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Abstract—Radio imaging allows to locate and track passive
targets (i.e., not carrying electronic device) moving in an area
monitored by a dense network of low-power and battery-operated
wireless sensors. The technology is promising for a wide number
of applications ranging from intrusion detection to emergency
and rescue operations in critical areas. In this paper, a new
approach is proposed where both the average and the variance
of the fluctuations of the received signal strength (RSS) induced
by the target movement over the links are jointly and optimally
exploited for sensing the target location. A link-layer protocol
is developed on top of an existing IEEE 802.15.4 compliant
PHY/MAC layer to allow the wireless nodes to cooperatively
exchange RSS measurements. A log-normal model is defined
to relate these measurements to the target location. Grid-based
Bayesian estimation is proposed for real-time mobile positioning.
The proposed system is validated by an indoor experimental
study that analyzes the problem of model calibration and
compares the performance of different localization algorithms.

I. INTRODUCTION
Radio Imaging is an emerging technology for locating and

tracking moving objects or people in areas that are monitored
by simple low-cost radios. Conventional indoor positioning
techniques require the device being tracked to actively par-
ticipate in the localization process [1], while radio imaging
does not require the target to carry any electronic equipment
thus enabling device-free (passive) localization [2]. In contrast
to well-known ultra-wide band based imaging techniques [3],
radio imaging relies on inexpensive commercial radios that
have small bandwidth and provide only signal strength mea-
surements (rather than reflections or scattering). As depicted
in Fig. 1, a large set of small, low-power and battery-operated
wireless devices is spread over the area of interest creating
a dense mesh network. An object that moves within the area
modifies the received signal strength (RSS) field in a way
that depends on the object locations; radio imaging therefore
exploits RSS measurements observed along the peer-to-peer
links to obtain an image reconstruction of the object trajectory.
Radio imaging is promising for a wide number of applica-

tions ranging from intrusion detection to emergency and rescue
operations in critical or hazardous areas, access control and
counting, pedestrian traffic monitoring and home automation.
Still, there are a number of technical challenges that need to
be addressed. These include the definition of reliable statistical
models (and related calibration procedures) to describe the
impact of the attenuating/diffracting/scattering target on the
RSS measurements, as well as the design of efficient mobile
positioning algorithms and networking protocols for real-time
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Fig. 1. Radio imaging system: floor map and WSN layout.

applications. A step forward in this direction is done in [4]
with the proposal of a tomographic method for radio imaging
with narrowband devices: localization is based on a geomet-
rical deterministic model to describe attenuation changes over
the space, while an image estimate is performed to indicate
the position of the moving object. In this paper, radio imaging
is cast into a new Bayesian estimation framework based on
a stochastic model that allows to optimally exploit all the
location information coming from attenuation, random fading
and mobility model.
The proposed radio-imaging system is based on a link-

layer protocol that allows the nodes to cooperatively exchange
RSS measurements. The protocol has been developed on top
of an existing IEEE 802.15.4 compliant physical/medium-
access-control (PHY/MAC) layer design. A stochastic model
is proposed for relating the RSS measurements of each link to
the object position: since the presence of the target is shown to
affect both the path loss and the degree of random fluctuation,
a log-normal model is defined where the RSS mean and
variance are functions of the target location. The model is
calibrated on experimental data. For positioning, multi-link
measurements are optimally combined in a multi-angulation
like fashion. We compare maximum likelihood estimation
(MLE) without tracking with a more advanced Bayesian on-
line sequential estimation that exploits a priori information on
the target mobility to alleviate false localization problems [8].
Preliminary results from test-bed measurements confirm that
the proposed model provides a reliable description of RSS
changes caused by moving objects and allows to obtain good



localization performance. In addition, the use of a cooperative
network architecture for real-time sampling of the RSS field is
shown to provide a practical network architecture for on-line
target detection and tracking.

II. PROBLEM FORMULATION
We consider a wireless sensor network (WSN) spread in an

indoor planar region X ⊂ R2 where N wireless sensors (WS)
are allowed to share transmission resources to communicate
with an access point (AP). X is the coverage area of the
WSN. Sensor i-th (i = 1, . . . , N) is placed in a known
position zi = [z1,i, z2,i] ∈ X , where zk,i denotes the k−th
Cartesian coordinate (k = 1, 2) in the two-dimensional (2D)
space. These known positions can be either measured during
the deployment or estimated by the WSN itself by using a
cooperative localization algorithm [1]. We model the WSN as
an unidirectional connected graph with wireless links (edges)
indexed by c ∈ L ={1, . . . , L}. L denotes the subset of the
L = N(N − 1)/2 active links experiencing a sufficiently
high signal strength to support reliable communication. The
two links associated with the same pair of WSs are assumed
to be reciprocal. At any time t the AP collects a set of L
noisy measurements st = [sc,t]c∈L where each observation sc,t
represents the power of the received signal (RSS) measured
over the c ∈ L link. As depicted in Fig. 2 and detailed in
Sect. II-A, measurements are collected in real-time based on a
proprietary MAC protocol defined on top of the IEEE 802.15.4
standard that allows a periodic transmission of probe signals
by all the N sensors over reserved time-slots.
We assume that one1 object might move inside the detection

region X . The object does not need to carry any electronic
device and it is not aware of being localized. At discrete
time instant t = 1, . . . , T , with time sampling interval ∆t,
the position of the object being detected is indicated by
coordinates xt = [x1,t, x2,t] ∈ X . Based on the observations
st available at the AP, the problem we tackle is to localize2
at each time instant t the object within the region X , i.e. to
estimate the position xt given the available measurements up
to time t. The object position xt is not directly observable but
it is hidden into the noisy RSS measurements st according to
the statistical model defined in Sect. II-B.

A. Network Architecture and Protocols for Radio Imaging
The radio imaging system has stricter reliability and delay

requirements compared to conventional WSN applications.
Each sensor must sample the RSS field at constant sampling
rate 1/∆t. The real-time constraint prescribes that the whole
observation data-set st should be decoded and processed by the
AP before a new data set st+1 is generated after ∆t sec. This
hard deadline calls for the development of advanced wireless
link-layer management policies.
The proposed MAC sub-layer uses a timed-token passing

protocol [5] on top of the cooperative network architecture
illustrated in Fig. 2. Medium access is based on time division

1Extension to multiple nodes is out of the scope of this paper.
2Detection problem reduces to identify any relevant change in the obser-

vations and it is not treated here.

while token message exchange (dashed black arrow) is used
to periodically synchronize the network. When the sensor
receives the token message it is configured to perform two
tasks: i) transmit the backlog of RSS measurements over a
default IEEE 802.15.4 channel used for communication with
the AP (red arrow) over center frequency fc ; ii) broadcast
the probe signal (solid arrow) over a pre-configured channel
at center frequency fm 6= fc. During MAC configuration the
sensor network is organized into a logical ring connecting the
WSs within the detection area to the AP (and viceversa). To
enforce the real-time constraint, still guaranteeing the service
reliability, error control is based on implicit acknolwedge-
ments: each sensor is configured to wait for the token message
until a time-to-token-visit listening time expires, after that it
is allowed to generate a new token and to exclude the links
with poor quality.

B. RSS Measurement Model
This section presents a stochastic model that relates the

noisy power observation st to the target position xt. The model
has been corroborated by an experimental analysis outlined in
Sect. IV. The RSS measured over link c in dBm is modelled
as a Gaussian random variable whose parameters depend on
the absence (indicated as xt = 0) or presence (xt ∈ X ) of a
target in the detection area and, in case of presence, on the
specific position xt within X :

sc,t =

½
hc(0) + wc(0), if xt = 0
hc(xt) + wc(xt), if xt ∈ X

(1)

In case of missing target, the link c experiences an average
received power hc(0) that accounts for the propagation effects
due to fixed obstructions as metallic reflectors, walls and floor.
On the other hand, the Gaussian noise wc(0) ∼ N (0, σ2c(0)),
with zero mean and standard deviation σc(0), models the ran-
domness of shadowing due to variations (typically moderate)
in the surrounding environment, such as objects or people
moving outside the detection area. When a target enters the
WSN area, both the average attenuation hc(xt) and the fading
wc(xt) ∼ N (0, σ2c(xt)) are affected in a way that depends on
the position xt. As also confirmed experimentally in [4], if xt
is along the link c, the signal typically experiences an increased
path-loss hc(xt). In addition, an increased fluctuation around
the average is also observed as the target moves, turns, etc. in
the surrounding of the point xt.
Both the path-loss and the random fading provide significant

information on the target location. This can be easily seen by
the experimental 2D functions (or maps) hc(xt) and σc(xt)
shown in Fig. 3 obtained as detailed in Sect. IV. Measurements
show that the presence of a moving person in the coverage
area of the WSN induce significant fades on the power of
signals exchanged by the nodes of the WSN. Fading effects,
however, are difficult to classify in complex indoor scenarios
(for outdoor studies, see, e.g. the analysis of the power
changes due to wind-blown foliage [6]). Hence, for the indoor
case study here considered, we choose to evaluate the model
functions hc(xt) and σc(xt) through experimental power maps
measured by the WSN during a preliminary off-line calibration
phase over relevant set-points xt.
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Fig. 2. Cooperative network architecture for Radio Imaging: timed-token message passing.

Thereby, the target detection and tracking procedure is
carried out by following two steps:
1. Trajectory-based calibration: an object (with similar
characteristics of the intended target) moves according to a
known training trajectory that spans M different positions
{um}Mm=1 ∈ X ; the AP collects and synchronizes the RSS
observations received from the sensors while these are used
to evaluate a sample average hc(um) and a sample standard
deviation σc(um) for each link.
2. On-line localization and tracking: at each time instant t,
each sensor periodically measures and forwards the RSS of
active links. The AP receives the data set st, and this is used
for detection and on-line estimation of the object position x̂t
based on the knowledge of the 2D maps.

III. POSITIONING ALGORITHMS

In this section, we introduce the Bayesian framework for
on-line sequential estimation of the object trajectory x1:T =
[x1 · · ·xT ] from the observations s1:T = [s1 · · · sT ].
The target motion is modeled as a first-order Hidden

Markov Model (HMM), described by the system equation
xt = xt−1 + vt, where vt denotes the driving process with
known distribution fv(v). Transition probabilities are given
by p(xt|xt−1) = fv(xt − xt−1). The initial state distribution
p(x1), for any x1 ∈ X , is chosen based on the available
a-priori information about the target object position at time
t = 1: it can be either uniform in case of missing a-
priori information (detection problem) or impulsive in case
of knowledge of the starting location.
The state xt ∈ X is hidden into the observation st ∈ RL.

Observations sc,t are assumed to be conditionally independent
over c given the state xt. Recalling the model (1), the measure-
ment st conditioned to xt is an uncorrelated Gaussian vector
with mean h(xt) = [hc(xt)]c∈L and covariance C(xt) =
diag

¡
[σ2c(xt)]c∈L

¢
. Thus, the conditioned distribution is:

p(st|xt)=
1

(2π)L/2|C(xt)|1/2
exp

½
−1
2
kst − h(xt)k2C−1(xt)

¾
(2)

where ksk2C = sTC s denotes the square norm of the vector
s weighted by the matrix C.
A local estimate of xt can be obtained by applying the MLE

criterion on the measure st only: x̂t = argmaxxt∈X p(st|xt).
A Bayesian approach is proposed to exploit the a-priori
information on the target mobility and improve the esti-
mate performance; the a-posteriori probability density function

(pdf), p(xt|s1:t), of the state given the whole measurement set
s1:t = [s1 · · · st], is obtained recursively according to [7]:

p(xt|s1:t) ∝ p(st|xt)
Z
X
p(xt|xt−1)p(xt−1|s1:t−1)dxt−1| {z },

p(xt|s1:t−1)
(3)

where constant terms have been neglected. The a-priori pdf
p(xt|s1:t−1) is obtained from the a-posteriori pdf of the pre-
vious step p(xt−1|s1:t−1) and the knowledge of the transition
probabilities p(xt|xt−1) for any t > 1, while it is initialized
with p(xt|s1:t−1) = p(x1) for t = 1. Once the a-posteriori
pdf is calculated using (3), the estimate of the state xt can
be obtained using either the maximum-a-posteriori (MAP)
x̂t = argmaxxt∈X p(xt|s1:t) or the minimum mean square
error (MMSE) criterion x̂t =

R
X xtp(xt|s1:t)dxt.

The grid-based approach [8] here used for the implementa-
tion of (3) relies on a uniform 2D sampling of the continuous
state space X . The target object location xt is thus assumed
to take values within a regular 2D grid of K = K1K2 spatial
positions, k∆x = [k1, k2]∆x, with sampling interval ∆x,
k1 = 1, . . . ,K1 and k2 = 1, . . . ,K2. A-priori pdf p(xt|s1:t−1)
in (3) is thus approximated by a finite sum.

IV. EXPERIMENTAL STUDY
In the proposed experimental set-up, protocols to enable

radio imaging are implemented over battery-powered Micaz
Motes based on the low-power single-chip 2.4 GHz IEEE
802.15.4 compliant device CC2420 [9]. As depicted in Fig.
3 (top-left corner), N = 14 nodes are regularly deployed
in an open-space room along the boundary of a rectangular
indoor area of size 5m×4m. The target is a person moving
inside the detection area. The 8-bit RSS indicator (RSSI) is
used to measure the RSS, here ranging between −90dBm
and −30dBm. Radio transmit power is set to 0dBm. The
RSS sampling time interval ∆t needs to be adapted to the
target mobility model. Assuming that the target velocity is
below 1m/s, here the sampling interval is set to ∆t = 120ms.
The AP node collecting data from sensors is implemented
over a Telosb Mote equipped with Texas Instruments MSP430
microcontroller. Measurements are sent to a PC for data
processing and imaging.

A. Model Calibration and Validation
During the calibration phase, a person moves along a known

training trajectory ofM = 35 positions {um}Mm=1 as indicated
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Fig. 3. Examples of 2D attenuation and standard deviation maps from model calibration.Top-left corner sub-figure: WSN layout for the indoor tests Top-right
corner sub-figure: example of 2D attenuation map for link 3-11 and strip model

in Fig. 3 (top left corner) with a velocity of approximately
1m/s, yielding 8RSS samples per position on average. The
trajectory covers all the K = 7 × 5 locations of the 2D
regular grid used for approximating the state space X , with
spatial sampling interval ∆x = 0.5m. In Fig. 3, the 2D
maps for attenuation hc(xt) and standard deviation σc(xt)
calculated from the RSS measurements gathered along the
training trajectory are shown for a selected subset of links
c = (i, j), with nodes i = 1, ..., N and j = 1, ..., N numbered
as in the top-left corner sub-figure. The 2D maps provide a
statistical description of the change in attenuation and standard
deviation caused by the moving target. For illustrative purpose,
a detailed view of the attenuation map for link (3, 11) is
reported in the top-right corner of Fig. 3. Each pixel of the
map represents the difference hc(0) − hc(xt) in gray scale,
i.e. the increase of path-loss (in dB) experienced over the link
c when the target is on position xt compared to the case of
no target. The white/gray region where the target generates a
significant path-loss (2-10dB), is shaped as a strip of width
6 ÷ 7λ centered around the direct path connecting the two
nodes, λ = 0.125m being the carrier wavelength. In the figure,
this sensitivity strip is highlighted by two white dashed lines
delimiting the region and it is indicated as X (a)

c ⊂ X for
link c. A similar reasoning holds for the shadowing standard
deviation increase, σc(xt)−σc(0), as shown by the maps at the
bottom of the figure. For any link c the strip X (s)

c defines the

locations where a significant change in the standard deviation
could be observed due to the target presence. Compared to the
attenuation, the strip width is larger, approximately 8÷9λ, and
the increase of standard deviation ranges between 1-7dB. By
looking at the 2D maps in Fig. 3, it is reasonable to conclude
that the joint exploitation of attenuation and standard deviation
maps can provide a significant amount of information for
accurate mobile positioning. Optimal combination of these two
observations for all links in the likelihood evaluation allows
to turn the measurement uncertainty (i.e., the noise wc(xt))
into an advantage by exploiting the variation of the degree of
uncertainty (i.e., σc(xt)) over the space as a useful information
for location estimation, which is especially important in case
of high shadowing effects. This occurs mainly in complex
propagation environments with non line-of-sight links where
the effect of target obstruction is expected to be more relevant
and thus changes in RSS standard deviation likely provide
more information for localization than the attenuation.
Long-term changes of the propagation and interference en-

vironment constrain the adoption of an automatic procedure to
periodically update the model parameters. Looking at the 2D
maps in Fig. 3, the most significant information for parameter
estimation is confined inside each strip where moving objects
cause significant RSS fluctuations and is typically represented
by the increase of attenuation/standard-deviation (strip width
may be assumed constant). Therefore, it is reasonable to define
a decision-directed approach for model adjustment during on-
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Fig. 4. Examples of trajectories (solid lines) and relative estimation (markers)
with MLE and MMSE Bayesian tracking. Dashed lines connecting the true
and the estimated positions highlight the localization errors while root mean
squared error (RMSE) is indicated for each case.

line imaging: any the new observation st indicating a target
at position x̂t ∈ X (a)

c (or x̂t ∈ X (s)
c for standard deviation)

can be used to update on-line the value of the attenuation (or
standard deviation) along the link-c sensitivity region.

B. Mobile Positioning Performance
Fig. 4 shows some tracking examples selected from the

indoor tests. The figure compares the true target trajectories
acquired using a video-camera (solid line) with the estimated
ones (markers) obtained by MLE estimate (left side sub-
figures) and MMSE Bayesian tracking (right side sub-figures).
Position estimate is updated on every ∆t = 120ms: this allows
to jointly process one RSS sample per link. The localization
errors can be appreciated by looking at the lines (dashed
lines) that connect the true and the estimated positions. The
MLE performance is affected by false-localization problems
distributed over all the detection area causing localization
errors up to 2.5m. A main limiting factor for the local MLE
is the spatial accuracy of pairwise location measurements, in
other words, the sensitivity strip width. The Bayesian tracking
algorithm reduces the average error below 0.5m. Notice that
higher performance might be obtained by particle filtering.
In Fig. 5 we compare the image results for MLE estimation

and Bayesian tracking given that one human is standing in
three different positions indicated by markers inside the de-
tection area. Images represent the likelihood function p(st|xt)
for MLE estimation and the a-posteriori pdf p(xt|s1:t) for
Bayesian tracking over the regular grid of states xt ∈ X .

MLE MLEMLE

1,tx

2,tx

2,tx
1,tx

Indoor test 2,tx
1,tx

Bayesian tracking Bayesian trackingBayesian tracking

1,tx

2,tx

1,tx

2,tx

1,tx

2,tx

1,tx

2,tx

Fig. 5. Top: indoor test environment with human moving along an arbitrary
trajectory. Bottom: image results for MLE estimation and Bayesian tracking
(bottom) representing the likelihood function p(st|xt) and the a-posteriori
pdf p(xt|s1:t), respectively for positions xt ∈ X corresponding to top sub-
figures.

Image artifacts observed by MLE estimation can be removed
by Bayesian filtering thus improving positioning accuracy.

V. CONCLUDING REMARKS
Radio imaging can be used to locate and track moving

objects or people in areas with a low-cost cooperative wireless
network operating at RF wavelengths. A log-normal RSS
model describes the fading effects caused by object/human
movement in indoor environments; this allows to cast the
imaging problem into the framework of Bayesian filtering.
The use of a Bayesian tracking approach is shown to provide
a reasonable accuracy for target localization. It is therefore
expected that future research will provide an effective solution
ready for a wide range of industrial applications.

REFERENCES
[1] N. Patwari, et al., “Locating the nodes: cooperative localization in wireless

sensor networks,” IEEE Signal Processing Mag., Vol. 22, No. 4, pp. 54-
69, July 2005.

[2] M. Youssef, M. Mah, A. Agrawala, “Challenges: device-free passive lo-
calization for wireless environments,” Proc. of ACM-MobiCom Montreal,
Canada, Sept. 2007.

[3] S. Gezici et al., “Localization via ultra-wideband radios: a look at
positioning aspects for future sensor networks,” IEEE Signal Processing
Mag., vol. 22, pp. 70–84, July 2005.

[4] J. Wilson, N. Patwari, “Radio tomographic imaging with wireless net-
works” IEEE Trans. on Mobile Computing, vol. 9 no. 5, pp. 621-632,
May 2010.

[5] E. Tovar, F. Vasques, “Real-time fieldbus communications using Profibus
networks,” IEEE Trans. on Industrial Electronics, vol. 46, no.6, pp.1241-
1251, Dec. 1999.

[6] P. K. Chong, et al., “Wind-blown foliage and human induced fading in
ground-surface narrowband communications,” IEEE Trans. on Vehicular
Technology, vol. 60, no. 4, May 2011.

[7] M. S. Arulampalam, et al. “A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Proc.,
Vol. 50, No. 2, Feb. 2002.

[8] M. Nicoli, C. Morelli, V. Rampa, “A jump Markov particle filter for
localization of moving terminals in multipath indoor scenarios,” IEEE
Trans. Signal Processing, Vol. 56, N. 8, pp. 3801-3809, August 2008.

[9] Datasheet CC2420, 2.4 GHz IEEE 802.15.4 ZigBee-ready RF Trans-
ceiver, Mar. 2007.


