Comparing two passive location methods in a real
environment

Abstract— propagation delay of the radio signals and the triangudéion
Index Terms—Indoor localization, RSS, Passive localization, Methods. Finally, the methods based on the AoA are based on
Comparison the relations between the phase of the transmitted sigrthl an

the phase of the received signal at the antenna or at theafrray
antennas. Note that the kind of phenomenon measured depends
on the technology adopted for the wireless sensors, i.s0s&n
X XXX endowed with 802.11, as well as Ultra Wide Band (UWB)
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I. INTRODUCTION

transceivers can measure the RSS and the ToA [2], [3], sensor
|. PROBLEM DEFINITION AND SCENARIOS endowed with multi-array antennas can also measure the
Due to the availability of low energy-cost wireless sensor8oA [1], sensors endowed with 802.15.4 transceiver can only
we are witnesses of the wide and rapid diffusion of Wirelesseasure the RSS [4]. Another way to classify the localiratio
Sensor Network (WSN). The WSNs have been used in mamethods is based on the target characteristics. In factatbet
promising applications such as health surveillance,dé#ld can transmit a radio signal or it can be a passive target.dn th
surveillance, and environmental monitoring. Localizatis first two cases, we have active localization, in the last ease
one of the most important subjects because the location-infoave passive or device-free localization.
mation is typically useful for coverage, deployment, rogti  The localization methods can also be classified through the
location service, target tracking, and rescue. localization scenario. In this case, the localization rodth
The hardware infrastructures that can be used for than be classified in indoor and outdoor methods. Note that
localization methods involve technologies based on a@mustome methods adopted for the indoor localization can be used
signals, infrared signals and radio signals. All theseaisdr for the outdoor localization but not vice versa; for example
tructures involve a set of devices or nodes known as Sen¥8ENs can be used for indoor and outdoor localization but
Network (SN), which are deployed around the localizatiothe outdoor methods based on the Global Positioning, which
area, as figure 1 shows, where the nodes are black rouridgolves satellites, can not be adopted for indoor appboast
The localization methods can be used to localize the positifgain, there may be no direct path among all the nodes of
of the sensor nodes or the position of the target, usuallplpeothe WSN, because, specially in the indoor applications some
or automotive devices. In the first case the positions of sodebstacles can arise along the LoS between pairs of sengors. |
must be estimated, while in the second case the positiontbis case we have the Non-LoS (NLoS) scenarios [5]. For the
nodes are known. The estimation of the node position withiLoS scenarios, the noise due to the reflection and diffsacti
the network is namedode self-localization. If the sensors are increases so different models for the multi-path, as well as
endowed with radio interfaces, the sensor network is nameifferent localization techniques, must be adopted. Utitese
Wireless Sensor Network (WSN). assumptions the localization algorithms can be classified f
In general, in the localization application based on the,SNs0S and NLoS applications.
the primary objective is to determine the location of thgéar  In this paper we argue about the localization and tracking
measuring certain phenomena. The number of targets witlilgorithms for passive indoor applications, based on WSNs.
the localization area can be one or more than one. In tiibe data used during the target’s localization are captured
first case, we refers taingle-target localization, and in the by wireless sensors deployed in the surrounding of the lo-
second case we refer towultiple-target localization. If the calization area, and in LoS. In particular, our attention is
sensor network is a WSN, the phenomena taken into accotoward the algorithms based on the measure of the Received
are the propagation of the radio signals and the multi-paffignal Strength (RSS), given that most of the existing wssl
due to the mesh of the Line of Sight (LoS) rays, amongevices can provide this information. The RSS is a unit-less
all the nodes of the WNS. Hence, another classification gfiantity used to measure the power of the received radio
the localization methods can be based on the phenomesamal. Note that the RSS value is affected by many errors
measured, such as the Received Signal Strength (RSS), dhe to the battery charge and the antenna orientation, for
Time of Arrival (ToA), the Time Difference of Arrival (TDoA) example, so during the processing phase these aspects have
and the Angle of Arrival (AoA) [1]. Briefly, the methods basedo be taken into account. The data are collected through the
on the measure of the RSS localize the target exploiting thé nodes named anchors. In general, the data collected from
relation between the power signal strength and the distaneach sensor paii;, a;) named link, are formatted as a string
or exploiting the relation between the multi-path integfeze with the following fields: the id of the receiver, the value of
(shadowing) and the target position. The methods basedeon tie sink, the RSS value measured between the receiver and
ToA and the TDoA take into account the relations between tla¢hers sensors, finally, the instant time at which the stwag



acquired. Note that, in the literature taken into accountts . . . .
paper all the authors assume that the links are not recilsroca
(ai,a;) # (aj;, a;). Usually, the data are sequentially acquired,
following the anchors numeration based on their ID, then
the sampling rate is directly related to the number of used
sensors. All the measured RSS values are sent to a laptop o
a workstation by a base station named sink, which again is
a wireless sensor node. Moreover, the sink broadcasts a pin¢c . .
in broadcast so that the anchors can reply sequentially avith
message containing the node identification and the estimate A
transmitted power level.

The WSN used in this work for studying the performanceg. 1. Grid of the Localization Area
of some algorithms, is based on thelIS Motes wireless
sensor nodes, produced by Crossbow [6]. This hardware is , .
based on the high performance RF transcei@86RF230, features linked to the target posmon_through the measofes
operating at 2.4GHz compliant with the IEEE 802.15.4 arg>S [3]; [71-[9], and the second one is about the evaluation o
ZigBee standards. The hardware can be programmed throlflff interfering image due to the target presence, namecdRadi
a tool based on th@inyOS open source operating system, omographic Approach [10]. .
specifically designed for low-power wireless devices. The !N the following the algorithms which adopt the methods
AT86RF230 can return the RSS value through two registdf§roduced above are described. We provide an analysiseof th
namedRSS Val and ED register, respectively. The first one2/gorithms through the study of the works based ob the passiv
is a 5-bits bit register, the second one is a 8-bit registhichv Iocallgatlon, and then we show_the performance of MO of the
holds the average value of the RSSs measured. The develdggithms taken into account in this paper, belonging ® th
code to collect the data from the IRIS motes is based on ¥ methods of prediction and Radio Tomography, respec-

set of features already developed in a sample library knoWkely- In this way the theoretical as well as implementativ
as Spin Queues. aspects of the problem have been analyzed.

The RSS values were collected during the movements of the

human target (from now on named simply target) along a giveén Prediction Method
path. The path is a sequence of steps equally distributdtkin t ) :
space. The target moves at a constant rate, with the aid ofg
metronome, in all the considered scenarios. In some s@na
the target walks, while in others the target runs. The R
values show abruptly changes in time, even if the target is Jn.
a stable position. These changes are due to the multi-pdth an’
shadowing phenomena. So to capture the stochastic effect of
these phenomena more experiments were carried out to better

: In [7], authors propose a method to estimate the
r%babilityp(st|xt) that the target position at the times x;,
iven the set of measuras by the Bayesian approach. This
obability by the Bayesin Filter Theory [11] can be cal¢eth

p(se]xe)p(xe[si—1)

characterize the variables involved into the localizapbiase. pxils:) = p(s¢lsi—1) -
The measurements were performed on different scenaritis, wi [ pxe|xe—1)p(xs—1[ss—1)dxs 1
different number of sensors per squared meter of area, and p(st|xt) 1)

different dimensions. Precisely, the number of sensoresar J plsilx)p(xilse-1)dx,
between 25 and 33, and the localization area varies betweein the equation (1), the(s,|x;) is the probability density
28.8 m? and 54.6m?2. For a given scenario, we captured ®f measures conditioned by the target position. The integra
number of RSS’s samples per link between 5 and 8. Th& the numerator is the ChapmanKolmogorov equation used
localization area of each scenario was marked to creatdoaevaluate the a-priori probability density function ofeth
lattice, as in the figure 1. Through this lattice the positiotarget’s position. The a-priori information about the pbkes
of the target in the time has been evaluated and comparimgvements of the target is characterized by means of the
esteemed position with the target’s position in the lattloe probability densityp(x;|x;_1), which describes the probability
localization error has been evaluated. that the target is in the positior;, given that it was in the
Some measures of the RSS have been performed usingo&itionx; ;. Finally, the denominator is the normalization
multi-channel, om,;, channels, or a single channel scanningalue, which takes into account the space of all the possible
In general the number of RSS values of the links, availab®olutions of the measures given, the target’s positiomali,
for the localization phase, are calculated/éagN — 1)n.y,. the positionx; belong toR? where the components are the
z andy coordinate in the space, asg belong toR”, where
L is the number of links calculated as described in section II.
The components of the vectgf are the measures acquired
In general, the passive localization algorithms based tink by link at time¢.
the RSS can rely on two main approaches for the targetThe time variablet is discretized following the sampling
localization. The first is based on the estimation of sonieterval used to acquire the values of RSS through the sensor

IIl. ALGORITHMS ANALYSIS



Moreover, in this work the authors propose a model for ttdomain [13]. The functiorZ(x;,x}) is the index function,
probability density of measures conditioned by the targathich is 1 if the target positios; coincides to the —th cell
position p(x;|s;). For the model, authors assume that the] and O otherwise.

measures are affected by Gaussian noise with nmigap) Equations (2, 3, 4, 5) allow to evaluate the probability map
and variance (x; ), and that the measures per links are randoaf the target position in the time by using the acquired value
variables identically and independently distributedd).iThen of RSS.

the conditioned distribution can be calculated as the pbdu 2) : In [9], authors propose a localization algorithm based

of the conditioned distribution per link on the learning by example (LBE) strategy to localize and
track passive target. The localization problem is addcesse

exp{_W} only by considering the available RSS values at the nodes

p(xtlst) = H o of the wireless sensor network deployed in the localization

l .
L V2ot (%) environment.

The authors assume that in the localization area a WSN with
Snodes (anchors) is deployed. The unknown target moves
roughout the two-dimensional investigation domain. lEac
ggchoraj j = 1...N is a transceiver located in a known

In this cases!, o!(x;) and h!(x;) are the measured values
of RSS, the variance of the RSS and the average value of R%
for the link [, respectively. t

The equation (1) can be solved through different metho :

such as the Grid-Based [12] and the Particle Swarm FiIte?gs't'on (2, Ya,) J 1N Under the_assumpﬂon that
: . each node communicates with all the remainivig 1 nodes, a
[11]. Both methods solve numerically the equation, the majh : . .
: . . otal amount oL = N(N—1) wireless links are available. The
difference between two methods being the computationadl cos . : :
o : . measured value of signal strengthon the linkl = (a;, a;)
which is largest for the Grid-Based approach. Given that th . . Il
. : . éepends on the interactions among the electromagnetialsign
authors solve the equation with a Grid-Based approach, we

analyze only this method. In this case, the Iocalizatioraar%?d'ated by thei — th source, the localization scenario, and

: A ) - e targets to be localized.
is represented _by a grid with St,ep””.' The ta_LrgetS posmo_n_ To distinguish the impact of the target’s mote on the RSS
x; can be confined to the cells’ grid, precisely the position

values from the impact of the surrounding environment, the

of_the target can be give_n by the center of the Ce”Sl' Throu%ﬁlibration measure of the RSS values is performed when
this approach it is very simple to evaluatéx,) ando(x,). no target is present in the areg. The contribution of

In fact, these values can be calculated gell per cell a"’TwlrthF surrounding environment is filtered out from the RSS
the RSS values when the target place itself in the center g i , . .
measures, when the target is in the askaas in the following

the cell. Note that smaller is th&, smaller the error of the

position estimation becomes, but the computational castigr equation:

exponentially. Also the probability densip(x;|x;—1) can be i

defined by the grid. In fact, as the area’s topology is known, T, — 55 "%, (6)
we can define the probability that the target reaches the cell ! 8% ’

4, given that it is in celli. For example, if the target can i=1...N;j=1...N—1.

reach from the cell n cells with the same probability, the

probability to occupy one of them '7}%"’ A more rigorous study We refer to equat.ion (6). as the differ.ential measure of the
of this probability is proposed in [5], in this case the autho RSS ’val_ues. The d|fferer!t|al measure is acquired for all the
use the Hidden Markov Model to characterize the targetdSN'S inks T' = {I'y;; @ = 1...N; j = 1...N —1}.
movements. Through the Grid-Based approach, the solutigirting from the differential measuremeitsthe addressed
of the equation (1), which belongs to a continuos space,qé()blem is about the definition of the probability that thegy&

approximated by the solution of the discretized space. EIWS in a given positiqr_k = [x,y] of the localization are"’,", TO_

this approximation, the integrals can be relaxed in sumonati evalugte the probability the authors adopF the classifinati

obtaining the following recursive formulas: techniques based on Support Vector Machines (SVM).
The SVM method [14], [15] is a learning model with

p(x¢lsy) = Z wgltz(xt, x)); (2) associated learning algorithms that analyze data and nécog
j=cells patterns, used for classification and regression analysis.
p(xelse_1) = Z W’ T(x: xj), 3) basic SVM takes a set of input data and predicts, for eachngive
- t|t—1 i 2

input, which of two possible classes forms the output. Given
; N ; i . a set of training examples, each marked as belonging to one
Wit—1 = Z wi_qp—1P(Xp[xiy); J=1...cells; (4)  of two categories, a SVM training algorithm builds a model
i=cells _ that assigns new examples into one category or the other. A
wz‘t_lp(StIX@ , SVM model is a representation of the examples as points in
p j=1.cells. (5) space, mapped so that the examples of the separate casegorie
are divided by a clear gap that is as wide as possible. New
_ _ examples are then mapped into that same space and predicted
The valuemglt and wflhl in the equations (4, 5) are theto belong to a category based on which side of the gap they
weights used to approximate the integrals in the equatipn fall on.
through the Importance Sampling method into the discretizeThe SVM methods nee® training configurationg\,

j=cells

Jj A

“ie = i i
Z wt|t71p(st|xt)

i=cells




where the parameterg andd can be calculated resolving
A={T,%m,0m)r7=1...R} (7) the optimization problem of a cost function of the training

data set, as shown in [16].
given by the set of differential measuremehtsa random

positionx,, with associated the state Finally the esteemed target position can be calculated as in
m

the following:

o)1 if the target is inx,,
"o -1 otherwise

During the so called training phase, the training set are

used to find a suitable decision functid@n by means of a Xc:xPr{v — 1T}
SVM strategy [14], [15]. Assuming that the localization @re = ¢
is a lattice withC' squared cells as shown in the figure 1, the T=—7 (10)
authors define the decision function for the given eglby Zpr{vc =1T}
the following equation: p—
c
R ZyPr{vc =1|T}
o(T,ve) = 3> {ario @, 1?,pof+ (@) § = =L (11)

1

3 {agg(ﬂr),lﬂ(p),p,c)}

1r=1
Ry

where©(-) is the kernel function adopted for the problem 3) .In [8], authors propose a Iogalization algor!thm thgt
addressed, thevs values are the Lagrange multipliers Ofyvorks in two phases: the short offline phase, during which

the optimization problem associated with the SVM problerwe algorithm studies th‘? features qf the signal strengEE_OI t.
. . .. “values when no target is present inside, and the monitoring
addressed, anR,, is the support vector, i.e. the set of trainin

data where the Lagrangian multipliers for the celare not %hase, where the target position is esteemed by detecting th

equal to zero. For more details in [16] an in-depth analysis 8P?hmal||e S |_r;hthe featurrcla_s of dtle Ij?fs values. 'I;jhel two phases
the problem is provided. of the algorithm are achieved by difference modules.

Through the decision function, the classification problem The first module of the algorithm is the Normal Profile
can be defined as a binary classification problem, using t@enstruction. In this module, thieatures of the RSS values
sign function, which, for given value of the decision funetj are calculated. Typical features are the mean value, the dis
returns the binary states: persion or the variance. The authors, by several measutemen

assume as features the standard deviation or the variance,
given that this feature has high sensitivity to the targetiomp
v = sign[®(T)]v={vcc=1:...C}. and it shows a good stability in time. Let's assume that in

Note that the sign of the decision function can be replacggi‘e sensor ngtwork there are a set of tran_s_mlttmg nodes,

of Access Points (APs), and a set of receiving nodes, or

by the a-posteriori probabilityPr{v = 1|T'} [17] to con- : . :
struct a location-probability map of the monitored areaeTh'\/le"jlsurlng Points (MPs). The MPs acquire the RSS values

a-posteriori probability gives information about the dsgr of the signals transmitted by the APs. The overall number of

of membership of test data to a particular class, even Ii.?ks, between any pair of AP-MP, &, which is he number of
. P P ; ' APs times the number of MPs. The received signals strengths
sign[®(T")] does not correctly classify the input pattern. ThlfRSSS)Sj for the link j at the time instant, are acquired
behavior is mainly due to the generalization capabilitiethe ot . i i i
a sliding window of lengthl, W;" = [s{_;s; ; ;...s;].

SVM approach that, in presence of highly non-separabl da?% _ _ .
PP P e b & e values in the window?; are mapped in the feature of

constructs the best separating hyperplane even if the a tir;L - . ; .
P g perp b the RSS valueg; through a functiong(W}/). This module

solution to the optimization problem [15] does not exists. | : . ,
ﬁ_alculates the features assuming that no target is present i

this way, the input test data could belong to the wrong ha - inallv. th | file is obtained :
plane identified by the decision function. However, takintpi the area. _Fm_a Y, the Normal Profile is obtained eva uali_ng
density distribution of the features through a non-paraimet

consideration the a-posteriori probability it is still pdge to T ) .
compute the distance of that example to each class meangStimation method [18]. Th'_s, methad f'FS’ by a set of Kernel
function, a given set of empirical data with the introduntiuf

The mapping between the state information and the X

osteriori probability can be provided by the followin y as little extraneous.ipformation as possible. In this cése,
Eon' P y P y ged authors use as empirical data the features of the RSS vadues p

link evaluated inn different Windows,ff e fiij=1---1L,
and as kernel functions the Epanechnikov’s function. The
1 9) density distribution for the features of the linkcan then be

1+ exp {y®(T,v.) + 6} calculated as:

,3
Il

p=1

>3 {-

p=1r=1

Mo

c
} > Priv. =1[T}
c=1

p

Pr{v. =1T} =




B. Radio Tomography Method

1 & f—f Was adopted the common assumption of 2-D localization
a;(f) = nhy Z o) (12)  since the third dimension usually in not of primary interiest
5 =1 o an indoor environment.
K(y) = { 1(L—y?)  ifly| Sll In [10], authors study the application of the Radio Tomo-
0 otherwise graphic Imaging (RTI) to a wireless sensor network. Roughly
hj = 2.3450;n" %2 speaking, this method provides the image of the attenuation

. . . in the RSS due to the target within the wireless network.
whereg; is the variance of the samples of the ligkand Precisely, the authors localize the target by studying the

h; is the bandwidth of the distribution. . : .
In the Basic Detection Module signal strength anomalie\{?gﬁgcfngt;gz Rci\dr:o ngs?g{:ghlgsln:?g(teh(evfcl)—lll)c;wing Let

due to the target presence, are detected. The detectio&(‘gl be th h t with K i Th
based on the normal profiles constructed during the offli 1""’a".} € the ancnor set, with known positions. The
anchor pair(a;,a;) is a link [ of the wireless network, the

phase. In particular, for a window of sampl&; for the total number of linksL is calculated as described within the

link j at a given time instant, the module calculates thesection Il. The network area is conventionally divided ifto
corresponding feature valyé i.e. the sample variance. Then ' y

the RSS values of the link are considered anomalousﬁf p!xels, so the movement of the target is discretized on the
is above a critical bound; . This bound is calculated as theplfrl] set. blem is to find ing that links th .

a-th percentile of the Cumulative Distribution Function (ED link tc? gg v:rg:]ieo (':r i(gi'?r:g;gR SaS'smvaSIuei V‘?r:gr;i:h%err
F}; of the feature density distribution evaluated by the equmati. " . Perp '

(12) asb; = F—l(l—a). From the Basic Detection Module an'" this work adopt a linear model

alarm arises when any set of values per link is anomalous. Thi s=Wsp,+n (14)

approach can lead to many false positives, so the final decisi wheres,, € R” is the RTI over the pixel set, sg., is

is improved through the Decision Refinement Module. th&\ variances of the RSS value for the th pixel, s € RE

Due to the dynamic changes in the environment, the store .
) IS the vector of the measured values of variance over the set
profiles may not capture the real normal state. Therefoee, th, . I : :
links, n € R*" is the noise of the measures, and finally

systems needs to update the stored profiles during the onf@f REZP is the mappina matrix whose entries are the
phase. Authors update the density distribution with the ne ! bping X W !

; . : L weights that link the pixels to the variance per link.
samplesf’ by the following weighted equation: The weights of the mapping matri¥” can be calculated

assuming that the power of the received signal is propation

. IR f-1f to the inverse of the squared distance covered by the signal
()= — K d 13 ) : : '
(/) nh; gw ( h; ) (13) and that the target crossing a lifk;, a;) influences a set of
i pixels. Precisely, the authors assume that the set of irdkcen
w; = m pixels fall within within the area limited by an ellipse. Ham

_ for the weights of the matriX? the following equation is
By this formula the new data are more relevant than the Oé?)plied:

data for the estimation of the the normal profiles. - )
The Decision Refinement Module assigns to the RSS values _ 1 { ¢ if djj + dj; < LoS + A (15)

. Wi = .

of the link j at the timet, the anomaly scorel! — %=, Then Y VILoS | 0 otherwise

the module studies the behavior of a global an(J)maIy scomhere LoS is the distance of the line of sight between two

Ay, calculated as the summation of the singles values of thedes ,d}; anddj; are the distances from the center of pixel

anomaly scores for each link. If a noticeable changedin j to the two node locations for link, and X\ is a tunable

occurs, while at least the values of one link are anomaloysmrameter describing the width of the ellipse. The paramete

then an anomalous behavior is starting. The module makess typically set very low usually in the randg@.1 —0.6] (m).

use of the history of the activity state inside the environteThe ellipsoid is primarily used to simplify the process of

through the usage of exponential smoothing to monitorathe determining which pixels fall along the LoS path, as showed

in order to avoid the noisy samples, hence reducing the faisethe figure 2 by the green pixels. Finally, the parameités

alarm rate. Moreover, the authors note that, during theetar@ scaling factor to normalize the RTI, typical values ar® int

motion, the same or near links are affected by the motiothe intervall — 100(dB)?.

Hence, the sum of anomalies has higher values during theThe model estimation of the variance per pixel in the

motion period. equation (14) provides a mathematical framework to relate
Finally, the localization information is provided by thethe target's movement in space to a links RSS variance. The

Region Tracking User Interface Module. The system providesodel is an ill-posed inverse problem that is highly sewsiti

the graphic map where the localization information is showto measurement and modeling noise. The solusipncan be

in terms of the most probable regions of the detected evecalculated by the least-squares approach, but the soloéion

In this case, the information about the anomaly score foh eagot be unique, hence the regularization method [19] must be

set of RSS values per link is used, jointly with the distancapplied to obtain the solution. In this work, the authorgyose

of each pixel of the map from each link. as regularization method the Tikhonov's method. Through th



V=V+ o2 I;
G = V(V —|— 0'721]2)71
5 x=x+Gx—-X%)
—_— T -y ~
- :‘h"“'---._ V=(I-G)YV (20)
= ~ . . : . . .
o T \\ wherels is the2 x 2 identity matrix,o?2, is the variance of
::— 0 ~ — ] the targets motion process, indicating how fast the object i
- N~ L \‘ capable of moving. Larger values enable the filter to track
s s faster moving objects. Authors also take into accouft

that is the variance of the measurement noise. Larger values
-9 will cause the filter to trust the statistical predictionsepv
the instantaneous measurements. The vekt@ontains the
Kalman esteemed coordinatesand y. x is a two-element
vector containing the instantaneous measurement of thettar
_]QIU 5 0 5 0 coordinates through the VRTI methoH. is the a priori error
' covariance matrix and” is the a posteriori error covariance

matrix and finally G the Kalman Gain. Note that authors
provide some values for these parameters through a set of
measurements performed during their experiments.

In this case the coordinates of the target position are
Tikhonov method the least-squares problem that needs tothe coordinates of the maximum of the vecy, or the
revolved is: coordinatesk filtered out by the Kalman altorithm.

Fig. 2. Representation of pixels involved along the LoS path

. 1
Spe = argmin §||Wsm —s||? + a||Qspa | (16) IV. NUMERICAL RESULTS
Spz

The numerical results discussed in this section are oltaine
rE)y both measurements performed with the WNS deployed by
us, as discussed in the section Il and by the repository af dat
making available by the SPAN laboratory at University of luta
on Internet. The performance of the algorithms describéa in
the section Il are analyzed for the following scenarios:

whereQis the Tikhonov's matrix that produces the solutio
with the desired properties, andis a tunable regularization
parameter. To calculate the parametanany algorithms have
been developed [20]. The least-squares problem’s solation
be calculated by the following equation:

Spr = (W'W +aQ'Q)"'W's. 17) TABLE |

As stated above, the matr{y captures some features of the SCENARIOS

measured acquired. Taking into account the covariancexmatr [ Scenario] Aream?) | Anchors | Channels| Speed(m/s) ]

C as well as the variancg; of the noise process linked to the 1 6.4x 45 25 I 0.25

measures, the solution in the equation (17) can be calculate 2 6.5 x 4.5 28 L 0.915

, 3 6.5 x 4.5 28 1 1.83

as. 4 6.5 x 8.4 33 5 0.45
Spe = (W'W + 0%C~ 1)1 W's. (18)

whereChannel is the number of wireless channels used to
The entries:;; of the covariance matrig’ can be calculated acquire the RSS values, astbeed is the target’s peed along
assuming that the spatial attenuation of the field decayls wihe path.
exponential law [21] We have developed the localization algorithms, as well as
dos the data elaboration modules by means of the MATLAB tool.
cij = o’exp (—%) (29) The performance parameters are related with the error
¢ e = /((x—2)2+ (y — 9)?), wherez, y and Z, § are the
whered;; is the distance between centers of pixeindj, components of the position and the estimated position of
o2 is the variance of pixel attenuation, afdis a correlation the target, respectively. Precisely, the parameters taden
parameter that can be used to determine the desired amouraagfount are the Mean Squared Error (MSE) of the estimated
smoothness in the image. The target's coordinates [z y] positions, and ther0 — th and 90 — th percentile of the
are the coordinates of the maximum value in the vegigr estimation error. Moreover, figures about the estimatioorer
calculated by the regularization method. distribution are shown in the following.
Finally the authors develop the tracking algorithm based The performance discussed in the following are about the
on the VRTI values through the Kalman’s filter as in th&cenario 1 First the results on the Bayesian method are
following: presented, and later those one on the Tomographic approach.




The Bayesian method has been applied on the lattice with TABLE |I

9% 13 Ce||5, the area per cell was abaub x 0.5 m2_ The PERFORMANCEPARAMETERS SCENARIO 1 BAYESIAN METHOD
Calibration phase, discussed in section I1l-Al, has inedlthe [RMSE (m) | 75-th percentile (m)] 90-th percentlle (m)]
estimation of the average and variaiéeando’, respectively, 0.87 0.88 1.23

of the RSS values per link without presence of target. The 0.77 0.9 11

transition probabilityp(x¢|x;:—1) has been defined through a

matrix M where the entryn;; is the probability that the target

from the celli goes to the cell. Finally, we assume that theterminate states reachable by the target grows. Insteagh wh
initial probability p(xo) is 1. This information is used for the we can limit the target's movement the stochastic process th
resolution of the recursive problem in the equations (2,3)5 underlies to it results like constrained.

We assume that the target moves with steps of one cell, henc&he Tomographic method has been applied orSbenario
the cells with distance one step from the target can be reélacheusing the algorithm’s parameters shown in tablelll. The
with equal probability, otherwise with probability zerdgbre method has been tested assuming the solution for the VRTI
(3) shows the distribution of the error of the estimatedp@sj that in the equation (17) first and in the equation (18) ldter.
precisely, the figure 3(a) shows the error distribution a88g  the first case the matrig) is the identity matrix.

that the target can move toward any cell with distarige

while the figure 3(b) shows the error distribution when some TABLE Il

obstacles are considered along the path so that some ctils wi TOMOGRAPHICALGORITHM’ S PARAMETERS

distancel become unreachable. (23 (m) [0 @B) [ on [0 [ om [ on [ ® @B ]
(01 ] 08 | 1 [3]01] 5] 60 |

Moreover, the values of the estimated position have been fil-
tered out through the Kalman'’s filter to study the improvemen
of the performance estimation.

1 Figure 4 shows the distribution of the localization error
1 using the Tomographic method assuming the equation 18 as a
1 solution of the VRTI.

(@

Error Distribution

Occurrences

15
Error (m)
(b)

Fig. 3. Error Distribution Bayesian Method Scenario 1

The figures show that the knowledge of the target moveme
significantly affects the error estimation. In fact, tharastion
error increases of the2.6%, decreasing information on about
23% of the cells. Moreover, increasing the knowledge it i
possible to bound the dispersion of the error values. Nate tt
in the case with more information on the target movemer
the dispersion of the error values decreases of about .
The values in the Table Il confirm these results. The values in ®)
the first row are relevant to the case with less knowledge 8[y. 4. Error Distribution Tomographic Method Scenario 1
the target's movements.

The reason is that, in this last case, the number of inde-The figure 4(a) shows the error distribution when only




the VRTI is used, instead the figure 4(b) shows the error TABLE V
distribution when the estimated position is also filtered ou PERFORMANCEPARAMEJERnggEE’TDAJ'C?DlEIOMOGRAPH'C'V'ETHOD
by Kalman. The figures show that the Kalman filter does not i

improve the method’s performance. In fact, the dispersibn o [ RMSE (m) [ 75-th percentile (m)] 90-th percentile (m)]
the error values is the same as well as the interval of errors 2.55 3.28 3.78
with the maximum number of occurrences. These results are 254 3.28 3.77
confirmed by the performance parameters shown in table 1V.
TABLE IV The error reduction is notable when the equation 18 is used
PERFORMANCEPARAMETERS SCENARIO 1 TOMOGRAPHICMETHOD as a solution for the VRTI instead of equation 17. In this

_ _ case, the localization error can be decreased aboGb%f
[ RMSE (m) [ 75-th percentile (m)[ 90-th percentile (m)) . . . . . .
=0 ot 5 moreover, the error dispersion is lower with the first solnti
158 193 262 than the second one, as the figures 4 and 5 show.
In the following, the figures about the performance of
the Bayesian and Tomographic methods on $uenario 2

The values in the first row of the tab® are relevant to the 54 scenario 3are shown. The considerations made for the
VRTI estimation only, while the values in the second row arg.enario 1hold true. also for these two scenarios.

about the VRTI values filtered out by the Kalman’s filter. Even gqo; scenario 2and Scenario 3 the Bayesian method has

if the Kalman filter does not give advantage in the positiofeen applied on the lattice witt x 14 cells, the area per cell

estimation, note that through it also the speed of the targets apoun.45 x 0.45 m?2

can be estimated if the target moves of constant velocity.  Figyre 6 shows the distribution of the localization error fo
Figure (5) shows the distribution of the localization errofye Bayesian method for the scenarios 2 and 3. Preciselyefigu

using the Tomographic method, assuming equation 17 ag@) shows the error distribution for tfcenario 2and the
solution of the VRTI, which we call Un-Noised model. figure 6(b) for theScenario3

(b) (b)
Fig. 5. Error Distribution Tomographic Method Un-Noisede8ario 1 Fig. 6. Error Distribution Bayesian Method Scenarios 2-3

Figure 5(a) shows the error distribution when only the VRTI Table VI shows the performance parameters for both sce-
is used, while the picture 5(b) shows the error distributiomarios 2-3 for the Bayesian Method.
when the estimated position is also filtered out by Kalman. In Figure 7 shows the distribution of the localization error
this case too, the Kalman'’s filter does not give advantage, fas the Tomographic method for th&cenario 2. Precisely,
shown in table V . the picture 7(a) shows the distribution for the only VRTI



TABLE VI
PERFORMANCEPARAMETERS SCENARIOS2 AND 3 BAYESIAN METHOD

[ Scenario| RMSE (m) [ 75-th percentile (m)[ 90-th percentile (m)]
2 3.88 4.7 5.8
3 1.62 0.47 3.55

estimation, while the picture 7(b) shows the distributiam f
the VRTI estimation filtered out by Kalman.

(b)

Fig. 8. Error Distribution Tomographic Method Scenario 2-Naised Model

(b)

Fig. 7. Error Distribution Tomographic Method Scenario 2

The figure 8 shows the distribution of the localization errc
for the Tomographic method for the Un-Noised Model for th
Scenario 2. Precisely, the picture 8(a) shows the distribution
for the only VRTI estimation, instead the picture 8(b) shows
the distribution for the VRTI estimation filtered out by the
Kalman.

Figure 9 shows the distribution of the localization errar fo
the Tomographic method for thecenario 3. Precisely, the
figure 9(a) shows the distribution for the only VRTI estinoati
instead the picture 9(b) shows the distribution for the VRI1
estimation filtered out by Kalman.

Figure 10 shows the distribution of the localization errc
for the Tomographic method for the Un-Noised Model for th
Scenario 3. Precisely, the figure 10(a) shows the distributio
for the VRTI estimation only, while the figure 10(b) shows
the distribution for the VRTI estimation filtered out by the
Kalman. (b)

Table VII and table VIII show the performance paramete@ 0.
for the scenarios 2-3 for the Tomographic Method and for the"

Error Distribution Tomographic Method Scenario 3



Error Distribution
T

Fig. 10. Error Distribution Tomographic Method Scenario r2-Noised Model

Tomographic Method for the Un-Noised Model, respectivel
In both the tables the values in the first and third rows refi
to the VRTI estimation instead the values in the second a
forth rows refer to the VRTI values filtered out by Kalman.

PERFORMANCEPARAMETERS SCENARIOS2-3 TOMOGRAPHICMETHOD

(b)

TABLE VII

PERFORMANCEPARAMETERS SCENARIOS2-3 TOMOGRAPHICMETHOD

RMSE (m) | 75-th percentile (m)| 90-th percentile (m)

Scenario 2

1.26 1.55 2

1.26 1.55 1.97
Scenario3

3.06 4.24 5.60

3.05 4.23 5.59

TABLE ViIII

UN-NOISEDMODEL

RMSE (m) | 75-th percentile (m)| 90-th percentile (m)
Scenario 2
1.66 1.84 2.53
1.67 1.82 2.53
Scenario 3
3.52 5.09 5.78
3.51 5.07 5.78
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measure of the RSS values is per formed, and the authors of
the Bayesian method do not give indication on how to use the
multi-channel measures.

Also in this scenario, the Tomographic method has been
applied using the algorithm’s parameters shown in the table
lll. Again, the method has been tested assuming as solution
for the VRTI the equation (17) first, and that in the equation
18 later. In both cases the Kalman'’s filters has been applied.

Figure 11 shows the distribution of the localization error
using the Tomographic method based on the VRTI estimation.

(b)
Fig. 11. Error Distribution Tomographic Method Scenario 4

Figure 11(a) shows the error distribution when only the
VRTI is used, instead the figure 11(b) shows the error dis-
tribution when the estimated position is also filtered out by
Kalman. The figures show that the Kalman filter does not
improve the method’s performance. In fact the dispersion of
the error values is the same as well as the interval of errors
with the maximum number of occurrences. These results are
confirmed by the performance parameters shown in table 1X.

TABLE IX
PERFORMANCEPARAMETERS SCENARIO 4 TOMOGRAPHICMETHOD

[ RMSE (m) [ 75-th percentile (m)[ 90-th percentile (m)
0.62 0.68 1.04
0.62 0.68 1.02

Finally, we provide the performance analysis of the Tomo- The values in the first row of the table IX refer to VRTI
graphic Method for thé&Scenario 4 In this case the Bayesianestimation only, while the values in the second row refer to
Method is not taken into account because the multi-chanrieé VRTI values filtered out by the Kalman'’s filter.
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The figure 12 shows the distribution of the localization erraegularized solution based on the parameters of the méssure
using the Tomographic method, assuming equation (17) agreor gives better results in the position estimation.
solution of the VRTI , which we call Un-Noised model.

V. CONCLUSION

In this paper we have presented the survey on the localiza-
tion and tracking algorithms for passive indoor applicasio
based on WSNs working with the 802.11 or 802.15.4 network
protocols. We have introduced the problem of the localirgti
and in particular the problem addressed in this paper, in the
section I, and later in the section Il we have provided a eom
prehensive analysis of the theory behind the algorithmertak
into account. Finally, some numerical results have beewsho
to provide a comparison between the two classes of methods
discussed, prediction and Radio Tomography respectively.

Through the prediction methods the RMSE is about
0.77 (m) this result is obtained with about sensor per
squared meter of localization area, by the accurate descrip
tion of target's movements as well as of the measure error.
These last two variable are characterized through theaaipri
density probability of the target's movement, the errorsign
distribution and the mathematical model for the multi-path
phenomenon. These methods make use of the lattice for the
definition of the a-priori information and for the calibmai
phase performed during the algorithm. Obviously the width
of the lattice’s cells affects the precision of the locdiiaa
algorithm and its computational performance. In fact, & th
cells are too small the localization precision can be high
but the computational cost grows exponentially, so that the
algorithm is not able to calculate the target position inl rea

(b) time. Moreover, the calibration time of these algorithms is
. S _ _ _ linked to the number of cells. In fact, the calibration value
Fig. 12. Error Distribution Tomographic Method Un-Noisede8ario 1 are evaluated cell per cell, in some cases with the targét tha

, o moves through the cells in other cases without the targes. Th
Figure 12(a) shows the error distribution when the VRTdo0 ati0n can require many time. Note that, if the topolofyy o

only is used, while the figure 12(b) shows the error distitut 1o |ocalization area changes the calibration phase sHmild
when the estimated position is also filtered out by Kalman. Bbrformed again given that the multi-path effect can dcadii

this case too, the Kalman’s filter does not give advantage @ange, again if the topology of the area changes also the a-

shown in the table X . priori information needs to be redefined, given that thescell
crossed by the target can change for example.

TABLE X ; . _
PERFORMANCEPARAMETERS SCENARIO 1 TOMOGRAPHICMETHOD Through the RadIO- Tomographlc.method the RMSE is about
UN-NOISEDMODEL 0.62 (m) this result is obtained with about6 sensors per

] ] squared meter of localization area, in this case the metbbd n
[ RMSE (m) | 75-th percentile (m)] 90-th percentle (m)] requires any kind of a-priori information to work. The only
167 1.85 253 : . o
166 183 253 information required is about the model of the measure grror
this information is required by the regularization soluatiof
the VRTI when the measure error is taken into account. The
Also in this case the error reduction is notable when 1i@ttice is useful also in this case to evaluate the algorithm
is used as a solution for the VRTI rather than the solutiqgerformance, but the width of the cells does not affect the
in the equation 18. In this case, the localization error can precision of the localization algorithm as in the case of the
decreased a33%, moreover, the error dispersion is lower wittprediction algorithms. Also in this case the number of cells
the first solution than the second one, as the figures 11 asfdthe lattice affects the computational cost, given that if
12 show. the number of cells grows also the dimension of the VRTI
In general, the numerical results show that Bayesian agtbws, and the regularization algorithm can suffer of this
Tomographic Method for single-channel measure of the Rg8owth of dimensionality. In this case the calibration mhas
have confrontable performance. The multi-channel measuig not necessary, intact in our tests this operation has not
improve the performance of the Tomographic approach, lieen performed, obtaining confront able performance wi¢h t
terms of RMSE 75 — th and90 — th percentiles . The Kalman prediction methods. In this method a changing in the topol-
filter does not give notable advantage on the estimation. Togy of the localization area does not affect the performance




algorithm, given that no information such as the probapittit

filter does provide performance increasinglf, instead the
regularization method based on the measure error gives a

12

[4] A. Falhi, “Localization estimation in wireless sensatworks based on
is required. Finally note that the application of the Kalrsan 5

notable advantage, as well as the multi-channel acquisitio[G]

of the RSS values.

In the table XI are summarized all the final consideration$’]

about the study of the algorithms taken into account.

TABLE XI
COMPARISONPREDICTIONMETHOD VS RADIO TOMOGRAPHY
Prediction Radio Tomography
Sensor Density 1 [ 0.6-1]
Computational Costf O(NZ2,,.) | O(3NpzBd? + 24Ny, Bd+
O(Ntr.s) 3NPI)
Resilience Very Low High
Calibration Required Not required

Hence, the Sensor Densitysensors/m?) of two ap-

proaches are comparable, even if for the Tomographic met
with the multi-channel acquisition this values is the sestll
between two methods. The computational cost for the pred'g-

tion methods is a power of the humber of ceNs.; and of

the number of training sed,,.; for the Grid-Based Bayesian
and SVM method respectively. Instead for the Tomograp
method the complexity is the polynomial function of th
bandwidth of the matrixiW and of the cardinality of the
number of pixelsV,, used to characterize the VRTI. Finally,
the prediction approaches require the calibration phakehw

(8]

El

[10]

(11]

Hod

)

[14]

ol
]

[17]

can require many time, this phase is not required in the

Tomographic method.
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