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Abstract—This paper deals with the problem of radio localiza-
tion of moving terminals (MTs) for indoor applications with mixed
line-of-sight/non-line-of-sight (LOS/NLOS) conditions. To reduce
false localizations, a grid-based Bayesian approach is proposed to
jointly track the sequence of the positions and the sight conditions
of the MT. This method is based on the assumption that both the
MT position and the sight condition are Markov chains whose state
is hidden in the received signals [hidden Markov model (HMM)].
The observations used for the HMM localization are obtained from
the power-delay profile of the received signals. In ultrawideband
(UWB) systems, the use of the whole power-delay profile, rather
than the total power only, allows to reach higher localization ac-
curacy, as the power-profile is a joint measurement of time of ar-
rival and power. Numerical results show that the proposed HMM
method improves the accuracy of localization with respect to con-
ventional ranging methods, especially in mixed LOS/NLOS indoor
environments.

Index Terms—Bayesian estimation, hidden Markov models
(HMM), mobile positioning, source localization, tracking algo-
rithms, ultrawideband (UWB) communications, wireless networks.

I. INTRODUCTION

I N wireless communication systems, localization of moving
terminals (MT) is obtained through the measurement of

propagation parameters related to the MT location [1]–[5].
Parameter estimation is performed by exchanging radio signals
with fixed access points (APs) placed in known positions.
Typical propagation parameters are times of arrival (TOA),
time differences of arrival (TDOA), angles of arrival (AOA),
and received signal strength (RSS) [3]. The relationship be-
tween these parameters and the MT position are obtained either
by analytical models or through field measurements (e.g., by
RSS digital maps). Usually these models or measurements
are exploited to estimate the MT-APs distances/directions;
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then localization is obtained by tri- or multi-
lateration/angulation. The choice of the measurement type
(e.g., TOA, TDOA, AOA, RSS, or digital maps) and the lo-
calization approach (e.g., centralized or distributed, traditional
or cooperative, etc.) depends on the characteristics of the spe-
cific application (e.g., indoor or outdoor) and on the wireless
infrastructure. The latter ranges from cellular networks [6]–[8],
to local area networks (WLAN) [9], personal area networks
(WPAN) or sensor networks (WSN) [10]–[12].

False localizations often arise in ranging methods; these un-
wanted effects are due to parameter estimation errors, mismod-
eling, oversimplified assumptions about the propagation envi-
ronment, multipath effects, and non-line-of-sight (NLOS) con-
ditions. In indoor scenarios characterized by dense multipath
and/or NLOS conditions, these errors become more severe as
ranging results in apparent or biased distances due to propa-
gation over secondary paths. For these reasons, advanced lo-
calization methods need to be designed taking into account the
existence of mixed LOS/NLOS conditions. The most common
techniques exploit redundant measurements (i.e., large ) [13],
merge different types of measure with data fusion techniques
[2], [14], combine analytical models with maps of measure-
ments [8], [3], or use Bayesian methods to estimate (i.e., track)
the whole MT trajectory instead of estimating one position at a
time [15]–[18].

Differently from band-limited wireless systems, such as
cellular radio ones, wideband or ultrawideband (UWB) signals
make high resolution (e.g., below 1 m) ranging applications
feasible [10], [19], [20]. UWB systems [21], [22] are mainly
intended for limited-range indoor applications. In this paper,
we consider a UWB network with fixed nodes (i.e., APs)
placed in known positions and covering the area where the
MT has to be localized. Accurate ranging could be obtained,
in principle, by estimating TOA or TDOA from signals at the
output of the chip matched filter (MF), relying on the high
resolution of the UWB transmitted pulse. However, dense
multipath and large delay spreading, often found in indoor
environments, worsen the inherent high resolution of UWB
ranging systems. In addition, multiuser access interference
(MAI) introduces further signal degradation. In these condi-
tions, the high sampling rate required by the above mentioned
TOA-based methods does not necessarily imply high resolution
ranging results, due to the rich multipath environment that
prevents an accurate estimation of the first arrival delay. To
improve the localization accuracy, we propose to track the MT
position directly from RSS-delay profile measurements rather
than the usual two-step localization approach (i.e., parameter
estimation and position tracking). In addition, the sampling
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interval used for the RSS-delay profile can be adapted to the
spatial resolution required by the localization system and can
be lower than the chip-rate [10].

Here, we propose a network-based localization system where
the MT motion, modeled as an hidden Markov model (HMM)
[23], is estimated by means of a grid-based Bayesian tracking
method. The MT location is estimated by exploiting all the sig-
nals collected up to the current time instant over the wireless
links [24]. The estimation method is an adaptation of the detec-
tion/tracking algorithm (D/TA) [25], previously developed for
delay tracking in remote sensing applications and here modified
to the specific radio-localization problem. The D/TA is a for-
ward-only algorithm that can work in real-time by maximizing
the a posteriori probability of the hidden state given all the sig-
nals collected up to the current step. In order to cope with indoor
propagation and reduce the estimate bias introduced by the mul-
tipath, the HMM has been adapted to take into account mixed
LOS/NLOS conditions. The hidden Markov state is defined as
the ensemble of the MT position and the LOS/NLOS conditions
for all the MT-AP links. The D/TA can jointly track both the
position and the sight condition by exploiting the continuity in-
formation of the MT trajectory. The power delay profiles for
the signals received over the radio links are used to track
the most likely state sequence. It is worth noticing that, unlike
other Bayesian estimators such as the Kalman filter (KF) or the
extended Kalman filter (EKF) [17], [18], this HMM-based ap-
proach does not rely on linearization and Gaussian assumptions,
still preserving about the same computational complexity of the
aforementioned algorithms.

To summarize, the original contributions provided in this
paper with respect to other localization methods in the liter-
ature are: the ability to model and handle mixed LOS/NLOS
conditions within a HMM Bayesian framework; the use of
both the first-arrival RSS and the RSS-delay profile rather than
the first-arrival RSS only (i.e., a scalar measurement). The use
of RSS-delay profiles is motivated by the higher localization
accuracy that can be reached using this type of measurement in
wide-band systems (e.g., UWB systems), as the RSS profile is a
joint measurement of TOA and power [26]. On the contrary, in
narrow band systems (e.g., IEEE 802.11b standard for WLAN)
it is preferable to exploit scalar RSS measurements [16]. In
this paper, we focus on localization for UWB systems using
RSS-profile observations, but the proposed HMM framework
is flexible enough to incorporate other type of measurements.
In particular, the extension to localization from scalar RSS
observations is straightforward [27]. Also AOA measurements
could be easily exploited in the case of receivers with antenna
arrays.

The paper is organized as follows. The localization problem
is introduced in Section II where the discrete-time signal model
is defined for a multiuser UWB scenario. In this section, the
RSS-delay profile method is discussed in both LOS and NLOS
conditions. In Section III, a joint sight-position maximum like-
lihood estimation (MLE) algorithm is introduced. Due to its
shortcomings, this algorithm becomes the starting point for the
D/TA localization algorithm that is fully presented in Section IV
along with its HMM Bayesian framework. The D/TA perfor-
mance is evaluated in Section V, at first in a very simple scenario

Fig. 1. Multiuser UWB transmission based on the BPSK antipodal signaling
(TH-BPSK).

and then in a more complex environment. Section VI draws
some conclusions.

II. PROBLEM DEFINITION

A. UWB System Model

We consider an UWB uplink scenario where active MTs
transmit signals to the same AP using TH-BPSK modulation.
Multiple access is handled by assigning different time-hopping
(TH) codes to the active users; each user transmits data to the
AP using binary-phase-shift-keying (BPSK) signaling. Though
localization methods are here derived for this UWB framework,
the ranging algorithms introduced in the following sections are
independent from the specific modulation scheme. For instance,
they may be applied also to TH systems with -ary pulse po-
sition modulation (PPM) [20].

Within a single symbol interval , the signal received at the
AP is

(1)

where, for the th user, the information-bearing symbol
modulates the TH signature ; the

channel impulse response accounts for dense multi-
path effects while is an additive white Gaussian noise
(AWGN). In TH-BPSK systems, as depicted in Fig. 1, the
symbol interval of length consists of frames, each
having duration and being divided into chips
of length .

The user-specific signature is the superposition of
delayed pulses (one for each frame)

(2)

having known waveform with energy and
delays selected according to the th TH code

. Code chips are
chosen (e.g., randomly or deterministically) to minimize the
multiuser interference and avoid catastrophic collisions.

According to this multiuser scenario, we consider the local-
ization of one user at a time. The signal used for the localization
of the th user is the output of the filter matched to the th sig-
nature, , evaluated within the frame



MORELLI et al.: HMMS FOR RADIO LOCALIZATION 1527

Fig. 2. Example of transmitted pulse (above) and received signal at the output
of the pulse MF (below) for user m.

interval for . This can be equivalently written, apart
from the normalizing factor , as

(3)

From (1) and (2), it follows that:

(4)

where is the convolution of the transmit
and receive filters, is the
signal contribution for the user of interest, while
gathers the interference from other users and the filtered
background noise. Interference from adjacent symbols is
not present as we simplified the signal model using only
a single symbol. A typical example of pulse used in
UWB systems is the second-order derivative Gaussian pulse,

, with denoting
the half of the main lobe width, as sketched in the example of
Fig. 2. The output (3) of the th signature correlator could
be equivalently obtained by first evaluating the UWB pulse
matched filter , then aligning (e.g., by
compensating TH) and averaging the frames according to

, as indicated
in Fig. 3. The signal-to-noise ratio (SNR) in (4) depends on
the number of users and on the number of combined
frames.

B. Discrete-Time Signal Model

Let us now concentrate on the user of interest and drop the
index to simplify the notation. We sample the MF output

within the frame interval at
the sampling frequency , obtaining
samples

(5)

Fig. 3. Example of multiuser UWB TH-BPSK transmission aligned frames.

The sampling interval is chosen as a tradeoff between the
resolution required by the localization system and the limited
computational power available at the APs. Since the target here
is not the estimation of all the multipath delays, but rather of
the first arrival from RSS measurements (i.e., any energy-related
indicators), the choice of is not necessarily constrained by
the sampling theorem for the signal [28].

By gathering all the samples, the -dimensional measure-
ment vector is defined as

(6)

in terms of the -dimensional vectors
and . As widely assumed in the liter-
ature (see, e.g., [29], [30]), the noise-plus-interference vector

is approximated as AWGN with known variance , i.e.,
with denoting the identity matrix.

We recall from (4) that the information-bearing signal depends
on the channel response . Before focusing on localization,
we need to make some simplifying assumptions about to
describe and handle propagation effects in dense multipath en-
vironments. The channel is, thus, modeled as the superposition
of paths, characterized by uncorrelated fading amplitudes

and times of delay

(7)

where is the Dirac’s delta function. Delays are assumed
to be multiple of the sampling interval and to cover the
whole temporal support for : for

. We also model the amplitudes
as a zero-mean Gaussian random process with an exponentially
decaying power delay profile. Sight condition is specified ac-
cording the parameter that is defined as for
LOS and for NLOS scenarios. For localization, we are
particularly concerned about the delay of the first arrival ,
that can be rewritten in terms of the LOS delay , the sight con-
dition between MT and AP and the additional NLOS delay .
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In fact, the first arrival delay equals the propagation time
over the MT-AP distance in case of LOS, while

it is increased by in case of NLOS

(8)

where represents the propagation velocity.
Recalling from (4) that , it follows that

sampled signal may be rewritten as

(9)

where the vector

(10)

gathers the samples of the pulse waveform delayed by .
According to the aforementioned assumptions, the signal (9)
is a zero-mean Gaussian vector, , with
covariance matrix . The overall signal (6) is then

with covariance matrix
that not only depends on the LOS delay

but also on the NLOS excess delay as the overall signal power
is distributed over the time interval . Here, the
covariance matrix is assumed to be diagonal

(11)

with elements accounting for the
power delay profile (PDP). In case of correlation of the sampled
signals (e.g., due to the finite bandwidth of the pulse waveform

), a prewhitening filtering can be performed before local-
ization [26]. The power of the multipath arrivals is assumed to
change along the delay axis according to the filtered Poisson
process model [31]

(12)

where the step function is defined as for
and elsewhere. The signal power is thus assumed to
be non-null only for and to decay exponentially
from the first arrival power with the attenuation factor
expressed as

(13)

where is the channel delay spread expressed in seconds.
To account for the dependence of the RSS on the propagation

distance , the power is assumed to decrease
with the LOS delay according to the path-loss law

(14)

Fig. 4. RSS-profile model for LOS s = 0 (top) and NLOS s = 1 (bottom).
The power of the signal sample y[k] varies along the delay axis k according to
the path-loss law and the exponential PDP for k � � . In case of NLOS, the
PDP is windowed for k � � + � due to the delay increment �.

being the power received at the reference dis-
tance and the path-loss exponent (e.g., typical
values are ). The SNR is defined accordingly as

(15)

with denoting the SNR at the reference distance
. Examples of PDPs for LOS and NLOS

cases are illustrated in Fig. 4. In these examples, the signal
component is superimposed to the noise only for ,
with in the LOS case Fig. 4(a) and in the
NLOS case Fig. 4(b).

Based on the signal model described above, in the next sec-
tions we will investigate how to improve localization robust-
ness against multipath and NLOS effects. It is worth noticing
that, in real-world channels, the accuracy of RSS-based local-
ization is also worsened by shadowing fluctuations (due to ob-
structions such as furniture, walls, buildings, etc.). The effects
of random shadowing on indoor localization have been investi-
gated by the authors in a WSN scenario [27]. The localization
approach therein considered is a simplified version of the HMM
method here described but based on RSS measurements only.
On the contrary, in this paper, both RSS and PDP measurements
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Fig. 5. Example of indoor localization by wireless infrastructure.

are considered, but shadowing is not included in the channel
model. The extension to shadowing channels is still possible by
modeling as a log-normal random variable and modifying
the distribution of the measured signal accordingly. Propa-
gation models including shadowing effects for PDP-based lo-
calization can be found in [32] for indoor and [33] for outdoor
environments.

C. Localization Problem

Let us now assume the indoor scenario depicted in Fig. 5,
where the MT moves within an area covered by an UWB net-
work with fixed APs. The MT has to be localized from
the radio signals exchanged within the UWB infrastructure. We
assume a synchronous network where the APs are perfectly
synchronized so that estimated delays can be directly used for
ranging; if not, additional synchronization can be performed as
described in [34]. Signals transmitted by the MT are received
by all the APs and used to estimate the MT position every
seconds (in practical systems, includes several symbol inter-
vals). At time instants , for , the th AP
extracts location information from the received signal and for-
ward them to a central monitoring unit (CMU) that is respon-
sible for localization of the MT.

The position of each AP is known by the CMU and it is in-
dicated as , with and

denoting the spatial coordinates of the th AP
over the two-dimensional (2-D) space . To sim-

plify the layout, we assume that is a regular squared grid
(with spatial sampling interval ) where each position is in-
dicated by , with and

. The MT is characterized, at the th time
instant, by the unknown spatial position
and the unknown sight conditions with
respect to all APs, where is the set collecting the

possible LOS/NLOS combinations for . Each sight condi-
tion is a binary random variable: for LOS or
for NLOS.

According to the signal model introduced in Section II-B, the
signal

(16)

received by the th AP at the th time instant is modeled
as a nonstationary zero-mean Gaussian vector

with covariance matrix
depending on the PDP of the th channel. The PDP is re-
lated to the propagation time over the th MT-AP distance

(e.g., expressed in spatial samples)

(17)

and to the NLOS excess delay . Here the
velocity is normalized with respect to the sampling intervals:

. The unknown excess delay is modeled as
a random variable with known distribution .
In this paper, exponential distribution will be considered but
other choices are possible [32], [33]. The SNR is defined ac-
cording to (15) as .

The overall set of all measurements used at time in-
stant for the localization is the signal vector

. According to the received signal power
model (12)–(15), the overall RSS profile depends on the sight
conditions , the LOS propagation times and
the additional NLOS delays : the power of the th
sample is indeed

(18)

It follows that the measurement vector depends not only on
the distances between the MT and the APs, but it is also af-
fected by the sight conditions . Accurate localization is there-
fore feasible (provided that ) from RSS-profile measure-
ments if NLOS conditions are taken into account.

As shown in Fig. 4, the first arrival represents an abrupt
change in the second order statistics (18) of the measured
signal, thus it will be indicated in the next paragraphs as
the breakpoint (BP) event. In case of LOS conditions (i.e.,

), the BP delay and power are related to the MT-AP
distance . It is therefore possible to estimate the MT loca-
tion from , by a separate estimation (or ranging) of each
distance from the measurement for ,
then followed by a tri- or multilateration of (e.g., for

or , respectively). This approach is the mostly
adopted in the literature, though the measurement used for
ranging is usually the total RSS and not the RSS profile along
the delay axis. Scalar RSS is often adopted to save processing
capabilities but it is known to be not very accurate (e.g., due
to shadowing effects) unless very short-distance scenarios are
adopted [35]. As an example, this approach has been adopted
in [27] for radio localization in WSN.
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Fig. 6. Example of log-likelihood functions for the signal y measured from L = 3 APs in LOS conditions (s = 0): the ranging pdf p(y jq = n; s = 0)
for ` = 1; 2; 3 (in logarithmic scale) and the position pdf p(y jq = n; s = 0) are indicated in (a), (b), (c), and (d), respectively. The position pdf is obtained
by multiplying the L marginal pdfs. Likelihood functions are normalized for visualization purposes.

In this paper, we propose a novel localization approach
where the location is directly estimated (i.e., without prelim-
inary ranging) from the measured signals by exploiting
the memory of the MT trajectory (i.e., by MT tracking). In
Section III, we will introduce the MLE of based on the
current measurement without tracking. The shortcoming of
this “memory-less” approach is the high number of false local-
izations occurring in NLOS conditions as shown in Section V.
In fact, in LOS situations, the BP is related to the true MT-AP
distance while, in NLOS scenarios it depends on the ap-
parent distances , where the bias
is due to the propagation over reflected paths. The key idea is
to solve this problem by jointly tracking the position and
the sight conditions using the whole set of observations

up to the current instant .
The HMM method developed in Section IV is based on the

assumption that both the mobile position and the link sight
conditions are Markov chains whose state is hidden in the
measured signals and must be jointly recovered keeping into
account the continuity of the MT trajectory as sketched in Fig. 5.
Joint estimation of and is performed by using a first-order
HMM tracking algorithm that is able to manage mixed LOS/
NLOS conditions.

III. LOCAL ML ESTIMATION FROM RSS PROFILES

Let us assume that the joint position-sight variable
takes values in the finite set of

elements. In this section, we consider the estimation of from

the signals measured only at the generic time instant (i.e., local
estimation only) using the maximum likelihood (ML) approach.
The local MLE from the -link measurement is obtained by
maximizing the likelihood function

(19)

For any and , the
observations conditioned to the position and
sight conditions are statistically independent. Hence, the
likelihood function for all links simplifies to
the product of the marginal probabilities for each link

(20)

For , an example is given in Fig. 6 where
it is illustrated how multi-lateration is implicitly performed in
the evaluation of the joint probability (20) without the need of a
preliminary ranging phase.

According to the Gaussian assumptions for the signal model
defined in Section II-B, the conditioned probability, given the
LOS delay and the additional NLOS delay , is

(21)
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Fig. 7. Evaluation of the likelihood function for a single AP (the AP index is
dropped). (a) Measured signal y[k] (� = 50; s = 1; � = 10). (b) Log-
likelihood function in LOS. (c) Log-likelihood function in NLOS. Likelihood
functions are normalized for visualization purposes.

The th likelihood function in (20)
can now be easily rewritten as a function of . For

, it becomes

(22)

while for it is

(23)

Examples of marginal pdf for LOS and NLOS are given in
Fig. 7.

For large SNR , the expression of the likeli-
hood function (21) can be simplified by approximating the di-
agonal elements of in (18) according to

(24)

where . Using the approximation
, in the LOS case the conditioned probabilities

(21) reduce to

(25)

where and

(26)

(27)

These expressions denote the backward and the forward
signal energy of the two parts of the measurement seg-

mented by the BP value . Similarly, in the NLOS case,
we get

(28)

with given by

(29)

IV. HMM TRACKING FROM RSS PROFILES

A. HMM Definition

Aim of the HMM algorithm is the MT localization at each
time instant ; this is accomplished considering not only the cur-
rent measurement but all measurements collected over
the MT trajectory up to the current instant. The HMM state is
defined as the joint position-sight variable al-
ready introduced in Section III. The state is hidden in the -link
observation vector

(30)

where denotes the vector of nonlinear functions de-
scribing the relationship between the position-sight state

and the signal , while
is the overall measurement noise. Both

the MT position and the sight conditions are modeled
as independent first-order homogeneous Markov chains. We
also define an additional zero state, , to indicate the
absence of the MT signal (e.g., to account for measurements
heavily affected by noise preventing any MT detection or for
no MT at all). The overall set of states is then
with cardinality .

In order to characterize the Markov chain , indicated in the
next paragraphs as , we need to define the ini-
tial state probabilities and the transition proba-
bilities . Since the Markov state is hidden
in the observations , we also have to assign the observation
pdf ; these probabilities compose the overall
HMM parameter set named for short.

Within the 2-D space , the MT trajectory at time is in-
dicated by the set . It is generated by the
homogeneous Markov chain according
to

(31)

where is the 2-D discrete-time driving process with known
distribution . The transition prob-
abilities are calculated from (31) as

(32)
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Fig. 8. First-order Markov models for position and sight. (a) Transition proba-
bilities between the N N states of the position q . (b) Transition probabilities
between the two states of the sight condition s for each MT-AP link.

for [see Fig. 8(a)]. Examples of distribution
and resulting trajectories are given in Fig. 9. The form
of the distribution is related to the features of the MT
movement. For instance, a spiky shape, as the one shown in Fig.
9(c), indicates that the MT position is likely to remain confined
around the current position. On the contrary, a flat distribution

means that the MT position may have abrupt direction
changes [e.g., Fig. 9(a)]. The initial-state distribution is defined
as . Notice that, as shown in the examples of Fig.
9, the matrix is sparse, thus reducing both memory storage
and the effective computational power required for processing.

The sight condition variable is also modeled as the
first-order homogeneous Markov chain
with initial-state pdf and transition probabil-
ities where
and [e.g., Fig. 8(b)]. These parameters are cal-
culated by assuming all the sight conditions as i.i.d.
first-order Markov chains with transition probabilities

for . The

probabilities to remain in the LOS or NLOS state are

or , respectively. Due to probability normalization,

it is also and . Notice that the
parameters and do not depend on the index (i.e., the
sight transition probabilities are the same for all the APs). Fur-
thermore, for the APs independence, the transition probabilities
for the overall sight process are

(33)

for each .

Fig. 9. Examples of 2-D pdf f (n) for the random driving process v . (a) Cir-
cular Gaussian pdf with deviation � = 3 spatial samples. (b) Uniform ring
with inner radius r = 3 and external radius r = 5 samples. (c) Cone with
base having radius � = 4 samples. Notice that a large f (0) value indicates that
the MT is frequently still [as in (a) and (c)].

According to the independence assumption for and , the
probabilities of transition between nonzero states can now be
calculated (apart from a normalizing factor) as

(34)

for and . On the other hand, transitions in-
volving the zero state are ruled by the probabilities of trajectory
initiation and termination , both considered independent
parameters. The whole set of transition prob-
abilities is given by (35), shown at the bottom of the page. The
term is used to normalize to 1 the sum of the transition

(35)
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probabilities from each state, in order to avoid edge effects [25]
at the borders of the finite grid .

The initial-state distribution is defined by assigning the
prior probabilities , i.e., by assigning the

probabilities for the position , the sight and the
null state at time instant . A reasonable
assignment in case of missing a priori information might be

for and for
. Other initializations can be used when some a priori

knowledge is available about the MT position and the sight
conditions .

We recall that the observation employed in this HMM frame-
work is the real-valued measurement vector , whose
conditioned pdf was evaluated in Section III for

. Having included the zero state in the set of states, to com-
pletely define the pdf set we only need to compute the prob-
ability of the observation conditioned to

(36)

In the following section, we will consider the estimation of the
state sequence from the observations

under the assumption of known HMM parameter set .

B. Detection/Tracking Algorithm

Given the model defined earlier, the optimal state sequence
associated with the ordered set of measurements

can be obtained using different estimation methods from the
HMM theory [23]. Methods based on global criteria estimate all
states from the whole set of observations . Specif-
ically, maximum-a posteriori state-by-state estimation can be
obtained by maximizing for each state the a posteriori pdf

evaluated through the backward/forward algo-
rithm (BFA). Alternatively, the Viterbi algorithm (VA) provides
a method to select the optimum state sequence that max-
imizes . However, both BFA and VA are not
suited for real-time localization, due to the unfeasible computa-
tional complexity and the latency in the state estimation. There-
fore, we consider for localization a forward-only procedure that
estimates based on all measurements collected up to the
th time instant.

The Detection/Tracking Algorithm (D/TA) is a Bayesian ap-
proach developed by the authors for an UWB radar system [37]
and used in other different application frameworks [25]. Here,
this algorithm is employed to estimate the position-sight state

by maximizing, over the whole state set , the a
posteriori pdf given the measurements

up to the current th step

(37)

The a posteriori pdf at time is evaluated using the Bayes’
theorem

(38)

where , the normalization term is de-
fined such that . The conditioned proba-
bility is obtained from the current measurement vector

as described in Section IV-A, while the updating probability
is calculated from the a posteriori pdf at the

previous step

(39)

throughout the transition probabilities of the Markov chain

(40)

From (38) and (40), we get the forward recursion shown in (41)
at the bottom of the page, that allows us to compute for all
scans from up to . In the first scan, the a posteriori
pdf is initialized by using the a priori distribution .

Different approaches may be adopted to handle tracking ter-
mination and re-initialization when the MT signal gets too noisy
or unreliable. For instance, in [37] the two hypotheses “detec-
tion” and “no detection” are defined as, respectively,
and . To discriminate between these two conditions
the comparison or equivalently

is performed. In case of “no detection” the
algorithm is reinitialized to the prior distribution (e.g., as
in the first step ). Otherwise (i.e., in case of “detection”) the
position-sight state is estimated using the MAP criterion over
the nonzero states only: .

As far as the computational complexity is concerned, the
number of multiplications required by the estimation of a
HMM state sequence is in the order of , with denoting
the number of states and the sequence length. For the spe-
cific application herein considered, the number of states is

, which might lead to unfeasible computa-
tional burden for practical localization systems, such as WSN
[11], [12]. However, it should be noticed that the dynamic model
driving the MT motion is such to make the
matrix largely sparse. In fact, this matrix depends on the
2-D filtering kernel that has limited spatial support [38].
For instance, Fig. 9 shows a function defined over a
grid of points with . In this case, the actual
complexity of the estimation algorithm is in the order of .
This complexity can be further decreased by reducing the set
of states used for pdf computation to those positions that are
in the area surrounding the current MT position (i.e., by pdf
windowing).

Further modifications of the HMM definition (still pre-
serving the Markov chain assumptions for and ) and

(41)
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the state-sequence estimation can be carried out to improve
localization efficiency by reformulating the localization model
as a Jump Markov system (JMS) [39], [40]. According to this
approach, it is possible to introduce a nonstationary HMM

having state ,
and observation pdfs that change
over the time depending on the driving sight chain

. The use of a JMS allows to sepa-
rate the position state from the sight state , instead of
dealing with the joint position-sight state, thus reducing the
cardinality of the state set from to . In addition,
a more efficient sampling of the state space may be introduced
by means of particle filtering (PF) techniques [41], [42], that
do not require uniform sampling over the grid . The dimen-
sions of the measurement set can also be reduced, by using
as observation for the HMM the received power only (i.e., a
scalar measurement) instead of the RSS profile (i.e., a
vector), as shown for WLAN in [16] and for WSN in [27]. A PF
approach based on scalar RSS measurements for localization
in WSN can be found in [27].

C. Parameter Estimation

In realistic scenarios, only partial a priori information about
the HMM parameter set is available. To effi-
ciently apply the D/TA in practical systems, these parameters
have to be estimated by a training procedure that optimally
adapts the model to some observed data . In our
specific framework, depends on few parameters only: the
initial state probabilities ; the position-transition probabilities

(trajectory initiation probability), (trajectory termination
probability) and (pdf of the 2-D motion driving process);
the sight-transition probabilities and ; the parameters
defining the wireless channel model, namely (channel
delay spread), (path-loss exponent), and (SNR). The
initial-state distribution can be chosen as described in Sec-
tion IV.A. As far as the environment-dependent parameters

and are concerned, realistic values can be drawn from
several experimental studies carried out in the literature to
characterize different indoor/outdoor scenarios [32], [33], [36].
The sight/position transition probabilities obviously depend on
the specific type of MT motion and on the geometrical layout
in which the motion takes place. Pdf adjustment to the specific
physical system can be accomplished by training and/or by
exploiting a priori information about the layout geometry
whenever available. For instance, the knowledge of the layout
planimetry enables the creation of LOS/NLOS maps for each
AP making the sight state known for each spatial position
in . This can be used to reduce the complexity. In fact, on
one hand, the combined HMM state simplifies to the position
only (i.e., ) and the observation pdf can be obtained
from either (22) or (23) depending on the value. On the other
hand, it may also be used to improve the accuracy of the D/TA
localization. Geometrical constraints could also be used to
avoid forbidden transitions of position (e.g., through walls) by
defining a nonhomogeneous HMM with transition probabilities
depending on the specific position.

To adjust the model parameters , here we employ a training
approach that maximizes the probability of an ob-

served training sequence of length given the model .
A method to analytically derive the maximum likelihood esti-
mate

(42)

is not known. On the other hand, we can select to locally max-
imize the likelihood function through an iterative
procedure known in the HMM literature as the Baum-Welch al-
gorithm [23]. It is an expectation-maximization (EM) technique
that, starting from an estimate at iteration , evaluates the
a posteriori probabilities of state occurrence/transition, given
the observed sequence . These a posteriori pdfs, obtained
under the assumption , are then used to reestimate the
HMM parameters by approximating the probabilities contained
in as expected frequencies of state occurrence/transition (i.e.,
the reestimation step). The new parameter set is such that

(43)

The procedure stops to the parameter set when the con-
vergence is reached or some limiting criterion is met. Being a
local algorithm only, global convergence is not guaranteed and
the quality of the solution strongly depends on the chosen
initial parameter set (i.e., a certain and unpredictable bias is
present, such that ).

It is important noticing that, in our localization approach, not
every parameter needs to be estimated. In fact, as it will be-
come apparent in Section V-A, D/TA performances are rather
insensitive to large variations of and . We thus select for
estimation only the transition probabilities that compose ma-
trix or, equivalently, the pdf and the LOS/NLOS sight
probabilities and . Moreover, to speed up the computation,
at each step of the iterative procedure, during the reestimation
procedure of each state-transition probability, we select the dis-
crete frequencies of state transitions evaluated by counting the
transition occurrences in the MT trajectory estimated by D/TA
rather than computing the continuous expected value from the
a posteriori pdf. For instance, let be the estimate for the
parameter indicating the probability of transition from LOS
to LOS obtained at the th iteration. The D/TA is applied to
the training sequence using the parameters (i.e.,
including also ) and yielding the state sequence estimate

. Then, the estimated sight sequence

is used to reestimate the parameter as

(44)

by counting the number of transitions from the LOS
state and the number of self-transitions from the LOS
state into itself. The parameter and the pdf are esti-
mated using the same algorithm. The results of such a parameter
estimation approach will be shown in Section V-A.

In closing this section, we also observe that, to efficiently
adjust the HMM parameters, the statistics of the MT position/
sight process during the localization phase must be the same
of those observed during the training phase. Even if the MT is
characterized by very slow or very quick movements, the HMM
localization method is capable of tracking it, provided that the
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same behavior is observed during the training phase in order to
properly adjust the transition probabilities and allow accurate
tracking of the motion. For instance, if movements are episodic,
then the transition probabilities for the MT position have a spiky
shape, as the one shown in Fig. 9(c), indicating that the MT is
likely to remain still. To estimate such a 2-D motion pdf, the
training sequence needs to be long enough to observe also the
less probable movements.

V. SIMULATION RESULTS

A. Performance and Sensitivity Analysis for ML Ranging

The HMM localization method presented in Section IV com-
bines the ML approach for ranging and multilateration with
tracking of the MT state. We start this performance analysis
by focusing on the first method, evaluating the accuracy and
the parameter sensitivity of the ML ranging method. To accom-
plish this task, we consider at first a simplified scenario where a
single MT-AP link is simulated in LOS condition only

. In such a situation, the localization problem
simply reduces to ranging, being the TOA or, equiva-
lently, the MT-AP distance , the only parameter to
be estimated from the measurement vector . To
further simplify the notation, the link index is dropped. In
addition, the TOA value is assumed constant for each measure-
ment, and it is given by . The estimate is obtained
by maximizing the likelihood function

over .
The root mean square error (RMSE) of the

TOA estimate is evaluated for SNR ranging from 0
to 24 dB. Measurements are generated according to the signal
model described in Section II with length samples,
sampling frequency GHz and PDP with exponentially
decaying power characterized by ns or, equivalently
from (13), . For each SNR value, the RMSE is computed
by averaging the squared TOA estimate errors over a data set

of independent measurement outcomes: RMSE
. The results are shown in

Fig. 10(a) (solid line); it can be seen that an estimate error of
about 10 samples (1 ns) can be obtained for SNR values around

dB, while for higher accuracy, such as RMSE , an
SNR value 16 dB is required.

These results are confirmed by a second simulation, shown
in Fig. 10, that tests the robustness of ML ranging to mismod-
eling within the same simplified scenario. Here, we evaluate
the sensitivity of the TOA estimate with respect to the SNR

[Fig. 10(a)] and to the delay spread [Fig. 10(b)]. The
RMSE of the mismodeled estimate is evaluated by generating
sets of measurements with fixed parameters
and then estimating the TOA from each signal using values in
the set with or . In more details,
for the SNR sensitivity analysis shown in Fig. 10(a), we use

dB in the measurement generation phase and
dB in TOA estimation. The delay spread value is the

same used for both generation and estimation:
ns (i.e., 100 samples). The results shown in Fig. 10(a) con-

firm that the lowest RMSE is obtained when is close to the
true value . A similar approach is followed in Fig. 10(b) for

Fig. 10. Sensitivity analysis to parameters � and � (or �) in ML ranging.
Parameters used for measurement generation are indicated by f�; � g, while
f�̂; �̂ g are those adopted for delay estimation. (a) RMSE as a function of
�̂. (b) RMSE as a function of �̂ . The minimum envelope (corresponding to
�̂ = � and � = �̂ ) is plotted in solid line.

the evaluation of sensitivity. Signals are generated using
dB and ns, while estimation is

carried out with and ns (i.e.,
samples). It can be noticed from Fig. 10 that the RMSE around

and is quite flat: good performances can be
obtained even for rough estimates of these model parameters.

B. ML Ranging in a Multiuser UWB Environment

We extend now the performance analysis for ML ranging con-
sidering a more realistic UWB scenario similar to the one de-
scribed in [19], [43] that is simulated according to the low-bit
rate IEEE 802.15.4 standard [22], [44]. TH-BPSK symbols are
generated with frames, time slots,

users and randomly assigned TH codes with values uni-
formly picked in . The pulse waveform
is a Gaussian monocycle with and such that
ps. Each transmitted pulse is assumed to be centered in the cor-
responding time slot, whose duration is ns (i.e.,

ns). The multipath channel of the th user, is mod-
eled according to (7), with chip-spaced delays and exponential
PDP ; the decaying factor is
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Fig. 11. RMSE of ML ranging as a function of the SNR � and the number of
interferersM . The SNR is defined for the single-user single-frame case.

with delay spread ns; the power is
the same for all users. At the receiver, the discrete-time signal (6)
for each user is obtained by matched filtering and frame realign-
ment according to (3), then followed by sampling at chip-rate

. ML ranging is performed from the obtained signal as
described in Section III. We recall that the overall noise power

in (6) is the sum of the background-noise power
and the MAI power from the other users that is proportional to

. In the single-user case (i.e., in absence of MAI), the
SNR is simply with a gain of
dB with respect to the signal before realignment.

Fig. 11 shows the RMSE of the ML ranging vs. the number
of users . Parameter

dB denotes the SNR at the break-
point event in signal (6) for the single-user (i.e., )
single-frame (i.e., ) case. RMSE values are expressed
in terms of time samples and are obtained by averaging over
channel outcomes. For very low values (i.e., dB),
the system performance is dominated by the background noise,
the signal-to-interference-noise ratio (SINR) reduces to the SNR

and performance is not affected by the number
of users. In this case, the error can be considered uniformly
distributed within the frame interval and the RMSE reduces to

time samples for any . On the other hand, for
increasing , thebackgroundnoisebecomesnegligibleandMAI
critical: for dB the SINR is approximately given by

and the RMSE depends only on (i.e., not on ).

C. Localization Performance in a Simplified Environment

At first, performance evaluation is carried out by simulating
a MT traveling within a circular layout (with diameter

m and spatial sampling interval m) that com-
municates with APs placed on the border of the area.
Changes of the MT location over the time are simulated ac-
cording to the Gaussian-shaped pdf shown in Fig. 9(a),
with space samples. The HMM is assumed to be al-
ways in tracking mode (i.e., and ). The sight

conditions are simulated by exploiting three indepen-
dent homogeneous first-order Markov chains, according to the
model described in Section IV-A. Measurements , sampled
at GHz, have length , with the first arrival
delay being obtained from the MT-AP distance as

and the additional NLOS delay having dis-
crete exponential pdf with .
The PDP of each signal is generated according to the model de-
scribed in Section II: the peak power (or, equivalently, the SNR

) is calculated as indicated by the path-loss law (14) with
exponent , while the exponential PDP is simulated with

( ns). The SNR at the reference distance
space samples (i.e., 1 m) is dB.

The algorithm performances are evaluated in terms of RMSE
of the location estimate as a function of the spatial posi-
tion over a trajectory of steps that covers the
whole layout area . For a given position , the estimate
error is computed as:

, where is the set of all time
instants in which the trajectory flows across and is its
cardinality (i.e., the number of times the location is visited).

A first example of MT tracking is shown in Fig. 12(a) and (b),
where, forvisualizationpurposesonly, theMTtrajectoryisforced
to be smoother and shorter: . The dashed area close to
each AP is not used. Sight processes are simulated using the fol-
lowing sight parameters: . These figures compare
the true trajectories (thick line) with the estimated ones (markers)
obtained by local MLE [Fig. 12(a)] or D/TA [Fig. 12(b)]. Esti-
mate errors can be appreciated by looking at the short segments
that connect the true position to the corresponding estimated one.
False positioning events occur when using local MLE only.

More details about the delay estimates ,
obtained according the D/TA location estimate , are shown in
Fig. 13. For each MT-AP link, the true propagation time over the
LOS distance (solid line), the first arrival delay (dashed
line) and the D/TA delay estimate (markers) are plotted versus
the position index along the trajectory. The plot below each
figure shows the LOS or NLOS sight conditions experienced
(solid line) and estimated (markers) along the trajectory. The
bias of the distance due to multipath is effectively compensated
by the D/TA algorithm.

Figs. 14 and 15 show the RMSE of the estimate as a func-
tion of the position for a) the local MLE and b) the
D/TA methods. The performances are evaluated in LOS-only
conditions, with and (Fig. 14), and in mixed
LOS/NLOS conditions, with (Fig. 15). In the
MLE-LOS map, the error increases near the APs, while it is
quite uniform in the middle of the layout. This effect is due
to false positioning errors occurring when one or more mea-
surements refer to a distant AP [7]. These problems are
solved by the D/TA which yields a uniform error map all over
the layout. The advantage of the D/TA, especially in mixed
LOS/NLOS conditions, is more evident in Figs. 14(c) and 15(c),
which show the vertical sections for of the maps
in Figs. 14(a)–(b) and 15(a)–(b), respectively. The local MLE
yields very poor performance, with RMSE ranging from 0 to 30
space samples, while the D/TA error is stable under five sam-
ples, in both LOS and mixed LOS/NLOS cases.
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Fig. 12. Examples of localization with local MLE (a) and D/TA (b) within
a simplified circular layout (the dashed area close to each AP is not used).
The solid line indicates the true trajectory fq g while the markers show the
estimates. True positions and corresponding estimates are related by a short
segment.

Finally, the position RMSE versus the reference SNR is
shown in Fig. 16. For the same localization scenario adopted
in the previous examples, a trajectory of positions is
generated for each value of . We recall that, even if is
fixed, the SNR is nonuniform across the space , as the received
signal power varies with the MT position due to the path-loss.
Only in the ideal case (absence of path-loss) the SNR is
constant for all positions. In this experiment, the following cases
are considered: with dB [Fig. 16(a)] and

with dB [Fig. 16(b)]. These figures com-
pare the localization accuracy for local MLE and D/TA methods.
The error floor at very low and very large SNR is determined
by the finite value of the temporal support of each measurement
and the spatial sampling interval, respectively. The performance
gain provided by D/TA for intermediate SNR values is around

dB in presence of path-loss. Notice that the error curve
in Fig. 16 coincides with the envelope of the minima
of the simulation in Fig. 10(a).

D. Parameter Estimation and Sensitivity Analysis

As pointed out in Section IV, the proposed HMM approach
exploits the ML technique for ranging and multilateration while

Fig. 13. Estimation of MT-AP distance/delay (upper part of each figure) and
sight condition (lower part of each figure) for all L = 3 links as summarized in
the example in Fig. 12.

tracking the MT state. The robustness of the ML ranging algo-
rithm with respect to parameter mismodeling for has
been investigated in the simulation of Fig. 10. In this paragraph,
we extend these considerations to include also the sensitivity
analysis for the HMM state-transition probabilities. For these
simulations, we assume the same localization scenario illus-
trated in Section V-C. The tracking-algorithm sensitivity to the
parameter (i.e., the standard deviation of the 2-D Gaussian
distribution ) is studied using the following parameters:

for the HMM generation and
for the state-sequence estimation. For each pair , Fig. 17
shows the RMSE of the location estimate evaluated over a MT
trajectories of length . Both mixed LOS/NLOS
[Fig. 17(a)] and LOS only [Fig. 17(b)] conditions are simulated.
It is apparent from Fig. 17(b) that in LOS only conditions the
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Fig. 14. RMSE versus MT position in LOS-only conditions. (a) MLE position
estimate. (b) D/TA position estimate. (c) Section fn = 0g from maps in (a)
and (b).

optimum parameter choice is . In addition, due to the
flatness of the RMSE curves, if inaccurate information about

are available, it is preferable to overestimate it. However, as
depicted in Fig. 17(a), this does not hold true in LOS/NLOS
conditions since the optimum parameter choice is related to the
joint position-sight variable and not only to the posi-
tion variable as in the previous case. Moreover, the RMSE
positioning error is greater with respect to the one in the LOS
only case. In the LOS/NLOS scenario, it is convenient to choose

, since the optimum choice is close to the true value
and the curves are quite flat around the optimum values de-

noting moderate mismodeling errors.
HMM parameter estimation is carried out by the iterative

procedure discussed in Section IV-C for a training sequence
of steps. Measurements are simulated using the same

Fig. 15. RMSE versus MT position in mixed LOS/NLOS conditions. (a) MLE
position estimate. (b) D/TA position estimate. (c) Section fn = 0g from maps
in (a) and (b).

parameters introduced in Section V-C except for and that
are assigned as: and (i.e., high probability
to have NLOS conditions). The HMM model employed in
the iterative procedure is initialized with a uniform transition
distribution (defined over a 21 21 square grid) and
with . As shown in Fig. 18(a) and (b), con-
vergence of both the location transition probability and
the sight transition probabilities to realistic values is
accomplished in very few iterations. A small amount of bias
can be noticed in the estimates of and ; as aforemen-
tioned in Section IV-C, this is due to the fact that, to reduce
the computational complexity, the statistics along the coordi-
nate were computed using the estimated sequence rather
than exploiting the statistics of the a posteriori pdf sequence

.
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Fig. 16. RMSE of the position estimate versus the reference SNR � for MLE
and D/TA. (a) Absence of path-loss (� = 0). (b) Realistic indoor attenuation
(� = 2:4).

Fig. 17. Sensitivity analysis for the HMM algorithm to parameter � . The pa-
rameter used for measurement generation is indicated by � while �̂ is the
one adopted for tracking. The RMSE is plotted as a function of �̂ . (a) In mixed
LOS/NLOS conditions. (b) In LOS only.

E. Localization in Realistic Indoor Environments

In a different way with respect to the simplified localization
experiments so far considered, in real environments the sight
process is inevitably correlated to the MT position. This is taken

Fig. 18. Convergence in the Baum-Welch estimate of transition probabilities
f (n) for positions and fp ; p g for sights. (a) True and reestimated pdf f (n)
(a conic-shaped distribution is simulated as in Fig. 9(c). (b) Reestimation se-
quences for p ; p 2 f0:25; 0:75g.

Fig. 19. Coverage maps for the localization scenario of Fig. 5.

into account in the indoor scenario sketched in Fig. 5, consisting
in a rectangular layout of 40 30 m (i.e., and
with sampling interval cm), with walls, doors and

APs. The MT trajectory is generated, within this layout,
using a conic-shaped pdf [see Fig. 9(c)], having base with
radius of space samples. In the generation phase, the sight
conditions are calculated according to the specific layout by ray
tracing from each MT position to the four AP positions (NLOS
condition occurs when a wall is between an AP and the MT). The
resulting LOS/NLOS maps, or coverage maps, used for measure-
ment generation are shown in Fig. 19; the gray scale indicates, for
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Fig. 20. Example of trajectory tracking in a realistic indoor scenario with walls,
doors, and 4 APs. (a) MLE estimate. (b) D/TA position estimate. (c) D/TA sight
estimate for AP1.

each spatial position, the number of APs that are LOS linked to
that position. The fact that position and sight are no longer inde-
pendent does not really affect the HMM localization, where the
estimates are jointly performed as usual. To select the
values to be used in this model, we have generated a training
trajectory of steps across the considered layout and
we have estimated through the statistics of the corre-
sponding LOS/NLOS state changes. The results obtained by this
procedure are (lower values might be obtained
in the same layout by generating randomly placed obstacles that
simulate people and other field scatterers). The other parameters
used for this simulation are: sampling frequency GHz,
measurement length , mean excess delay ,
path-loss exponent , reference SNR dB at

and PDP decaying factor ( ns).
An example of trajectory estimation is shown in Fig. 20; for

further details about this simulation the reader can refer to the ex-
ample in Fig. 13 for the simplified localization environment. It is
apparent here how MT tracking can effectively reduce false local-
izations in poorly covered areas (e.g., in the central corridor). The
plot in Fig. 20(c) compares the true value (line) and the D/TA esti-
mate (circles) of the sight condition over the MT-AP1 link.

Fig. 21. RMSE versus MT position in a realistic indoor scenario with mixed
LOS/NLOS conditions. (a) MLE position estimate. (b) D/TA position estimate.
(c) Section fn = 31g from maps in (a) and (b).

Fig. 21(a) and (b) plot the RMSE maps as a function of the
MT position for both MLE and D/TA estimates. RMSE values
are obtained by averaging over a trajectory of steps.
These maps let us appreciate how D/TA improves the estimate
performances in almost the whole layout. As indicated by the
RMSE map in Fig. 21(a), the central corridor is critical for the
memory-less approach used by the local MLE algorithm, be-
cause every MT-AP link is in NLOS. The filtering and predic-
tion capabilities of the D/TA Bayesian approach are especially
useful in these NLOS situations, where a dramatic improvement
can be achieved [e.g., see the slice in Fig. 21(c)] with
respect to the local MLE.

VI. CONCLUSION

A novel approach has been proposed to track the location of
MTs in order to alleviate the NLOS problem that arises in dense
multipath indoor conditions. Local ML algorithms introduce
tracking errors since they do not take into account the physical
constraints due to MT trajectory. On the contrary, the D/TA algo-
rithm here proposed is based on a HMM Bayesian approach that
models the MT moving capabilities. To further reduce tracking
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errors due to mixed LOS/NLOS conditions, the proposed al-
gorithm jointly estimates both position and sight conditions of
the MT. Its tracking capabilities have been at first evaluated in a
simple scenario and they have been compared to the performance
of a local ML algorithm. Then both algorithms have been as-
sessed in a more realistic UWB environment. Simulations show
that performances achieved by keeping into consideration mixed
LOS/NLOS conditions for all radio links are similar to those
obtained in an ideal LOS propagation environment.
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