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Abstract—Radio Tomographic Imaging (RTI) is an emerging technology for imaging the attenuation caused by physical objects in

wireless networks. This paper presents a linear model for using received signal strength (RSS) measurements to obtain images of

moving objects. Noise models are investigated based on real measurements of a deployed RTI system. Mean-squared error (MSE)

bounds on image accuracy are derived, which are used to calculate the accuracy of an RTI system for a given node geometry. The ill-

posedness of RTI is discussed, and Tikhonov regularization is used to derive an image estimator. Experimental results of an RTI

experiment with 28 nodes deployed around a 441 square foot area are presented.

Index Terms—Wireless, sensor networks, inverse filtering, linear systems, applications.
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1 INTRODUCTION

WHEN an object moves into the area of a wireless
network, links which pass through that object will

experience shadowing losses. This paper explores in detail
the use of shadowing losses on links between many pairs of
nodes in a wireless network to image the attenuation of
objects within the network area. We refer to this problem as
radio tomographic imaging (RTI), as depicted in Fig. 1.

RTI may be useful in emergencies, rescue operations,
and security breaches, since the objects being imaged need
not carry an electronic device. Using the images to track
humans moving through a building, for example, pro-
vides a basis for new applications in security systems and
“smart” buildings.

The reduction in costs for radio frequency integrated
circuits (RFICs) and advances in peer-to-peer data network-
ing have made realistic the use of hundreds or thousands of
simple radio devices in a single RTI deployment. Since the
relative cost of such devices is low, large RTI networks are
possible in applications that may be, otherwise, impractical.

Radio tomography draws from the concepts of two well-
known and widely used types of imaging systems. First,
radar systems transmit RF probes and receive echoes caused
by the objects in an environment [1]. A delay between
transmission and reception indicates a distance to a scatterer.
Phased array radars also compute an angle of bearing. Such
systems image an object in space based on reflection and
scattering. Second, computed tomography (CT) methods in
medical and geophysical imaging systems use signal mea-
surements along many different paths through a medium.
The measurements along the paths are used to compute an
estimate of the spatial field of the transmission parameters
throughout the medium [2]. RTI is also a transmission-based

imaging method which measures signal strengths on many
different paths through a medium, but similar to radar
systems, it does so at radio frequencies. It also faces two
significant challenges:

. The system discussed in this paper measures only
signal strength. No information about the phase or
the time-domain of a signal is available.

. The use of RF, as opposed to much higher frequency
EM waves (e.g., x-rays), introduces significant non-
line-of-sight (NLOS) propagation in the transmission
measurements. Signals in standard commercial
wireless bands do not travel in just the line-of-sight
(LOS) path, and instead propagate in many paths
from a transmitter to a receiver.

1.1 Applications

Despite the difficulties of using RF, there is a major
advantage: RF signals can travel through obstructions such
as walls, trees, and smoke, while optical or infrared imaging
systems cannot. RF imaging will also work in the dark,
where video cameras will fail. Even for applications where
video cameras could work, privacy concerns may prevent
their deployment. An RTI system provides current images
of the location of people and their movements, but cannot
be used to identify a person.

One main future application of RTI is to reduce injury for
correctional and law enforcement officers; many are injured
each year because they lack the ability to detect and track
offenders through building walls [3]. By showing the
locations of people within a building during hostage
situations, building fires, or other emergencies, RTI can
help law enforcement and emergency responders to know
where they should focus their attention.

Another application is in automatic monitoring and
control in “smart” homes and buildings. Some building
control systems detect motion in a room and use it to control
lighting, heating, air conditioning, and even noise cancella-
tion [4]. RTI systems can further determine how many
people are in a room and where they are located, providing
more precise control.
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RTI has application in security and monitoring systems
for indoor and outdoor areas. For example, most existing
security systems are trip-wire-based or camera-based. Trip-
wire systems detect when people cross a boundary, but do
not track them when they are within the area. Cameras are
ineffective in the dark and have limited view angles. An RTI
system could serve both as a trip-wire, alerting when
intruders enter into an area, and a tracking system to follow
their movements.

1.2 Related Work

RF-based imaging has been dominated in the commercial
realm by ultrawideband (UWB)-based through-the-wall
(TTW) imaging devices from companies like Time Domain
[5], Cambridge Consultants [6], and Camero Tech [7]. These
companies have developed products using a phased array
of radars that transmit UWB pulses and then measure
echoes to estimate a range and bearing. These devices are
accurate close to the device, but inherently suffer from
accuracy and noise issues at long range due to monostatic
radar scattering losses and large bandwidths. Some initial
attempts [8] allow two to four of these high-complexity
devices to collaborate to improve coverage.

In comparison, in this paper, we discuss using dozens to
hundreds of low-capability collaborating nodes, which
measure transmission rather than scattering and reflection.
Further, UWB uses an extremely wide RF bandwidth,
which may limit its application to emergency and military
applications. RTI is capable of using radios with relatively
small bandwidths.

To emphasize the small required bandwidth compared
to UWB, some relevant research is being called “ultra-
narrow-band” (UNB) radar [9], [10], [11]. These systems
propose using narrow-band transmitters and receivers
deployed around an area to image the environment within
that area. Measurements are phase-synchronous at the
multiple nodes around the area. Such techniques have been
applied to detect and locate objects buried under ground

using what is effectively a synthetic aperture array of
ground-penetrating radars [12]. Experiments have been
reported which measure a static environment while moving
one transmitter or one receiver [11], and measure a static
object on a rotating table in an anechoic chamber in order to
simulate an array of transmitters and receivers at many
different angles [11], [12], [9].

Multiple-input-multiple-output (MIMO) radar is another
emerging field that takes advantage of multiple transmitters
and receivers to locate objects within a spatial area [13]. In
this framework, signals are transmitted into the area of
interest, objects scatter the signal, and the reflections are
measured at each receiver. The scattering objects create a
channel matrix which is comparable to the channel matrix
in MIMO communication theory. RTI differs from MIMO
radar in the same way that it differs from traditional radar.
Instead of measuring reflections, RTI uses the shadowing
caused by objects as a basis for image reconstruction.

Recent research has also used measurements of signal
strength on 802.11 WiFi links to detect and locate a person’s
location. Experiments in [14] demonstrate the capability of a
detector based on signal strength measurements in deter-
mining the location of a person who is not carrying an
electronic device. In this case, the system is trained by a
person standing at predefined positions, and RSS measure-
ments are recorded at each location. When the system is in
use, RSS measurements are compared with the known
training data, and the best position is selected from a list.

Our approach is not based on pointwise detection.
Instead, we use tomographic methods to estimate an image
of the change in the attenuation as a function of space, and
use the image estimate for the purposes of indicating the
position of a moving object.

1.3 Overview

Section 2 presents a linear model relating RSS measure-
ments to the change in attenuation occurring in a network
area, and investigates statistics for noise in dynamic multi-
path environments. Section 3 describes an error bound on
image estimation for a given node geometry. This is useful
to determine which areas of a network can be accurately
imaged for a given set of node locations. Section 4 discusses
the ill-posedness of RTI, and derives a regularized solution
for obtaining an attenuation image. Section 5 describes the
setup of an actual RTI experiment, the resultant images, and
a discussion of the effect of parameters on the accuracy of
the images.

2 MODEL

2.1 Linear Formulation

When wireless nodes communicate, the radio signals pass
through the physical area of the network. Objects within the
area absorb, reflect, diffract, or scatter some of the
transmitted power. The goal of an RTI system is to
determine an image vector of dimension IRN that describes
the amount of radio power attenuation occurring due to
physical objects within N voxels of a network region. Since
voxel locations are known, RTI allows one to know where
attenuation in a network is occurring, and therefore, where
objects are located.
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Fig. 1. An illustration of an RTI network. Each node broadcasts to the
others, creating many projections that can be used to reconstruct an
image of objects inside the network area.



If K is the number of nodes in the RTI network, then the

total number of unique two-way links is M ¼ K2�K
2 . Any

pair of nodes is counted as a link, whether or not

communication actually occurs between them. The signal

strength yiðtÞ of a particular link i at time t is dependent on:

. Pi: Transmitted power in decibels.

. SiðtÞ: Shadowing loss in decibels due to objects that
attenuate the signal.

. FiðtÞ: Fading loss in decibels that occurs from
constructive and destructive interference of narrow-
band signals in multipath environments.

. Li: Static losses in decibels due to distance, antenna
patterns, device inconsistencies, etc.

. �iðtÞ: Measurement noise.

Mathematically, the received signal strength is described as

yiðtÞ ¼ Pi � Li � SiðtÞ � FiðtÞ � �iðtÞ: ð1Þ

The shadowing loss SiðtÞ can be approximated as a sum

of attenuation that occurs in each voxel. Since the contribu-

tion of each voxel to the attenuation of a link is different for

each link, a weighting is applied. Mathematically, this is

described for a single link as

SiðtÞ ¼
XN
j¼1

wijxjðtÞ; ð2Þ

where xjðtÞ is the attenuation occurring in voxel j at time t,

and wij is the weighting of pixel j for link i. If a link does not

“cross” a particular voxel, that voxel is removed by using a

weight of zero. For example, Fig. 2 is an illustration of how

a direct LOS link might be weighted in a nonscattering

environment.

Imaging only the changing attenuation greatly simplifies
the problem, since all static losses can be removed over
time. The change in RSS 4yi from time ta to tb is

4yi � yiðtbÞ � yiðtaÞ
¼ SiðtbÞ � SiðtaÞ þ FiðtbÞ � FiðtaÞ
þ �iðtbÞ � �iðtaÞ;

ð3Þ

which can be written as

4yi ¼
XN
j¼1

wij4xj þ ni; ð4Þ

where the noise is the grouping of fading and measure-
ment noise

ni ¼ FiðtbÞ � FiðtaÞ þ �iðtbÞ � �iðtaÞ ð5Þ

and

4xj ¼ xjðtbÞ � xjðtaÞ ð6Þ

is the difference in attenuation at pixel j from time ta to tb.
If all links in the network are considered simulta-

neously, the system of RSS equations can be described in
matrix form as

4y ¼W4xþ n; ð7Þ

where

4y ¼ ½4y1;4y2; . . . ;4yM �T ;
4x ¼ ½4x1;4x2; . . . ;4xN �T ;

n ¼ ½n1; n2; . . . ; nM �T ;
W½ �i;j ¼ wij:

ð8Þ

In summary, 4y is the vector of length M of all link
difference RSS measurements, n is a noise vector, and4x is
the attenuation image to be estimated. W is the weighting
matrix of dimension M �N , with each column representing
a single voxel, and each row describing the weighting of
each voxel for that particular link. Each variable is
measured in decibels (dB).

To simplify the notation used throughout the rest of this
paper, x and y are used in place of4x and4y, respectively.

2.2 Weight Model

If knowledge of an environment were available, one could
estimate the weights fwijgj for link i which reflected the
spatial extent of multiple paths between transmitter and
receiver. Perhaps, calibration measurements could aid in
estimation of the linear transformation W. However, with
no site-specific information, we require a statistical model
that describes the linear effect of the attenuation field on the
path loss for each link.

An ellipsoid with foci at each node location can be used
as a method for determining the weighting for each link in
the network [15]. If a particular voxel falls outside the
ellipsoid, the weighting for that voxel is set to zero. If a
particular voxel is within the LOS path determined by the
ellipsoid, its weight is set to be inversely proportional to the
square root of the link distance. Intuitively, longer links will
provide less information about the attenuation in voxels
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Fig. 2. An illustration of a single link in an RTI network that travels in a
direct LOS path. The signal is shadowed by objects as it crosses the
area of the network in a particular path. The darkened voxels represent
the image areas that have a nonzero weighting for this particular link.



that they cross. When link distances are very long, the
signals reflect and diffract around the obstructions. A link
with a distance of only a few feet will experience more
change in RSS when an obstruction occurs than a link with a
length of hundreds of feet.

Past studies have shown that the variance of link
shadowing does not change with distance. In accordance
with these studies, dividing by the square root of the link
distance ensures that the voxel weighting takes this into
account [16]. The weighting is described mathematically as

wij ¼
1ffiffiffi
d
p 1; if dijð1Þ þ dijð2Þ < dþ �;

0; otherwise;

�
ð9Þ

where d is the distance between the two nodes, dijð1Þ and
dijð2Þ are the distances from the center of voxel j to the two
node locations for link i, and � is a tunable parameter
describing the width of the ellipse.

The width parameter � is typically set very low in RTI,
such that it is essentially the same as using the LOS model,
as depicted in Fig. 2. The use of an ellipsoid is primarily
used to simplify the process of determining which voxels
fall along the LOS path.

2.3 Noise

To complete the model of (7), the statistics of the noise
vector n in (7) must be examined. Here, noise is caused by
time-varying measurement miscalibration of the receiver,
by the contribution of thermal noise to the measured
receiver signal strength, and time variations in the multi-
path channel not caused by changes to the attenuation
experienced by the line-of-sight path. If these contributions
are constant with time, then the calibration (when moving
attenuator existed in the field) would have been able to
establish it as the baseline. Time variation in RSS measure-
ment when no moving attenuator is blocking the line-of-
sight path is “noise” for an RTI system.

Past studies have considered the time variation of RSS in
fixed radio links. In particular, the work and measurements
of Bultitude [17] were used to design indoor fixed wireless
communications systems which periodically experienced
fading due to motion in the area of the link. Bultitude found
that RSS experienced intervals of significant fading which
were caused by human motion in and around the area.
Most of the time, the measured RSS vary slowly around a
nearly constant mean, what we call a nonfading interval.
When in a fading interval, RSS varies up to 10 dB higher
and 20 dB below the nonfading interval mean, with a
distribution that can be characterized as a Rician distribu-
tion [17]. Other measurements find temporal fading
statistics more closely match a log-normal distribution
[18]. The fading/nonfading interval process can be modeled
as a two-state Markov chain [19], which alternates between
a low-variance and high-variance distribution. Over all
time, measurements show a two-part mixture distribution
for the RSS on a fixed link.

In linear terms, we could model this data as a mixture
of two Rician distributions as in [17]; we could also model
it as a mixture of log-normal terms as suggested by results
in [18]. We note that the logarithm of a Rician random
variable is often similar in distribution to the log-normal,

perhaps a cause of disagreement between measurement
studies. We choose to use the log-normal mixture model
for simplicity; in the (decibel) scale, this is a two-part
Gaussian mixture model:

fniðuÞ ¼
X

k2f1;2g

pkffiffiffiffiffiffiffiffiffiffi
2��2

k

q exp � u2

2�2
k

� �
; ð10Þ

where pk is the probability of part k, p2 ¼ 1� p1, �2
k is the

variance of part k, and fniðuÞ is the probability density
function of the noise random variable ni. Without loss of
generality, we let �2 > �1 so that part 2 is the higher
variance component of the mixture.

Past radio link measurements have not distinguished
between motion which shadows the line-of-sight path (the
signal in RTI), and motion which does not shadow the line-
of-sight path (the noise) [17], [18], [19], [14]. To investigate
the statistics of RTI noise, we present experimental tests
which measure the time-varying statistics of links during
motion which does not obstruct a link.

To collect experimental samples of noise, we set up
28 nodes in an indoor office area empty of people. While
the nodes are transmitting and measuring RSS on each
pairwise link, people move around the outside of the
perimeter of the deployment area. In no case did the
motion of a person obstruct the LOS path of any link. From
each link, about 66,000 measurements were taken. For
example, consider the data on a typical link, the link ð3; 20Þ.
The temporal fading plot in Fig. 3a shows similar results to
[17], with alternating periods of heavy fading and low
fading. During low fading, data are confined within a range
of 2-3 dB around �84 dBm. During high fading, variations
at �10 dB from the mean occur. The histogram shown in
Fig. 3b correspondingly shows a mixture of one high-
variance and one low-variance distribution.

We also summarize the measured data on all 28
2

� �
links.

The mean was removed from each link’s data, and the data
(Fig. 4a) represent a quantile-quantile plot comparing the
removed-mean RSS measurements with a Gaussian dis-
tribution Nð0; �2

dÞ, where �2
d is the empirical variance of the

measurements. The PDF is approximated by a Gaussian
within �2:5 quantiles.

As described, the data seem to follow a mixture distribu-
tion. From measured data, we estimate the mixture para-
meters with an expectation-maximization (EM) algorithm
[20], and the results are shown in Table 1. Fig. 4b is a quantile-
quantile plot comparing the removed-mean RSS measure-
ments with a mixture model with the stated parameters.

3 ERROR BOUND

3.1 Derivation

This section presents a lower bound on estimation error for
the linear model (7) under the noise model discussed in
Section 2.3. The estimation error vector is defined as
� ¼ x̂� x, and the error correlation matrix is

R� ¼ E ��T
� 	

: ð11Þ

A well-known result in estimation theory known as the
MSE, Bayesian, or Van Trees bound states that the error
correlation matrix is bounded by
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R� � ðJD þ JP Þ�1 ¼ J�1; ð12Þ

where the inequality indicates that the matrix R� � J�1 is

positive semidefinite [21]. The matrix

JD ¼ E½ rx½lnP ðyjxÞ�f g rx½lnP ðyjxÞ�f gT � ð13Þ

is known as the Fisher information matrix and represents

the information obtained from the data measurements.

The matrix

JP ¼ E½ rx½lnP ðxÞ�f g rx½lnP ðxÞ�f gT � ð14Þ

represents the information obtained from a priori knowl-

edge about the random parameters.

We assume that the noise components n ¼ ½n1; . . . ; nM �T
are independent and identically distributed as two-compo-
nent zero-mean Gaussian mixture random variables as in
(10). The noise is independent because we assume nodes are
placed at distances larger than the coherence distance of the
indoor fading channel.

From (13), we can derive that JD is given by [22, (10)],

JD ¼ �WTW;

where � ¼
Z 1
�1

½f 0niðuÞ�
2

fniðuÞ
du;

ð15Þ

and f 0niðuÞ is the derivative of fniðuÞ with respect to u. When
p2 ¼ 0, that is, the distribution of ni is purely Gaussian, �
reverts to 1=�2

1, one over the variance of the distribution. For
two-component Gaussian mixtures, we compute � in (15)
from numerical integration. For example, for the Gaussian
mixture model parameters calculated from the measure-
ment experiment, as given in Table 1, we find � ¼ 0:548.

To calculate JP , the prior image distribution P ðxÞ must
be known or assumed. One possibility is to assume that x
is a zero-mean Gaussian random field with covariance
matrix Cx. Then,
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Fig. 3. Temporal fading on link ð3; 20Þ during nonobstructing motion, showing (a) time plot and (b) histogram.

Fig. 4. Quantile-quantile plots comparing measured RSS data with Gaussian and mixture distributions. (a) Gaussian model and (b) mixture model.

TABLE 1
Gaussian Mixture Noise Model Parameters

Estimated from Measurements



P ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�ÞN jCxj

q e�
1
2ðxTC�1

x xÞ: ð16Þ

Plugging (16) into (14) results in

JP ¼ C�1
x : ð17Þ

These derivations of JD and JP lead to the linear MSE

bound for RTI

R� �
�
�WTWþC�1

x

��1
: ð18Þ

An important result of the bound in (18) comes from the

following property [21]:

E½ðx� x̂Þ2i � �
�
�WTWþC�1

x

��1

ii
¼ J�1

ii ; ð19Þ

where E½ðx� x̂Þ2i � represents the mean-squared error for
pixel i. In other words, the diagonal elements of J�1 are the

lower bounds on the mean-squared error for the corre-

sponding pixels.

3.2 Spatial Covariance Model

Previous work has shown that an exponential function is

useful in approximating the spatial covariance of an attenua-
tion field [23], [16]. The exponential covariance is a close

approximation to the covariance that results from modeling

the spatial attenuation as a Poisson process, a common

assumption for random placement of objects in space.
Applying this model, the a priori covariance matrix Cx is

generated by

½Cx�kl ¼ �2
xe
�dkl=�c ; ð20Þ

where dkl is the distance from pixel k to pixel l, �c is a “space

constant” correlation parameter, and �2
x is the variance at

each pixel.
The exponential spatial covariance model is appealing

due to its simplicity and low number of parameters. Other

models based on different distributions of attenuating
objects could also be utilized.

3.3 Example Error Bounds

The bound in (19) provides a theoretical basis for

determining the accuracy of an image over the network

area. The node locations affect which pixels are accurately

estimated, and which are not. To visualize how the node
locations affect the accuracy of the image estimation, three

examples are provided in Fig. 5. Table 2 shows the

parameters of the normalized ellipse weighting model that
were used to generate these bounds.

As seen in the surfaces of Fig. 5, voxels that are crossed
by many links have a higher accuracy than voxels that are

rarely or never crossed. The voxels in the corners of the

square deployment, the sides of the front-back deployment,
and the low-density areas in the random deployment are

crossed only by a few links. In some voxels, no links cross at

all, and the bound surface is limited only by the covariance

of the prior statistics. The known covariance of the image
has the effect of smoothing the bound surface, since

knowledge of the attenuation of a voxel is statistically

related to its neighbors.

3.4 Effect of Node Density

The node density plays a key role in the accuracy of an RTI
result. Imaging can be expected to be more accurate in areas
where nodes are placed closely together than in areas where
nodes are spaced at large distances. When many links pass
through a particular area, more RSS information can be
used to reconstruct the attenuation occurring in that area.
This has the effect of averaging out noise and other
corruptions in the measurements. Furthermore, when links
are close together, the RSS information is more concentrated
on the voxels that are crossed. This is due to the weighting
function that is inversely proportional to the square root of
the link distance.

To illustrate the effect of node density on the MSE bound,
Fig. 6 shows the lower bound on the average MSE over all
voxels for the three deployment geometries shown in Fig. 5
as the density is increased. For each point on the curves, the
bound surface is calculated, then averaged over all voxels.
The parameters are equal to those used previously in Table 2.
Each geometry contains the same number of nodes for each
point on the curve, and is deployed around the same area. In
the square geometry, nodes are placed uniformly around a
square area. In the front-back geometry, the same number of
nodes are placed along two sides of the square, resulting in
the same number of nodes per square foot. In the random
geometry, the same number of nodes are randomly placed
throughout the square.

In all three cases shown in Fig. 6, the lower bound on
average MSE for each deployment decreases rapidly with
increasing node density. The square geometry outperforms
the others, due to the fact that the entire area of the square is
surrounded by nodes. There are very few voxels that are not
crossed by at least a few links, and many short links exist
that cross the corners of the square. The random geometry
performs the worst out of the three when density is low,
largely due to the fact that in a random deployment, many
voxels will not be crossed by any links. As density
increases, the random deployment outperforms the front-
back geometry because nodes are closer together, and the
density is such that very few areas contain voxels that are
not crossed by at least some links.

4 IMAGE RECONSTRUCTION

4.1 Ill-Posed Inverse Problem

Linear models for many physical problems, including RTI,
take the form of

y ¼Wxþ n; ð21Þ

where y 2 IRM is measured data, W 2 IRM�N is a transfer
matrix of the model parameters x 2 IRN , and n 2 IRM is a
measurement noise vector. When estimating an image from
measurement data, it is common to search for a solution
that is optimal in the least-squared-error sense

xLS ¼ arg min
x
kWx� yk2

2: ð22Þ

In other words, the least-squares solution minimizes the
noise energy required to fit the measured data to the model.
The least-square solution can be obtained by setting the
gradient of (22) equal to zero, resulting in
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xLS ¼ ðWTWÞ�1WTy; ð23Þ

which is only valid if W is full-rank. This is not the case in

an RTI system.

RTI is an ill-posed inverse problem, meaning that small

amounts of noise in measurement data are amplified to the

extent that results are meaningless. This is due to very

small singular values in the transfer matrix W that cause
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Fig. 5. MSE-bound surface plots for a square, front-back, and random node deployments. These plots were generated using the normalized elliptical
weight model with a Gaussian image prior. (a) Twenty-eight nodes located in a square perimeter, eight on each side. (b) The MSE bound for the
node locations shown in (a). (c) Sixteen nodes located in a front-back setup, eight on each side. (d) The MSE bound for the node locations shown in
(c). (e) Twenty-two nodes located randomly in a square area. (f) The MSE bound for the node locations shown in (e).



certain spectral components to grow out of control upon
inversion. To see this, W is replaced by its singular value
decomposition (SVD):

W ¼ U�VT ; ð24Þ

where U and V are unitary matrices, and � is a diagonal
matrix of singular values. Plugging (24) into (23), the least-
squares solution can be written as

xLS ¼ V��1UTy ¼
XN
i¼1

1

�i
uTi yvi; ð25Þ

where ui and vi are the ith columns of U and V, and �i is
the ith diagonal element of �. It is evident that when
singular values are zero or close to zero, the corresponding
singular basis vectors are unbounded upon inversion.

The heuristic explanation for the ill-posedness of the RTI
model lies in the fact that many pixels are estimated from
relatively few nodes. There are multiple possible attenua-
tion images that can lead to the same set of measurement
data. For example, assume a particular pixel is not crossed
by any link in the network. This would result in the same
measurement data for every possible attenuation value of
that pixel, so inversion of the problem would be impossible.

Regularization involves introducing additional informa-
tion into the mathematical cost model to handle the ill-
posedness. In some methods, a regularization term JðxÞ is
added to the minimization objective function of the original
problem as

freg ¼ fðxÞ þ 	JðxÞ; ð26Þ

where 	 is the weighting parameter. Small values of 	 lead
to solutions that fit the data, while large values favor the
solution that matches prior information.

Some regularization techniques follow from a Bayesian
approach, where a certain prior distribution is imposed on
the model parameters. Other forms of regularization
modify or eliminate small singular values of the transfer
matrix. An overview of regularization and image recon-
struction, in general, can be found in [24] and [25].

4.2 Tikhonov Regularization

In Tikhonov regularization [24], an energy term is added to the
least-squares formulation, resulting in the objective function

fðxÞ ¼ 1

2
kWx� yk2 þ 	kQxk2; ð27Þ

where Q is the Tikhonov matrix that enforces a solution with
certain desired properties.

In this paper, we use a difference matrix approximating
the derivative operator as the Tikhonov matrix Q. By
minimizing the energy found within the image derivative,
noise spikes are suppressed and a smooth image is
produced. This form of Tikhonov regularization is known
as H1 regularization.

Since the image is 2D, the regularization should include
the derivatives in both the vertical and horizontal direc-
tions. The matrix DX is the difference operator for the
horizontal direction, and DY is the difference operator for
the vertical direction. The regularized function can be
written in this case as

fðxÞ ¼ 1

2
kWx� yk2 þ 	ðkDXxk2 þ kDY xk2Þ: ð28Þ

Taking the derivative and setting equal to zero results in
the solution

x̂ ¼
�
WTWþ 	

�
DT
XDX þDT

YDY

���1
WTy: ð29Þ

One major strength of Tikhonov regularization lies in the
fact that the solution is simply a linear transformation � of
the measurement data

� ¼
�
WTWþ 	

�
DT
XDX þDT

Y DY

���1
WT ; ð30Þ

x̂ ¼ �y: ð31Þ

Since the transformation does not depend on instantaneous
measurements, it can be precalculated and then applied for
various measurements for fast image reconstruction. This is
very appealing for real-time RTI systems that require
frequent image updates [15], [26].

The total number of multiplications Nmult required to
transform the measurements into the image is the total
number of voxels N times the number of unique links M in
the network

Nmult ¼ NM ¼
NðK2 �KÞ

2
; ð32Þ

where K is the number of nodes in the network. We see that
complexity increases linearly as the number of voxels
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Fig. 6. The lower bound on average MSE versus node density for three
RTI network geometries.

TABLE 2
Reconstruction Parameters Used to Generate

MSE-Bound Surfaces Shown in Fig. 5



increases, and quadratically as the number of nodes in the
network increases.

5 EXPERIMENTAL RESULTS

5.1 Physical Description of Experiment

A wireless peer-to-peer network containing 28 nodes is
deployed for the purpose of testing the capability of RTI to
image-changed attenuation. Each node is placed three feet
apart along the perimeter of a 21� 21 foot square,
surrounding a total area of 441 square feet. The network is
deployed on a grassy area approximately 15 feet away from
the Merrill Engineering Building at the University of Utah.
Each radio is placed on a stand at three feet off the ground.

The area surrounded by the nodes contains two trees
with a circumference of approximately three feet. The
network is intentionally placed around the trees so that
static objects exist in the tested RTI system. RTI should only
image attenuation that has changed from the time of
calibration within the deployment area. Markers are
measured and placed in 35 locations within the network
so that the humans’ locations are known and can be utilized
in the subsequent error analysis. A map and photograph of
the experiment are shown in Fig. 7.

The network comprises TelosB wireless nodes made by
Crossbow. Each node operates in the 2.4 GHz frequency
band, and uses the IEEE 802.15.4 standard for communica-
tion. A base station node listens to all network traffic, then
feeds the data to a laptop computer via a USB port for the
processing of the images. Since the base station node is
within range of all nodes, the latency of measurement
retrieval to the laptop is low, on the order of a few
milliseconds. If a multihop RTI network were to be
deployed, this latency would certainly increase.

To avoid network transmission collisions, a simple token
passing protocol is used. Each node is assigned an ID
number and programmed with a known order of transmis-
sion. When a node transmits, each node that receives the
transmission examines the sender identification number.
The receiving nodes check to see if it is their turn to

transmit, and if not, they wait for the next node to transmit.
If the next node does not transmit, or the packet is
corrupted, a time-out causes each receiver to move to the
next node in the schedule so that the cycle is not halted.

At the arrival of each packet to the laptop, the RTI
program running on the laptop updates a link RSS
measurement vector. At each update, the base station hears
from only one node in the network, so only RSS values on
links involving that particular node are updated. Each link’s
RSS measurement is an average of the two directional links
from i to j and j to i.

In this experiment, the system is calibrated by taking RSS
measurements while the network is vacant from moving
objects. The RSS vector is averaged over a 30 second period,
which results in approximately 100 RSS samples from each
link. The calibration RSS vector provides a baseline against
which all other RSS measurements are differenced, as
discussed in Section 2. Other methods of calibration could
be used in situations where it is impossible to keep the
network vacant from moving objects. For example, a single
past measurement or a sliding window average of RSS
measurement history could be used as the baseline.

5.2 Effect of Human Obstruction

Since RTI is based on the assumption that objects shadow
individual links in a wireless network, it is helpful to
examine the effect of obstructions on a single link. In Fig. 8,
a human stands at position (9,9) and RSS measurements for
each link are collected. These measurements are compared
with the calibration measurements that were taken when
the network was vacant.

The top plot in Fig. 8 shows that a significant decrease in
RSS, anywhere from 5 to 10 dB, is experienced by link (0,18)
to (18,0) as it travels through the obstruction. The middle
plot shows that even though the link (9,0) to (9,21) passes
through the tree, it still experiences significant loss when the
human is present on the LOS path. The bottom plot in the
figure shows an example of a link that does not pass through
the obstruction, resulting in very little difference in RSS.

In environments where links travel over long distances,
or when many objects block the direct LOS path, we expect
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Fig. 7. (a) The network geometry and links that correspond to Fig. 8. (b) Photograph of the deployed network with an experimenter standing at
location (3,9).



the effect of a human obstruction to be lessened. In those
cases, certain links may experience losses, while others may
not. Future research will investigate the effect of human
obstruction on a link’s RSS when a link passes through
walls or other major static obstructions. This will be
essential in making the technology practical for the future
applications of RTI as previously discussed.

5.3 Cylindrical Human Model

To assess the accuracy of RTI images, one must first know
or assume the “true” attenuation field that is being
estimated. Since imaging the location of humans is the
primary goal of RTI, a model for the size, shape, and
attenuation of the human body at the frequencies of interest
would be required. This information is difficult to model,
since it is dependent on body types, the plane of
intersection, and other variables.

For simplicity, a human is modeled as a uniformly
attenuating cylinder with radius RH . In this case, the “true”
image xc for a human positioned at location cH can be
described as

xcj ¼
1; if kxj � cHk < RH;
0; otherwise;

�
ð33Þ

where xcj is the center location of voxel j.
By scaling the image such that the maximum equals one,

resulting in the normalized image x̂N , we can define the
mean-squared error of the normalized image to be

� ¼ kxc � x̂Nk2

N
; ð34Þ

where N is the number of voxels in the image.

5.4 Example Images

Using the model and reconstruction algorithms described in
Sections 2 and 4, we present some typical image results for

humans standing inside the experimental RTI network. A
human stands at coordinate (9,9) and RSS data is measured
for a few seconds. The data is averaged for 10 samples per
link, and this measurement is differenced with the calibra-
tion data taken while the network is vacant. Fig. 9 displays
both the “true” attenuation based on the cylindrical model,
and the RTI reconstruction using H1 regularization with the
parameters listed in Table 3.

Using the cylindrical human model with a radius of
RH ¼ 1:3, the squared error for the single human image
standing at (9,9) was measured to be � ¼ 0:021. The squared
error for the two-person image was measured to be
� ¼ 0:036. These error values are in general agreement with
the bounds derived in Section 3.

There are many areas in the images of Fig. 9 where
estimated attenuation is above zero, even where no
obstruction exists. This is due to the fact that a human not
only attenuates a wireless signal, it reflects and scatters it.
The simple LOS model used in this paper does not take into
account the changes in RSS values due to multipath caused
by the obstructions being imaged. For example, a link may
be bouncing off the human and destructively interfering
with itself on a path that does not cross through the
obstruction, thus leading to error in the estimated attenua-
tion. Future research will seek to refine the weighting model
used in RTI such that this modeling error is lessened.

5.5 Effect of Parameters on Image Accuracy

The weighting and regularization parameters play an
important role in generating accurate RTI images. If the
problem is regularized too strongly, the resultant images
may be too smooth to provide a good indication of
obstruction boundaries. If the regularization parameter is
set too low, noise may corrupt the results, making it
difficult to know if a bright spot is an obstruction or noise.

Another parameter affecting the accuracy of an image is
the width of the weighting ellipse. If the ellipse is too wide,
the detail of where attenuation is occurring within the
network may be obscured. If the ellipse is too narrow,
voxels that do, in fact, attenuate a link’s signal may not be
captured by the model. This may result in a loss of
information that degrades the final image quality.

In this paper, we empirically identify the parameters that
provide the most accurate images using the cylindrical
human model. For each parameter, images are formed from
data measured while a human is standing at one of the
known positions, as indicated in Fig. 7a. Such an image is
formed for each of the possible human positions shown in
Fig. 7a. The squared error is calculated for each image, and
averaged over the entire set. This is performed for a varying
regularization parameter, while the weighting ellipse
parameter is held constant at � ¼ 0:1. Then, it is repeated
for varying ellipse parameters while holding the regular-
ization constant at 	 ¼ 4:5. The resultant error curves are
shown in Fig. 10.

The curves in Fig. 10 show that the choice of regulariza-
tion and weighting parameters is important in obtaining
accurate images. Future research possibly will explore the
automatic calculation and adjustment of these parameters.
It should be noted that the error curves and optimal values
presented are dependent upon the pixel size used in
generating the images. The general shape of the curves,
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Fig. 8. A comparison of the effect of human obstruction on three links. In
the unobstructed case, the network is vacant from human experimen-
ters. In the obstructed case, a human stands at coordinate (9,9).



however, is similar for different pixel sizes. In this study,
pixel size is held constant at 0.5 feet for all experiments.

6 CONCLUSION

Radio tomographic imaging is a new and exciting method
for imaging the attenuation of physical objects with wireless
networks operating at RF wavelengths. This paper discusses
a basic model and image reconstruction technique that has
low computational complexity. Experimental results show
that RTI is capable of imaging the RF attenuation caused by
humans in dense wireless networks with inexpensive and
standard hardware.

Future research will be important to make RTI realistic
in security, rescue, military, and other commercial
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TABLE 3
Image Reconstruction Parameters

Fig. 10. Error versus parameter curves. In the first plot, the weighting
ellipse width parameter is held constant at � ¼ 0:1 while the regulariza-
tion parameter 	 is varied. In the second, 	 ¼ 4:5 and the width of the
weighting ellipse is varied.

Fig. 9. Images of attenuation in a wireless network where each human is modeled as a uniformly attenuating cylinder of radius RH ¼ 1:3 feet. (a) and
(b), a human stands at coordinate (9,9) and the total squared error is � ¼ 0:021. (c) and (d), two humans stand at coordinates (3,15) and (18,15) and
the total squared error is � ¼ 0:036. (a) Cylindrical model image. (b) RTI result. (c) Cylindrical model image. (d) RTI result.



applications. First, new models and experiments must be
developed for through-wall imaging. In this case, the
shadowing and fading caused by many objects in the
environment may cause the LOS weighting model to be
inaccurate. New and possibly adaptive weighting models
will need to be investigated and tested.

Wireless protocols, customized hardware, and signal
design are also important for improving RTI. Protocols that
are capable of delivering low-latency RSS information for
large networks will be essential when deploying the
technology over large areas. Antennas that direct the RF
energy through an area may reduce the effects of multipath
and increase the effect of human presence on signal
strength. Custom signals, perhaps taking advantage of
frequency diversity may improve the quality of RTI results.

Radio tomographic imaging may provide a low-cost
and flexible alternative to existing technologies like
ultrawideband radar. This would enable many applica-
tions in the areas of security, search and rescue, police/
military, and others.
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