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Abstract—In clearing terrains contaminated or potentially con-
taminated by landmines and/or unexploded ordnances (UXOs), a
quick wide-area surveillance is often required. Nevertheless, the
identification of dangerous areas (instead of the detection of each
subsurface object) can be enough for some scenarios/applications,
allowing a suitable level of security in a cost-saving way. In such a
framework, this paper describes a probabilistic approach for the
definition of risk maps. Starting from the measurement of the scat-
tered electromagnetic field, the probability of occurrence of dan-
gerous targets in an investigated subsurface area is determined
through a suitably defined classifier based on a support vector ma-
chine. To assess the effectiveness of the proposed approach and
to evaluate its robustness, selected numerical results related to a
two-dimensional geometry are presented.

Index Terms—Electromagnetic scattering inverse problems, pat-
tern classification, subsurface sensing.

1. INTRODUCTION

N the world, there are many areas contaminated (or po-

tentially contaminated) with unexploded ordnance (UXO)
and antitank/antipersonnel landmines. A report published in
1997 indicates that the approximate number of UXOs is of
about 110 million in 70 countries [1], [14]. Moreover, recent
missions in Bosnia, Afghanistan, and Iraq probably (and un-
fortunately) will further increase such an estimate. To return
these zones to a civilian use, the ordnances should be obviously
removed. However, in several cases, the former bombing ranges
have been unused for many years and the UXO locations are
partially known or completely unknown. Thus, a wide-area
surveillance is needed in order to circumscribe those regions
where the dangerous targets reside. Such a process is inevitably
time-expensive and involves complex acquisition procedures.
Consequently, high costs (from few hundred dollars for an acre
in the case of surface or shallow targets up to a couple of million
dollars for subsurface objects) occur. This is one of the main
motivations of the growing research interest in developing un-
supervised techniques able to effectively (in terms of time and
resources) repair landmine/UXO-contaminated areas. Several
solutions have been proposed based on various methodological
approaches (e.g., see [2] and the references cited therein), which
consider different sensor modalities such as ground-sensors
(e.g., magnetometers, electromagnetic radars, sensors based on
electromagnetic induction, etc.) or synthetic aperture radars. In
general, these techniques are aimed at achieving the following
goals: 1) correctly localizing a large number of dangerous
targets, thus ensuring the future security of cleaned areas;
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2) reducing the false-alarm rate, which strongly contributes
to the costs of the clearing procedure; 3) reducing the time
devoted to the detection process, thus realizing a quick area
surveillance.

In such a framework, electromagnetic approaches based
on learning-from-samples (LFS) techniques [3]-[5] have been
recently proposed for the online [after the learning process
(or training phase) performed once and off-line] detection
of subsurface objects. The detection process is recast as a
regression problem where the unknowns (i.e., the position as
well as the geometric and dielectric characteristics of the target)
are directly evaluated from the data (i.e., the values of the
scattered field) by approximating the data-unknowns relation
through an off-line data fitting process (training phase). LFS
regression-based approaches demonstrated their effectiveness
in dealing with detection processes where a limited number of
unknowns (related to a single object) is considered. However,
because of the complexity of the underlying architecture, some
difficulties occur when a larger number of unknowns (related
to multiple objects) is taken into account. Unfortunately, from
a structural point of view, the regression technique does not
permit one to simultaneously identify multiple positions. As a
consequence, LFS regression-based approaches turn out to be
very effective for the detection of a single (or few organized in
a single cluster of objects) buried object, whereas they are not
so suitable in dealing with the detection of multiple targets.

On the other hand, it should be pointed out that the identi-
fication of free-areas and an estimate of the concentration of
subsurface objects (instead of the localization of each buried
scatterer) might be enough in several situations. Then, the goal
of a subsurface sensing technique could be moved from the
“object detection” to the “definition of a risk map.” Conse-
quently, a classification approach, instead of a regression one,
should be employed.

Within the framework of spatial statistics and remote sensing,
relevant advances have been carried out in the last years for
estimating a probability field. Let us consider the Markov
random field Bayesian classifier (MRF-BC) or the autoregres-
sion models described in [6, ch. 7]. In this paper, a classification
approach based on a LFS technique is proposed for an on-
line subsurface sensing. Starting from the knowledge of the
scattered field values collected above the surface, the method
is aimed at defining a risk map of the domain under test. By
considering a support vector machine (SVM)-based classifier,
the proposed method estimates the a posteriori probability of
the presence of subsurface dangerous objects.

The advantages, which can be also found better detailed in the
related literature, of the use of such an instance-based classifi-
cation method compared to more traditional optimization tech-
niques can be summarized as follows: 1) no a priori knowl-
edge about the system that generated the data is required, but
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Fig. 1. Problem geometry.

only a set of input—output measurements; 2) the algorithm for
the solution of the arising quadratic optimization problem with
constraints is simple and reliable (no local minima/maxima
occur); 3) SVMs are based on statistical learning theory by
Vapnik and Chervonenkis, which permits one to design op-
timal classifiers with a solid theoretical framework; and 4) the
estimation function is composed by a weighted sum of kernel
functions, that can be easily implemented in hardware [7] for
real-time applications.

The paper is organized as follows. The electromagnetic
problem is formulated, and the SVM-based approach is out-
lined in Sections II and III, respectively. For the numerical
validation, a selected set of results is presented to assess the ef-
fectiveness of the proposed approach (Section IV). Toward this
end, a two-dimensional problem is dealt with. Both noiseless
and corrupted measurement data are considered to check the
robustness of the proposed approach. Finally, some conclusions
and final remarks are presented in Section V.

II. PROBLEM FORMULATION

Let us consider a typical two-dimensional buried-object
scenario as shown in Fig. 1. The upper region presents the
same characteristics of the vacuum (¢,; = 1.0, o7 = 0.0).
The lossy subsurface region, which models the soil, is char-
acterized by a conductivity o2 and by a relative dielectric
permittivity e,o. Moreover, let us assume that the investi-
gation domain Dj lies entirely in the subsurface medium,
Dy = {-L/2<z<LJ/2,-L/2<y<LJ/2}. A set of tar-
gets (either dielectric or lossy) are supposed to belong to Dy
and illuminated by 7 transmitters located at known positions
(zt,y1), t = 1,...,T above the air—ground interface. By
considering underlining for vector notation, let £ . be the
so-called “incident field,” i.e., the electric field distribution
due to the transmitters in the absence of buried scatterers. The
“scattered field” £, is collected by a set of sensors placed at
given positions (z,,y.), 7 = 1,..., R close to the air—ground
interface.

Under the hypotheses of an isotropic background medium
and that the electromagnetic sources be z-directed electric
line currents, both incident and scattered electric fields are
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also z-directed (B, = Finc(z,y)5, B2, = EY (z,1)2).
In order to define a risk map, let us model the investigation
domain through a two-dimensional lattice of M square cells
of linear dimension [ whose center coordinates are (Z,,, Ym ),
m = 1,...,M. The state x,, of the mth cell can be ei-
ther empty (if any scatterer belongs to the cell) x,, = —1
or occupied x,, = +1. Then, the problem can be formu-
lated as follows: “starting from the scattered field measure-
ments U = {Es(zzlt(xr,y,,); r=1,...,R;t=1,... ,T},
find the probability q,, that the m — th cell is occupied
(m =1,...,M).” That is, determine the probability array Q,
which is a function  of the scattering data I'j; -

Q=Pr{x=1Lz} =S

where @ = {¢gm,m=1,...,M} and x =
{Xm,m=1,....,M}. Such a statement defines a clas-
sification problem. A solution based on the SVM will
be detailed in the following by assuming the knowledge
of a set of known examples (i.e., input—output relations

{(EE,mxm;m:l,...,M)(");n:L...,N called
training set). For sake of clarity, let us denote by N the number
of scattering configurations, ® = M X N being the number
of patterns.

ey

III. SVM-BASED CLASSIFICATION APPROACH

The proposed SVM-based classification approach is formu-

lated as the following two-step procedure:

o Step 1: determining a decision function & that correctly
classifies an input pattern (I'f;, m) (not necessarily be-
longing to the training set); R

« Step 2: mapping the decision function ® {(I'f, m)} into
an a posteriori probability Pr {x = 1|T'y }.

A. Definition of the Decision Function

At this step, the status x,, of each cell of the lattice has to be
determined. Mathematically, such a problem formulates in the
definition of a suitable discriminant function ® separating the
two classes, which are labeled as x = +1 and y = —1. Since
these classes are nonlinearly separable, the definition of a non-
linear (in terms of the original data I' ;) discriminant function
is usually required as well as the solution of an optimization
problem where multiple optima (also local optima) are present.
As a matter of fact, such a solution is implemented when arti-
ficial neural networks (ANNSs) are considered (see [8] and the
references cited therein).

Unlike ANN, SVM defines a linear decision function corre-
sponding to a hyperplane that maximizes the separating margin
between the classes and it requires the solution of an optimiza-
tion problem where only one minimum there exists. More in de-
tail, the linear data-fitting is not carried out in the original input
space R {I';}, but in a higher dimensional space X {¢ (I'y)}
(called feature space) where the original examples are mapped
through a nonlinear operator,! ¢ (o). The nonlinear SVM clas-
sifier so obtained is defined as

é(g(EE,m)):w-g(EE,m)—i—b, m=1,...,M (2)

IBecause of the formulation of the problem at hand, it is easy to verify (10)
that actually one does not need to know the ¢ () function, but only its dot
product in the feature space according to the so-called “kernel trick” [10].
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where w and b are the parameters of ® to be determined
during the training phase. The hyperplane so-defined causes
the largest separation between the decision function values for
the “margin” training examples from the two classes. Mathe-
matically, such a hyperplane can be found by minimizing the
following cost function

Q(w) = L

w) = 5 [|wll” 3)

subject to the separability constraints
w~£(£g),m)+b2 —|—1forx,(ﬁ):+l, m=1,.... M
w-g(ﬁ%),m)—kbg—1forx,(,’f):—1, n=1,...,N.
“)

In this sense, SVM can be considered as a kind of regularized
network, as indicated in [9].

However, since the training data in the feature space are gen-
erally nonco gpletely separable by a hyperplane, slack variables

(denoted by f ) are introduced to relax the separability con-
straints in (4) as follows:

(n) _

M'ﬁ(Eg)v’"’)M Zl—f((:;)” for x.. m=1,...,. M
E.f(gg;unﬁb <en) -1 fOng;p:_l, n=1,...,N.
(%)

Such a procedure is justified by the Cover’s theorem, a key point
in the SVM methodology as indicated in [10, p. 200].

Thus, the cost function in (3) turns out to be

2
w C
2w <12
+
mZZI{N<m> +N(m>}

.
Ny

M Nim)
x Zl z_:l e+ Zl & ©

where N (m) and N/ (m) indicate the number of training patterns

for which X$n) = 41 and X( n —1, respectively. The

user-defined hyperparameter C' controls the tradeoff between
the empirical risk (i.e., the training errors) and the model
complexity [the first term in (7)] to avoid the overfitting. In
that case, the decision boundary too precisely corresponds to
the training data. Thereby, the method is unable to deal with
data outside the training set [10, chs. 5 and 7].

Moreover, to include a priori knowledge about class distri-
butions [11], two weighting constants can be defined A\, =

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 9, SEPTEMBER 2005

C’/Z [12] and (6) mod-

ifies as follows

yand A_ = C/E

M NG,

+ A+ Z Z f((Zz))+

m=1 n=1

m)

+A- szm—

m=1 n=1
)
In order to minimize (7), it can be observed that a necessary
condition is that w is a linear combination of the mapped vectors

(e

M N
=53 el (1), m))
m=1n=1
where asn) >0n=1....,.N,m = 1,...,M are La-
grange multipliers to be determined. Moreover, from the
Karush—Khun-Tucker conditions at the optimality [13], b turns
out to be expressed as follows:

0 (w) =

®)

b B NSU
&)

n)7 m) for which /(™ +

N, being the number of patterns (ESE

0 (called support vectors). Since support vectors lie on the hy-
perplane for which (5) is satisfied with equality, they are taken
into account for the classification while the others are neglected.
Such an event reflects the “sparsity” property of the SVM clas-
sifier allowing the use of few input patterns.

Substituting (8) and (9) in (2) yields

(AD( ZZ{ ")@ (F( FE7P7 m)}
p=1n=1

]VS v
(10)

where © (E%)7 Eg), D, m) = @ (E%), p) %) (Eg)7 m) is
a suitable kernel function [14]. Then, the decision function is
completely determined when the Lagrange multipliers are com-
puted. Toward this end, the constrained optimization problem
formulated in (7) and (5) is reformulated in a more practical
dual form. The solution of the dual problem, which is equiva-
lent to the solution of the primal optimization problem (3)—(4),

appears in (11) shown at the bottom of the page, subject to
SN SN Al = 0,0l € [0, A_]if x'n) = —1 and

alp) € [0, 4] otherwise.
Finally, since Qpual (@) is a convex and quadratic function
of the unknown parameters aﬁ,’;/), it is solved numerically by

means of a standard quadratic programming technique (e.g., the

2
g

M=
M=

a

3
Il
-
S
Il
-
Il
-
_
Il
-

o X6 (L2, T, p, m)]
(11)

max {Qpual (@)} = max

N M
— ()
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Platt’s SMO algorithm for classification [15]2). More in detail,
the SMO algorithm breaks the large optimization problem at
hand in a series of smaller ones characterized by only two vari-
ables and solved through an effective updating formula [15],
thus inducing nonnegligible computational savings.

B. Mapping of the Decision Function Into the
A Posteriori Probability

Concerning standard classification, the SVM classifier labels
an input pattern according to the following rule [16]:

Xon = sign {& (& (Tp, m)) } (12)

Unlike standard approaches, the proposed method is aimed at
defining an a posteriori probability. Consequently, some mod-
ifications to the standard SVM-based classification approach
are needed. Toward this aim, a set of efficient solutions has
been proposed (e.g., see [14], [17]-[19]) either based on a direct
training of the SVM with a logistic link function and a regular-
ized maximum-likelihood score or based on a posterior fitting
probability process.

The first class of approaches usually leads to nonsparse
kernel machines and requires a significant modification of
the SVM structure. In this paper, the a posteriori probability
fitting method [19] is adopted since the use of a parametric
model allows a direct fitting of the a posteriori probability
Pr { x=1|Cg } More in detail, such a model approximates
the a posteriori probability through a sigmoid function

1
Pr{xm =1[(Lp, m)} = - 7
1+ exp {’y@ (¢ (Lg, m)) + 5}
m=1,...,.M (13)
where 7 and § are unknown parameters to be determined.

To estimate the optimal values for the parameters of
the sigmoid function, a fitting process is performed. A
subset of the input patterns of the training set is chosen
{Tg, my Xm; m= 1,...,M)(5); s=1,...,S5}, where

¢ (g (ES), m)) Then, the following cost func-

o) = &
tion is defined as in (14), shown at the bottom of the page,
and successively minimized to define v and § according
to the numerical procedure proposed by Lin et al. (see
http://www.csie.ntu.edu.tw/~cjlin/)> to solve the problems
(i.e., the use of a kind of Levenberg—Marquardt method for
unconstrained optimization) of the implementation of Platt’s
probabilistic outputs method pointed out in [19].
Summarizing, the SVM optimization problem needs three
successive steps: 1) determining the hyperparameters array
(model selection), i.e., C and all the parameters that define the
kernel function (e.g., the Gaussian width o2 when Gaussian
kernels are used), by considering the “fraining dataset”;
2) determining the functional parameters o and b starting
from the “training dataset” and solving the dual problem

2An optimal implementation of the SMO algorithm is the “LibSVM” tool
available at http://www.kernel-machines.org.

3Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/.
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(11); 3) determining the a posteriori fitting parameters v and
0 starting from a subset of the “training dataset” (validation
phase); and 4) testing the SVM on a different dataset (rest
phase).

IV. NUMERICAL VALIDATION

In this section, after a detailed description of the various steps
carried out during the experimental validation, the results of a
set of numerical examples are analyzed to assess the effective-
ness, but also current limitations, of the proposed approach.

A. Reference Scattering Configuration

With reference to the geometry shown in Fig. 1, the following
geometric and dielectric parameters are considered. The relative
permittivity and the conductivity of the homogeneous subsur-
face region are €, = 4.0 and 02 = 1 X 10-3 S/m, respec-
tively. The investigation domain Dj is a 2.0 Ax 2.0 \ region,
and it was discretized in a two-dimensional lattice of M =
36 square cells. The buried objects (modeling UXOs or land-
mines) are lossless circular cylinders of diameter de;; = A\/6
and characterized by a relative permittivity e.;; = 5.0. Con-
cerning the measurement system, R = 16 ideal receivers are
equally spaced along an observation line 2.0 A-long and par-
allel to the air—ground interface at a distance h, = 0.6 A from
the surface. The probing source (f = 1) is located at z; = 0.0
and y; = 7/6 A. The measurement data were synthetically com-
puted by using a finite-element-based simulator and a perfectly
matched layer truncation technique [20].

B. Training and Test Datasets

The choice of representative datasets is an open problem to
be carefully addressed in order to limit its influence to the final
result in terms of reliability as well as generality.

As pointed out in [21], the sources of variations in statistical
validation tests can be identified in: 1) the randomness in the
selection of test data; 2) the randomness in selecting training
data; 3) the internal randomness of the training algorithm; and
4) the mislabeling of the dataset.

The former source of variation is of particular concern when
the test set is a small fraction of the entire dataset. In this case,
the variability due to randomly selecting the test set could be
problematic. The source defined in 2) could influence the esti-
mate of the classification. As a matter of fact, the training set is
a particular realization of the input patterns. The third source
of variation 3) can affect learning algorithms that depend on
the random starting point (e.g., the backpropagation networks).
However, the learning algorithm of a SVM is independent from
its initialization, since the solution of the associated optimiza-
tion problem is the global minimum of the error function re-
gardless of the starting point. The mislabeling of the dataset is a
source of errors for any learning algorithm, nevertheless SVMs
have an intrinsic mechanism for dealing with misclassified data
points [22], [23].

M (

exp (ﬁ)ﬁf} + 5)

S s)
Ty, ==Y > Xm2+110g !

s=1m=1

(s)
1 m
= < X > log
1+ exp (@S) + 6) 2

1+ exp (’y(/ﬁs) + 6) 4
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Fig. 2. Noiseless data. Experiment 1. Color level re resentation of the rlsk
map for the two-target scenario [z} = —5/6 A, y}) = A/2) and (&}
vel = 5/6 M)
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Fig.3. Noiseless data. Experlmentl Color level representation of the risk map
for the three-target scenarlo (@l = -x/6,4) = =5/6 1), @3 = A/6,
g = —5/6 M), and (=) = /2,y = =5/6 M)
TABLE 1

NUMERICAL EXPERIMENTS 1, 2, AND 3. STATISTICS OF THE
DANGEROUS-AREA-LOCALIZATION ERROR, ¢

FExperiment|No.1[No.2 No.3
SNRI[dB] | oo | oo | 20| 10| 5
miny {sP)} | 0.065 0.151 0.139 0.193 0.053
mazy {cP)} 1 1.024 1.046 0.995 0.992 0.936
avp (P} 0.312 0385 0.347 0.358/0.378
vary (<®)} 1 0.077 0.098 0.074 0.075 0.073

According to such considerations and following some of
the arising guidelines to avoid both incorrect and unreli-
able results, different datasets were generated. As far as the
training set is concerned, various scattering configurations
Nisrain) = Nioonin) + Niomniny (V@ and N being the num-
bers of scattering configurations with two and three-targets,
respectively) were considered. The locations of the scatterers
in Dy for the “training” dataset as well as for the “test” dataset

were randomly chosen in a discrete grid of points imposing that
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Fig. 4. Noiseless data. Experlment 2. Color level representation of the risk
map for the single-target scenario (2 = y(}) = —\/6).
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TABLE 11
NUMERICAL EXPERIMENT 2. COMPARATIVE ASSESSMENT BETWEEN
SVM-BASED REGRESSION APPROACH AND SVM-BASED CLASSIFICATION
APPROACH. VALUES OF THE DANGEROUS-AREA-LOCALIZATION ERROR, ¢,
FOR DIFFERENT POSITIONS OF THE ACTUAL SCATTERER

SV M — based Approach
SNR [dB] Regr. Clas.
00 0.0860.21110.015]0.059]0.4000.189

o)
10 10.101 0. 192 0.097  0.106 0. 621 0. 346

5 . . 170.51

Test Case| (a) (b) (c) (ll) (b) (C)

TABLE III
NUMERICAL EXPERIMENT 3. ESTIMATE OF THE ERROR IN
EVALUATING THE AREA OF THE DANGEROUS ZONE

SNR[AB][ oo | 35 20 | 10
AT 09313.230 3.249 4.456

2.760 3.2493.278 4.752

the objects, belonging to the same scattering example, cannot

be located at the same position. More in detail, the coordinates

of the grid points [:c’(” f), x’(’ tq)] were defined according to the

following rule:

mgl) ::E(()t) +(p-1) A:L‘(t), p= 1,...,P(t) (15)
y€tq) = y(ot) + (q 1) Ay(t)7 q= 17 e Q(t)

where the subscript ¢ indicates the “training” (train) or the
“test” (test), respectively; ?tram) —y?tram) —5)/6,
A‘/E(tram) - Ay(traln) - )‘/3 P(tram) - Q(tram - 6 and
w(()test) = y(test) 1].)\/].2 Aw(test Ay(test = /\/12
(test) = Q(test)y = 24, respectively.
As far as the following experiments are concerned, if it
is not specified, N(( ) = 35 and N, ) = 34, thus

train (train)
D (rain) = (I'Efr)ain) + <I>(fr)ain) patterns being (I'Et) n = 1260
and o

(train) = 1224, respectively. These patterns were also
used during the validation test aimed at defining the a poste-
riori fitting model. The optimal values of the fitting parameters
turned out to be v = —0.533 and 6 = 1.272, which demon-
strated to be appropriate for the whole numerical assessment.
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Fig. 5. Noisy data. Experiment 3. Risk maps for the two-target scenario [(Jziill) ==5/6 A, yﬁill) = A/2)and (xi?l) = ygl) = 5/6 A\)] when (a) SNR = 35 dB,
(b) SNR = 20 dB, and (c) SNR = 10 dB.
-1.0 /A 1.0
3 Actual Actual 3 Actual
Scatterers Scatterers Scatterers
= <
= =
=
T

-1.0

0.0

Pr(x =1[I'g) 0.0

(a)

located at (']} = =7/12 A, y{}) = —=A/12), @) =
@3 =7/12 0,98 = —7/12 ).

C. Model Development

The selection of the appropriate SVM for solving a particular
classification task is still an open problem. While the parameters
of a SVM can be easily found by solving a quadratic program-
ming problem, there are many proposals for identifying its hy-
perparameters (e.g., the kernel parameter or the regularization
factor: C, o2, or p), but it is not clear yet which one is superior
to the others. This task is usually denoted as the “model selec-
tion problem.”

The model selection problem is strictly related to the eval-
uation of the generalization ability of the SVM. In fact, it is
common use to select the optimal SVM (i.e., the optimal hyper-
parameters) by choosing the one with the lowest generalization
error.

However, there has been some criticism on this approach,
since the true generalization error obviously cannot be com-
puted, thus it is needed to refer to an upper bound of its value.

Pr(x=1[Tg)

(b)

0.13 0.0

PT(X = l\l“,,)
(©
Fig. 6. Noiseless data. Experiment 4. Example (7). Risk maps obtained with different classification approaches: (a) SVM, (b) RBF, and (c) MLP. Buried objects are

0.14

—7/127,yF) = —5/120), @) = =7/6,4) = —5/120), () = —5/12 7,4 = —7/12 ),

cil cil

Minimizing an upper bound of the error rate can be misleading
and the actual value can be quite different from the actual one.
On the other hand, an upper bound of the generalization error,
if correctly derived, is of paramount importance for estimating
the applicability of the SVM to a particular classification task,
especially on a real-world problem.

Several methods for model selection have been proposed
(see [23] for a survey). They can be roughly classified in
two distinct classes: bounds-based and data-based. The former
are based on exact theorems derived from statistical learning
theory [24], while the latter are based on estimations obtained
by considering sets of measurements of the problem under
investigation. They include the test set method or statistical
intensive approaches, such as the k-fold cross validation, the
leave one out and the bootstrap one. Despite the drawback of
reducing the size of the training set for building an independent
test set, in most cases this is the only way to avoid overly
optimistic estimates. On the other hand, the most advanced
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methods try to estimate the generalization error directly from the
empirical error. They represent the state of the art of the research
in machine learning, even though their practical effectiveness is
yet to be verified [25]. The bounds-based methods theoretically
are the best because one can execute the model selection and
at the same time estimate the generalization error. However,
in many cases the bounds can be very loose and report a
generalization error much greater than 1 (actually, any value
greater than 0.5 is completely useless). As experimentally
shown, the minimum of the upper bound often corresponds to
the best hyperparameter choice, so its value can be of use for
the model selection, if not for estimating the true generalization
error.

On the other hand, since Gaussian kernels have shown good
properties in solving classification problems [26] and their use
instead of sigmoidal, linear, or polynomial kernels is justified
by reduced numerical difficulties as well as to the fact that they

are described with only one characteristic parameter (i.e., the
Gaussian width), Gaussian kernel functions were adopted in this

work
|(c2.r) - (e m) [

202

@(E(l) g),p m)—exp
(16)

Thus only two hyperparameters were tuned (i.e., C' and o'2) fol-
lowing the method of the test set proposed in [23]. More in
detail, the optimal hyperparameters in a set of discrete samples
are those values for which the generalization error is minimum.
Accordingly, C' was varied in the range [1, 10°] and o2 from
0.01 up to 10.0. After such a process, the optimal values of the
hyperparameters turned out to be C' = 10* and o2 = 1.0.
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D. Numerical Assessment

In order to analytically evaluate the effectiveness of the clas-
sification method in correctly locating the dangerous areas, a
dangerous-area-location error ¢ is then defined

~ 2
\/(xcil - xcil) -
A

where (Zcil, Yeil) and (Zeil, Yeir) are the actual and estimated co-
ordinates of the center of a dangerous zone, respectively, being
M)
2. {zm Pr(xm =1|Lp)}

m=1

M;)

2 APr (xm

m=1
Mj)

> {ym Pr(x

m=1

M)y

3 APr (v = 1L}

where M(;) indicates the number of connected cells where
Pr(xm = 1|Lg) # 0. Moreover, the extension of the esti-
mated dangerous zone A is defined as follows:

A%) Pm Pr(Xm:1|£M)
~ = maxm{Pr<Xm:1|£E )}
M,

3 ()

where Pm = \/(a:m — 5611)2 — (ym — ijcﬂ)z.

Within the numerical validation, the first experiment deals
with a test set of <I>(test) = 2484 patterns (related to scat-
tering configurations different from those of the training phase
and concerned with two- and three-scatterers configurations,
N((fe)st) = 35 and N((f’gst) = 34) and noiseless conditions.
Figs. 2 and 3 show the risk maps obtained for two examples of

the test set. The first example (Fig. 2) refers to a two-targets con-
figuration where the scatterers are located at (azgill) = —5/6 A,
yflll) = A/2) and (.’L'gl) = ygi = 5/6 A). In such a case, the
values of the error figures turn out to be equal to ¢(1) = 0.291

(ycil - chil)z

¢ = a7

Tcil =

= 1Cg)}

m=1Lg)}

Yeil = (18)

19)
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and ¢(® = 0.389. Moreover, the highest values of the occur-
rence probability are very close to the actual positions of the
scatterers. As far as the dimensions of the two dangerous zones
(the objects being not-adjacent) are concerned, they are slightly
over-estimated (A /AM = 2,023 and A® /A = 2.760,
AN = A = (1/9)\2).

The second example (Fig. 3) is related to a three-scatterers
configuration. The objects are adjacent and lie at the bottom
of the investigation domain. As expected, when the targets are
buried far from the surface, the localization of the “dangerous
zones” is more difficult. In spite of this, the approach is still able
to localize these areas with an acceptable degree of accuracy
¢V =0.359, ¢@ = 0.385, and ¢(®) = 0.502).

For completeness, by considering the whole test-set, the sta-
tistics of the dangerous-area-location error ¢ are given in the
second column of Table I.

The second numerical experiment considers a more critical
test scenario where a single target is supposed to be located in
the investigation domain [N((te)st) = 36, thus @Etgst) = 1296].
It should be pointed out that such a configuration does not
belong to the training set. Concerning the effectiveness of the
approach in dealing with this kind of test set, the localization
statistics are reported in Table I (second column). As expected,
the error figure increases as compared to the first experiment
and the average value changes from av, {<®} |Exp L =0312
to avy {<W}, , = 0.385.

As an example, the risk map for a sample of the test set
@) = ) = —1/6) is shown in Fig. 4 (<) = 0.364 and
AM/AM = 4.718).

For comparison purposes, the results obtained with the SVM-
based classification approach were compared with authors prior
approach based on regression [5] in terms of localization accu-
racy of the actual scatterer. Toward this end, three dlfferent po-

sitions of the actual object were considered: 1) (:1: 1 = A4,
vh = =32 @G = BN Bl = —(3/90); and

3) @) = A/4, 4"} = —(3/4)A). As expected, the SVM-based
regression approach overcomes the classification one in locating
the scatterer as confirmed by the values of ¢ are reported in
Table II for the noiseless case as well as for a noisy conditions.

As a matter of fact, since the SVM, as formulated by Vapnik
and based on statistical learning theory, is a LFS technique used
when no information (such as noise model and level, probability
density function, etc.) on the problem at hand there exist, the
SVM cost function is designed to work in different operative
cases and various working conditions. Thus, to further evaluate
the robustness of the proposed approach, also a noisy environ-
ment might be considered. Therefore, in the third experiment,
corrupted measurement data were simulated by adding a uni-
form Gaussian noise (characterized by different values of the
signal-to-noise ratio (SNR) in the range from 5 dB up to 35 dB in
order to satisfactorily simulate realistic conditions for the elec-
tric field measurement) to synthetic data [5] of the test set used
in the first experiment. Such a choice, instead of others forms
of noise, should be considered as a first/reference attempt in a
more general framework for giving a simple, although represen-
tative, indication on the behavior of the SVM-based approach in
real situations.

To further confirm the effectiveness of the proposed ap-
proach in dealing with a noisy environment, the risk maps
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Fig. 10. Experiment 5. Risk maps when no objects are hidden under the surface and @Efzain) ¢ @ (train). (2) Noiseless conditions. (b) SNR = 10 dB. (c)

SNR = 5 dB.

for the two-targets configuration (where the actual scatterers
are located as in Fig. 2) and for different SNRs are shown
in Fig. 5 as representative examples. It can be noticed that,
when SNR > 20 dB the “contaminated zones” are quite
correctly detected and located (§(1)|SNR:35 4B 0.383,
<P xrogzap = 0462 and (Wl p 00 = 0.389,
§(2)|SNR:20 B = 0.464). Otherwise, the performance
of the approach reduces (§(1)|SNR=10 am = 0.526,
¢ Nre1oam = 0-580) even though the highest values
of the occurrence probability are situated in correspondence
with and close to the target positions.

As far as the prediction of the extension of the dangerous
zones is concerned, Table III shows that the effectiveness of
the approach reduces with the increasing of the SNR as well
as, on average, for the localization accuracy (Table I, last three
columns). This causes an overestimate of the dangerous areas
since, due to the presence of the noise, the accuracy of the clas-
sification process reduces as well as the range of the estimated
probability.

The fourth experiment (Experiment 4) is aimed at confirming
the validity and the advantages of the SVM-based classification
approach over some other standard nonlinear methods as reg-
ularized form of the familiar multilayer perceptron (MLP) or
radial basis functions (RBF) neural networks. Toward this pur-
pose and to face a more complex multiple-scatterers scenario,
a data test set characterized by @ (testy = 3600 patterns related
to different scattering configurations of five buried objects ran-
domly distributed in Dj was considered. The classifiers were

trained with @ (¢,qin) = @Efr)ain) + @Efr)ain) + @Efr)ain) patterns
. 2 3y (G-
being fb(train) = 1260, <I>(train) = 1224, and (P(train) = 1008,

respectively. Figs. 6-8 show, in a comparative fashion, the
results obtained with different classifiers and in correspondence
with a set of representative examples. More in detail, the first
example (7) refers to a configuration where two different clusters
of objects can be recognized (i.e., the one with four scatterers
and the other with one scatterer; Fig. 6). In the second example
[Fig. 7, (ii)], three clusters of objects are present, while example
(iii) deals with a two-clusters setup where the objects are equally
distributed. Whatever the example, the SVM-based approach

is able to identify each cluster with a satisfactory probability
value (Pr{xm,» =1|Lg} = 0.35 in the neighboring of the
actual locations of the buried scatterers). On the other hand, the
performance of the RBF-based classifier turn out to be inferior
in terms of cluster-localization as well as estimated probability
value [max, [Pr{xm =1|LCg}|lggr = 0.13—example
(1); maxy, [Pr{xm =1|Lg}llgpr = 0.21—example (ii);
maXy, [Pr{xm =1Lz }lgpgr = 0.15—example (iii)]. As
far as the MLP-based approach is concerned, the classification
results are not accurate and several difficulties occur in the
location of the actual scatterers [Figs. 6(c), 7(c), and 8(c)].
Finally, the last experiment (Experiments 5) deals with the
scattering scenario where there is no landmine at all hidden
under the surface, but some noise is added to the data. Firstly, the
SVM-based classifier was trained with a training set containing
some patterns related to the free-object scenario (P (train) =
@ (3)

(0) 2  _ 3 _
(train80+(b(train)+<I)(train) ’ (b(train) = 2412, ¢(train) = 2412,
and ¥ = 10).4 As expected, whatever the noisy condi-

train
tions, t(he cfassiﬁer did not detected a buried scatterer (Fig. 9).
Otherwise, when the free-scenario patterns were neglected and
in presence of a nonnegligible level of noise (SNR < 10 dB),
the classification was not adequate as shown in Fig. 10(b) and
in Fig. 10(c), respectively. For completeness, also the risk map
for the noiseless condition is reported in Fig. 10(a).

V. CONCLUSION

In this paper, a classification approach for subsurface sensing
of multiple buried targets has been proposed. A suitable SVM-
based strategy has been developed for determining the proba-
bility of occurrence of buried targets and to define a “risk map”
of the investigation domain.

The effectiveness of the approach has been preliminarily as-
sessed by considering a two-dimensional geometry and noise-
less as well as noisy conditions. The obtained results confirmed
the ability of the method in detecting and locating multiple tar-
gets as well as in estimating the extension of the dangerous
zones.

4Let us consider that the complete set of patterns related to the free-objects
scattering scenario should be of 36 different elements since N )= 1.

(train
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Future works, current under development, will be devoted to
fully exploit the key-features of the approach as well as to assess
its reliability in dealing with real experiments and three-dimen-
sional scenarios. Moreover, as far as the hardware implementa-
tion [7] is concerned, several advances would be needed to allow
an on-site testing.
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