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Comparing two passive location methods in a real
environment
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I. I NTRODUCTION

X XXX

II. PROBLEM DEFINITION AND SCENARIOS

Due to the availability of low energy-cost wireless sensors,
we are witnesses of the wide and rapid diffusion of Wireless
Sensor Network (WSN). The WSNs have been used in many
promising applications such as health surveillance, battle field
surveillance, and environmental monitoring. Localization is
one of the most important subjects because the location infor-
mation is typically useful for coverage, deployment, routing,
location service, target tracking, and rescue.

The hardware infrastructures that can be used for the
localization methods involve technologies based on acoustic
signals, infrared signals and radio signals. All these infras-
tructures involve a set of devices or nodes known as Sensor
Network (SN), which are deployed around the localization
area, as figure 1 shows, where the nodes are black rounds.
The localization methods can be used to localize the position
of the sensor nodes or the position of the target, usually people
or automotive devices. In the first case the positions of nodes
must be estimated, while in the second case the position of
nodes are known. The estimation of the node position within
the network is namednode self-localization. If the sensors are
endowed with radio interfaces, the sensor network is named
Wireless Sensor Network (WSN).

In general, in the localization application based on the SNs,
the primary objective is to determine the location of the target
measuring certain phenomena. The number of targets within
the localization area can be one or more than one. In the
first case, we refers tosingle-target localization, and in the
second case we refer tomultiple-target localization. If the
sensor network is a WSN, the phenomena taken into account
are the propagation of the radio signals and the multi-path
due to the mesh of the Line of Sight (LoS) rays, among
all the nodes of the WNS. Hence, another classification of
the localization methods can be based on the phenomenon
measured, such as the Received Signal Strength (RSS), the
Time of Arrival (ToA), the Time Difference of Arrival (TDoA)
and the Angle of Arrival (AoA) [1]. Briefly, the methods based
on the measure of the RSS localize the target exploiting the
relation between the power signal strength and the distance,
or exploiting the relation between the multi-path interference
(shadowing) and the target position. The methods based on the
ToA and the TDoA take into account the relations between the

propagation delay of the radio signals and the triangularization
methods. Finally, the methods based on the AoA are based on
the relations between the phase of the transmitted signal and
the phase of the received signal at the antenna or at the arrayof
antennas. Note that the kind of phenomenon measured depends
on the technology adopted for the wireless sensors, i.e. sensors
endowed with 802.11, as well as Ultra Wide Band (UWB)
transceivers can measure the RSS and the ToA [2], [3], sensors
endowed with multi-array antennas can also measure the
AoA [1], sensors endowed with 802.15.4 transceiver can only
measure the RSS [4]. Another way to classify the localization
methods is based on the target characteristics. In fact, thetarget
can transmit a radio signal or it can be a passive target. In the
first two cases, we have active localization, in the last casewe
have passive or device-free localization.

The localization methods can also be classified through the
localization scenario. In this case, the localization method
can be classified in indoor and outdoor methods. Note that
some methods adopted for the indoor localization can be used
for the outdoor localization but not vice versa; for example
WSNs can be used for indoor and outdoor localization but
the outdoor methods based on the Global Positioning, which
involves satellites, can not be adopted for indoor applications.
Again, there may be no direct path among all the nodes of
the WSN, because, specially in the indoor applications some
obstacles can arise along the LoS between pairs of sensors. In
this case we have the Non-LoS (NLoS) scenarios [5]. For the
NLoS scenarios, the noise due to the reflection and diffraction
increases so different models for the multi-path, as well as
different localization techniques, must be adopted. Underthese
assumptions the localization algorithms can be classified for
LoS and NLoS applications.

In this paper we argue about the localization and tracking
algorithms for passive indoor applications, based on WSNs.
The data used during the target’s localization are captured
by wireless sensors deployed in the surrounding of the lo-
calization area, and in LoS. In particular, our attention is
toward the algorithms based on the measure of the Received
Signal Strength (RSS), given that most of the existing wireless
devices can provide this information. The RSS is a unit-less
quantity used to measure the power of the received radio
signal. Note that the RSS value is affected by many errors
due to the battery charge and the antenna orientation, for
example, so during the processing phase these aspects have
to be taken into account. The data are collected through the
N nodes named anchors. In general, the data collected from
each sensor pair(ai, aj) named link, are formatted as a string
with the following fields: the id of the receiver, the value of
the sink, the RSS value measured between the receiver and
others sensors, finally, the instant time at which the stringwas
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acquired. Note that, in the literature taken into account for this
paper all the authors assume that the links are not reciprocals
(ai, aj) 6= (aj , ai). Usually, the data are sequentially acquired,
following the anchors numeration based on their ID, then
the sampling rate is directly related to the number of used
sensors. All the measured RSS values are sent to a laptop or
a workstation by a base station named sink, which again is
a wireless sensor node. Moreover, the sink broadcasts a ping
in broadcast so that the anchors can reply sequentially witha
message containing the node identification and the estimated
transmitted power level.

The WSN used in this work for studying the performance
of some algorithms, is based on theIRIS Motes wireless
sensor nodes, produced by Crossbow [6]. This hardware is
based on the high performance RF transceiver,AT86RF230,
operating at 2.4GHz compliant with the IEEE 802.15.4 and
ZigBee standards. The hardware can be programmed through
a tool based on theTinyOS open source operating system,
specifically designed for low-power wireless devices. The
AT86RF230 can return the RSS value through two registers
namedRSS Val and ED register, respectively. The first one
is a 5-bits bit register, the second one is a 8-bit register, which
holds the average value of the RSSs measured. The developed
code to collect the data from the IRIS motes is based on the
set of features already developed in a sample library known
asSpin Queues.

The RSS values were collected during the movements of the
human target (from now on named simply target) along a given
path. The path is a sequence of steps equally distributed in the
space. The target moves at a constant rate, with the aid of a
metronome, in all the considered scenarios. In some scenarios
the target walks, while in others the target runs. The RSS
values show abruptly changes in time, even if the target is in
a stable position. These changes are due to the multi-path and
shadowing phenomena. So to capture the stochastic effect of
these phenomena more experiments were carried out to better
characterize the variables involved into the localizationphase.
The measurements were performed on different scenarios, with
different number of sensors per squared meter of area, and
different dimensions. Precisely, the number of sensors varies
between 25 and 33, and the localization area varies between
28.8 m2 and 54.6m2. For a given scenario, we captured a
number of RSS’s samples per link between 5 and 8. The
localization area of each scenario was marked to create a
lattice, as in the figure 1. Through this lattice the position
of the target in the time has been evaluated and comparing
esteemed position with the target’s position in the latticethe
localization error has been evaluated.

Some measures of the RSS have been performed using a
multi-channel, onnch channels, or a single channel scanning.
In general the number of RSS values of the links, available
for the localization phase, are calculated asN (N − 1)nch.

III. A LGORITHMS ANALYSIS

In general, the passive localization algorithms based on
the RSS can rely on two main approaches for the target
localization. The first is based on the estimation of some

Fig. 1. Grid of the Localization Area

features linked to the target position through the measuresof
RSS [5], [7]–[9], and the second one is about the evaluation of
the interfering image due to the target presence, named Radio
Tomographic Approach [10].

In the following the algorithms which adopt the methods
introduced above are described. We provide an analysis of the
algorithms through the study of the works based ob the passive
localization, and then we show the performance of two of the
algorithms taken into account in this paper, belonging to the
two methods of prediction and Radio Tomography, respec-
tively. In this way the theoretical as well as implementative
aspects of the problem have been analyzed.

A. Prediction Method

1) : In [7], authors propose a method to estimate the
probabilityp(st|xt) that the target position at the timet is xt,
given the set of measuresst by the Bayesian approach. This
probability by the Bayesin Filter Theory [11] can be calculated
as:

p(xt|st) =
p(st|xt)p(xt|st−1)

p(st|st−1)
=

p(st|xt)

∫

p(xt|xt−1)p(xt−1|st−1)dxt−1
∫

p(st|xt)p(xt|st−1)dxt

(1)

In the equation (1), thep(st|xt) is the probability density
of measures conditioned by the target position. The integral
at the numerator is the ChapmanKolmogorov equation used
to evaluate the a-priori probability density function of the
target’s position. The a-priori information about the possible
movements of the target is characterized by means of the
probability densityp(xt|xt−1), which describes the probability
that the target is in the positionxt, given that it was in the
position xt−1. Finally, the denominator is the normalization
value, which takes into account the space of all the possible
evolutions of the measures given, the target’s position. Finally,
the positionxt belong toR2 where the components are the
x andy coordinate in the space, andst belong toRL, where
L is the number of links calculated as described in section II.
The components of the vectorst are the measures acquired
link by link at time t.

The time variablet is discretized following the sampling
interval used to acquire the values of RSS through the sensors.
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Moreover, in this work the authors propose a model for the
probability density of measures conditioned by the target
position p(xt|st). For the model, authors assume that the
measures are affected by Gaussian noise with meanh(xt)
and varianceσ(xt), and that the measures per links are random
variables identically and independently distributed (i.i.d). Then
the conditioned distribution can be calculated as the product
of the conditioned distribution per link

p(xt|st) =
∏

L

exp{− (slt−hl(xt))
2

2σl(xt)2
}

√

2πσl(xt)

In this caseslt, σ
l(xt) andhl(xt) are the measured values

of RSS, the variance of the RSS and the average value of RSS
for the link l, respectively.

The equation (1) can be solved through different methods
such as the Grid-Based [12] and the Particle Swarm Filters
[11]. Both methods solve numerically the equation, the main
difference between two methods being the computational cost,
which is largest for the Grid-Based approach. Given that the
authors solve the equation with a Grid-Based approach, we
analyze only this method. In this case, the localization area
is represented by a grid with step∆x. The target’s position
xt can be confined to the cells’ grid, precisely the position
of the target can be given by the center of the cells. Through
this approach it is very simple to evaluatehl(xt) andσl(xt).
In fact, these values can be calculated cell per cell, acquiring
the RSS values when the target place itself in the center of
the cell. Note that smaller is the∆x smaller the error of the
position estimation becomes, but the computational cost grows
exponentially. Also the probability densityp(xt|xt−1) can be
defined by the grid. In fact, as the area’s topology is known,
we can define the probability that the target reaches the cell
j, given that it is in celli. For example, if the target can
reach from the celli n cells with the same probability, the
probability to occupy one of them is1

n
. A more rigorous study

of this probability is proposed in [5], in this case the authors
use the Hidden Markov Model to characterize the target’s
movements. Through the Grid-Based approach, the solution
of the equation (1), which belongs to a continuos space, is
approximated by the solution of the discretized space. By
this approximation, the integrals can be relaxed in summation,
obtaining the following recursive formulas:

p(xt|st) =
∑

j=cells

ωj

t|tI(xt,x
j
t ); (2)

p(xt|st−1) =
∑

j=cells

ωj

t|t−1I(xt,x
j
t ); (3)

ωj

t|t−1 ,
∑

i=cells

ωi
t−1|t−1p(x

j
t |xi

t−1); j = 1 . . . cells; (4)

ωj

t|t ,
ωj

t|t−1p(st|x
j
t )

∑

i=cells

ωi
t|t−1p(st|xi

t)
; j = 1 . . . cells. (5)

The valuesωj

t|t andωj

t|t−1 in the equations (4, 5) are the
weights used to approximate the integrals in the equation (1)
through the Importance Sampling method into the discretize

domain [13]. The functionI(xt,x
j
t ) is the index function,

which is 1 if the target positionxt coincides to thej− th cell
x
j
t and 0 otherwise.
Equations (2, 3, 4, 5) allow to evaluate the probability map

of the target position in the time by using the acquired values
of RSS.

2) : In [9], authors propose a localization algorithm based
on the learning by example (LBE) strategy to localize and
track passive target. The localization problem is addressed
only by considering the available RSS values at the nodes
of the wireless sensor network deployed in the localization
environment.

The authors assume that in the localization area a WSN with
N nodes (anchors) is deployed. The unknown target moves
throughout the two-dimensional investigation domain. Each
anchoraj j = 1 . . .N is a transceiver located in a known
position (xaj

, yaj
) j = 1 . . .N . Under the assumption that

each node communicates with all the remainingN−1 nodes, a
total amount ofL = N(N−1) wireless links are available. The
measured value of signal strengthsij on the link l = (ai, aj)
depends on the interactions among the electromagnetic signal
radiated by thei − th source, the localization scenario, and
the targets to be localized.

To distinguish the impact of the target’s mote on the RSS
values from the impact of the surrounding environment, the
calibration measure of the RSS values is performed when
no target is present in the areâsij . The contribution of
the surrounding environment is filtered out from the RSS
measures, when the target is in the areasij , as in the following
equation:

Γij =
sij − ŝij

ŝij
; (6)

i = 1 . . .N ; j = 1 . . .N − 1.

We refer to equation (6) as the differential measure of the
RSS values. The differential measure is acquired for all the
WSN’s links Γ = {Γij ; i = 1 . . .N ; j = 1 . . . N − 1}.
Starting from the differential measurementsΓ, the addressed
problem is about the definition of the probability that the target
lies in a given positionx = [x, y] of the localization area. To
evaluate the probability the authors adopt the classification
techniques based on Support Vector Machines (SVM).

The SVM method [14], [15] is a learning model with
associated learning algorithms that analyze data and recognize
patterns, used for classification and regression analysis.The
basic SVM takes a set of input data and predicts, for each given
input, which of two possible classes forms the output. Given
a set of training examples, each marked as belonging to one
of two categories, a SVM training algorithm builds a model
that assigns new examples into one category or the other. A
SVM model is a representation of the examples as points in
space, mapped so that the examples of the separate categories
are divided by a clear gap that is as wide as possible. New
examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they
fall on.

The SVM methods needR training configurations∆,
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∆ = {(Γ,xm, vm)r r = 1 . . . R} (7)

given by the set of differential measurementsΓ, a random
positionxm with associated the state

vm =

{

1 if the target is inxm

−1 otherwise.

During the so called training phase, the training set are
used to find a suitable decision functionΦ by means of a
SVM strategy [14], [15]. Assuming that the localization area
is a lattice withC squared cells as shown in the figure 1, the
authors define the decision function for the given cellc, by
the following equation:

Φ(Γ, vc) =
C
∑

p=1

R
∑

r=1

{

αr
cv

r
cΘ(Γ(r),Γ(p), p, c)

}

+ (8)

C
∑

p=1

Rsv
∑

r=1

{

vrc −
C
∑

p=1

R
∑

r=1

{

αr
cΘ(Γ(r),Γ(p), p, c)

}

}

Rsv

whereΘ(·) is the kernel function adopted for the problem
addressed, theα’s values are the Lagrange multipliers of
the optimization problem associated with the SVM problem
addressed, andRsv is the support vector, i.e. the set of training
data where the Lagrangian multipliers for the cellc are not
equal to zero. For more details in [16] an in-depth analysis of
the problem is provided.

Through the decision function, the classification problem
can be defined as a binary classification problem, using the
sign function, which, for given value of the decision function,
returns the binary states:

v = sign[Φ(Γ)]v = {vc c = 1 : . . . C}.

Note that the sign of the decision function can be replaced
by the a-posteriori probabilityPr{v = 1|Γ} [17] to con-
struct a location-probability map of the monitored area. The
a-posteriori probability gives information about the degree
of membership of test data to a particular class, even if
sign[Φ(Γ)] does not correctly classify the input pattern. This
behavior is mainly due to the generalization capabilities of the
SVM approach that, in presence of highly non-separable data,
constructs the best separating hyperplane even if the optimal
solution to the optimization problem [15] does not exists. In
this way, the input test data could belong to the wrong half-
plane identified by the decision function. However, taking into
consideration the a-posteriori probability it is still possible to
compute the distance of that example to each class means.

The mapping between the state information and the a-
posteriori probability can be provided by the following equa-
tion:

Pr{vc = 1|Γ} =
1

1 + exp {γΦ(Γ, vc) + δ} (9)

where the parametersγ and δ can be calculated resolving
the optimization problem of a cost function of the training
data set, as shown in [16].

Finally the esteemed target position can be calculated as in
the following:

x̂ =

C
∑

c=1

xPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}
(10)

ŷ =

C
∑

c=1

yPr{vc = 1|Γ}

C
∑

c=1

Pr{vc = 1|Γ}
(11)

3) : In [8], authors propose a localization algorithm that
works in two phases: the short offline phase, during which
the algorithm studies the features of the signal strength (RSS)
values when no target is present inside, and the monitoring
phase, where the target position is esteemed by detecting the
anomalies in the features of the RSS values. The two phases
of the algorithm are achieved by difference modules.

The first module of the algorithm is the Normal Profile
Construction. In this module, thefeatures of the RSS values
are calculated. Typical features are the mean value, the dis-
persion or the variance. The authors, by several measurements
assume as features the standard deviation or the variance,
given that this feature has high sensitivity to the target motion,
and it shows a good stability in time. Let’s assume that in
the sensor network there are a set of transmitting nodes,
or Access Points (APs), and a set of receiving nodes, or
Measuring Points (MPs). The MPs acquire the RSS values
of the signals transmitted by the APs. The overall number of
links, between any pair of AP-MP, isL, which is he number of
APs times the number of MPs. The received signals strengths
(RSSs)sjt for the link j at the time instantt, are acquired
by a sliding window of lengthl, W j

t = [sjt−ls
j
t−l+1 . . . s

j
t ].

The values in the windowW j
t are mapped in the feature of

the RSS valuesf j
t through a functiong(W j

t ). This module
calculates the features assuming that no target is present in
the area. Finally, the Normal Profile is obtained evaluatingthe
density distribution of the features through a non-parametric
estimation method [18]. This method fits, by a set of Kernel
function, a given set of empirical data with the introduction of
as little extraneous information as possible. In this case,the
authors use as empirical data the features of the RSS values per
link evaluated inn different windows,f j

1 · · · f j
n, j = 1 · · ·L,

and as kernel functions the Epanechnikov’s function. The
density distribution for the features of the linkj can then be
calculated as:
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ûj(f) =
1

nhj

n
∑

i=1

K

(

f − f j
i

hj

)

; (12)

K(y) =

{

3
4 (1 − y2) if |y| ≤ 1

0 otherwise

hj = 2.345σjn
−0.2

whereσj is the variance of the samples of the linkj and
hj is the bandwidth of the distribution.

In the Basic Detection Module signal strength anomalies,
due to the target presence, are detected. The detection is
based on the normal profiles constructed during the offline
phase. In particular, for a window of samplesW j

t for the
link j at a given time instantt, the module calculates the
corresponding feature valuef j

t i.e. the sample variance. Then
the RSS values of the linkj are considered anomalous iff j

t

is above a critical boundbj . This bound is calculated as the
α-th percentile of the Cumulative Distribution Function (CDF)
F̂j of the feature density distribution evaluated by the equation
(12) asbj = F̂−1(1−α). From the Basic Detection Module an
alarm arises when any set of values per link is anomalous. This
approach can lead to many false positives, so the final decision
is improved through the Decision Refinement Module.

Due to the dynamic changes in the environment, the stored
profiles may not capture the real normal state. Therefore, the
systems needs to update the stored profiles during the online
phase. Authors update the density distribution with the new
samplesf j by the following weighted equation:

ûj(f) =
1

nhj

n
∑

i=1

wiK

(

f − f j
i

hj

)

(13)

wi =
i

n(n+ 1)/2
.

By this formula the new data are more relevant than the old
data for the estimation of the the normal profiles.

The Decision Refinement Module assigns to the RSS values

of the link j at the timet, the anomaly scoreAj
t =

f
j
t

bj
. Then

the module studies the behavior of a global anomaly score
At, calculated as the summation of the singles values of the
anomaly scores for each link. If a noticeable change inAt

occurs, while at least the values of one link are anomalous,
then an anomalous behavior is starting. The module makes
use of the history of the activity state inside the environment
through the usage of exponential smoothing to monitor theat
in order to avoid the noisy samples, hence reducing the false
alarm rate. Moreover, the authors note that, during the target
motion, the same or near links are affected by the motion.
Hence, the sum of anomalies has higher values during the
motion period.

Finally, the localization information is provided by the
Region Tracking User Interface Module. The system provides
the graphic map where the localization information is shown
in terms of the most probable regions of the detected event.
In this case, the information about the anomaly score for each
set of RSS values per link is used, jointly with the distance
of each pixel of the map from each link.

B. Radio Tomography Method

Was adopted the common assumption of 2-D localization
since the third dimension usually in not of primary interestin
an indoor environment.

In [10], authors study the application of the Radio Tomo-
graphic Imaging (RTI) to a wireless sensor network. Roughly
speaking, this method provides the image of the attenuation
in the RSS due to the target within the wireless network.
Precisely, the authors localize the target by studying the
Variance of the Radio Tomographic Image (VRTI).

The method can be stated as in the following. Let
{a1, . . . , an} be the anchor set, with known positions. The
anchor pair(ai, aj) is a link l of the wireless network, the
total number of linksL is calculated as described within the
section II. The network area is conventionally divided intoP
pixels, so the movement of the target is discretized on the
pixel set.

The problem is to find a mapping that links the variance per
link to the variance per pixel of the RSS’s values. The authors
in this work adopt a linear model

s = W spx + n (14)

wherespx ∈ R
P is the RTI over the pixel set, sospxi

is
the variances of the RSS value for thei− th pixel, s ∈ R

L

is the vector of the measured values of variance over the set
of links, n ∈ R

L is the noise of the measures, and finally
W ∈ R

LxP is the mapping matrix whose entries are the
weights that link the pixels to the variance per link.

The weights of the mapping matrixW can be calculated
assuming that the power of the received signal is proportional
to the inverse of the squared distance covered by the signal,
and that the target crossing a link(ai, aj) influences a set of
pixels. Precisely, the authors assume that the set of influenced
pixels fall within within the area limited by an ellipse. Hence,
for the weights of the matrixW the following equation is
applied:

wij =
1√
LoS

{

φ if d1ij + d2ij < LoS + λ
0 otherwise

(15)

whereLoS is the distance of the line of sight between two
nodes ,d1ij andd2ij are the distances from the center of pixel
j to the two node locations for linki, and λ is a tunable
parameter describing the width of the ellipse. The parameter
λ is typically set very low usually in the range[0.1−0.6] (m).
The ellipsoid is primarily used to simplify the process of
determining which pixels fall along the LoS path, as showed
in the figure 2 by the green pixels. Finally, the parameterφ is
a scaling factor to normalize the RTI, typical values are into
the interval1− 100(dB)2.

The model estimation of the variance per pixel in the
equation (14) provides a mathematical framework to relate
the target’s movement in space to a links RSS variance. The
model is an ill-posed inverse problem that is highly sensitive
to measurement and modeling noise. The solutionspx can be
calculated by the least-squares approach, but the solutioncan
not be unique, hence the regularization method [19] must be
applied to obtain the solution. In this work, the authors propose
as regularization method the Tikhonov’s method. Through the
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Fig. 2. Representation of pixels involved along the LoS path.

Tikhonov method the least-squares problem that needs to be
revolved is:

ŝpx = argmin
spx

1

2
||W spx − s||2 + α||Qspx|| (16)

whereQis the Tikhonov’s matrix that produces the solution
with the desired properties, andα is a tunable regularization
parameter. To calculate the parameterα many algorithms have
been developed [20]. The least-squares problem’s solutioncan
be calculated by the following equation:

ŝpx = (W ′W + αQ′Q)−1W ′
s. (17)

As stated above, the matrixQ captures some features of the
measured acquired. Taking into account the covariance matrix
C as well as the varianceσ2

N of the noise process linked to the
measures, the solution in the equation (17) can be calculated
as:

ŝpx = (W ′W + σ2
NC−1)−1W ′

s. (18)

The entriescij of the covariance matrixC can be calculated
assuming that the spatial attenuation of the field decays with
exponential law [21]

cij = σ2exp

(

−dij
δc

)

(19)

wheredij is the distance between centers of pixelsi andj,
σ2 is the variance of pixel attenuation, andδc is a correlation
parameter that can be used to determine the desired amount of
smoothness in the image. The target’s coordinatesx = [x y]
are the coordinates of the maximum value in the vectorŝpx

calculated by the regularization method.
Finally the authors develop the tracking algorithm based

on the VRTI values through the Kalman’s filter as in the
following:

V̂ = V + σ2
mI2;

G = V̂ (V̂ + σ2
nI2)

−1

x̂ = x̂+G(x − x̂)

V = (I2 −G)V̂ (20)

whereI2 is the2× 2 identity matrix,σ2
m is the variance of

the targets motion process, indicating how fast the object is
capable of moving. Larger values enable the filter to track
faster moving objects. Authors also take into accountσ2

n

that is the variance of the measurement noise. Larger values
will cause the filter to trust the statistical predictions over
the instantaneous measurements. The vectorx̂ contains the
Kalman esteemed coordinatesx and y. x is a two-element
vector containing the instantaneous measurement of the target
coordinates through the VRTI method.V̂ is the a priori error
covariance matrix andV is the a posteriori error covariance
matrix and finallyG the Kalman Gain. Note that authors
provide some values for these parameters through a set of
measurements performed during their experiments.

In this case the coordinates of the target position are
the coordinates of the maximum of the vectorŝpx or the
coordinateŝx filtered out by the Kalman altorithm.

IV. N UMERICAL RESULTS

The numerical results discussed in this section are obtained
by both measurements performed with the WNS deployed by
us, as discussed in the section II and by the repository of data
making available by the SPAN laboratory at University of Utah
on Internet. The performance of the algorithms described into
the section III are analyzed for the following scenarios:

TABLE I
SCENARIOS

Scenario Area(m2) Anchors Channels Speed(m/s)

1 6.4× 4.5 25 1 0.25
2 6.5× 4.5 28 1 0.915
3 6.5× 4.5 28 1 1.83
4 6.5× 8.4 33 5 0.45

whereChannel is the number of wireless channels used to
acquire the RSS values, andSpeed is the target’s peed along
the path.

We have developed the localization algorithms, as well as
the data elaboration modules by means of the MATLAB tool.

The performance parameters are related with the error
ǫ =

√

((x − x̂)2 + (y − ŷ)2), wherex, y and x̂, ŷ are the
components of the position and the estimated position of
the target, respectively. Precisely, the parameters takeninto
account are the Mean Squared Error (MSE) of the estimated
positions, and the70 − th and 90 − th percentile of the
estimation error. Moreover, figures about the estimation error
distribution are shown in the following.

The performance discussed in the following are about the
Scenario 1. First the results on the Bayesian method are
presented, and later those one on the Tomographic approach.
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The Bayesian method has been applied on the lattice with
9 × 13 cells, the area per cell was about0.5 × 0.5 m2. The
Calibration phase, discussed in section III-A1, has involved the
estimation of the average and variancehl andσl, respectively,
of the RSS values per link without presence of target. The
transition probabilityp(xt|xt−1) has been defined through a
matrixM where the entrymij is the probability that the target
from the celli goes to the cellj. Finally, we assume that the
initial probability p(x0) is 1. This information is used for the
resolution of the recursive problem in the equations (2, 3, 5, 4).
We assume that the target moves with steps of one cell, hence
the cells with distance one step from the target can be reached
with equal probability, otherwise with probability zero. Figure
(3) shows the distribution of the error of the estimated position,
precisely, the figure 3(a) shows the error distribution assuming
that the target can move toward any cell with distance1,
while the figure 3(b) shows the error distribution when some
obstacles are considered along the path so that some cells with
distance1 become unreachable.
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Fig. 3. Error Distribution Bayesian Method Scenario 1

The figures show that the knowledge of the target movement
significantly affects the error estimation. In fact, the estimation
error increases of the12.6%, decreasing information on about
23% of the cells. Moreover, increasing the knowledge it is
possible to bound the dispersion of the error values. Note that
in the case with more information on the target movements
the dispersion of the error values decreases of about50% .
The values in the Table II confirm these results. The values in
the first row are relevant to the case with less knowledge on
the target’s movements.

The reason is that, in this last case, the number of inde-

TABLE II
PERFORMANCEPARAMETERSSCENARIO 1 BAYESIAN METHOD

RMSE (m) 75-th percentile (m) 90-th percentile (m)

0.87 0.88 1.23
0.77 0.9 1.1

terminate states reachable by the target grows. Instead, when
we can limit the target’s movement the stochastic process that
underlies to it results like constrained.

The Tomographic method has been applied on theScenario
1 using the algorithm’s parameters shown in tableIII. The
method has been tested assuming the solution for the VRTI
that in the equation (17) first and in the equation (18) later.In
the first case the matrixQ is the identity matrix.

TABLE III
TOMOGRAPHICALGORITHM’ S PARAMETERS

λ (m) σ (dB) σN δc σm σn Φ (dB)2

0.1 0.3 1 3 0.1 5 60

Moreover, the values of the estimated position have been fil-
tered out through the Kalman’s filter to study the improvement
of the performance estimation.

Figure 4 shows the distribution of the localization error
using the Tomographic method assuming the equation 18 as a
solution of the VRTI.
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Fig. 4. Error Distribution Tomographic Method Scenario 1

The figure 4(a) shows the error distribution when only
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the VRTI is used, instead the figure 4(b) shows the error
distribution when the estimated position is also filtered out
by Kalman. The figures show that the Kalman filter does not
improve the method’s performance. In fact, the dispersion of
the error values is the same as well as the interval of errors
with the maximum number of occurrences. These results are
confirmed by the performance parameters shown in table IV.

TABLE IV
PERFORMANCEPARAMETERSSCENARIO 1 TOMOGRAPHICMETHOD

RMSE (m) 75-th percentile (m) 90-th percentile (m)

1.60 1.95 2.70
1.58 1.93 2.62

The values in the first row of the table?? are relevant to the
VRTI estimation only, while the values in the second row are
about the VRTI values filtered out by the Kalman’s filter. Even
if the Kalman filter does not give advantage in the position
estimation, note that through it also the speed of the target
can be estimated if the target moves of constant velocity.

Figure (5) shows the distribution of the localization error
using the Tomographic method, assuming equation 17 as a
solution of the VRTI, which we call Un-Noised model.
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Fig. 5. Error Distribution Tomographic Method Un-Noised Scenario 1

Figure 5(a) shows the error distribution when only the VRTI
is used, while the picture 5(b) shows the error distribution
when the estimated position is also filtered out by Kalman. In
this case too, the Kalman’s filter does not give advantage, as
shown in table V .

TABLE V
PERFORMANCEPARAMETERSSCENARIO 1 TOMOGRAPHICMETHOD

UN-NOISEDMODEL

RMSE (m) 75-th percentile (m) 90-th percentile (m)

2.55 3.28 3.78
2.54 3.28 3.77

The error reduction is notable when the equation 18 is used
as a solution for the VRTI instead of equation 17. In this
case, the localization error can be decreased about of59%,
moreover, the error dispersion is lower with the first solution
than the second one, as the figures 4 and 5 show.

In the following, the figures about the performance of
the Bayesian and Tomographic methods on theScenario 2
and Scenario 3are shown. The considerations made for the
Scenario 1hold true, also for these two scenarios.

For Scenario 2and Scenario 3, the Bayesian method has
been applied on the lattice with10×14 cells, the area per cell
was about0.45× 0.45m2

Figure 6 shows the distribution of the localization error for
the Bayesian method for the scenarios 2 and 3. Precisely, figure
6(a) shows the error distribution for theScenario 2and the
figure 6(b) for theScenario3.
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Fig. 6. Error Distribution Bayesian Method Scenarios 2-3

Table VI shows the performance parameters for both sce-
narios 2-3 for the Bayesian Method.

Figure 7 shows the distribution of the localization error
for the Tomographic method for theScenario 2 . Precisely,
the picture 7(a) shows the distribution for the only VRTI
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TABLE VI
PERFORMANCEPARAMETERSSCENARIOS2 AND 3 BAYESIAN METHOD

Scenario RMSE (m) 75-th percentile (m) 90-th percentile (m)

2 3.88 4.7 5.8
3 1.62 0.47 3.55

estimation, while the picture 7(b) shows the distribution for
the VRTI estimation filtered out by Kalman.
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Fig. 7. Error Distribution Tomographic Method Scenario 2

The figure 8 shows the distribution of the localization error
for the Tomographic method for the Un-Noised Model for the
Scenario 2. Precisely, the picture 8(a) shows the distribution
for the only VRTI estimation, instead the picture 8(b) shows
the distribution for the VRTI estimation filtered out by the
Kalman.

Figure 9 shows the distribution of the localization error for
the Tomographic method for theScenario 3 . Precisely, the
figure 9(a) shows the distribution for the only VRTI estimation,
instead the picture 9(b) shows the distribution for the VRTI
estimation filtered out by Kalman.

Figure 10 shows the distribution of the localization error
for the Tomographic method for the Un-Noised Model for the
Scenario 3. Precisely, the figure 10(a) shows the distribution
for the VRTI estimation only, while the figure 10(b) shows
the distribution for the VRTI estimation filtered out by the
Kalman.

Table VII and table VIII show the performance parameters
for the scenarios 2-3 for the Tomographic Method and for the
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Fig. 8. Error Distribution Tomographic Method Scenario 2 Un-Noised Model
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Fig. 10. Error Distribution Tomographic Method Scenario 2 Un-Noised Model

Tomographic Method for the Un-Noised Model, respectively.
In both the tables the values in the first and third rows refer
to the VRTI estimation instead the values in the second and
forth rows refer to the VRTI values filtered out by Kalman.

TABLE VII
PERFORMANCEPARAMETERSSCENARIOS2-3 TOMOGRAPHICMETHOD

RMSE (m) 75-th percentile (m) 90-th percentile (m)
Scenario 2

1.26 1.55 2
1.26 1.55 1.97

Scenario3
3.06 4.24 5.60
3.05 4.23 5.59

TABLE VIII
PERFORMANCEPARAMETERSSCENARIOS2-3 TOMOGRAPHICMETHOD

UN-NOISEDMODEL

RMSE (m) 75-th percentile (m) 90-th percentile (m)
Scenario 2

1.66 1.84 2.53
1.67 1.82 2.53

Scenario 3
3.52 5.09 5.78
3.51 5.07 5.78

Finally, we provide the performance analysis of the Tomo-
graphic Method for theScenario 4. In this case the Bayesian
Method is not taken into account because the multi-channel

measure of the RSS values is per formed, and the authors of
the Bayesian method do not give indication on how to use the
multi-channel measures.

Also in this scenario, the Tomographic method has been
applied using the algorithm’s parameters shown in the table
III. Again, the method has been tested assuming as solution
for the VRTI the equation (17) first, and that in the equation
18 later. In both cases the Kalman’s filters has been applied.

Figure 11 shows the distribution of the localization error
using the Tomographic method based on the VRTI estimation.
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Fig. 11. Error Distribution Tomographic Method Scenario 4

Figure 11(a) shows the error distribution when only the
VRTI is used, instead the figure 11(b) shows the error dis-
tribution when the estimated position is also filtered out by
Kalman. The figures show that the Kalman filter does not
improve the method’s performance. In fact the dispersion of
the error values is the same as well as the interval of errors
with the maximum number of occurrences. These results are
confirmed by the performance parameters shown in table IX.

TABLE IX
PERFORMANCEPARAMETERSSCENARIO 4 TOMOGRAPHICMETHOD

RMSE (m) 75-th percentile (m) 90-th percentile (m)

0.62 0.68 1.04
0.62 0.68 1.02

The values in the first row of the table IX refer to VRTI
estimation only, while the values in the second row refer to
the VRTI values filtered out by the Kalman’s filter.
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The figure 12 shows the distribution of the localization error
using the Tomographic method, assuming equation (17) as a
solution of the VRTI , which we call Un-Noised model.
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Fig. 12. Error Distribution Tomographic Method Un-Noised Scenario 1

Figure 12(a) shows the error distribution when the VRTI
only is used, while the figure 12(b) shows the error distribution
when the estimated position is also filtered out by Kalman. In
this case too, the Kalman’s filter does not give advantage as
shown in the table X .

TABLE X
PERFORMANCEPARAMETERSSCENARIO 1 TOMOGRAPHICMETHOD

UN-NOISEDMODEL

RMSE (m) 75-th percentile (m) 90-th percentile (m)

1.67 1.85 2.53
1.66 1.83 2.53

Also in this case the error reduction is notable when 17
is used as a solution for the VRTI rather than the solution
in the equation 18. In this case, the localization error can be
decreased of63%, moreover, the error dispersion is lower with
the first solution than the second one, as the figures 11 and
12 show.

In general, the numerical results show that Bayesian and
Tomographic Method for single-channel measure of the RSS
have confrontable performance. The multi-channel measures
improve the performance of the Tomographic approach, in
terms of RMSE,75− th and90− th percentiles . The Kalman
filter does not give notable advantage on the estimation. The

regularized solution based on the parameters of the measure’s
error gives better results in the position estimation.

V. CONCLUSION

In this paper we have presented the survey on the localiza-
tion and tracking algorithms for passive indoor applications,
based on WSNs working with the 802.11 or 802.15.4 network
protocols. We have introduced the problem of the localization,
and in particular the problem addressed in this paper, in the
section II, and later in the section III we have provided a com-
prehensive analysis of the theory behind the algorithms taken
into account. Finally, some numerical results have been shown
to provide a comparison between the two classes of methods
discussed, prediction and Radio Tomography respectively.

Through the prediction methods the RMSE is about
0.77 (m) this result is obtained with about1 sensor per
squared meter of localization area, by the accurate descrip-
tion of target’s movements as well as of the measure error.
These last two variable are characterized through the a-priori
density probability of the target’s movement, the error density
distribution and the mathematical model for the multi-path
phenomenon. These methods make use of the lattice for the
definition of the a-priori information and for the calibration
phase performed during the algorithm. Obviously the width
of the lattice’s cells affects the precision of the localization
algorithm and its computational performance. In fact, if the
cells are too small the localization precision can be high
but the computational cost grows exponentially, so that the
algorithm is not able to calculate the target position in real
time. Moreover, the calibration time of these algorithms is
linked to the number of cells. In fact, the calibration values
are evaluated cell per cell, in some cases with the target that
moves through the cells in other cases without the target. This
operation can require many time. Note that, if the topology of
the localization area changes the calibration phase shouldbe
performed again given that the multi-path effect can drastically
change, again if the topology of the area changes also the a-
priori information needs to be redefined, given that the cells
crossed by the target can change for example.

Through the Radio Tomographic method the RMSE is about
0.62 (m) this result is obtained with about0.6 sensors per
squared meter of localization area, in this case the method not
requires any kind of a-priori information to work. The only
information required is about the model of the measure error,
this information is required by the regularization solution of
the VRTI when the measure error is taken into account. The
lattice is useful also in this case to evaluate the algorithm’s
performance, but the width of the cells does not affect the
precision of the localization algorithm as in the case of the
prediction algorithms. Also in this case the number of cells
of the lattice affects the computational cost, given that if
the number of cells grows also the dimension of the VRTI
grows, and the regularization algorithm can suffer of this
growth of dimensionality. In this case the calibration phase
is not necessary, intact in our tests this operation has not
been performed, obtaining confront able performance with the
prediction methods. In this method a changing in the topol-
ogy of the localization area does not affect the performance
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algorithm, given that no information such as the probability to
cross a given cell given that the target was in the another one,
is required. Finally note that the application of the Kalman’s
filter does provide performance increasing of1%, instead the
regularization method based on the measure error gives a
notable advantage, as well as the multi-channel acquisition
of the RSS values.

In the table XI are summarized all the final considerations
about the study of the algorithms taken into account.

TABLE XI
COMPARISONPREDICTION METHOD VS RADIO TOMOGRAPHY

Prediction Radio Tomography
Sensor Density 1 [ 0.6-1]

Computational Cost O(N2

cells
) O(3NpxBd2 + 24NpxBd+

O(N1.7
trs) 3Npx)

Resilience Very Low High
Calibration Required Not required

Hence, the Sensor Density(sensors/m2) of two ap-
proaches are comparable, even if for the Tomographic method
with the multi-channel acquisition this values is the smallest
between two methods. The computational cost for the predic-
tion methods is a power of the number of cellsNcell and of
the number of training setNtrs for the Grid-Based Bayesian
and SVM method respectively. Instead for the Tomographic
method the complexity is the polynomial function of the
bandwidth of the matrixW and of the cardinality of the
number of pixelsNpx used to characterize the VRTI. Finally,
the prediction approaches require the calibration phase, which
can require many time, this phase is not required in the
Tomographic method.

REFERENCES

[1] G. Mao, B. Fidan, and B. D.O. Anderson, “Wireless Sensor Network
Localization Techniques,”Elsevier Computer Networks, vol. 51, no. 10,
pp. 2529–2553, July 2007.

[2] A. Haeberlen, A. Rudys, E. Flannery, D. S. Wallach, A. M. Ladd, and
L. E. Kavraki, “Practical robust localization over large-scale 802.11
wireless networks,” inProc. ACM Intl. Conf. MOBICOM, Philadelphia,
Pennsylvania, USA, September 2004, pp. 70–84.

[3] C. Xu, Y. Zhao, and Y. Zhang, “Localization technology inwireless
sensor networks based on uwb,” inProc. IEEE Intl. Conf. WNIS,
Shanghai, China, December 2009, pp. 35–37.

[4] A. Falhi, “Localization estimation in wireless sensor networks based on
ieee 802.15.4 standard,” inProc. IEEE Intl. Conf. ICMCS, Ouarzazate,
Morocco, April 2011, pp. 1–6.

[5] C. Morelli, M. Nicolini, V. Rampa, and U. Spagnolini, “Hidden Markov
Models for Radio Localization in Mixed LOS/NLOS Conditions,” IEEE
Transaction on Signal Processing, vol. 5, no. 4, pp. 1525–1542, April
2007.

[6] and Crossbow and Technology, “IRIS Datasheet,” http://bullseye.xbow.
com:81/Products/productdetails.aspx?sid=264, 2013.

[7] S. Savazzi, M. Nicoli, and M. Riva, “Radio imaging by cooperative
wireless network: Localization algorithms and experiments,” in Proc.
IEEE Intl. Conf. WCNC, Paris, France, April 2012, pp. 1–5.

[8] A. E. Kosba, A. Saeed, and M. Youssef, “Rasid: A robust wlan device-
free passive motion detection system,” inProc. IEEE Intl. Conf. PCC,
Lugano, Switzerland, March 2012, pp. 180–189.

[9] F. Viani, M. Martinelli, L. Ioriatti, M. Benedetti, and A. Massa, “Passive
real-time localization through wireless sensor networks,” in Proc. IEEE
Intl. Conf. IGARSS, Cape Town, South Africa, July 2009, pp. 718–721.

[10] J. Wilson and N. Patwari, “Radio Tomographic Imaging with Wireless
Networks,” IEEE Transaction on Mobile Computing, vol. 9, no. 5, pp.
621–632, May 2010.

[11] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Track-
ing,” IEEE Transaction on Signal Processing, vol. 50, no. 2, pp. 174–
188, February 2002.

[12] J. M. Aughenbaugh and B. R. La Cour, “Measurement-Guided Like-
lihood Sampling for Grid-Based Bayesian Tracking,”JOURNAL OF
ADVANCES IN INFORMATION FUSION, vol. 5, no. 2, pp. 102–127,
December 2010.

[13] R. Srinivasan,Importance Sampling. SPRINGER, 2002.
[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes. Cambridge University Press, 2007.
[15] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[16] A. Massa, A. Boni and M. Donelli, “A Classification Approach Based

on SVM for Electromagnetic Subsurface Sensing,”IEEE Tran. On Geo-
science and Remote Sensing, vol. 43, no. 9, pp. 2084–2093, September
2005.

[17] J. Platt,Probabilistic outputs for support vector machines and compar-
ison to regularized likelihood methods. Cambridge, MA: Advances in
large margin Classifiers, MIT Press, 1999.

[18] A. W. Bowman, “A comparative study of some kernel-basednonpara-
metric density estimators,”J. Statist. Comput. Simul., vol. 21, no. 1, pp.
313–327, April 1985.

[19] J. Wilson, N. Patwari, and F. G. Vasquez, “Regularization methods for
radio tomographic imaging,” inProc. Virginia Tech Wireless Symposium,
Virginia, USA, June 2009, pp. 1–9.

[20] H. W. Engl, M. Hanke, and A. Neubauer,Regularization of Inverse
Problems. SPRINGER, 2004.

[21] K. Ossi, M. Bocca, and N. Patwari, “Enhancing the accuracy of radio
tomographic imaging using channel diversity,” inIEEE Int. Conf. MASS,
Las Vegas, Nv, October 2012, pp. 1–9.


