
p(z) o« 7(x) is a probability density from which it is difficult to draw samples, but for which 7(z) can
be evaluated (and so p(x) up to proportionality). Also, let 2* ~ g(z), i = 1,..., N, be samples that are
easily generated from a proposal ¢(-), called an Importance density. Then, a weighted approximation to
the density p(-) is given by

N, '
p(z) ~ Z w'd(x — x*) (15)
where ) (&)
w® o @) (16)

is the normalised weight of the it particle.

So, if the samples, x{,, were drawn from an importance density, q(xo:x|z1:x) then the weights in (14) are
defined by (16) to be

i o p(xf):k|z1:k)

‘I(Xé:k|zlzk) (17)

Returning to the sequential case, at each iteration, one could have samples constituting an approximation
to p(Xo:k—1|Z1:x—1), and want to approximate p(Xo.x|Z1.x) with a new set of samples. If the importance
density is chosen to factorise such that

q(X0:x|Z1:1) = ¢(Xk|X0:k—1, Z1:8)¢(X0:k—1|Z1:8—1) (18)

then one can obtain samples x} , ~ q(Xo:x|z1:x) by augmenting each of the existing samples x{ ,_, ~
q(X0:k—1|Z1:k—1) with the new state xi ~ ¢(Xi|Xo:k—1,Z1:). To derive the weight update equation,
D(X0:x|21:%) is first expressed in terms of p(Xo:x—1|Z1:k—1), P(Zk|Xk) and p(xg|xXk—1).

P (Zk|Xo0:k> Z1:k—1) P (X0:k |Z1:5—1)
p (Zk|Z1:5—1)
P (Zk|X0:k> Z1:k—1) P (Xk[X0:k—1,B1:k—1) P (X0:k—1]Z1:8—1)
p (Zk|Z1:5-1)

D (X0:k|Z1:%)

Z1|X X | X
_ p( kl k)P ( kl k 1)p(X0:k71|zl:kil)
P(Zk|zl:k—1)

o p(zklxk) p (Xk[Xk-1) P (X0:k—1|2Z1:k-1) (19)




By substituting (18) and (19) into (17), the weight update equation can then be shown to be

Wi oo P (zelx}) p (Xilx)— 1) P (Xbis—i|Zrn—1)
¢ QX3 %8015 21:k) (%G1 |Z1:6—1)

i plz]xp)p(xg x5 )

B O Ixd gy )

(20)

Furthermore, if ¢(xg|X0:5—1,%1:x) = ¢(Xg|Xg—1, Zx), then the importance density becomes only dependent
on the x;_; and zy. This is particularly useful in the common case when only a filtered estimate of
p(Xk|Z1:1) is required at each time step. From this point on, we shall assume such a case, except when
explicitly stated otherwise. In such scenarios, only x}'c need be stored, and so one can discard the path,
xf):k_l, and history of observations, z;.,—1. The modified weight is then

) ) zr|xt ) p(xt |xi
w;ﬂ “w;‘:_lp( k| Zli:)pl( k| k—l) (21)
Q(Xk|xk,1;zk)
and the posterior filtered density p(xx|2z1:x) can be approximated as
N,
P(Xk|z1:6) & > who(xk — X}) (22)
=1

where the weights are defined in (21). It can be shown that as Ny — oo the approximation (22) approaches
the true posterior density p(xx|Z1.x)-

The SIS algorithm thus consists of recursive propagation of the weights and support points as each
measurement is received sequentially. A pseudo-code description of this algorithm is given by algorithm 1.

ALGORITHM 1: SIS PARTICLE FILTER

[{Xia%}?ﬁl] = SIS [{Xifl,wifl}fﬁﬂk]
e FORi=1:N;,

— Draw xi ~ q(xx|xi_;,zx)

— Assign the particle a weight, wt, according to (21)

e END FOR

4.1.1 Degeneracy Problem

A common problem with the SIS particle filter is the degeneracy phenomenon, where after a few iterations,
all but one particle will have negligible weight. It has been shown [12] that the variance of the importance
weights can only increase over time, and thus it is impossible to avoid the degeneracy phenomenon. This
degeneracy implies that a large computational effort is devoted to updating particles whose contribution



to the approximation to p(xy|z1.r) is almost zero. A suitable measure of degeneracy of the algorithm is
the effective sample size N,y introduced in [3] and [24], and defined as
Ny

_ _ 23
1+ Var(wy*) (23)

Negy

where wi’ = p(x}|z1.k)/q(xk|xs ,2zx) is referred to as the “true weight”. This cannot be evaluated
exactly, but an estimate N.yy of N.sy can be obtained by

—_— ]_
Neff = &N .
D im (wp)?

where w}, is the normalised weight obtained using (20). Notice that N.s; < N;, and small N, indicates

(24)

severe degeneracy. Clearly, the degeneracy problem is an undesirable effect in particle filters. The brute
force approach to reducing its effect is to use a very large N;. This is often impractical, and so we rely on
two other methods: a) Good choice of importance density, and b) Use of resampling. These are described

next.

4.1.2 Good Choice of Importance Density

The first method involves choosing the importance density, q(xx|x%_;,zk), to minimise Var(wzi) so that
Neysy is maximised. The optimal importance density function which minimises the variance of the true
weights, wi’, conditioned upon xi , and zj; has been shown [12] to be

q(xk|xfc—]_7zk)0pt = p(xk|x};71,zk)
p (Zk|Xk;XLl)P (Xk|x’;.cfl)
,. (25)
P (zelx} ;)
Substitution of (25) into (21) yields
wi o wi1p (2elxk 1)
= by [Pl (il ) d. (20)

This choice of importance density is optimal since for a given x§_,, w takes the same value whatever
sample is drawn from q(xg|X%_,,Zk)ept- Hence, conditional on xi_,, Var(w;") = 0. This is the variance
of the different w}, resulting from different sampled x5 .

This optimal importance density suffers from two major drawbacks. It requires the ability to sample
from p(xx|x%_,,2x) and to evaluate the integral over the new state. In the general case it may not be
straightforward to do either of these things. There are two cases when use of the optimal importance
density is possible.

The first case is when xi is a member of a finite set. In such cases, the integral in (25) becomes a sum
and sampling from p(xp|x%_,,zx) is possible. An example of an application when x; is a member of a
finite set is a Jump-Markov Linear System for tracking maneuvering targets [15].

Analytic evaluation is possible for a second class of models for which p(xx|x% _,,z) is Gaussian [12, 9.

This can occur if the dynamics are nonlinear and the measurements linear. Such a system is given by

Xp = fp(Xp_1)+Ve—1, Vier ~ N(Ve—1; 05, x1, Qr—1)

27
zZr = Hpxp +ny, n, ~ N(ng;0p,x1,Rk), @)



where f, : ®%= — R"= is a nonlinear function, H; € R®"=*"= is an observation matrix, and vp_; and ny
are mutually independent i.i.d Gaussian sequences with QJx—1 > 0 and Ry > 0. Defining

2= Q! + H{ R, Hy (28)
my = 3 (Q 1 fr(xk-1) + HI Ry 'z (29)
one obtains
P(Xk|Xk—1,2) = N (xp; M, Bie) (30)
and
p(zn|xk 1) = N(zp; Hef (X 1), Q1 + He R HY). (31)

For many other models, such analytic evaluations are not possible. However, it is possible to construct
suboptimal approximations to the optimal importance density by using local linearisation techniques [12].
Such linearisations use an importance density that is a Gaussian approximation to p(xg|Xk—1,2zx). An-
other approach is to estimate a Gaussian approximation to p(xy|Xg—_1,2) using the unscented trans-
form [30]. The authors’ opinion is that the additional computational cost of using such an importance
density is often more than offset by a reduction in the number of samples required to achieve a certain
level of performance.

Finally, it is often convenient to choose the importance density to be the prior.

a(Xk|x}_1,2k) = p(Xk|X}_1) (32)

Substitution of (32) into (21) then yields

wi, o wh_1P(Zk[X})- (33)

This would seem to be the most common choice of importance density since it is intuitive and simple to
implement. However, there are a plethora of other densities that can be used and the choice is the crucial
design step for a particle filter.

4.1.3 Resampling

The second method by which the effects of degeneracy can be reduced is to use resampling whenever
a significant degeneracy is observed (ie. when N, falls below some threshold, N7). The basic idea of
resampling is to eliminate particles which have small weights and to concentrate on particles with large
weights. The resampling step involves generating a new set {x}c*}f\gl by resampling (with replacement)
N, times from an approximate discrete representation of p(xy|z1.x) given by

N,
p(xk|z1:6) & > who(xk — X}) (34)
=1

so that Pr(xi" = xfg) = wi. The resulting sample is in fact an i.i.d sample from the discrete density (34),
and so the weights are now reset to wf = 1/N,. It is possible to implement this resampling procedure in
O(N5,) operations by sampling N, ordered uniforms using an algorithm based on order statistics [29, 6].
Note that other efficient (in terms of reduced MC variation) resampling schemes such as stratified sampling



and residual sampling [24] may be applied as alternatives to this algorithm. Systematic resampling [22]
is the scheme preferred by the authors (since it is simple to implement, takes O(N;) time and minimises
the MC variation) and its operation is described in algorithm 2, where UlJa, ] is the Uniform distribution
on the interval [a, b]. For each resampled particle xi*, this resampling algorithm also stores the index of
its parent, denoted by i/. This may appear unnecessary here and is, but it proves useful in section 4.2.2.

A generic particle filter is then as described by algorithm 3.

ALGORITHM 2: RESAMPLING ALGORITHM

[{x]",w},i}¥)] = RESAMPLE [{x},w} } 2]

Initialise the CDF: ¢; =0

FORi=2:N,
— Construct CDF: ¢; = ¢;—1 + w}

END FOR

Start at the bottom of the CDF: ¢ =1

Draw a starting point: u; ~ U [0, N; ]

8

FORj=1:N,

— Move along the CDF: u; = u; + N;1(j — 1)
— WHILE u; > ¢;
x {=17+1
— END WHILE
— Assign sample: x{g* =x}
— Assign weight: w) = N

— Assign parent: i/ = i

¢ END FOR




ALGORITHM 3: GENERIC PARTICLE FILTER

[{Xiaw};}ﬁii] =PF [{Xz—1a“’2—1}é\§1azk]
e FORi=1:N;

— Draw xi ~ q(xx|x% ,,zx)

— Assign the particle a weight, wi, according to (21)

END FOR

Calculate total weight: t = SUM [{wi} Y]

FORi=1:N;,
— Normalise: wi =t~ 1w}

END FOR

Calculate J@ using (24)

IF N.;; < Nr

— Resample using algorithm 2: [{xi,wi, —}N* ] = RESAMPLE [{x},wi} ]

END IF

Although the resampling step reduces the effects of the degeneracy problem, it introduces other practical
problems. First, it limits the opportunity to parallelize since all the particles must be combined. Second,
the particles which have high weights w} are statistically selected many times. This leads to a loss of
diversity among the particles as the resultant sample will contain many repeated points. This problem,
known as sample impoverishment, is severe in the case of small process noise. In fact, for the case of very
small process noise all particles will collapse to a single point within a few iterations'. Thirdly, since the
diversity of the paths of the particles is reduced, any smoothed estimates based on the particles’ paths
degenerate?. Schemes exist to counteract this effect. One approach considers the states for the particles
to be pre-determined by the forward filter and then obtains the smoothed estimates by re-calculating the
particles’ weights via a recursion from the final to the first time step [16]. Another approach is to use
MCMC [5].

There have been some systematic techniques proposed recently to solve the problem of sample impoverish-
ment. One such technique is the resample-move algorithm [18]. Although this technique draws conceptu-
ally on the same technologies of importance sampling-resampling and MCMC sampling, it avoids sample

LIf the process noise is zero then using a particle filter is not entirely appropriate. Particle filtering is a method well
suited to the estimation of dynamic states. If static states, which can be regarded as parameters, need to be estimated then
alternative approaches are necessary [7, 23].

2Since the particles actually represent paths through the state space, by storing the trajectory taken by each particle,
smoothed estimates of the state can be obtained [4].



impoverishment. It does this in a rigorous manner that ensures the particles asymptotically approximate
samples from the posterior and so is the method of choice of the authors. An alternative solution to
the same problem is regularisation [26], which is discussed in Section 4.2.3. This approach is frequently
found to improve performance despite a less rigorous derivation and is included here in preference to the
resample-move algorithm since its use is so widespread.

4.1.4 Techniques for Circumventing the Use of a Sub-Optimal Importance Density

It is often the case that a good importance density is not available. For example, if the prior p(xj|xx—1)
is used as the importance density and is a much broader distribution than the likelihood, p(z|xy), then
only a few particles will have a high weight. Methods exist for encouraging the particles to be in the
right place; the use of bridging densities [8] and progressive correction [27] both introduce intermediate
distributions between the prior and likelihood. The particles are then re-weighted according to these
intermediate distributions and resampled. This “herds” the particles into the right part of the state
space.

Another approach known as partitioned sampling [25] is useful if the likelihood is very peaked, but
can be factorised into a number of broader distributions. Typically, this occurs because each of the
partitioned distributions are functions of some (not all) of the states. By treating each of these partitioned
distributions in turn and resampling on the basis of each such partitioned distribution, the particles are
again herded towards the peaked likelihood.

4.2 Other Related Particle Filters

The Sequential Importance Sampling algorithm presented in Section V-A forms the basis for most particle
filters that have been developed so far. The various versions of particle filters proposed in the literature can
be regarded as special cases of this general SIS algorithm. These special cases can be derived from the SIS
algorithm by an appropriate choice of importance sampling density and/or modification of the resampling
step. Below, we present three particle filters proposed in the literature and show how these may be derived
from the SIS algorithm. The particle filters considered are (i) Sampling Importance Resampling (SIR)
filter (ii) Auxiliary Sampling Importance Resampling (ASIR) filter, and (iii) Regularised Particle filter
(RPF).

4.2.1 Sampling Importance Resampling Filter

The Sampling Importance Resampling (SIR) filter proposed in [17] is a Monte Carlo method that can be
applied to recursive Bayesian filtering problems. The assumptions required to use the SIR filter are very
weak. The state dynamics and measurement functions, fj(-,-) and hg(-,-) in (1) and (2) respectively, need
to be known, it is required to be able to sample realisations from the process noise distribution of vj_1
and from the prior. Finally, the likelihood function p(z|xx) needs to be available for pointwise evaluation
(at least up to proportionality). The SIR algorithm can be easily derived from the SIS algorithm by an
appropriate choice of: (i) The importance density: g(xk|x%_,,z1.x) is chosen to be the prior density
p(xk|x%_,), and (ii) Resampling step: to be applied at every time index.

The above choice of importance density implies that we need samples from p(xj|x% ;). A sample x§ ~
p(xg|xi_,) can be generated by first generating a process noise sample vi_, ~ p,(vs_1) and setting



xi = f(xi_,,vi_,), where p,(-) is the pdf of vi_y. For this particular choice of importance density, it
is evident that the weights are given by

wh o< wi_ p(zg|xL). (35)
However, noting that resampling is applied at every time index, we have wi_, = 1/N Vi and so
w}, o< (g |x})- (36)

The weights given by the proportionality in (36) are normalised before the resampling stage. An iteration
of the algorithm is then described by algorithm 4.

ALGORITHM 4: SIR PARTICLE FILTER

[{Xia%}ﬁiﬁ] = SIR [{x}c—lvw;’c—l}é\ghzk]
e FORi=1:N;

— Draw xi ~ p(xx|xi_;)
— Calculate wi = p(z|xL)

END FOR

Calculate total weight: t = SUM [{wi} Y]

FORi=1:N;
— Normalise: wi =t~1w}

END FOR

Resample using algorithm 2: [{x%,w?, —} N+ ] = RESAMPLE [{x,wi} Y]

As the importance sampling density for the SIR filter is independent of measurement zy, the state space
is explored without any knowledge of the observations. Therefore, this filter can be inefficient and is
sensitive to outliers. Furthermore, as resampling is applied at every iteration, this can result in rapid loss
of diversity in particles. However, the SIR method does have the advantage that the importance weights
are easily evaluated and the importance density can be easily sampled.

4.2.2 Auxiliary Sampling Importance Resampling filter

The Auxiliary Sampling Importance Resampling (ASIR) filter was introduced by Pitt & Shephard [28]

as a variant of the standard SIR filter. This filter can be derived from the SIS framework by introducing

N,

an importance density g(x, i|z1.;) which samples the pair {x},i/} j=1, where i/ refers to the index of the

particle at k — 1.



By applying Bayes’ rule, a proportionality can be derived for p(x,|z1.;) as

p(xk,i|z1:6) o< p(zk|Xk)P(Xk, i]Z1:6—1)
= p(zx|xr)p(xk|i, 21:6—1)p(i|Z1:5—1)
= p(zr|xk)p(Xk|xp_1 )W) _1 (37)
The ASIR filter operates by obtaining a sample from the joint density p(xy,|z1.), and then omitting

the indices ¢ in the pair (xx,7) to produce a sample‘ {xfc };stl from the marginalised density p(xi|21.k)-
The importance density used to draw the sample {x,,’ }jvzl is defined to satisfy the proportionality

q(xp il21:k) o p(Ze i) Pk |} 1wy (38)

where ! is some characterisation of xj, given x}_;. This could be the mean, in which case pi =
E[xj|x}_,], or a sample, ui ~ p(xx|xt_,). By writing

q(xk7i|z1:k) = Q(i|zlzk)q(xk|iazlzk)7 (39)
and defining
) A :
q(xk|i, Z1:6) = p(Xk|Xp_1), (40)
it follows from (38) that
q(i|z1:x) o< p(zk|pk)wi_1- (41)

The sample, {xfc,ij };-V:"l, is then assigned a weight proportional to the ratio of the RHS of (37) to (38):

. ; 7| %) ) p(x? |x
wi x w;cj—lp( k| IE)P( k| k—l)
Q(Xk:“|z11k)
p(Zk|Xi)
p(zr|py)

The algorithm then becomes that described by algorithm 5.



ALGORITHM 5: AUXILIARY PARTICLE FILTER

[{Xfcvwz}ﬁiﬁ] = APF [{X?cfl:wzfl}éishzk]

e FORi=1:N;

— Calculate pt

— Calculate wi = q(i|z1:x) o< p(zs|pk)wi .
¢ END FOR
e Calculate total weight: t = SUM [{w?} 2]
e FORi=1:N;
— Normalise: wi, =t 1w}
e END FOR
e Resample using algorithm 2: [{—, —,ij};-vzsl] = RESAMPLE [{x}, wi} 2]
e FORj=1:N,

— Draw xi ~ q(xXg|i7, Z1.1) = p(xk|x}:_1), as in the SIR filter.

— Assign weight wi using (42)
e END FOR
e Calculate total weight: t = SUM [{wi} Y]
e FORi=1:N;g

— Normalise: wi, =t 1w}

e END FOR

Although unnecessary, the original ASIR filter as proposed in [28] consisted of one more step, namely a
resampling stage, to produce an i.i.d sample {xi, i’ }jV:sl with equal weights.

Compared to the SIR filter, the advantage of the ASIR filter is that it naturally generates points from
the sample at £ — 1 which, conditioned on the current measurement, are most likely to be close to the
true state. ASIR can be viewed as resampling at the previous time step, based on some point estimates,
pi, that characterise p(xg|xi_,). If the process noise is small, so p(xj|xt ;) is well characterised by pi,
then ASIR is often not so sensitive to outliers as SIR, and the weights w}c are more even. However, if the
process noise is large, a single point does not characterise p(xx |x};71) well and ASIR resamples based on
a poor approximation of p(x|x%_,). In such scenarios, the use of ASIR then degrades performance.



4.2.3 The Regularised Particle Filter

Recall that resampling was suggested in section 4.2.1, as a method to reduce the degeneracy problem
which is prevalent in particle filters. However, it was pointed out that resampling in turn introduced
other problems, and in particular, the problem of loss of diversity among the particles. This arises due
to the fact that in the resampling stage, samples are drawn from a discrete distribution rather than a
continuous one. If this problem is not addressed properly, it may lead to “particle collapse”, where all N
particles occupy the same point in the state space, giving a poor representation of the posterior density.
A modified particle filter known as the Regularised Particle Filter (RPF) was proposed [26] as a potential
solution to the above problem.

The Regularised Particle filter is identical to the SIR filter except for the resampling stage. The RPF
resamples from a continuous approximation of the posterior density p(xy|2z1.x) while the SIR resamples
from the discrete approximation (34). Specifically, in the RPF, samples are drawn from the approximation

N.
p(Xp|Z1:k) & Zw};Kh(xk — x}c) (43)
i=1
where 1
x
Kn(x) = 7K (3) (44)

is the re-scaled Kernel density K(-), h > 0 is the Kernel bandwidth (a scalar parameter), n, is the
dimension of the state vector x, and wi, i = 1,..., Nj, are normalised weights. The Kernel density is a
symmetric probability density function such that

/xK(x)dx =0, /||x||2K(x)dx < 00

The Kernel K(-) and bandwidth h are chosen to minimise the Mean Integrated Square Error (MISE)
between the true posterior density and the corresponding regularised empirical representation in (43),
defined as

MISE(p) = E [/ [p(xk|21:) — P(Xk|Z1:1)]° dx (45)

where p(-|-) denotes the approximation to p(xy|z1:.x) given by the RHS of (43). In the special case of an
equally weighted sample, the optimal choice of the Kernel is the Epanechnikov Kernel [26],

S (1= IIxI1?) if [Ix]| < 1
Kopt = { 2ena

. (46)
0 otherwise

where ¢, is the volume of the unit hypersphere in R"=. Furthermore, when the underlying density is

Gaussian with a unit covariance matrix, the optimal choice for the bandwidth is [26]

hopt = AN =2 (47)

A =8¢ (n, +4) (2y/7)" |5 (48)

Though the results of (46) and (47)-(48) are optimal only in the special case of equally weighted particles
and underlying Gaussian density, these results can still be used in the general case to obtain a suboptimal
filter. One iteration of the RPF is described by algorithm 6. The RPF only differs from the generic particle
filter described by algorithm 3 as a result of the addition of the regularisation steps when conducting
the resampling. Note also that the calculation of the empirical covariance matrix Sy, is carried out prior



to the resampling and so is a function of both the xi and w{. This is done since the accuracy of any
estimate of a function of the distribution can only decrease as a result of the resampling - if quantities
such as the mean and covariance of the samples are to be output then these should be calculated prior
to resampling.

ALGORITHM 6: REGULARISED PARTICLE FILTER

[{x;c*7w;c}iil] = RPF [{X;.c—vw;.cq}é\;spzk]

FORi=1:N;

— Draw XZ ~ q(xk|x};71,zk)

— Assign the particle a weight, wi, according to (21)

END FOR

Calculate total weight: t = SUM [{wi}Y]

FORi=1:N;
— Normalise: w} =t~ w}

END FOR

Calculate J@ using (24)

IF N,;; < Nr

— Calculate the empirical covariance matrix Sy, of {x,w} }ivs,
— Compute Dy, such that DyD? = Sj.
— Resample using algorithm 2: [{x},wi, —}~*] = RESAMPLE [{x,w}} ]
— FORi=1:N;
* Draw € ~ K from the Epanechnikov Kernel
* x}‘c* = x}'c + hoptDyel
— END FOR

e END IF

By following the above procedure, we generate an i.i.d random sample {x};*}fgl drawn from (43).

In terms of complexity, the RPF is comparable to SIR since it only requires N, additional generations
from the Kernel K (-) at each time step. The RPF has the theoretic disadvantage that the samples are
no longer guaranteed to asymptotically approximate those from the posterior. In practical scenarios, the
RPF performance is better than the SIR in cases where sample impoverishment is severe, for example
when the process noise is small.



5 Conclusions

For a particular problem, if the assumptions of the Kalman filter hold then no other algorithm can
out-perform it. However, in a variety of real scenarios, the assumptions do not hold and approximate
techniques must be employed.

The extended Kalman filter approximates the models used for the dynamics and measurement process,
in order to be able to approximate the probability density by a Gaussian. Particle filtering approximates
the density directly as a finite number of samples. A number of different types of particle filter exist
and some have been shown to outperform others when used for particular applications. However, when
designing a particle filter for a particular application, it is the choice of importance density that is critical.
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