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Abstract—Localization and navigation of passive objects en-
ables new important applications in wireless environments.
Monostatic sensor radar networks generate interesting solutions
for passive localization and navigation in a variety of scenarios.
In particular, ultrawide band (UWB) sensing provides fine delay
resolution enabling high localization accuracy even in harsh prop-
agation environments such as indoor. We develop a framework
for design and analysis of passive navigation based on UWB
monostatic sensor radar networks that relies on propagation
environment and time-of-arrival estimation characterized by
network experiments. As a case study, an UWB monostatic sensor
radar network deployed in an indoor environment is considered,
and the position of moving objects is inferred. In particular,
Bayesian navigation based on particle filters implementation is
employed and the role of mobility model for inferring target
position is shown.
Index Terms—Passive tracking, TOA estimation, UWB, parti-

cle filters, mobility models.

I. INTRODUCTION

Network localization and navigation is an emerging
paradigm that enables a variety of new important applications
[1]. The localization and navigation process is referred to
as active or passive depending on whether the objects to be
localized infer their positions actively exchanging or passively
backscattering signals, respectively [2].1
The operation of location-aware networks in harsh wireless

propagation environments (e.g., indoor) is challenged by mul-
tipath, line-of-sight (LOS) blockage, excess delay propagation
through materials, and clutter. In this conditions, ultrawide
band (UWB) technology [4]–[6] can still provide accurate
localization [7]–[9] due to its ability to solve multipath, pen-
etrate obstacles, and provide accurate time-of-arrival (TOA)
measurements [10]–[12].
Monostatic sensor radar networks extend the classical con-

cept of single monostatic radar [13]–[17]. A clear understand-
ing of how network configuration and propagation environ-
ment affect localization and navigation performance can be
obtained through their characterization via network experi-
mentation [18]. Several algorithms can be used to perform
localization and navigation from TOA measurements available
at each sensor radar. Here, we consider a Bayesian algorithm

Work supported in part by the Italian Ministero dello Sviluppo Economico
under the project WEBS, the MIUR PRIN 2009 project, and the European
Commission in the scope of the FP7 project SELECT (Grant no. 257544).
1Hybrid active and passive solutions can also be considered (see, e.g., [3]).

based on particle filters (PFs) and mobility models to infer the
position of a moving passive object [19]–[21].
In this paper, we present a framework for design and

analysis of UWB monostatic sensor radar networks account-
ing for network configuration, multipath, obstructed line-of-
sight (OLOS) propagation conditions, TOA estimation at each
sensor algorithm, and particle filtering with mobility models
for navigation. TOA estimation at each sensor is modeled
based on network experiments. Built upon this, a Bayesian
navigation algorithm with PF implementation is considered,
which combines a prior knowledge based on mobility model
with perception model and UWB ranging measurements. A
case study in indoor environment is considered, where a UWB
monostatic sensor radar network is deployed to infer the
position of a passive object moving on various trajectories.
The remainder of the paper is organized as follows. Section

II describes the sensor radar network model and Section III
presents the TOA estimation algorithm. Section IV discusses
the navigation algorithm and Section V quantifies the perfor-
mance for the case study considered. Finally, our conclusion
is given in Section VI.

II. NETWORK OF SENSOR RADARS

We now present the model and the assumptions for the
UWB sensor radar network and its operation.

A. Sensing Network Topology

The radar configuration is defined by a set of NS monostatic
radars emitting and subsequently receiving a signal after
backscattering on target object. Thus, signal TOA estimation
is performed and the transmitter-to-target-to-receiver distance
(signal path length) is determined.
For a target in position p and a monostatic radar i =

1, ..., NS, the signal path length estimation is given by d̂i(p) =
τ̂i(p) c/2, where c is the speed of light and τ̂i(p) is the
estimated two-way TOA at the ith sensor relative to the
signal backscattered by the target. It is well known that
for monostatic radars, a temporal interval between signal
transmission and reception is needed to resolve the system
setup time, which is called blind range [22]. In the following,
we will indicate with τmin the blind range which results in the
minimum distance value d! = τmin c/2. Therefore, a target can
be detected and localized when d̂i(p) ≥ d!.
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B. Backscattering Channel Modeling
The sensor radar detection and localization capabilities

depend on the received waveform and signal-to-noise ratio
(SNR). Specifically, the received SNR γi(p) for radar i and
target in p is given by

γi(p) =
PR,i(p)

PRFN0
(1)

where the received power PR,i(p) refers to a pulse repetition
frequency (PRF) PRF and N0 is the one-sided power spectral
density (PSD) of thermal noise. Energy gathering of multiple
target echoes enhances detection and TOA estimation. Specif-
ically, Npulse pulses are collected at the receiver.
The fulfillment of target detection and localization calls for a
minimum received SNR γ!, which corresponds to a minimum
received power P !

R as

PR,i(p) ≥ P !
R . (2)

In particular, the power received in a band [fL, fU] by the ith
sensor radar from the radar-to-target-to-radar path results in

PR,i(p) =

∫ fU

fL

Ri(f,p)df (3)

where Ri(f,p) is the one-sided received PSD at the ith sensor.

C. UWB Sensor Radar
The IEEE 802.15.4a channel model [11] is considered for

both radar-to-target and target-to-radar paths. According to
this, the one-sided PSD of the signal received by the ith radar
is given by

R̆i(f,p) =
Ti(f)ηi(f,Θi)2Σ(f)

(4π)3
(

f0d0

c

)2
%2βi (p)

(

f
f0

)2κ+2 (4)

where Ti(f) is the transmitted PSD feeding the transmitting
antenna; d0 is a reference distance and f0 the center frequency;
ηi(f,Θi) is the antenna gain for the solid angle subtended
between radar and targetΘi; Σ(f) is the frequency-dependent
radar cross section (RCS) of the target; and %i(p) = di(p)/d0.
The exponents β and κ provide the distance and frequency de-
pendence of the path loss, respectively. Multipath propagation
is modeled according to [23].

D. Walls Effects
In indoor environments, the received PSD can be also affected
by an obstruction loss Li(f,p), which depends on the number
and the type of obstructions (e.g., walls) present in the radar-
to-target-to-radar path, as

Ri(f,p) =
R̆i(f,p)

Li(f,p)
. (5)

The obstruction loss (in dB) of a wall is defined in [18] as
the path loss difference between two locations on the opposite
sides of a wall, giving

Li(f,p) =

Wi(p)
∑

w=1

2nw,i(p)Xw(f) (6)

whereWi(p) is the number of wall types crossed by the signal,
nw,i(p) is the number of walls2 of type w, and Xw(f) is the
frequency dependent loss for walls of type w. The minimum
received power provides a maximum value %!i of %i(p), which
limits the sensor coverage, by inverting (3).
The presence of obstacles and walls obstructing signal path

has a two-fold effect: it results in an excess delay, which causes
a positive bias on the TOA estimation and in an obstruction
loss as in (6), which reduces the received SNR and increases
the TOA estimation error. The quantification of these effects
requires the characterization of the materials. Experimental
results in [18] confirm that in the presence of concrete walls
the TOA estimation bias (mean of the TOA estimation error)
is µi(p) " ∆/c, where ∆ is the total thickness of the wall.

III. TOA ESTIMATION
A variety of TOA estimators is present in the literature. In

particular, those based on energy detection arised interest for
their low complexity (sub-Nyquist sampling and non-coherent
signal reception). In this case, the energy of received signal
is determined in time intervals of duration Tint (energy bins)
and then processed to estimate the TOA. A largely used
solution consists in comparing energy bins with a threshold
(i.e., threshold-based TOA estimator [12]).
The estimation τ̂i(p) of τi(p) for the sensor i is based

on received waveform ri(t) and TOA estimator. Out-of-band
noise and static clutter are mitigated by means of band-pass
zonal and frame-to-frame filtering techniques. The output of
the band-pass zonal filter (BPZF) and clutter removal provides
to the energy detector (ED) an input signal (from transmission
of Npulse pulses) as given by

vi(t) =

Npulse−1
∑

p=0

L
∑

l=1

α(l)
i s(t− p Tg − τ (l)i ) + ni(t) (7)

where s(t) is the pulse after BPZF, L is the number of received
multipath components each with gain α(l)

i and delay τ (l)i , Tg =
1/PRF, and ni(t) is the filtered noise with one-sided PSD N0.
The estimator uses a portion of the signal vi(t) consisting of

Npulse intervals each with duration Tg chosen to guarantee that
each interval includes only one received pulse (thus avoiding
ambiguous TOA estimations). Specifically, τ (1)i = τi(p) and
the goal is to estimate τ̂ (1)i = τ̂i(p).3 In the absence of prior
information on target position, we consider τ (1)i uniformly
distributed in [0, Ta], where Ta depends on the covered space
and the PRF is chosen so that Tg > Ta. The observed
signal vi(t) is the input of a square-law block followed by
an integrate and dump (I&D) block with integration time Tint.
Then,Nbin = $Tg/Tint% energy bins are collected (one each Tint
seconds) in a decision vector. Each element of the vector is
then compared with a threshold ξi. The choice of the threshold

2Note that in (6) the factor 2 accounts for the double pass of electromagnetic
waves through the obstruction.
3Note that after perfect clutter removal, multipath propagation in (7)

accounts for the paths backscattered by the target, which arrive at the receiver
after reflections.
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Npulse γdBL γdBH A B
32 -4 12 21.93 -1.73
128 -1 15 27.13 -1.73
512 2 18 32.33 -1.73

ξi strongly affects the TOA estimation accuracy, detection
probability, and false alarm probability.4
The estimated TOA τ̂i(p), is affected by an error that can

be modeled as a Gaussian distributed random variable (RV),
i.e. εi(p) ∼ N (µi(p), σ2

i (p)) where the mean µi(p) accounts
the presence of positive bias in obstructed path (it can be
considered zero in LOS conditions) [12]. Specifically, the
estimated TOA results in

τ̂i(p) = τip+ εi(p) =
2 di(p)

c
+ εi(p) . (8)

The standard deviation σi(p) depends on the propagation
environment, the TOA estimator, and the received SNR γi(p).
In general, σi(p) is a non-increasing function of the received
SNR.5 For TOA estimation based on energy detection, three
different working regions are experienced. In particular, the
regions of small and large SNR values correspond to asymp-
totic regions of large and small standard deviation σi(γi),
respectively, while a transition zone is present for moderate
SNR values. Such behavior can be approximated by

log10(σi) "















log10

(

Ta√
12

)

γdBi < γdBL

zσ(γi) γdBL ≤ γdBi ≤ γdBH
log10

(

Tint√
12

)

γdBi > γdBH

(9)

where the SNR thresholds γdBL and γdBH shape the small and
large SNR regions, respectively.6 A good approximation for
zσ(γi) is given by zσ(γi) ≈ A + B · 10 log10(γi) where the
parameters A and B can be easily determined according to
Tint, Ta, γdBL , and γdBH . Examples are reported in Table III for
Tint = 4ns and Ta = 100ns.

IV. NAVIGATION ALGORITHM

The aim of a navigation algorithm is to estimate the target
position p(k) at each time index k (i.e., the states) from a
set of observations d̂(k) (i.e., d̂(k) is the vector of estimated
distances d̂i(p(k)) = τ̂i(p(k)) c/2). The Bayesian inference
of position’s belief b(p(k)) = p(p(k)|d̂(1:k)) (i.e., posterior
distribution of the position state vector, given past and current
observations from time index 1 to k) is obtained in two phases:
(i) a prediction phase in which the belief is determined based
on previous position and a mobility model, and (ii) an update
phase where the belief is updated based on new measurements
and a perception model. Therefore, by denoting with d̂(1:k) the

4The design of the threshold is outside the focus of the paper.
5In the following we will remove the dependence of σi and γi on p to

simplify the notation.
6Notation xdB stands for 10 log10(x).

set of available observations at time index k, b(p(k)) is given
by

b(p(k)) =
b−(p(k)) p(d̂(k)|p(k))

p(d̂(k)|d̂(1:k−1))
(10)

where the predicted belief b−(p(k)) = p(p(k)|d̂(1:k−1)) is

b−(p(k)) =

∫

p(p(k)|p(k−1))b(p(k−1)) dp(k−1) . (11)

The term p(p(k)|p(k−1)) is the mobility model of the target
and gives the probability distribution function (PDF) of being
in p(k) conditioned on previous position p(k−1). The belief
(11) is predicted according to previous state and mobility
model, then updated according to (10) and new measurements.
Finally the estimated position p̂(k) is determined as that value
that maximizes b(p(k)) in (10). Various implementations of
Bayesian inference are possible, which differ in the beliefs
computation. In particular, we consider the PF algorithm [20],
[21].

A. Particle Filtering
The key idea of PFs is to represent the posterior belief

(distribution), by a set of random samples (particles) as

b(p(k)) ≈
Np
∑

p=1

wk,pδ(p
(k) − p(k)

p ) (12)

where Np is the number of particles, δ(·) is the Delta function,
and wk,p ≥ 0 ∀k, p is the weight for particle s at time index
k, with

∑Np
p=1 wk,p = 1. The weights are chosen using the

principle of importance sampling in which the more dense are
the samples, the more probable the object is located [19], [21].
Specifically, the main important recursive steps for evaluating
the sth particle can be summarized as follow

p(k)
p ∼ p(p(k)|p(k−1)

p ) (13)
wk,p = wk−1,p p(d̂(k)|p(k)

p ) . (14)

B. Mobility and Perception Models
A Gaussian mobility model is considered as given by

p(p(k)|p(k−1)) =
1√
2πσm

e
−
‖p

(k)
−µk‖2

2σ2
m (15)

where the standard deviation σm considers the uncertainty on
the target movement, and the mean µk depends on p(k−1). We
consider two different mobility model: the speed known direc-
tion unknown (SKDU) and the speed and direction learning
(SDL).
In the SKDU model, the target speed intensity is known but

there are no direction information. Therefore,

µk = p̂(k−1) + vk T (16)

where the orientation angle of the speed vector v is uniformly
distributed in [−π,π ] and T is the time between two consec-
utive measurements.
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In the SDL model the speed vector is determined from
previously estimated positions as

vk−1 =
1

Nυ T

Nυ
∑

v=1

(

p̂(k−v) − p̂(k−v−1)
)

(17)

where Nυ is the length of a sliding window of previous states.
Therefore,

µk = p̂(k−1) + vk−1 T (18)

For what concerns the perception model, we consider inde-
pendent observations. Thus,

p(d̂(k)|p(k)) =
NS
∏

i=1

p(d̂(k)i |p(k)) (19)

where d̂(k)i is the measurement from the ith radar at time index
k. We consider a perception model with Gaussian distribution
as given by

p(d̂(k)i |p(k)) =
1√
2πσp

e
−
(d̂(k)

i
−‖p

(k)
−si‖)2

2σ2
p . (20)

where si is the position of the ith sensor and the standard
deviation σp depends on both the localization technique and
propagation conditions.

V. CASE STUDY
We consider a network of monostatic sensor radars com-

posed by 10 nodes deployed in an indoor environment as
shown in Fig. 1. A target moves along 5 different random tra-
jectories, each of length 20m, with speed intensity v = 1m/s.
To compare the performance in the case study environment
with that in LOS conditions, the same environment area and
nodes deployment as Fig. 1 have been considered also in the
absence of walls. Navigation performance is given in terms of
navigation error outage (NEO), which is the probability that
the navigation error falls above a given target value eth as

PNEO = P{e(p(k)) > eth} (21)

= E

{

(eth,+∞)

(

e(p(k))
)}

where B (x) ! 1 if x ∈ B and 0 otherwise, and the navigation
error, for each time index k, is given by

e(p(k)) = ‖p̂(k) − p(k)‖ (22)

which is the Euclidean distance between the target estimated
position p̂(k) and the true position p(k).
Results are given for both SKDU and SDL mobility models,

with Nυ = 5, σp = 1m and σm = 0.8m. Specifically, the
value of σm is such that with probability 0.9 the new position
is within a circle centered in µk of radius vT .
We consider impulse radio UWB sensor radars transmitting

a sequence of pulses with PRF = 5MHz. The transmit-
ted PSD is Ti(f) = −42 dBm/MHz over the frequency
band [fL, fL +B] and 0 otherwise, where fL = 3.1GHz

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
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10

x [m]

y 
[m

]

Fig. 1. Environment, 10 sensor radars (magenta), and 5 trajectories
considered as case study.

and B = 1.7GHz,7 the noise power spectral density is
N0 = −200 dBW/Hz, and antennas are omnidirectional. In
(4), d0 = 1m, f0 = fL + B/2, and κ = 0. The path-
loss exponent is β = 2 and obstruction path effects are
accounted for through (6). The minimum received power
(received sensitivity) is P !

R = −100 dBm.
The channel impulse response is composed by Lp = 20

paths spaced by δp = 4ns with exponential power delay profile
ε = 20 ns, Rayleigh distributed path amplitudes, and delay
spread 16.6 ns [23]. A Swerling type-III RCS is considered
[22], which models a human target as a Chi-squared distributed
RV Σ with four degrees of freedom, constant during a scan
(i.e., the transmission of Npulse pulses necessary for the whole
TOA estimation process) and independent from scan to scan.
The mean RCS is E{Σ} = 1m2, which is typical for the
human body [24].
The ED based TOA estimation τ̂i(p) for each sensor

radar adopt an integration time Tint = 4 ns and we con-
sider Ta = 100 ns. Unless otherwise stated, the number of
accumulated received pulses is Npulse = 128. Static clutter
removal technique based on a simple frame-to-frame algorithm
is performed from the received waveform [25]. In the TOA
estimator, each threshold ξi is found through exhaustive a
posteriori search, as the value that minimizes the average
RMSE of TOA estimation, averaged over the channel statistic,
for each SNR.8

7This is compliant to the European lower band.
8Alternatively, in [26] a simple criterium to determine a threshold is

proposed based on the evaluation of the probability of early detection and
noise power knowledge. A blind TOA estimation which gives near-optimal
performance without the need to setup a threshold is proposed in [27].
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Fig. 2. NEO over all 5 random trajectories for different values of Npulse
with Tint = 4ns.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 
Tint=2ns LOS
Tint=4ns LOS
Tint=6ns LOS
Tint=2ns OLOS
Tint=4ns OLOS
Tint=6ns OLOS

eth[m]

P
N
EO

Fig. 3. NEO over all 5 random trajectories for different values of Tint with
Npulse = 128.

A. Effects of TOA Estimation
The effects of ED setting on navigation accuracy are shown

in Fig. 2 and Fig. 3, where the NEO dependence on Npulse
and Tint is shown, respectively. The NEO is obtained over all
5 random trajectories by considering T = 0.2s and SKDU
mobility model in LOS and OLOS conditions. Specifically,
for LOS conditions in the 80% of cases the navigation error is
below 0.8m, 1m, 1.2m for Npulse = 32, 128, 512, respectively
(Fig. 2) and below 0.6m, 0.9m, 1.5m for Tint = 2, 4, 6
ns, respectively (Fig. 3). For OLOS conditions in the 80%
of cases the navigation error is below 2m, 2.3m, 2.3m for
Npulse = 32, 128, 512, respectively (Fig. 2), and below 2.3m,
2.5m, 2.9m for Tint = 2, 4, 6 ns, respectively (Fig. 3).

B. Effects of Perception and Mobility Models
Figure 4 shows the NEO for the two mobility models and

different time intervals between two different observations in
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0.8
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T=0.5s SKDU
T=0.2s SKDU
T=0.1s SKDU
T=0.5s SDL
T=0.2s SDL
T=0.1s SDL

eth[m]

P
N
EO

Fig. 4. NEO over all 5 trajectories for SKDU and SDL mobility models and
different values of T , Tint = 4ns, and Npulse = 128.

OLOS conditions. Here, Tint = 4ns and Npulse = 128 are
considered. For T = 0.5s the SKDU mobility model provides
the best solution since in the 80% of the cases the error is
below 2.7m for the SKDU and 5m for the SDL. For T = 0.2s
in the 80% of the cases the error is below 2.7m for both the
mobility models, even if the speed of the target is unknown in
the SDL. For T = 0.1s, the SDL shows best performance with
respect to the SKDU. Specifically, the SKDU mobility model
shows better performance for low TOA estimation update
rate 1/T since the speed intensity is known, while the speed
estimated by SDL is inaccurate. Differently, the more often the
position is estimated the more accurate is the speed estimate
and direction estimate of the SDL model, which indeed shows
better performance than SKDU (in which no information and
learning algorithms about direction are exploited).

VI. CONCLUSION

A framework for design and analysis of UWB monostatic
radar sensor networks for passive localization and navigation
is presented. The framework accounts for the network set-
ting, environment propagation, TOA estimation techniques,
and Bayesian navigation algorithms. Navigation techniques
based on particle filter algorithm and mobility models have
been compared in terms of navigation error outage for a
case study in an indoor environment with both LOS and
OLOS conditions. It is shown that mobility model and TOA
estimation algorithms significantly affect the performance in
harsh environments.
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