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Abstract—Indoor localization systems that involve Wireless
Sensor Networks (WSNs) identify the target position by mea-
suring the Received Signal Strength (RSS), the Time of Arrival
(ToA), the Time Difference of Arrival (TDoA) or the Angle
of Arrival (AoA). Of these, the most promising for low-cost
applications are those based on RSS measures, which exploit
approximate path loss models, or more reliably the relationship
between the multi-path interference (shadowing) and the target
position. These methods can work with WSNs based on Wi-Fi,
Bluetooth and ZigBee wireless technologies.

In this paper we concentrate ondevice-free RSS-based indoor
localization methods. These methods, which have generatedmuch
research interest in the last few years, are now starting to hit the
market.

Specifically, the purpose of this paper is to assess the perfor-
mance improvements of a Variance-based Radio Tomographic
Imaging technique, when scanning various radio channels with
respect to using only one, the latter being the “minimum
introduced interference” option.

In our setup, the data used for target localization are captured
by wireless sensors deployed in the localization area, which are in
line of sight among them. The localization error metrics include
the mean square error and percentiles of the error distribution.

I. I NTRODUCTION

Reliable, accurate and real-time indoor positioning services
and protocols are required in the future generation of com-
munication networks [1]. A positioning system enables a
mobile device available for positioning-based services such as
tracking, navigation or monitoring. Moreover, information of
the users position could significantly improve the performance
of wireless networks for network planning [2], load balance
[3], etc.

Localization and tracking of objects can be achieved by
means of a large number of different technologies, however
only few of them are suitable for Ambient Assisted Living
(AAL) applications, since they should be non-invasive on the
users, they must be suited to the deployment in the user houses
at a reasonable cost, and they should be accepted by the users
themselves [4].

Considering these constraints, a promising technology is
based on Wireless Sensor Networks (WSN), due to their low
cost and easy deployment. Within WSNs, it is possible to
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estimate the location of a user by exploiting the Received
Signal Strength (RSS), the Time of Arrival (ToA), the Time
Difference of Arrival (TDoA) or the Angle of Arrival (AoA).

Of these, the most promising for low-cost applications are
those based on RSS measures, which is a measure of the power
of a received radio signal that can be obtained from almost all
wireless communications devices we know of.

The RSS measured among fixed devices (whose position
is known) and mobile devices (carried by the user) is lever-
aged by algorithms that estimate the coordinates of the user
positions. In a smart environment, where the ambience is in-
strumented with sensors and wireless communication devices,
the marginal cost of implementing an RSS-based localization
system can be very low, as it can leverage the existing installed
hardware.

In this paper, we consider one device-free RSS-based indoor
localization method, that is, Variance-based Radio Tomogra-
phy Imaging (VRTI) [5]. Here, ”device-free” means that a
person does not need to carry or wear any wireless sensor
or device. These systems are based on a large set of small
wireless devices spread over the area of interest in order to
create a dense mesh, and exploit the RSS observed by each
device on the radio links connecting it to other devices. A
user moving within the area modifies the RSS pattern in a
way that depends on his location; radio imaging therefore
exploits the RSS measurements observed along the inter-
device links to obtain a reconstruction of the object trajectory.
Two working modes can be identified for these devices: either
they dedicate some power and channel occupancy to sending
ad hoc localization probing packets, or else they exploit data
packets sent by other applications and measure their RSS
for localization purposes. Using a single radio channel for
scanning is friendlier to other devices in the environment,both
in the case of dedicated localization devices and in the case
of piggy-backing on different applications. In the former case,
having a dedicated channel avoids interference and channel
occupancy for other applications in the same environment. In
the latter, since no ad hoc packets are generated, there is no
additional channel occupancy and energy drain.

On the other hand, results for a similar method, that is
Shadowing-based RTI, showed that sending probing packets
on multiple channels gives an advantage in terms of local-



ization accuracy with respect to using a single channel [6].
This means that at least in some device-free systems there
is a trade-off between minimum disturbance and maximum
accuracy when choosing between single- and multiple-channel
localization. Here we use the same criterion applied to VRTI
[7], in order to measure if any performance improvements are
observed with this method.

The remainder of the paper is articulated as follows: Section
2 discusses the experimental setup; Section 3 describes the
detail of the tomographic localization algorithm, while Section
4 presents some preliminary results; concluding remarks are
given in Section 5.

II. SCENARIO

In this section we introduce the software, the hardware
devices and the scenario used during our analysis. The RSS
values are collected through a WSN composed byN nodes in
the following named asanchors.

A. Software Tool

A modified version of token-passing protocol, named as
Spin [8], is used to schedule node transmission, in order to
prevent packet collisions and maintain high data collection
rate. When an anchor is transmitting, all other anchors receive
the packet and perform the RSS measurements. The payload
of the transmitting packet is the set of RSS values between
the transmitting node and the other sensors sampled during
the previous cycle. This packet has been received also by the
base station along with the node’s unique ID. The base station
collects the payload and forwards this data to a laptop for
storage and later processing. The RSS values are acquired for
a given channelc for all the nodesn = 1 . . .N in the network,
i.e., when the last node of the network has transmitted by using
the channelc, the first sensor node starts with a new cycle by
using a new channel. The data collected from each sensor pair
(ai, aj) in the following calledlink, are formatted as a string
with the following fields: the identifier of the receiver (ID),
the RSS values measured between the receiver and the others
transmitting sensors, the timestamp at which the string was
acquired, and finally the channel used for the acquisition. It is
worth noting that in the literature taken into account for this
paper the authors drop the assumption on the reciprocity of
the links.

B. Hardware

The WSN used in this work is based on the IRIS Motes
wireless sensor nodes, produced by Crossbow [9]. This
hardware is based on the high performance RF transceiver,
AT86RF230, operating at 2.4GHz compliant with the IEEE
802.15.4 and ZigBee standards. The hardware was pro-
grammed using the TinyOS operating system, specifically
designed for low-power wireless devices. The AT86RF230
can return the instantaneous RSS and the average RSS val-
ues through two registers namedRSS Val and ED register,
respectively. The first one is a 5-bits bit register, the second
one is a 8-bit register.

C. Experimental Setup

The RSS values were collected in the presence of a human
target (from now on named simply target) in a set of given
positions. The localization area is about 6.8 x 5.6 meters where
20 sensors have been placed for the data acquisition. The
measures are performed on a set of1, 2 and4 channels.

Each link is sampled with a frequency between5 and8 Hz,
depending on the parameters used in the algorithm described
in section III. The target movement was a sort of serpentine
as shown in Figure 1 at a constant speed of about 0.2 m/s.
The RSS data collected during each experiment consist of
more than 5600 cycles, corresponding to more than 112000
RSS measures among anchors. Furthermore, no one other
than the user to be localized is present in the area during
the experiment.

The localization area of each scenario was marked to create
a lattice, as shown in the figure 1, where the black squares
are the WSN nodes. Through this lattice the position of the
target has been evaluated, and comparing estimated position
with the target’s position in the lattice the localization error
distribution is evaluated. From the error distribution theroot
mean square error (RMSE), the75th and 90th percentile of
the localization error are calculated.
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Fig. 1. Environment setup: N=20 anchors positioned near theroom walls,
at about 70 cm from the floor, and the path followed by the target.

III. A LGORITHM

The algorithm is an implementation of implemented a
Variance-based Radio Tomographic Imaging (RTI) [10]. In
the RTI algorithm the data used for the imaging are the RSS
levels collected for each pair of wireless devices of the wireless
sensor network deployed within the localization area.

The VRTI algorithm uses the path loss of the radio links
between many pairs of nodes in a wireless network, in
order to image the attenuation changes that occur within the
localization area. In general, when an object moves into the
localization area, the signal strength of the link involvedin
the target path will, on average, experience higher shadowing
losses. VRTI is an inverse problem based on the path loss on
the intersecting links, by which the image of the attenuation



within the localization area is reconstructed to infer the loca-
tion of the target. In the following we shortly describe how it
works.

Consider the set of anchorsA = a1, a2, . . . , an with known
positions on the localization area; all the anchor pairs identify
theL links of the wireless sensor network. In the localization
area, a lattice withP pixels is introduced, and for each pixel
its coordinates within the lattice are evaluated.

The first step for the evaluation of the attenuation image
over the localization area consists in evaluating the matrix of
the variance weighting, which links the RSS’s variance of the
link to the variance over the pixels, as shown in equation (1).

s = Wx+ v (1)

In equation (1)x is the image vector that holds the values
per pixel of the RSS’s variance,s is the vector that holds the
measured RSS’s variance per link,v is the noise vector, and
W is the matrix representing the variance weighting for each
pixel and link.

The entries of the matrixW are calculated by assuming
that the signal strength between nodes pair decays with the
inverse square of the distance between two nodes, and that the
movement of the target influences the set of pixels included
in the ellipse shown in figure 2, whose foci are the nodesai
andaj , while λ, defined asdlp(1) + dlp(2)− dl, controls the
ellipse eccentricity. Equation (2) shows how to evaluate the
entries of the matrixW.

Wlp =
1√
dl

{

Ψ dlp(1) + dlp(2) ≤ dl + λ

0 otherwise
(2)

Fig. 2. Attenuation Area

In equation (2)dl is the distance of the linkl between
node pair(ai, aj), dlp(1) anddlp(2) are the distances from the
center of pixelp to the two respective nodes location on linkl,
andΨ is a normalization parameter. For the scenarios analyzed
in this paper some measurements have been performed to tune
the parametersΨ andλ, and the optimized values are1 [dB]2

and1 m, respectively.

The output of the implemented VRTI algorithm is the vector
imagex of equation (1). The vectorx can not be calculated
through the equation (1) because it is an ill-posed inverse
problem, hence, no unique solution to the least-squares for-
mulation exists. The solution can be determined only through
the resolution of a regularization problem; here, Tikhonov’s
least squares regularization problem was used [11], which can
be formulated as in equation (3).

x̂ = argmin
x

1

2
||Wx− s||2 + α||Qx||2 (3)

The equation of the regularization problem involves the
matrix Q and the parameterα that are the Tikhonov matrix
and the Tikhonov parameter, respectively. In many cases, this
matrix Q is chosen as the identity matrixQ = I, giving
preference to solutions with smaller norms. In other cases,
low-pass operators (e.g., a difference operator or a weighted
Fourier operator) may be used to enforce smoothness if the
underlying vector is believed to be mostly continuous. This
regularization improves the conditioning of the problem, thus
enabling a numerical solution. The parameterα affects the
convergence of the algorithm and can be evaluated by the
numerical method described in [11].

In our case, the measured datas are subject to errors and
these errors can be assumed to be independent with zero mean
and standard deviationσv. Moreover, the a priori uncertainties
of the solutionx can be taken into account through the
covariance matrixC. Then the solution for the regularization
problem can be formulated as shown in equation (III), in terms
of the a priori informationC and the noise varianceσ2

v
[11]

[5].

x̂ =
(

WTW + σ2

v
C−1

)

−1

WT s (4)

Cprpq
= σ2e−dprpq

/δ

Precisely, the correlation between the attenuation over the
pixel set can be calculated using an exponential spatial decay
law. In this case, the variabledprpq

is the distance from center
of pixel pr to the center of pixelpq, σ2 is the variance of pixel
attenuation, andδ is used to determine the desired amount of
smoothness in the image. Hence equation (III) achieves the
image reconstruction. For the scenarios analyzed in this paper
the values of the parametersσ2 and δ have been set to0.3
and3, respectively.

Then, the second step of the algorithm is to evaluate the
solution of the regularization problem as described above.

The vector x̂ is used to estimate the target coordinates,
selecting its maximum, and calculating the coordinate of the
pixel with the maximum degree of attenuation. So, the final
step of the algorithm is to show the image reconstruction
x̂ through a color map, and the esteemed coordinate of the
target position compared with the true position, depicted by a
circle and a cross respectively, as shown in figure 3. The color
degrees of the figure indicate the different levels of attenuation
due to the target movement over the lattice pixels.



Fig. 3. VRTI Example

IV. RESULTS

We used several criteria to try and compare the performance
of single- versus multi-channel. They are detailed in the
following four sub-sections.

A. Simple and bare comparison

Here we simply compare the performance of measurements
done in single-channel mode on four different channels, with
measurements done in bi-channel and quadri-channel mode,
for a total of six cases.

The packet generation rate is around 55 pkt/s, which means
one complete round of the 19 transmitting nodes in about
345 ms, or about three complete rounds per second. The
window over which the RSS variance is measured is set at
3 s and 5 s, which means that the same measured data are
used twice, and two sets of results are obtained. Note that the
speed of the target is around 0.2 m/s meaning that, space-wise,
the variance window is respectively 0.6 m and 1 m long for
the two cases. In general, we expect to get a localization error
not significantly smaller than the window size.

As shown in figures 4, we have found little difference
between single-channel, bi-channel and quadri-channel mea-
surements. The performance metrics we used are the RMSE
(root mean square error) and two percentiles (75 and 90) of
the localization error distribution. As an example, figures5
show some typical error distribution for our experiments.

Note that the comparison in figure 4 is not rigorous, because
it is based on six different measurements. This means that
interference from radio sources may be different in the six
measurements. Additionally, the actor’s movement may be
slightly different in the six measurements and people moving
in nearby rooms may also have differently influenced the
measurements. These issues are tackled in the next subsection.
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Fig. 4. Main comparison: single-channel performance for channels 14, 17,
21, 24 compared with bi-channel (17, 25) and quadri-channel(12, 16, 20,
24). 3 s and 5 s variance windows.

Measured:
ABABABABABABABABABABABABABABABABABABABAB

Filtered:
Bi 1: A__BA__BA__BA__BA__BA__BA__BA__BA__BA__B
Bi 2: BA__BA__BA__BA__BA__BA__BA__BA__BA__BA__
Si17: A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_A_
Si25: _B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B_B

Fig. 6. The original bi-channel measurement on channels 17(A) and 25(B)
and three different ways of filtering it.

B. Filtering comparison

In order to remove the effect of possible differences between
different measurements when comparing single- to multi-
channel performance, we make a comparison that uses a single
bi-channel measurement (the same as the one depicted in
figure 4) and filter it in three different ways like shown in
figure 6.

The purpose is to extract from a single measurement set a
bi-channel trace and two single-channel traces, all of themwith
the same number of samples per second, so that a comparison
among them is significant.

We used the same procedure starting from a quadri-channel
measurements that we filtered in five different ways (see figure
7).

We should consider this filtering procedure as the most
rigorous of the tests we made. Its main drawback is that the
number of samples per second is reduced by two times in the
bi-channel case and by four times in the quadri-channel case,
which stretches the RTI algorithm ability to its limits. Figures
8 and 9 show the resulting comparison.

Again, we do not perceive any significant difference when
comparing single- and multi-channel performance.
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(a) Channel 14
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(b) Channel 21
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(c) Bi-channel
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(d) Quadri-channel

Fig. 5. Error distribution for some different experiments.

Measured:
ABCDABCDABCDABCDABCDABCDABCDABCDABCDABCD

Filtered:
Qu 1: A____B____C____DA____B____C____DA____B__
Qu 2: B____C____DA____B____C____DA____B__A____
Qu 3: C____DA____B____C____DA____B__A____B____
Qu 4: DA____B____C____DA____B__A____B____C____
Si12: A___A___A___A___A___A___A___A___A___A___
Si16: _B___B___B___B___B___B___B___B___B___B__
Si20: __C___C___C___C___C___C___C___C___C___C_
Si24: ___D___D___D___D___D___D___D___D___D___D

Fig. 7. The original quadri-channel measurement on channels 12(A), 16(B),
20(C) and 24(D) and five different ways of filtering it.
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Fig. 8. Rigorous comparison: filtering bi-channel and single-channel from a
bi-channel measurement. 3 s and 5 s variance windows.
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Fig. 9. Rigorous comparison: filtering quadri-channel and single-channel
from a quadri-channel measurement. 10 s variance window.
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Fig. 10. Discarding channel information: treating multi-channel data as if
they were single-channel do not significantly worsen the performance.

C. Removing multi-channel information

As one more criterion to check for the importance of
measurements over different channels, we took a quadri-
channel measurement and removed the channel information.
In practice, we made the measurements on four different
channels and run the algorithm on the complete data, including
channel information, as well as on the data where the channel
information has been removed (so all the samples appear to
have been logged on the same channel).

Before making the comparison, we cared about removing
the mean value individually from each channel’s data, in order
to avoid spurious variance introduced by mixing different
channel’s data. The results are depicted in figure 10 and, again,
do not indicate any significantly worse performance when the
channel information is discarded.

D. Treating single-channel as multi-channel

As a last test, we “invented” multi-channel information and
added it to single-channel measurements. This test is a sortof
security check that we did to verify that our implementation
of the VRTI algorithm did not introduce any artifacts that
advantage the single- or the multi-channel measurements.
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(b) Channel 18
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(c) Channel 22
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(d) Channel 26

Fig. 11. Adding “invented” channel information: single-channel measurements are enriched with nonexistent multi-channel info.

In figure 11 we observe a small improvement when “invent-
ing” channel information. We do not know the exact source
of this improvement, but in practice we judge it as being too
small to be significant.

V. CONCLUSION

In this paper, some preliminary measurement results rele-
vant to an RTI-based localization technique have been pre-
sented and discussed. Main goal was at showing whether
using multiple radio channels for collecting RSSI samples
is advantageous with respect to using only one frequency
channel, as far as variance-based RTI localization is concerned.

In general, using multiple channels may be more complex,
especially if the packets are not explicitly generated for the
purpose of measuring, but just for communication purposes.
In the latter case, the channel is constrained by communication
protocols because of interference criteria or more generally by
spectrum sharing criteria. On the other hand, it may be useful
to exploit multiple channels, if they can bring a benefit.

We used several criteria to compare the performance of
single- versus multi-channel approach. Our preliminary con-
clusion is that we have no clear answer, that more experimen-
tation in different conditions is needed, and that apparently
there is not much difference in performance between single-
and multi-channel when using variance-based RTI localization.
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