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See-Through Walls: Motion Tracking Using
Variance-Based Radio Tomography Networks

Joey Wilson and Neal Patwari, Member, IEEE

Abstract—This paper presents a new method for imaging, localizing, and tracking motion behind walls in real time. The method takes
advantage of the motion-induced variance of received signal strength measurements made in a wireless peer-to-peer network. Using a
multipath channel model, we show that the signal strength on a wireless link is largely dependent on the power contained in multipath
components that travel through space containing moving objects. A statistical model relating variance to spatial locations of movement
is presented and used as a framework for the estimation of a motion image. From the motion image, the Kalman filter is applied to
recursively track the coordinates of a moving target. Experimental results for a 34-node through-wall imaging and tracking system over

a 780 square foot area are presented.

Index Terms—Wireless networks, sensors, tracking, through-wall surveillance.

1 INTRODUCTION

THIS paper explores a method for tracking the location of a
person or object behind walls, without the need for an
electronic device to be attached to the target. The technology
is an extension of “radio tomographic imaging” [1], which is
so-called because of its analogy to medical tomographic
imaging methods. We call this extension variance-based radio
tomographic imaging (VRTI), since it uses the signal strength
variance caused by moving objects within a wireless
network. The general field of locating people or objects
when they don’t carry a device is also called “device-free
passive localization” [2] in contrast to technologies like
active radio frequency identification (RFID) which only
locate objects that carry a radio transmitter.

For context-aware systems, a user’s context includes the
locations of people in the nearby environment [3]. Typically,
location aware systems require the participation of people
who must wear tags to be located and identified [4]. We
envision applications in which requiring participation is not
possible. For example, emergency responders, miltary forces,
or police arrive at a scene where entry into a building is
potentially dangerous. They deploy radio sensors around
(and potentially on top of) the building area, either by
throwing or launching them, or dropping them while moving
around the building. The nodes immediately form a network
and self-localize, perhaps using information about the size
and shape of the building from a database (e.g., Google maps)
and some known-location coordinates (e.g., using GPS).
Then, nodes begin to transmit, making signal strength
measurements on links which cross the building or area of
interest. The “received signal strength” (RSS) measurements
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of each link are transmitted back to a base station and used to
estimate the positions of moving people and objects within
the building. Based on these inputs, the context aware system
can aid decisions about how to focus responders’ efforts.

Radio tomography provides life-saving benefits for
emergency responders, police, and military personnel
arriving at potentially dangerous situations. Many correc-
tional and law enforcement officers are injured each year
because they lack the ability to detect and track offenders
through building walls [5]. By showing the locations of
people within a building during hostage situations, build-
ing fires, or other emergencies, radio tomography can help
law enforcement and emergency responders to know where
they should focus their attention.

This paper explores the use of radio tomography in
highly obstructed areas for the purpose of tracking moving
objects through walls. First, a review of previous work and
related research is summarized in Section 2. In Section 3, we
address a fundamentally different method for the use of
RSS measurements which we call VRTI. When a moving
object affects the amplitude or phase of one or more
multipath components over time, the phasor sum of all
multipath at the receiver experiences changes, and higher
RSS variance is observed. The amount of RSS variance
relates to the physical location of motion, and an image
representing motion is estimated using measurements from
many links in the wireless network.

We briefly review the Kalman filter and apply it in
Section 4 to track the location of a moving object or person.
In Section 5, experimental results demonstrate the use of RSS
variance to locate a moving object on the inside of a building.
This section also quantifies the accuracy of localization by
comparing known movement paths with those estimated by
the VRTI tracking system. We show that the VRTI system
can track the location of an experimenter behind walls with
approximately two feet average error for this experiment.

Finally, Section 6 discusses some possibilities for future
research. Advances in wireless protocols, antenna design,
and physical layer modeling will bring improvements to
VRTI through-wall tracking.
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2 RELATED RESEARCH

Previous work shows that changes in link path losses can be
used to accurately estimate an image of the attenuation
field, that is, a spatial plot of attenuation per unit area [1].
Experimental tests show that in an unobstructed area
surrounded by a network of nodes, the estimated image
displayed the positions of people in the area.

Indoor radio channel characterization research demon-
strates that objects moving near wireless communication
links cause variance in RSS measurements [6]. This knowl-
edge has been applied to detect and characterize motion of
network nodes and moving objects in the network environ-
ment [7]. Polarization techniques have also been used to
detect motion [8]. These studies focus mostly on detection
and velocity characterization of movement, but do not
attempt to localize the movement as the work presented in
this paper does.

Youssef, Mah, and Agrawala [2] demonstrated that
variance of RSS on a number of WiFi links in an indoor
WLAN can be used to 1) detect if motion is occurring
within a wireless network and 2) localize the moving object
based on a manually trained lookup. In many situations,
however, manual training is not possible since it can take a
significant amount of time and access to the area being
tracked is restricted.

Real-time location systems (RTLS) are based on a
technology that uses electronic tags for locating objects.
For logistics purposes in large facilities, commercial real-
time location systems are deployed by installing infra-
structure in the building and attaching active RFID tags to
each object to be tracked. RTLS systems are not useful in
most emergency operations, however, since they require
setup inside of a building prior to system use. Further,
RTLS systems cannot locate people or objects which do not
have an RFID tag. In emergencies, an operation cannot rely
on an adversary wearing a tag to be located. Thus, tag-
based localization methods are insufficient for most
emergency and security applications.

An alternate tag-free localization technology is ultra-
wideband (UWB) through-wall imaging (TWI) (also called
through-the-wall surveillance). In radar-based TWI, a
wideband phased array steers a beam across space and
measures the delay of the reflection response, estimating a
bearing and distance to each target. Through-wall radar
imaging has garnered significant interest in recent years [9],
[10], [11], [12], [13], for both static imaging and motion
detection. Commercial products include Cambridge Con-
sultants” Prism 200 [14] and Camero Tech’s Xaver 800 [15],
and are prohibitively expensive for most applications, on
the order of US $100,000 per unit. These products are
accurate close to the device, but inherently suffer from
accuracy and noise issues at long range due to monostatic
radar losses. In free space at distance d, radar systems
measure power proportional to 1/d*, in comparison to 1/d?
for radio transmission systems.

Radio tomography takes a fundamentally different
approach from traditional TWI systems by using large
networks of sensors. While initial attempts [16] have
allowed 2-4 high-complexity devices to collaborate in
TWI, our research investigates the use of tens or hundreds

of collaborating nodes to simultaneously image a larger
area than possible with a single through-wall radar. RTI’s
imaging capability increases as O(N?) for N sensors; thus,
large networks, rather than highly capable nodes, lead to
improved imaging and tracking capabilities.

Multistatic radar research has also developed technolo-
gies called multiple-input multiple-output (MIMO) radar.
These technologies also use distributed devices, perhaps
without phase synchronization, in order to measure radar
scattering [17]. The use of many distributed antennas is a
type of spatial diversity for a radar system which can then
avoid nulls in the radar cross-section (RCS) of a scattering
object as a function of scattering angle [18].

MIMO radar is a complementary technology to radio
tomography. While MIMO radar measures scattering of the
transmitted signal by the object of interest, radio tomogra-
phy methods are based on measurements of transmission
through a medium. Integration of the two modalities is
beyond the scope of this paper, but is perhaps a promising
direction for future research.

3 VARIANCE-BASED RADIO TOMOGRAPHIC
IMAGING

In this section, we introduce and justify a model which
relates motion in spatial voxels to the variance of signal
strength measured on the links of a wireless network. In
particular, we justify the assumption of a linear model
when motion is sparse, and describe the limits on the
validity of such a model.

3.1 Measurement Model

The goal of a VRTI system is to use a vector s of RSS
variance measurements on M links in a wireless network to
determine an image vector x that describes the presence of
motion occurring within N voxels of a physical space. We
first describe the image vector, then specifically define RSS,
and discuss RSS variance.

The image vector x is a representation of motion
occurring within each spatial voxel of the network area,
with jth element given by

2(j) = {});

What we call the RSS is actually a measure of the
received power in decibels. In a multipath environment, a
wireless signal travels along many paths from transmitter to
receiver. Each path has associated with it an amplitude and
phase, and the received signal is a summation of each
incoming multipath component. The complex baseband
voltage for a continuous-wave (CW) signal measured at a
receiver is expressed as [19]

if motion occurs in voxel j,
otherwise.

(1)

L
V:V+Z‘/;;6Xp(jq>7;), (2)
=1

where vis the additive noise, V; is the magnitude, and ®; is the
phase of the ith multipath component (wave) impinging on
the receiver antenna. The received power is thus |V]]%, and so
the RSS, denoted Ry, is given as Ry = 10log; ||‘7||2
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The RSS variance vector s contains for each link a
measure of the variance of Ryp. In Section 3.2, we show how
this variance has a linear relationship with the total power
in affected multipath. Then in Section 3.3, we argue that this
total affected power has a linear relationship with x, for the
case of sparse motion. In sum, we justify the following
linear model. We approximate Var[R;p] as a linear
combination of the movement occurring in each voxel,
weighted by the amount of variance that motion in that
particular voxel causes on the link’s RSS

Var[Ryp| = ngm(]) +n, 3)

where n is measurement noise and modeling error, and w;
is the variance caused by movement in voxel j. For all links,
we have

s=Wx+n, (4)

where W is an M x N matrix representing the variance
weighting for each pixel and link, and n is a M x 1 noise
vector.

3.2 Variance and Total Affected Power

In this section, we argue that the RSS variance, Var[R;z],
and the total affected power have a linear relationship.
First, we define affected power. We classify each multipath
as either affected or static: A multipath ¢ is described as
affected if its amplitude and/or phase change randomly as
a result of the current position of people and/or objects in
the channel, or static if it is not. We denote A(x) to be the
indices of the affected multipath given the motion
described in x. Then we define the total affected power,
TAP(X) , as

Tap(x) = Y Vil ()

i€ A(x)

We show that T4p has a linear relationship with Var[R,p]
for a wide range of Var[Ryp].

Rearranging the multipath in (2) into affected and static
contributions

V=v+ Y Viexp(j®)+ Y Viexp(j®;).  (6)
i2A(x) i€ A(x)

The sum of static multipaths do not change, and thus, we
can rewrite (6) as

V=Vexp(j®) + Y Viexp(j®;) + v, (7)
i€ A(x)

where V and @ are the magnitude and phase angle of
Zig{ A(x) Vi exp(j®;), respectively. We consider the V; and ®;
for affected multipath to be random.

It is well known in the wireless communications
literature [20], [21] that |V|, as it is given in (7), is well
represented as a Ricean random variable. The voltage Ve/®
is analogous to the specular signal in a Ricean channel, while
the remaining terms are the diffuse signal components. The
K factor of the Ricean distribution for |V| is defined as
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Fig. 1. The variance of RSS versus normalized TAP, Tp(x)/V?, for
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where 02 = o2 + Typ(x) is the power in the affected power
and noise, and Tup(x) is defined in (5). We refer to
T4p(x)/V? as the normalized total affected power (normal-
ized TAP).

Moreover, we have a known relationship between the
variance of RSS and K. Since Ry = 10log,, |V|]* and |V| is
Ricean, R;p has the log-Ricean pdf. The variance of R4p is
calculated numerically as a function of K. Note that for
constant K, the scale of o> and V? do not change Var[Ryz].
Combining the numerically calculated relationship between
Var[Ryp] and K, and (8), we plot in Fig. 1 the functional
dependence of Var[Ryp] on normalized TAP.

As seen in Fig. 1, the variance of RSS is linearly related to
normalized TAP for normalized TAP less than 0.25. That is,
when the total power affected by a Person’s motion is less
than 25 percent of the total static power in the link, the
variance is linear with normalized TAP. For through-wall
imaging, the power affected by the motion inside of the
building is typically low, because multipath which pene-
trate two external walls to enter and exit the building are
low in power compared to multipath which diffract around
the building’s exterior.

For high normalized TAP, the variance strictly increases,
so motion can be detected using VRTI, but the nonlinearities
make the linear model, and thus the proposed image
estimator, less accurate. In this case, we note that moving
objects are also likely to cause a reduction in the mean
received power, because they typically cause some shadow-
ing of the affected multipath. As a result, shadowing-based
RTI may be a better approach than variance-based RTI
when most of the multipath power is affected, that is, when
all links are LOS, but not in through-wall deployments.

In short, RSS variance has a linear relationship with total
affected power, over the most important range of normal-
ized TAP for purposes of variance-based RTI.

3.3 Total Affected Power and Motion

In this section, we argue that for sparse motion, the total
affected power is approximately linear in x. Assume that
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multipath component ¢ travels through a subset of space S;.
This subset S; might be some narrow volume around the
line tracing its path from the transmitter to receiver, for
example. We assume that a path i is affected due to object
motion in voxel j centered at z; if z; € S;, then path i is
affected, i.e.,

Ax)={i:z(j) >0 N z; €S;, for some j}.

Note that z(j) is nonnegative as given in (1). Now consider
two motion images, x; and x». The affected multipath in the
sum motion image, x = x; + Xy, is given by

A(X) = {Z L X (j) +$2(]) >0nN z; € 87‘,,
= A(x1) U A(x2).

for some j}
9)

Then, the total affected power, as defined in (5), due to the
sum of the motion vectors is

Tar(x)= >, Vill= ) WP+ > Wl
1€ A(x1)UA(x2) icA(x1) icA(x2) (10)
- Y ik
1€ A(x1)NA(x2)

This intersection A(x;) NA(xs) is the set of multipaths
affected by both motion images x; and x.

Now, let x; and x» be sparse motion images with motion
only in voxels j; and js, respectively. Then,

.A(Xl) n A(Xg) = {’L 125, € S N zj, € 85},

that is, a multipath which crosses through both voxels j;
and j,. We argue that for close voxels, i.e., ||z;, — zj,|| small,
there may be a multipath which crosses through both
voxels. However, for voxels j; and j, far apart, there will be
relatively few multipath components which cross through
both voxels, compared to the multipath which crosses
through only one. In this latter case, (10) becomes

Tap(xi+x2) = > [ViF+ > [Vi*

i€ A(x1) i€ A(xz)

(11)

In general, when the nonzero motion voxels in x; and x; are
relatively distant, the approximation in (11) is valid. This
model, in combination with the linearity between T4p(x)
and the RSS variance, justifies approximating s as a linear
transformation of x as given in (4).

3.4 Elliptical Weight Model

If knowledge of an environment were available, one could
estimate the variance weights w; for each link. Perhaps
calibration measurements or ray tracing techniques could
aid in estimation of the linear transformation W. For time-
critical emergency operations, one cannot expect to obtain
floor plans and interior arrangements of the building. With
no site-specific information, we require a statistical model
that describes the contribution of motion in each pixel to a
link’s variance.

One such statistical model has been described for link
shadowing is the normalized elliptical model [1], [22].
Consider an ellipsoid with foci at the transmitter and
receiver locations. The excess path length of multipath
contained within this ellipsoid must be less than or equal to
a constant. Excess path length is defined as the path length

of the multipath minus the path length of the line-of-sight
component. As described in previous sections, the variance
of a link’s RSS is highly related to the power contained in
the mulipath components affected by motion. With this
reasoning, we make the assumption that motion occurring
on voxels within an ellipsoid will contribute significantly to
a link’s RSS variance, while motion in voxels outside will
not. This is a binary quantization, but provides a simple,
single-parameter spatial model. We note that measurements
in [23], [24] also show elliptical-shaped areas in which
motion causes high variance.

The variance weight for each voxel decreases as the
distance between two nodes increases. As the link gets
longer, the amount of power in the changing multipath
components is decreased along with the link’s RSS variance.
Many models for distance weighting could be applied for
images with varying qualities, but our empirical tests have
indicated that dividing the variance weighting by the root
of the link distance generates images that contain a balance
of contrast and noise-reduction. The weighting is described
mathematically as

Wl L [y i dy(1) +dy(2) < di+ A
L7 \/d | 0, otherwise,

where d; is the distance between the two nodes, d;(1) and
d;j(2) are the distances from the center of voxel j to the two
respective node locations on link [, 1 is a constant scaling
factor used to normalize the image, and A is a tunable
parameter describing the excess path length included in
the ellipsoid.

The normalized ellipse weight model is certainly an
approximation, but experimental data has shown its
effectiveness for VRTI, as will be shown in Section 5.
Future work will use theoretical arguments and extensive
measurements to refine the statistical models of RSS
variance as a function of location.

(12)

3.5 Process Sampling, Buffering, and Variance
Estimation

In this paper, we assume that the link signal strength

process is sampled at a constant time period T, resulting in

the discrete-time signal for link I:

Rilk] = Rap, (KT5), (13)

where Ryp, (kT;) is the RSS measurement in dB at time kT
for link /. We also assume that the process remains wide-
sense stationary for a short period of time. These assump-
tions allow the recent variance of the process to be
estimated from a history buffer of the previous Ny samples
for each link. The short-term unbiased sample variance 3
for each link [ is computed by

Np—1
5 = NBl_ - 2; (Rilk — p] — Ri[K])%, (14)
where
Np—1
RN = > Rlb-p (15)
p=0
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is the mean of the signal strength buffer. The sample
variance vector for all links in the wireless network is

A 1T

S= [§17§2,...,8M} . (16)

3.6 Regularization and Image Estimation
The linear model (4) provides a mathematical framework
relating movement in space to a link’s RSS variance. The
model is an ill-posed inverse problem that is highly
sensitive to measurement and modeling noise. No unique
solution to the least-squares formulation exists, and
regularization must be applied to obtain a solution. In this
paper, Tikhonov regularization is used, but other common
forms of regularization as they apply to RTI are discussed
and evaluated in [25].
In Tikhonov least-squares regularization, the optimiza-
tion for image estimation is formulated as
1 112 2
xpy = argumin [Wx — 82+ allQxJ’,  (17)
where Q is the Tikhonov matrix that enforces a solution with
certain desired properties, and « is a tunable regularization
parameter. Taking the derivative of (17) and setting to zero
results in the solution:

xrir = (W'W +aQ'Q)'W's. (18)

Tikhonov regularization provides a simple framework
for incorporating desired characteristics into the VRTI
reconstruction. If smooth images are desired, a difference
matrix approximating the derivative of the image can be
used as the Tikhonov matrix. If the image is 2D, the
regularization should include the difference operations in
both the vertical and horizontal directions. Let D, be the
difference operator for the horizontal direction, and D, be
the difference operator for the vertical direction. Then, the
Tikhonov regularized least-squares solution is

XTik = 1Is

19
11 = [W'W +a(D'D, + D'D,)|'W". (19)
In summary, the variance of each link is estimated from a
recent history of RSS samples and stored in vector §. The
regularized image solution is simply a linear transformation
IT of this vector 8.

4 KALMAN FILTER TRACKING

A radio tomography image in itself does not provide the
location coordinates of moving objects. The Kalman filter
provides a framework to track such coordinate estimates.
Kalman filters are used extensively to estimate the hidden
state of a system when measurements of that state are linear
and have been corrupted by Gaussian noise. It takes into
account the current and previous measurements to generate
a more accurate estimate of the system'’s state than a single
instantaneous measurement can. A Kalman filter also has
the desirable characteristic that the estimate can be updated
with each new measurement, without the need to perform
batch measurement collection and processing.

In a location tracking system, such as the one described
in this paper, the state to be estimated is made up of the
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physical coordinates of the object being tracked. The
Kalman filter exploits the fact that an object moves through
space at a limited speed, smoothing the effects of noise and
preventing the tracking from “jumping.” In this sense, the
filter can be viewed as a form of regularization.

In this work, the objects being tracked are assumed to
move as a Brownian process, and measurement noise is
assumed to be Gaussian. Although these assumptions are
not entirely accurate, the Kalman filter is still effective for
tracking the location of movement. The following variables
are used in the tracking filter:

e 2: the variance of the object’s motion process,

indicating how fast the object is capable of moving.
Larger values enable the filter to track faster moving
objects, but also make the estimate noisier.

e v’: the variance of the measurement noise. Larger
values will cause the filter to “trust” the statistical
predictions over the instantaneous measurements.

With these assumptions and variables, the Kalman filter
algorithm for tracking movements in an RTI system can be
described by the following steps:

1. Initialize ¢ = (0,0) and P = I, where I is the 2 x 2
identity matrix.
2. SetP=P+2]I,.
3. Set G =P(P+ L) "
4. Take measurement z equal to the coordinates of the
maximum of the VRTI image.
5. Setc=c+ G(z—c).
6. SetP = (I, — G)P.
7. Jump back to step 2 and repeat.
For information on the derivation of this algorithm, there are
many textbooks on the topic of Kalman filtering [26], [27].

5 EXPERIMENT
5.1 Description and Layout

This section presents the results of a through-wall tracking
experiment utilizing variance-based RTI. A 34-node peer-
to-peer network was deployed in an area around a four-
wall portion of a typical home. Three of the walls are
external, and one is located on the interior of the home.
The interior wall is made of brick and was an external wall
prior to remodeling of the home. Objects like furniture,
appliances, and window screens were not removed from
the home to ensure that the tracking was functional in a
natural environment.

The nodes were placed in a rectangular perimeter, as
depicted in Fig. 2. It was neither possible, nor necessary,
to place the nodes in a uniform spacing due to building
and property obstacles. Eight of the nodes were placed on
the inside of the building, but on the other side of the
brick interior wall. Each radio was placed on a stand to
keep them on the same 2D plane at approximately human
torso level.

The nodes utilize the IEEE 802.15.4 protocol, and transmit
in the 2.4 GHz frequency band. To avoid network transmis-
sion collisions, a simple token passing protocol is used. Each
node is assigned an ID number and programmed with a
known order of transmission. When a node transmits, each
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Fig. 2. The layout of a 34-node variance-based RTI through-wall tracking
experiment.

node that receives the transmission examines the sender
identification number. The receiving nodes check to see if it
is their turn to transmit, and if not, they wait for the next
node to transmit. If the next node does not transmit, or the
packet is corrupted, a timeout causes each receiver to move
to the next node in the schedule so that the cycle is not
halted. A base-station node that receives all broadcasts is
used to gather signal strength information and save it to a
laptop computer for real-time processing.

In all the experimental results in this section, the same
set of image reconstruction parameters is used, as shown
in Table 1.

Shadowing-based RTI [1] uses the difference in average
signal strength to image the attenuation caused by objects in
a wireless network. In through-wall imaging, however, the
effect of dense walls prevent many of the links from
experiencing significant path loss due to a single human
obstructing the link. In many cases, multipath fading can
cause the signal strength to increase when a human
obstructs a link.

Variance can be used as an indicator of motion,
regardless of the average path loss that occurs due to dense
walls and stationary objects within the network. An
example of how through-wall links are affected by obstruc-
tion is provided in Fig. 3. When a stationary object obstructs
the link in a through-wall environment, the change in mean
RSS is unpredictable. For example, in Fig. 3, one link
appears unaffected by the obstruction, while another link’s
RSS average is raised by approximately 4 dB. When an

TABLE 1
VRTI Image Reconstruction Parameters
Parameter | Value Description

Ap 1.5 Pixel width (ft)

A 1 Width parameter of weighting ellipse (ft)

a 100 Regularization parameter

1) 60 Variance weighting scale (dB)?
Ng 50 Length of RSS buffer

— Link (27,0) to (15.45,26.4)

. —60 ™ = = = Link (6,0) to (20,26.4) M
g
i‘é/ —70 r Vacant network area
@ 80t
~ o= = - b mmm——— — == ————= -
_90 L L I I | !
100 200 300 400 500 600 700
. —60
g
% =70+ Stationary human obstructing link J
M—r—— s —
B _BOp == =rmmmmm = Armmmm——-o -
o
~90— ‘ ‘ ‘ ‘ ‘
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g
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Fig. 3. RSS measurements for two links in a through-wall wireless
network. Comparison of these signals illustrates the advantage of using
variance over mean for through-wall imaging of human motion.

object moves, the variance of the obstructed link’s RSS
provides a more reliable metric, as seen in the figure.

5.2 Image Results

To further demonstrate the advantage of using VRTI over
shadowing-based RTI for through-wall motion imaging,
two images are presented in Fig. 4. In both images, a
human moves randomly, taking small steps around and
through the space directly above the coordinate. This is
necessary since VRTI images movement, not static changes
in attenuation.

Inspection of Fig. 4 shows that VRTI is capable of
imaging areas of motion behind walls, while conventional
RTI fails to image the change in attenuation. These results
are typical of other location coordinates tested during the
experiment.

Tracking multiple moving targets through dense walls is
a challenging and open topic for future research. When
multiple people move within a surveillance area, the
accuracy of a VRTI image is dependent on the separation
of the targets. Additionally, when multiple walls or walls
constructed with dense materials surround the surveillance
area, the amount of power that radiates into the area is
reduced. Systems attempting to track movement in these
difficult circumstances may require low radio frequencies
and directional antennas to achieve usable results.

5.3 Path Tracking

In this section, we test our tracking system with experimental
data. An experimenter moves at a typical walking pace on a
predefined path at a constant speed. A metronome and
uniformly placed markings on the floor help the experi-
menter to take constant-sized steps at a regular time interval.
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Fig. 4. Comparison of shadowing and variance-based RTI results for through-wall imaging. The experimenter is moving at coordinate (14.6,21.3) in
both of these images. (a) Shadowing-based RTI. (b) Variance-based RTI.

730 ‘ ‘ - - =Known position
£ —— Estimated position
£
=]
£
8
8
) . . . .
0 1000 2000 3000 4000 5000
=30 : w : ‘
Q
£
&
<
i=]
£
8
5]
Q
> 0 . . . .
0 1000 2000 3000 4000 5000
Time (samples)
@
| R R Known path ||
— Estimated path

y coordinate (feet)

0 5 10 15 20 25 30
x coordinate (feet)

()

—_ = = = Known position
230 : ‘ A Ny
R —— Estimated position
"
©
k]
2
o
o
o] 0 ) ) ) )
* 0 1000 2000 3000 4000 5000
=30
£
2
©
£
°
o
o
O
= 0 ‘ ‘ ‘ ‘
0 1000 2000 3000 4000 5000
Time (samples)
(b)
i i S KRR Known path I
30¢ —— Estimated path 1
(] 00 000O0O
2570 2 — o]
% o
& 20/ °
o o
]
s 5 ° ]
c 15+ q
3 ° .
o
o] 10,0 ol
> (]
5 °
(]
ore 0 0 0 0 0o 0o o o o]
0 5 10 15 20 25 30

x coordinate (feet)

(d)

Fig. 5. The location of human movement moving along a known rectangular path is estimated using varying v,,, and constant v> = 5. In (a) and (c),
the mobility is set empirically to track objects moving at a few feet per second. In (b) and (d), the mobility is set too low, causing the tracking filter to
lag excessively. (a) v2, = 0.01 and v? = 5. Average error € = 2.07 feet, (b) v, = 0.0001 and v? = 5. Average error ¢ = 5.44 feet, (c) v3, = 0.01 and
v2 = 5. Average error ¢ = 2.07 feet, (d) v2, = 0.0001 and v2 = 5. Average error ¢ = 5.44 feet.

m

The experimenter’s actual location is interpolated using the
start and stop time, and the known marker positions.

The location of the experimenter is estimated using the
Kalman filter described in Section 4 with imaging para-
meters presented in Table 1. Fig. 5 plots both the known and
estimated location coordinates over time when using two
different mobility parameters.

The effect of the tracking parameters is visually evident
in Fig. 5. When the mobility parameter is set high, the
filter is able to track the human with less lag, but the
variance of the estimate also increases. When the mobility
parameter is set low, the tracking coordinate severely lags
behind the moving object, but estimates a smoother path
of motion.
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Fig. 6. The ten second average locations of human movement over
20 known positions is estimated using VRTI and Kalman filter tracking
with parameters v% =0.01 and v2 =5. The average error for this
experiment ¢ = 1.46 feet.

To quantify the accuracy of the location coordinate
estimation, the average error is defined as

1 L
=75Vl - k) + Gl - m ) (20)
k=1

where L is the total number of samples, z,[k] and z,[k] are
the estimated x and y coordinates at sample time &, and
pz[k] and py[k] are the actual known coordinates. The
average tracking error for v?, = 0.01 and v? =5 is 2.07 feet.

It should be noted that a Kalman filter can be designed to
estimate the target’s velocity, as well as position. This
would enable the filter to follow a nonaccelerating moving
object without a lag. However, when a target changes
direction or speed, some transient error would occur while
the filter converges to the new speed and direction.

5.4 Spot Movement

When estimating the location of a moving object, some
amount of tracking lag must occur due to the time it takes to
collect measurements from the network and the processing
delays. The lag is also dependent on the mobility parameter
v, used for tracking.

To study the tracking system without the effects of time
delay, the estimated and known location of a moving
human are compared at 20 different coordinates. At each
location, the experimenter moves randomly, taking small
steps around and through the space directly above the
known coordinate. The VRTI tracking system estimates the
location of movement and we average the estimates over a
duration of ten seconds for each coordinate. The average
estimated coordinate is plotted with the known location to
generate the results presented in Fig. 6.

To quantify the accuracy in this test, the error for each of
the 20 known coordinates is averaged

(=52 (21)
20447

where ¢, is the average error defined by (20) for each
position p. The error for this test with v2, = 0.01 and v2 =5
is 1.46 feet.

5.5 Effect of Imaging Parameters on Tracking
Accuracy

The RTI parameters shown in Table 1 must be chosen

appropriately, as they affect the accuracy of tracking. The

elliptical width parameter ), regularization parameter «,

and buffer size Np are especially important, as the other

parameters for pixel size and scaling are mostly arbitrary.

The elliptical width parameter A is important to mini-
mize modeling error and maximize tracking performance. If
the weighting ellipse is set too large, motion from objects
within the ellipsoid will not contribute significantly to the
variance of the corresponding link, and contrast in the VRTI
result will be lost. If the ellipse is set too narrow, motion
outside the ellipsoid will contribute significantly to the
pixels that are inside, resulting in images with many false
bright spots. Fig. 7a shows the average tracking error € in
feet for three buffer sizes over a range of elliptical width
parameter values. In this experiment, the most accurate
tracking was accomplished with A set to approximately 0.1.

The amount of regularization applied to the imaging
can significantly affect the accuracy of tracking. If
regularization is set too low, sharp noise will corrupt the
images and cause the tracking mechanism to jump to
erroneous locations. If the images are overregularized, the
images become too flat and smooth, causing the tracking
mechanism to drift in a large circle around the target
position. Fig. 7b shows the average tracking error ¢ in feet
for three buffer sizes over a range of regularization
parameter values. In this experiment, the most accurate
tracking was accomplished with o = 100.

The variance buffer size plays an important role in
tracking accuracy. When Np is very low, a very small
amount of data is used for the variance calculation and the
VRTI images are highly susceptible to noise and modeling
error. When the buffer sizes are too large, the VRTI images
are blurred by the motion of the targets, and tracking lag
increases. The most accurate tracking is achieved when
there is a balance of the two extremes. Fig. 7c shows the
average tracking error e in feet for three regularization
values over a range variance buffer values. In this
experiment, the most accurate tracking was accomplished
with buffer size N = 50.

6 FUTURE RESEARCH

Many areas of future research are possible to improve VRTI
through-wall tracking technology. First, improvements to
the multipath models will allow a system to track multiple
individuals more accurately, and with less nodes. Many of
the assumptions presented in this paper are accurate only
for cases where motion images are sparse. More accurate
statistical models of the multipath channel for device-free
localization will be needed to track multiple people that
move in close proximity.

Wireless protocol research is another important part of
the improvement of VRTI. Large and scalable networks
capable of tracking entire homes and buildings need to be
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explored. This will require advanced wireless networking
protocols that can measure the RSS of each link quickly
when the number of nodes is high. Perhaps frequency
hopping and grouping of nodes will allow a VRTI system to
measure each link’s RSS while maintaining a low delay in
delivering the measurements to a base station.

Advancements on the physical layer modeling will allow
VRTI systems to track movement more accurately, and with
less nodes. In this paper, an ellipsoid model is used to relate
RSS variance on a link to the locations of movements. This is
certainly an approximation, and future work will require
the refinement of the variance weighting model, thus
leading to more accurate motion images and coordinate
tracking. Other regularization and image estimation tech-
niques may also improve through-wall tracking.

Radio devices could be designed specifically for VRTI
tracking applications. The affect of overall node transmis-
sion power on imaging performance is an important area to
be investigated. Directional and dual-polarized antenna
designs would most likely improve images in a through-
wall VRTI system. Radio devices capable of sticking to an
exterior wall and directively transmitting power into the
structure would be extremely useful in emergency deploy-
ment and multistory VRTL

Finally, localization of nodes plays a significant role in
tracking of motion with VRTI networks. In an emergency,
rescue or enforcement teams will not have time to survey a
location. With automatic node self-localization techniques,
the nodes could be thrown or randomly placed around an
area without measurement, thus saving valuable time.

7 CONCLUSION

Locating interior movement from the outside of a building
is extremely valuable because it enables police, military
forces, and rescue teams to make life-saving decisions.
Variance-based radio tomography is a powerful new
method for through-wall imaging that can be used to track
the coordinates of moving objects. The cost of VRTI
hardware is very low in comparison to existing through-
wall imaging systems, and a single network is capable of
tracking large areas. These features may enable many new
applications that are otherwise impractical.

This paper discusses how RSS variance relates to the
power contained in multipath components affected by
moving objects. The variance of RSS is related to the
location of movement relative to node locations, and this
paper provides a formulation to estimate a motion image
based on variance measurements. The Kalman filter is
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applied as a mechanism for tracking movement coordinates
from image data. A 34-node VRTI experiment is shown to
be capable of tracking a moving object through typical
home exterior walls with an approximately two foot
average error. An object moving in place can be located
with approximately 1.5 ft average error.

The experiments presented in this paper demonstrate the
theoretical and practical capabilities of VRTI for tracking
motion behind walls. Many avenues for future research are
presented which may improve image accuracy and enable
larger and faster VRTI networks. These future research
areas include wireless protocols, antenna design, radio
channel modeling, localization, and image reconstruction.
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