

The Handbook
of Mobile

Middleware

AU3833_C00.fm Page i Thursday, August 24, 2006 7:36 AM

AUERBACH PUBLICATIONS
www.auerbach-publications.com

To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401
E-mail: orders@crcpress.com

Accelerating Process Improvement Using
Agile Techniques
Deb Jacobs
0-8493-3796-8

Antipatterns: Identification, Refactoring,
and Management
Phillip A. Laplante and Colin J. Neill
0-8493-2994-9

Business Process Management Systems
James F. Chang
0-8493-2310-X

The Complete Project Management
Office Handbook
Gerard M. Hill
0-8493-2173-5

Defining and Deploying Software Processes
F. Alan Goodman
0-8493-9845-2

Embedded Linux System Design
and Development
P. Raghavan, Amol Lad, and Sriram Neelakandan
0-8493-4058-6

Global Software Development Handbook
Raghvinder Sangwan, Matthew Bass, Neel Mullick,
Daniel J. Paulish, and Juergen Kazmeier
0-8493-9384-1

Implementing the IT Balanced Scorecard
Jessica Keyes
0-8493-2621-4

The Insider’s Guide to Outsourcing Risks
and Rewards
Johann Rost
0-8493-7017-5

Interpreting the CMMI®
Margaret Kulpa and Kent Johnson
0-8493-1654-5

Modeling Software with Finite State Machines
Ferdinand Wagner, Ruedi Schmuki, Thomas
Wagner, and Peter Wolstenholme
0-8493-8086-3

Optimizing Human Capital with a
Strategic Project Office
J. Kent Crawford and Jeannette Cabanis-Brewin
0-8493-5410-2

A Practical Guide to Information
Systems Strategic Planning, Second Edition
Anita Cassidy
0-8493-5073-5

Process-Based Software Project
Management
F. Alan Goodman
0-8493-7304-2
Project Management Maturity Model,
Second Edition
J. Kent Crawford
0-8493-7945-8

Real Process Improvement Using the
CMMI®
Michael West
0-8493-2109-3

Reducing Risk with Software Process
Improvement
Louis Poulin
0-8493-3828-X

The ROI from Software Quality
Khaled El Emam
0-8493-3298-2

Software Engineering Quality Practices
Ronald Kirk Kandt
0-8493-4633-9
Software Sizing, Estimation, and Risk
Management
Daniel D. Galorath and Michael W. Evans
0-8493-3593-0

Software Specification and Design: An
Engineering Approach
John C. Munson
0-8493-1992-7
Software Testing and Continuous Quality
Improvement, Second Edition
William E. Lewis
0-8493-2524-2

Strategic Software Engineering: An
Interdisciplinary Approach
Fadi P. Deek, James A.M. McHugh,
and Osama M. Eljabiri
0-8493-3939-1

Successful Packaged Software
Implementation
Christine B. Tayntor
0-8493-3410-1

UML for Developing Knowledge
Management Systems
Anthony J. Rhem
0-8493-2723-7

Other Auerbach Publications in
Software Development, Software Engineering,

and Project Management

AU3833_C00.fm Page ii Thursday, August 24, 2006 7:36 AM

The Handbook
of Mobile

Middleware

Paolo Bellavista • Antonio Corradi
Edited by

Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

AU3833_C00.fm Page iii Thursday, August 24, 2006 7:36 AM

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-3833-6 (Hardcover)
International Standard Book Number-13: 978-0-8493-3833-5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Bellavista, Paolo.
The handbook of mobile middleware / Paolo Bellavista and Antonio Corradi.

p. cm.
Includes bibliographical references and index.
ISBN 0-8493-3833-6 (978-0-8493-3833-5 : alk. paper)
1. Mobile computing--Handbooks, manuals, etc. 2. Middleware--Handbooks,

manuals, etc. 3. Ubiquitous computing--Handbooks, manuals, etc. I. Corradi, A.
(Antonio) II. Title.

QA76.59B42 2006
004.165--dc22 2006005314

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

AU3833_C00.fm Page iv Thursday, August 24, 2006 7:36 AM

v

Preface

Because device miniaturization and wireless communications are mak-
ing it more feasible to use mobility-enhanced services to exploit all
potential and all the opportunities of mobile computing, the ultimate
goal of mobility scenarios is becoming the realization of ubiquitous,
pervasive, and eventually disappearing computing — in other words,
the seamless and transparent collaboration of wireless devices with most
human activities without the need for explicit user or administration
intervention. This vision, however, introduces novel challenges for the
support infrastructure that require novel middleware solutions capable
of addressing connectivity-level, location-dependent, and context-
dependent support issues, all of which are crucial for advanced adaptive
services for mobile environments.

The purpose of this advanced reference book is to provide an
exhaustive overview of the work done in recent years in very different
fields related to software support of mobile computing. The goal is to
present some relevant results obtained and lessons learned in a single
compendium that adopts the original and comprehensive perspective
of developing and deploying mobile middleware. The book begins by
presenting mobile middleware motivations, requirements, and technol-
ogies; it then proposes a taxonomy of solutions found in the literature
and organized on the basis of their increasingly complex goals (mobility
and disconnection handling, location-based support, and context-based
support). In addition, the book pays particular attention to the variety
of application domains in which mobile middleware is demonstrating
its feasibility and effectiveness and shows by example the pros, cons,
and tradeoffs of the emerging mobile middleware solutions. Some of
the goals that have inspired our work include:

AU3833_C00.fm Page v Thursday, August 24, 2006 7:36 AM

vi

■

Mobile Middleware

■

Clarifying and organizing timely reference information about a hot
topic in a way that we believe will enhance its relevance

■

Assembling the authoritative opinions of many recognized experts
in the field to produce a significant collection of important but
different perspectives

■

Producing a compendium useful for experts in the field as a
reference volume or comparison stimulus as well as for people
who wish to improve their knowledge via an easy-to-follow guide
that also provides deep technical details

■

Providing a tool that organizes our knowledge in the field of mobile
middleware and spreading this knowledge throughout our research
community

We approached the design of this book by considering what might be
suitable for graduate students and Ph.D. candidates, as well as for research-
ers and practitioners in the areas of both mobile computing and applica-
tion-level environments for the provisioning of mobility-enhanced services.
This book could serve as a reference in this area and as the basis for an
advanced mobile computing seminar class.

We begin in Section 1 by establishing a common background regarding
mobile computing. Some innovative technologies that are emerging and
providing relevant solutions in the development of mobile middleware
are covered in Section 2, which has the objective not of presenting single
solutions but of surveying the main developments contributing to such
innovations. Section 3 addresses the primary requirements of support
infrastructures and stresses the crucial requirement of maintaining session
information independently of user, terminal, and resource mobility during
service provisioning.

The next three sections share the goal of presenting a complete
overview of real results deriving from investigations and discussions in
the field of mobile middleware at large. We have classified mobile mid-
dleware into three categories. Section 4 reports on mobile middleware
that supports seamless connectivity during the access of traditional ser-
vices; such middleware is typically designed and deployed for wired
networks via wireless terminals. This section also presents solutions for
transparent network connectivity, data consistency, and resource and
service replication. Section 5 presents mobile middleware that addresses
the further challenge of increasing complexity — that is, the support of
novel location-dependent services that must deal with client location or
client–server positions at provisioning time. Section 6 addresses mobile
middleware for novel and more complex application scenarios where
service contents must be adapted on the fly to the currently applicable
context; doing so allows the deployment of services that also depend on

AU3833_C00.fm Page vi Thursday, August 24, 2006 7:36 AM

Preface

■

vii

the profile of client terminals, on user preferences, on server congestion,
and, in general, on any relevant property describing the distributed
resources involved in mobility-enhanced service provisioning.

Section 7 is devoted to presenting the primary application areas where
the need for mobile middleware solutions has already emerged in a clear
and obvious way. The goal of this section is to report lessons learned
from practical experience by presenting real cases of mobile middleware
use in several domains as well as an overview of the state of the art and
future directions of mobile applications, from wearable computing to
ubiquitous entertainment and from context-dependent content distribution
networks to collaborative applications in war or disaster scenarios.

Many people have contributed much competence and expertise to this
book. All of the authors have enthusiastically supported the project and
devoted so much of their (little) available time for such a demanding duty.
We sincerely thank all of our other colleagues who supported us during
the initial book design phase and reviewed some of the chapters relevant
to their fields of expertise. Also, we express out appreciation to the
editorial staff (Sartaj Sahni for inviting us to consider the idea of a mobile
middleware book; John Wyzalek, Karen Schober, and Kari Budyk for their
continuous organizational support), without whose deep involvement and
motivation this book could not have come to fruition. Their suggestions,
advice, and support have been invaluable and fundamental. Finally, we
must mention our families and friends, who have supported us throughout
the project and demonstrated great patience.

Paolo Bellavista
Antonio Corradi

AU3833_C00.fm Page vii Thursday, August 24, 2006 7:36 AM

AU3833_C00.fm Page viii Thursday, August 24, 2006 7:36 AM

ix

The Editors

Paolo Bellavista

 is an associate professor of computer
engineering within the Department of Electronics,
Computer Science, and Systems (DEIS) of the Univer-
sity of Bologna, Italy, where he teaches several courses
on computer basics and operating systems. He
received the Laurea degree in Electronics Engineering
and his Ph.D. in computer engineering from the Uni-
versity of Bologna. His research activities range from

mobile computing to mobile agent-based middleware, from pervasive
wireless computing to location-/context-aware services, from replication in
mobile

ad hoc

 networks to adaptive multimedia. He is a member of several
professional associations, including IEEE, ACM, and AICA (Italian Associ-
ation for Computing). He is an associate technical editor of the

IEEE
Communication Magazine

. Readers can find more information about him
at his Web page (http://lia.deis.unibo.it/Staff/PaoloBellavista/).

Antonio Corradi

 is a full professor of computer engi-
neering within the Department of Electronics, Computer
Science, and Systems (DEIS) of the University of Bologna,
Italy, where he teaches several courses on basic computer
networks and advanced distributed systems and infrastruc-
tures. He received the Laurea degree in electronics engi-
neering from the University of Bologna and his M.S.
degree in electrical engineering from Cornell University.

His research interests focus on parallel and distributed systems, support infra-
structures for mobile and dynamic services, advanced middleware for pervasive
and mobile computing, and context- and location-aware provisioning. He is a
member of several professional associations, including IEEE, ACM, and AICA
(Italian Association for Computing). Readers can find more information about
him at his Web page (http://lia.deis.unibo.it/Staff/AntonioCorradi/).

AU3833_C00.fm Page ix Thursday, August 24, 2006 7:36 AM

AU3833_C00.fm Page x Thursday, August 24, 2006 7:36 AM

xi

Contributors

Sachin Agarwal

 received his Ph.D. in
computer engineering at Boston Univer-
sity in 2005, his master’s degree in com-
puter engineering from Boston University
in 2002, and his bachelor’s degree in elec-
tronics and communication engineering
from the Regional Engineering College,
Warangal, India, in 2000. He began work
at Deutsche Telekom Laboratories, Berlin,
Germany, in 2005 as a postdoctoral
research scientist.

Alessandra Agostini

 earned a M.Sc. in
information science from the University
of Milan, Italy. She is an assistant profes-
sor in the DICo Department of the Uni-
versity of Milano and has participated in
various European Union funded research
projects; in particular, she was project
manager of the Esprit LTR Campiello
project, which studied ubiquitous tech-
nologies to support cultural exchanges
among communities worldwide.

Nadeem Akhtar

 is a research fellow at
the Centre for Communication Systems
Research (CCSR) at the University of Sur-
rey. He received his M.E. degree in Tele-
communications from the Indian Institute
of Science, Bangalore, India, in 2000 and
is pursuing a Ph.D. in routing and quality
of service in mobile

ad

hoc

 networks. He
was involved with the IST EVOLUTE
project and has been a member of the
Mobile Research Group since 2001. He has
also worked on the Mobile Virtual Centre

of Excellence in Mobile and Personal
Communications (Mobile VCE) project.

Nancy Alonistioti

 has earned B.Sc. and
Ph.D. degrees in informatics and telecom-
munications from the University of Athens,
Greece. She had been working as an
expert at the National Telecommunications
Commission and is a project manager and
senior researcher in the Communication
Networks Laboratory at the University of
Athens. She has participated in several
national and European projects; she was
technical manager of the IST projects
MOBIVAS and ANWIRE. She is involved
in the IST projects E2R and LIAISON,
focusing on reconfigurable mobile envi-
ronments and on location-based services
for working environments, respectively.

Stefan Arbanowski

 is director of the
Competence Centre Smart Environments
at Fraunhofer Institute for Open Commu-
nication Systems (FOKUS) in Berlin, Ger-
many, where his work is focused on the
provision of telecommunications services
in a variety of environments. He received
his Ph.D. and M.Sc. in computer science
at the Technical University Berlin. He has
had over 60 papers published in journals
and conference proceedings in the area
of mobile service provisioning and I-cen-
tric communications. He is active in the
Wireless World Research Forum and was
chairman elect of the WWRF Service Plat-
form Working Group for 2004–2005.

AU3833_C00.fm Page xi Thursday, August 24, 2006 7:36 AM

xii

■

Mobile Middleware

Jean Bacon

 is a reader in distributed sys-
tems and a fellow of Jesus College Cam-
bridge. She leads the Opera research
group at the University of Cambridge
Computer Laboratory and is editor-in-chief
of

Distributed Systems Online

, the IEEE’s
first online-only magazine. She is also a
member of the governing body of the IEEE
Computer Society.

Dineshbalu Balakrishnan

 is working on
his Ph.D. in computer science at the
School of Information Technology and
Engineering (SITE), University of Ottawa,
Canada, where he received his master’s
degree in 2004. He earned his B.E. in
computer science from the University of
Madras, India, in 2001.

Guruduth Banavar

 is the senior manager
of the Pervasive Computing Infrastructure
department at the IBM T.J. Watson
Research Center in Hawthorne, New York.
His group works on several aspects of
pervasive computing, such as context-
based and notification systems, wearable
and embedded systems, programming
tools, and security technologies for per-
vasive applications. He received his Ph.D.
in computer science from the University
of Utah.

Nalini Belaramani

 received her master’s
degree in computer science from the Uni-
versity of Hong Kong in 2002. During her
study, she helped design the Facet pro-
gramming model for the Sparkle project.
She is now a Ph.D. student at the Univer-
sity of Texas at Austin.

Claudio Bettini

 is a professor of com-
puter science at the DICo Department of
the University of Milan. He is also a
research professor at the Center for Secure
Information Systems of George Mason
University, Fairfax, Virginia. He received
his Ph.D. in computer science from the
University of Milan in 1993. He is a mem-
ber of ACM Sigmod.

Andrzej Bieszczad

 is an assistant profes-
sor of computer science at California State
University, Channel Islands. His research
has focused on building computer pro-
grams that mimic high-level processing

functions of the human brain and on the
study of intelligent methods for applica-
tions, primarily in computer networking.
He has worked in the R&D departments
of leading computer and telecommunica-
tions companies, including Alcatel, Bell-
Northern Research (Nortel Networks), and
Bell Laboratories (Lucent). He earned his
Ph.D. in electrical engineering and master’s
degree in computer science at Carleton
University, Canada, as well as a master’s
degree in informatics from the Jagiellonian
University, Poland. He is the author of
numerous published papers.

Gordon Blair

 graduated from Strathclyde
University with a first-class honours degree
in computer science in 1980 and earned
a Ph.D. in the same subject in 1983. Since
then, he has worked at Lancaster Univer-
sity and holds a chair in distributed sys-
tems at this institution. He is also an
adjunct professor at Tromsø University and
a Visiting Researcher at the Simula
Research Laboratory (both in Norway). He
is Chair of the Steering Committee for the
ACM/IFIP/Usenix Middleware conference
and has been on the program committees
of many conferences in his field. He is the
author of more than 200 published papers.

Raouf Boutaba

 is an associate professor
in the School of Computer Science of the
University of Waterloo, Ontario, Canada,
and was previously with the Department
of Electrical and Computer Engineering at
the University of Toronto. Before joining
academia, he founded and was director of
the telecommunications and distributed
systems division of the Computer Science
Research Institute of Montreal (CRIM). He
received his B.S. in computer engineering
from the University of Annaba, Algeria, in
1988. He received his M.Sc. and Ph.D.
degrees in computer science from the Uni-
versity of Paris VI, France, in 1990 and
1994, respectively.

Dario Bruneo

 is a research associate at
the Engineering Faculty of the University
of Messina. He received his degree in
computer engineering from the Engineer-
ing Faculty of University of Palermo, Italy,
in 2000 and his Ph.D. degree in advanced

AU3833_C00.fm Page xii Thursday, August 24, 2006 7:36 AM

Contributors

■

xiii

technologies for information engineering
at the University of Messina, Italy, in 2005.

Giacomo Cabri

 is a research associate in
computer science at the University of
Modena and Reggio Emilia. He received
the Laurea degree in electronic engineer-
ing from the University of Bologna in 1995,
and his Ph.D. in computer science from
the University of Modena and Reggio
Emilia in 2000.

Vinny Cahill

 is an associate professor of
computer science at Trinity College, Dub-
lin. He earned his B.A., M.Sc., and Ph.D.
degrees in computer science from the
University of Dublin. He is a co-founder
and member of the editorial board of

IEEE Pervasive Computing

 and is a mem-
ber of the ACM and IEEE Computer Soci-
ety. He has published numerous peer-
reviewed papers in the general area of
distributed systems.

Andrew T. Campbell

 is an associate pro-
fessor of electrical engineering at Colum-
bia University, New York, and a member
of the COMET Group. He received his
Ph.D in computer science in 1996 and was
a recipient of the National Science Foun-
dation CAREER Award in 1999 for his
research in programmable mobile net-
working. Prior to joining academia, he
spent 10 years working on transport and
operating systems issues in industry. He
spent a sabbatical year at the Computer
Lab, Cambridge University, as an Engi-
neering and Physical Sciences Research
Council (EPSRC) visiting fellow.

Guanling Chen

 is an assistant professor
of computer science at the University of
Massachusetts, Lowell. He received his
Ph.D in Computer Science from Dart-
mouth College in 2004.

Ling-Jyh Chen

 received his B.Ed. degree
in information and computer education
from National Taiwan Normal University
in 1998 and his M.S. and Ph.D. in com-
puter science from the University of Cali-
fornia, Los Angeles, in 2002 and 2005,
respectively. He joined the Institute of
Information Science as assistant research
fellow in 2005.

Yih-Farn (Robin) Chen

 received a Ph.D.
degree in computer science from Univer-
sity of California, Berkeley, an M.S. in com-
puter science from the University of
Wisconsin, Madison, and a B.S. in electri-
cal engineering from National Taiwan Uni-
versity. He is on the staff of AT&T Labs–
Research and a member of the IETF OPES
Working Group. He served as a program
co-chair of WWW2003 and was a guest
co-editor of a special issue of

IEEE Internet
Computing

 on mobile applications.

Marco Chiani

 is a full professor in the
Department of Electronics, Computer Sci-
ence, and Systems (DEIS) at the University
of Bologna. During the summer of 2001
he was a Visiting Scientist at AT&T
Research Laboratories in Middletown, NJ.
He is a frequent visitor at the Massachu-
setts Institute of Technology, where he
holds a Research Affiliate appointment. He
is the past chair (2002– 2004) of the Radio
Communications Committee of the IEEE
Communication Society and the current

Wireless Communications

 editor for

IEEE
Transactions on Communications

.

Marco Conti

 is a senior researcher at IIT–
CNR. He has served as the technical pro-
gram committee chair of several IFIP-TC6
conferences and is the author of more than
150 published papers in the area of com-
puter-network architectures and protocols.
He is co-editor of the book

Mobile Ad Hoc
Networking

 (2004), is an associate editor
of

Pervasive and Mobile Computing Jour-
nal

, and serves on the editorial board of

IEEE Transactions on Mobile Computing

,

Ad Hoc Networks Journal

, and

ACM Mobile
Computing and Communications Review

.

Gianpaolo Cugola

 received his Dr.Eng.
degree in electronic engineering from
Politecnico di Milano, where he spent most
of his professional life. In 1998, he received
the Dimitri N. Chorafas Foundation prize
for engineering and technology for his
Ph.D. thesis on software development
environments. He is an associate professor
at Politecnico di Milano and also a guest
professor at the University of Lugano. He
collaborates as Information Director with
the ACM Software Engineering Interest

AU3833_C00.fm Page xiii Thursday, August 24, 2006 7:36 AM

xiv

■

Mobile Middleware

Group (SIGSoft). He has been involved in
several projects financed by the European
Union commission and by the Italian gov-
ernor. He is the co-author of several sci-
entific papers published in international
journals and conference proceedings.

Sajal K. Das

 is a professor of computer
science and engineering at the University
of Texas at Arlington. He was the found-
ing director of the Center for Research in
Wireless Mobility and Networking
(CReWMaN) at the university, where he
received their College of Engineering
Research Excellence Award in 2003 and
Outstanding Research Award in 2005. He
is frequently invited as a keynote speaker
at international conferences and sympo-
sia. He has had over 250 research papers
pubilshed, has directed numerous indus-
try- and government-funded projects, and
holds four U.S. patents in wireless mobile
networks. He is the editor-in-chief of the

Pervasive and Mobile Computing Journal

,
is on the editorial boards of numerous
journals, and is a co-founder of many
conferences, including IEEE PerCom.

Shirshanka Das

 received his B.Tech.
degree in computer science from the
Indian Institute of Technology, Delhi, in
2001, and his M.S. and Ph.D. in computer
science from the University of California,
Los Angeles, in 2003 and 2005, respectively.
He is an application architect at PayPal, Inc.

Franca Delmastro

 received her Laurea
degree in computer engineering from the
University of Pisa in 2002. She is working
toward her Ph.D. in information engineer-
ing at the Institute for Informatics and
Telematics of the Italian National Research
Council.

Ovidiu Drugan

 is a Ph.D. student at
DMMS, Department of Informatics, Uni-
versity of Oslo.

Margaret H. Dunham

 received her B.A.
and M.S. degrees in mathematics from
Miami University, Oxford, Ohio, and her
Ph.D. degree in computer science from
Southern Methodist University. She served
as editor of the

ACM SIGMOD Record

 from

1986 to 1988 and has served on the pro-
gram and organizing committees for sev-
eral ACM and IEEE conferences. She was
a guest editor for a special section of

IEEE
Transactions on Knowledge and Data
Engineering

 devoted to main memory
databases, as well as a special issue of the

ACM SIGMOD Record

 devoted to mobile
computing in databases. She was general
chair of the ACM SIGMOD 2000 confer-
ence. She is an associate editor for

IEEE
Transactions on Knowledge Engineering

and is author of a recently published book,

Data Mining: Introductory and Advanced
Topics

 (2002).

Ashutosh Dutta

 is a senior research sci-
entist in Telcordia Technology’s Internet
Network Research Laboratory. Before join-
ing Telcordia, he was the director of com-
puting facilities at Columbia University’s
Computer Science Department. He has
received Telcordia Technologies CEO
awards, the Science Applications Interna-
tional Corporation (SAIC) best paper
award, and the IEEE EIT 2005 best paper
award. He earned his B.S. in electrical
engineering from India, his master’s in
computer science from NJIT, and a pro-
fessional engineering degree in electrical
engineering from Columbia University,
where he is pursuing his Ph.D.

Geir Egeland

 holds a bachelor’s degree
in engineering from the University of Bris-
tol. For the last ten years, he has worked
as a research scientist in the field of mobile
network and is a research scientist with
Telenor R&D. He was formerly with the
Norwegian Defence Research Establish-
ment (NDRE), where as a research scientist
he worked on the design and analysis of
MAC and routing protocols for mobile

ad
hoc

 networks.

Markus Endler

 obtained his Dr.rer.nat. in
computer science from the Technical Uni-
versity in Berlin in 1992 and the title Pro-
fessor Livre-docente from the University of
São Paulo in 2001. He worked as a
researcher at the GMD Forschungstelle
Karlsruhe (Germany) and as an assistant
professor at the Institute of Mathematics

AU3833_C00.fm Page xiv Thursday, August 24, 2006 7:36 AM

Contributors

■

xv

and Statistics of the University of São
Paulo. Since 2001, he has been with the
Department of Informatics of the Pontifícia
Universidade Católica in Rio de Janeiro.
He is member of the ACM, the Brazilian
Computer Society (SBC), IFIP WG6.1, and
the Steering Committee of the ACM/IFIP
Middleware Conference.

Paal E. Engelstad

 completed his Ph.D. in
resource discovery in mobile

ad hoc

 and
personal area networks in 2005. He has
also earned bachelor’s and master’s
degrees in applied physics from NTNU,
Norway, and a bachelor’s degree in com-
puter science from the University of Oslo,
Norway. After working five years in indus-
try, he joined Telenor R&D. He has pub-
lished numerous refereed papers and
holds three patents (two pending).

Jieyan Fan

 received his bachelor’s and
master’s degrees in electrical engineering
from Shanghai Jiaotong University, Shang-
hai, China, in 2001 and 2004, respectively.
He is pursuing his Ph.D. in electrical and
computer engineering from the University
of Florida, Gainesville.

Luca Ferrari

 is a Ph.D. student in com-
puter science at the University of Modena
and Reggio Emilia, where he received his
Laurea degree in computer science engi-
neering in 2002.

Paulo Ferreira

 is an associate professor of
computer and information systems at the
Technical University of Lisbon, Portugal. In
1996, he received his Ph.D. degree in com-
puter science from Université Pierre et
Marie Curie. Since 1986, he has been a
researcher at INESC–ID, where he leads the
Distributed Systems Group. He is the author
or co-author of more than 50 peer-reviewed
scientific communications and has served
on the program committees of several inter-
national journals, conferences, and work-
shops in the area of distributed systems.

Tim Finin

 is a professor of computer sci-
ence and electrical engineering at the Uni-
versity of Maryland, Baltimore County
(UMBC). He has over 30 years of experi-
ence in the applications of artificial intel-

ligence to problems in information
systems. He holds degrees from MIT and
the University of Illinois. Prior to joining
the UMBC, he held positions at Unisys,
the University of Pennsylvania, and the
MIT AI Laboratory. He is the author of
over 225 refereed publications and has
received research grants and contracts
from a variety of sources. He is a former
AAAI councilor and serves on the board
of directors of the Computing Research
Association.

Chien-Liang Fok

 received his bachelor’s
degree in computer science and computer
engineering in 2002 from Washington Uni-
versity, St. Louis, where he is a Ph.D.
candidate in the Department of Computer
Science and Engineering and is a member
of the Mobile Computing Laboratory.

Xia Gao

 is a senior research engineer at
DoCoMo Communications Laboratories
USA, Inc. (DoCoMo USA Labs). He
received a B.E. (1992) and M.E. (1995)
from Huazhong University of Science and
Technology, China, and a Ph.D. degree
(2001) from the University of Illinois at
Urbana–Champaign. He joined DoCoMo
USA Labs in 2001 to conduct research on
4G mobile networks.He has authored
numerous peer-reviewed papers and
served on the technical program commit-
tee of WCNC 2003, ICC 2003, and Globe-
com 2003.

Michael Georgiades

 is a Research Fellow
at the Centre for Communication Systems
Research (CCSR) at the University of Sur-
rey. He received his B.Eng. degree in com-
munications and radio engineering from
King’s College London in 2000 and his
M.Sc. degree in telecommunications from
University College London in 2001. In
2002, he worked as a systems develop-
ment engineer for INSIG Ltd. (U.K.) on
wireless Internet solutions. Since then, he
has been working at the Mobile Group of
CCSR and has been involved in the EU-
funded IST Ambient Networks and IST
EVOLUTE projects. He is also studying for
a Ph.D. on context aware mobility man-
agement in all-IP networks.

AU3833_C00.fm Page xv Thursday, August 24, 2006 7:36 AM

xvi

■

Mobile Middleware

Mario Gerla

 received a graduate degree
in engineering from the Politecnico di Mil-
ano in 1966 and M.S. and Ph.D. in engi-
neering from the University of California,
Los Angeles, in 1970 and 1973, respec-
tively. After working for Network Analysis
Corporation, he joined the faculty of the
Computer Science Department at UCLA,
where he is now a professor. He has
worked on the design, implementation,
and testing of various wireless

ad hoc

 net-
work protocols (channel access, clustering,
routing, and transport) within the DARPA
WAMIS and GloMo projects and, most
recently, the ONR MINUTEMAN project.
He is also conducting research on QoS
routing, multicasting protocols, and TCP
transport for the next-generation Internet.

Majid Ghaderi

 received his B.S. and M.S.
degrees in computer engineering from
Sharif University of Technology, Iran, in
1999 and 2001, respectively. He is a Ph.D.
student in computer science at the Univer-
sity of Waterloo, Canada.

Arif Ghafoor

 is a professor in the Elec-
trical and Computer Engineering Depart-
ment and Director of the Distributed
Multimedia Systems Laboratory at Purdue
University, W. Lafayette, Indiana. He
earned his Ph.D. in electrical engineering
from Columbia University, New York, and
is a fellow of the IEEE.

Vittorio Ghini

 is an assistant professor of
computer science at the University of
Bologna, Italy. He received his Laurea
degree (1997) and Ph.D. (2002) in com-
puter science from the University of Bolo-
gna.

Vera Goebel

 is a professor in the Depart-
ment of Informatics of the University of
Oslo, where she works in the Distributed
Multimedia Systems Group.

Paul Grace

 is a research associate in the
Computing Department at Lancaster Uni-
versity. He earned his Ph.D. (2004) and
M.Sc. in distributed systems (2000) from
the same institution and graduated from
the University of York with a B.Sc. in
computer science. He was the primary

architect and developer of the ReMMoC
framework for tackling middleware heter-
ogeneity.

Mads Haahr

 is a multidisciplinarian who
lectures computer science at Trinity Col-
lege, Dublin. He earned B.Sc. and M.Sc.
degrees from the University of Copen-
hagen and a Ph.D. from the University of
Dublin. He edits the multidisciplinary aca-
demic journal

Crossings: Electronic Jour-
nal of Art and Technology

 and gives away
true random numbers on the Internet
(www.random.org).

Oliver Haase

 received his diploma degree
in computer science from Karlsruhe Uni-
versity, Germany, in 1993 and his Ph.D.
from Siegen University, Germany, in 1997.
After working on Internet telephony and
mobile service platforms at the NEC Com-
puter & Communication Research Labs in
Heidelberg, Germany, he then joined the
High-Speed Data Networking Research
Department at Bell Labs Research in Holm-
del, New Jersey. Since 2005, he has been
a professor of software engineering and
distributed system at Constance University
of Applied Sciences, Germany.

Qi Han

 is pursuing a Ph.D. from the Bren
School of Information and Computer Sci-
ence at the University of California, Irvine.
She earned her M.S. in computer science
from the Huazhong University of Science
and Technology, China. She is developing
adaptive middleware techniques for col-
lecting various dynamic context data in
heterogeneous environments to support
context-aware applications and is a stu-
dent member of the IEEE.

Hamid Harroud is working on his Ph.D.
in computer science at the School of Infor-
mation Technology and Engineering
(SITE), University of Ottawa, Canada. He
received his engineering degree from the
Mohammadia School of Engineering,
Morocco, in 1997.

Qi He earned his B.S. degree in mathemat-
ics from Tsinghua University, Beijing,
China, and his M.S. degree in computer
science from the University of Maryland,

AU3833_C00.fm Page xvi Thursday, August 24, 2006 7:36 AM

Contributors ■ xvii

College Park, in 1997. He is a project sci-
entist at Carnegie Mellon University. His
research has focused on leveraging crypto-
graphic methodology to construct an agent-
based security infrastructure to address
security issues in ubiquitous computing.

Dazhi Huang is a Ph.D. student in the
Department of Computer Science and
Engineering at Arizona State University,
Tempe. He received his B.S. degree in
computer science from Tsinghua Univer-
sity in China.

Yun Huang is a Ph.D. candidate studying
in the Bren School of Information and
Computer Science at the University of Cal-
ifornia, Irvine. She is devising efficient
resource discovery algorithms and data
placement strategies for providing mobile
users with multimedia services by leverag-
ing heterogeneous and intermittently avail-
able grid resources. She earned an M.S. in
computer science from the University of
California, Irvine, and received her B.S.
degree in computer science from Tsinghua
University, China.

Nayeem Islam is vice president of the
mobile software labs at NTT DoCoMo. He
earned his Ph.D. at the University of Illi-
nois, Urbana–Champaign; his M.S. from
Stanford; and a B.S.E. from Princeton Uni-
versity, all in computer science.

Rittwik Jana received his B.E. degree in
electrical engineering from the University
of Adelaide, Australia, in 1994, and his
Ph.D. degree from the Australian National
University, Canberra, in 1999. He was an
engineer with the Defense Science and
Technology Organization (DSTO), Austra-
lia, from 1996 to 1999 and since then has
been a member of the technical staff at
AT&T Labs–Research. His research work
has been in the area of mobile and wireless
communications, from physical-layer
modem design to application-layer soft-
ware development.

Carl-Gustav Jansson has been a profes-
sor in the Department of Computer and
Systems Sciences of the Royal Institute of
Technology (KTH) since 1998.

Martin Jonsson is an M.Sc.E.E. and is
pursuing a Ph.D. at the Department of
Computer and Systems Sciences of the
Royal Institute of Technology (KTH).

Anupam Joshi is an associate professor
of computer science and electrical engi-
neering at the University of Maryland, Bal-
timore County (UMBC). He obtained a
B.Tech. degree in electrical engineering
from IIT Delhi in 1989, and his master’s
degree (1991) and Ph.D. (1993) in com-
puter science from Purdue University, W.
Lafayette. He is the author of over 100
technical papers and has obtained
research support from NSF, NASA, DARPA,
DoD, IBM, AetherSystens, HP, AT&T, and
Intel. He has presented tutorials in confer-
ences, served as guest editor for special
issues of IEEE Personal Communication
and Communications of the ACM, and
served as an associate editor of IEEE
Transactions of Fuzzy Systems.

Theo G. Kanter earned his technical doc-
torate in computer communications from
the Royal Institute of Technology (KTH)
in Stockholm, Sweden. He is a senior
researcher at Ericsson Research in the area
of service-layer technologies and also a
guest researcher at the Center of Wireless
Systems of the Royal Institute of Technol-
ogy (KTH) in Stockholm. He holds a num-
ber of patents in the area of architectures
and middleware for context-aware mobile
services.

Ahmed Karmouch earned his M.S. and
Ph.D. degrees in computer science at the
University of Paul Sabatier, Toulouse,
France. He has served as a research engi-
neer at the Institut National de Recherche
en Informatique et en Automatique (INRIA)
Paris, France; as a senior manager for Bull
SA, Paris; and as director of research at the
Ottawa Medical Communications Research
Group, University of Ottawa. Since 1991,
he has been a professor of electrical and
computer engineering and computer sci-
ence at the School of Information Tech-
nology and Engineering, University of
Ottawa. He is involved in several projects
with the Telecommunications Research

AU3833_C00.fm Page xvii Thursday, August 24, 2006 7:36 AM

xviii ■ Mobile Middleware

Institute of Ontario, Nortel Networks, Bell
Canada, Mitel, National Research Council
Canada, Centre National de Recherche Sci-
entique, March Networks, CANARIE, Com-
munications & Information Technology
Ontario (Cito), and the TeleLearning
National Center of Excellence. He has
published over 180 papers and served as
guest editor for IEEE Communications,
Computer Communications, and Multime-
dia Tools and Applications Journal.

John Keeney is employed as a postdoc-
toral researcher in the Computer Science
Department of Trinity College, Dublin. He
holds a B.A.I. degree in computer engi-
neering and a Ph.D. in computer science
from the University of Dublin. His current
research is focused on semantic-based
autonomic management of networks and
ubiquitous computing spaces.

Sean Kelley received his M.S. degree in
computer science from Southern Method-
ist University, Dallas, Texas, in 2005. He
received his B.S. Business Administra-
tion–MIS degree from the University of
Texas at Austin in 2002. He has extensive
experience as a data warehouse architect
and consultant.

Pradeep Khosla is the Philip and Marsha
Dowd Professor at the College of Engi-
neering and School of Computer Science
at Carnegie Mellon University, Pittsburgh,
Pennsylvania. He is also the head of the
Electrical and Computer Engineering
Department and the Information Network-
ing Institute, as well as founding director
of the CyLab at Carnegie Mellon. He
served as a DARPA program manager in
the Software and Intelligent Systems Tech-
nology Office (SISTO), Defense Sciences
Office (DSO), and Tactical Technology
Office (TTO), where he managed
advanced research and development pro-
grams in information technology and intel-
ligent systems.

Fredrik Kilander holds a postdoctorate
position at the Department of Computer
and Systems Sciences of the Royal Institute
of Technology (KTH) in Stockholm.

David Kotz is a professor of computer
science, director of the Center for Mobile
Computing, and executive director of the
Institute for Security Technology Studies
at Dartmouth College, Hanover, New
Hampshire. He completed his Ph.D in
computer science from Duke University,
Durham, North Carolina, in 1991.

Michael E. Kounavis, a senior research
scientist with Intel Research and Develop-
ment, is working on cryptography and
data integrity. He has co-authored numer-
ous technical papers and seven U.S. patent
applications. In 2004, he obtained his Ph.D
degree in programming network architec-
tures from Columbia University, New
York, and his M.Sc. (1998) and B.Sc. (1996)
degrees from Columbia and the National
Technical University of Athens, Greece,
respectively.

Mohan Kumar is a professor of computer
science and engineering at the University
of Texas at Arlington. He received his
Ph.D. from the Indian Institute of Science
in 1992. He is the author of more than 100
articles published in refereed journals and
conference proceedings and is an editor
of the Pervasive and Mobile Computing
journal and the Computer Journal. He is
a co-founder of IEEE PerCom and served
as program chair for PerCom 2003 and
general chair for PerCom 2005.

Vivien W.M. Kwan received her master’s
degree in computer science from the Uni-
versity of Hong Kong in 2002. She helped
develop the intelligent proxy system for
the Facet-based software architecture of
the Sparkle Project.

Francis C.M. Lau received his Ph.D. in
Computer Science from the University of
Waterloo, Ontario, Canada, in 1986. He is
a professor in Computer Science at the
University of Hong Kong.

Letizia Leonardi is a full professor in
computer science at the University of
Modena and Reggio Emilia, where she
teaches basic and advanced computer sci-
ence courses. She received her Laurea
degree in electronic engineering in 1982

AU3833_C00.fm Page xviii Thursday, August 24, 2006 7:36 AM

Contributors ■ xix

and Ph.D. in computer science in 1989,
both from the University of Bologna.

Francesco Lilli received his degree in
electronic engineering in 1995 from Poly-
technic of Turin, Italy. Also in 1995, he
earned certification as a professional engi-
neer at Padua University, Italy. He then
performed postdoctoral work and research
at the FIAT Research Centre in Orbassano,
Turin, Italy, where he studied and devel-
oped on-board telematic systems. After
serving as a researcher at CRF, he worked
on the development of safety systems for
the European Community research project
IN-ARTE. In 2001, he became a project
coordinator for the GALLANT and GALILEI
projects and became involved in the IST
ACTMAP project. In 2004, he became the
head of the Telematic Technologies
Department at the FIAT Research Centre.

Wei Li is pursuing a Ph.D. in the Depart-
ment of Computer and Systems Sciences
of the Royal Institute of Technology (KTH)
in Stockholm.

Peter Lönnqvist holds an M.Sc. in Psy-
chology and studies people’s interaction
with artifacts in new worlds at the Depart-
ment of Computer and Systems Sciences
of the Royal Institute of Technology (KTH)
in Stockholm.

Chenyang Lu is an assistant professor in
the Department of Computer Science and
Engineering at Washington University in
St. Louis, Missouri. He has published
numerous refereed research papers and
was the recipient of the National Science
Foundation CAREER Award in 2005. He
received his Ph.D. from the University of
Virginia in 2001, his M.S. degree from the
Chinese Academy of Sciences in 1997, and
his B.S. degree from the University of Sci-
ence and Technology of China in 1995, all
in computer science.

Zakaria Maamar is an associate professor
of computer sciences at Zayed University,
Dubai, United Arab Emirates.

Thomas Magedanz, Ph.D., is head of the
3Gbeyond division at the Fraunhofer Insti-
tute for Open Communication Systems

(FOKUS), Germany, which also provides
the national Open 3Gb test bed. In addi-
tion, he is a full professor at the Technical
University of Berlin in the field of next-
generation telecommunication infrastruc-
tures. He is an editorial board member of
several journals and the author of more
than 120 technical papers. He is the author
of two books and is a regularly invited
speaker at major international telecom
events and conferences.

Gerald Q. Maguire, Jr., Ph.D., has been
a professor at the Royal Institute of Tech-
nology (KTH) since 1994.

Marco Mamei has been a contract
researcher at the University of Modena and
Reggio Emilia since 2004. He obtained his
Laurea degree in computer science in 2001
and Ph.D. in computer science in 2004,
both from the University of Modena and
Reggio Emilia.

Kazuhiro Minami is a postdoctoral
researcher in computer science at Dart-
mouth College, Hanover, New Hampshire.
He earned his Ph.D. in computer science
from Dartmouth College in 2006.

Shivajit Mohapatra received his Ph.D.
from the Donald Bren School of Informa-
tion and Computer Science at the Univer-
sity of California, Irvine, in 2005. He is a
senior research scientist at Motorola Labs,
where his research focus is in the area of
ad hoc and mobile computing. He
received his master’s degree from UCI and
his bachelor's degree from the Birla Insti-
tute of Technology and Science, Pilani.

Soraya Kouadri Mostéfaoui is a research
assistant in the Mobile Information Sys-
tems Laboratory of the Computer Science
Department of the University of Applied
Sciences of Western Switzerland, Fribourg,
Switzerland.

Ellen Munthe-Kaas is an associate pro-
fessor at the Distributed Multimedia Sys-
tems Group, Department of Informatics,
University of Oslo.

Amy L. Murphy is an assistant professor
in the Department of Informatics at the
University of Lugano, Switzerland. She

AU3833_C00.fm Page xix Thursday, August 24, 2006 7:36 AM

xx ■ Mobile Middleware

received a B.S. degree in computer science
from the University of Tulsa in 1995, and
her M.S. (1997) and D.Sc. (2000) degrees
from Washington University, St. Louis, Mis-
souri. She served as an assistant professor
at the University of Rochester, New York,
and a visiting researcher at Politecnico di
Milano, Italy, before joining the depart-
ment in Lugano.

Faïza Najjar received her Ph.D. in com-
puter science from the University of Tunis,
ElManar, in 1999. Since 2000, she has been
an assistant professor at the National
School of Computer Science and Engineer-
ing in Manouba, Tunisia.

Alok Nandan received his B.Tech. degree
in computer science from the Indian Insti-
tute of Technology, Kharagpur, in 2001
and his M.S. and Ph.D. in computer sci-
ence from the University of California, Los
Angeles, in 2003 and 2005, respectively.
He joined Microsoft as a research program
manager in 2005.

Chandra Narayanaswami manages a
group of researchers at IBM Research in
Hawthorne, New York, that is exploring
several aspects of mobile computing,
including form factors, novel applications,
power management, user interfaces, and
device symbiosis. He has received 19 IBM
Invention Achievement Awards and an
Outstanding Technical Innovation Award.
He has published extensively and is a
holder of several patents. He has served
on the program committees for several
leading conferences in mobile computing
and was the general chair for the IEEE
Symposium on Wearable Computers in
2003. He obtained a Ph.D. in computer
and systems engineering from Rensselaer
Polytechnic Institute, Troy, New York, and
a B.S. in electrical engineering from the
Indian Institute of Technology, Bombay.

Nanjangud C. Narendra is a research
staff member at IBM India Research Lab,
Bangalore, India.

Spyros Panagiotakis received his B.Sc.
in physics and his M.Sc. in electronic auto-
mation from the Department of Physics of
the University of Athens, Greece, in 1997

and 1999, respectively. Since 2000, he has
been a member of the Communication
Networks Laboratory (University of Ath-
ens) and has participated in several
national and European projects. He is
working as a researcher for the FP6 IST
project LIAISON, focusing on location-
based services for working environments,
while pursuing his Ph.D. at the Depart-
ment of Informatics and Telecommunica-
tions of the University of Athens.

Fabio Panzieri is a professor of computer
science at the Faculty of Science of the
University of Bologna, Italy. He obtained
his Laurea degree in 1978 in information
science from the University of Pisa, Italy,
and his Ph.D. degree in computer science
in 1985 from the University of Newcastle
upon Tyne, U.K., where he was a research
associate in the Computing Laboratory.

Jim Parker received his B.S. degree in
computer science from James Madison
University, Harrisonburg, Virginia, in 1985
and his M.S. degree in computer science
from the University of Maryland, Baltimore
County (UMBC) in 1998. He is a Ph.D.
candidate in computer science at UMBC
and is a member of the eBiquity research
group at UMBC.

Anand Patwardhan received his B.E.
degree in computer engineering from the
University of Pune, India, in 2000 and his
M.S. degree in computer science and engi-
neering from Oregon Health and Science
University, Portland, Oregon, in 2002. He
is a Ph.D. candidate in the Computer Sci-
ence and Electrical Engineering Depart-
ment at the University of Maryland,
Baltimore County (UMBC).

Raymond Paul has been a professional
electronics engineer, software architect,
developer, tester, and evaluator for the
past 26 years. He serves as the technical
director for Command and Control (C2)
Policy, Office of the Secretary of Defense,
Networked Information Infrastructure; in
this position, he supervises command-
and-control systems engineering develop-
ment for objective, quantitative, and qual-
itative measurements concerning the

AU3833_C00.fm Page xx Thursday, August 24, 2006 7:36 AM

Contributors ■ xxi

status of software/systems engineering
resources and evaluating project out-
comes to support major investment deci-
sions. He holds a doctorate in software
engineering and is an active fellow of the
IEEE Computer Society. He has published
more than 67 articles on software engi-
neering in various technical journals and
symposia proceedings and has authored
chapters in four technical books concern-
ing software engineering.

Filip Perich is a senior research engineer
at Cougaar Software, in McLean, Virginia,
and an adjunct assistant professor at the
University of Maryland, Baltimore County
(UMBC). He received his Ph.D. degree in
computer science from UMBC in 2004 and
his M.S. degree in computer science in
2002; he earned his B.A. degree in math-
ematics from Washington College, Mary-
land, in 1999. He is a member of the
eBiquity research group at UMBC, has
authored over 20 referred publications,
and has served as a conference organiza-
tion and committee member for multiple
conferences and workshops.

Gian Pietro Picco is an associate profes-
sor at the Department of Electronics and
Information of Politecnico di Milano, Italy.
He received his M.Sc. degree in electronic
engineering from Politecnico di Milano in
1993 and his Ph.D. in computer science
from Politecnico di Torino in 1998. He
visited Washington University in St. Louis,
Missouri, as a research assistant and then
as a visiting assistant professor. He has
been with Politecnico di Milano since 1999.

Evaggelia Pitoura received her B.Sc. from
the University of Patras, Greece, in 1990
and her M.Sc. (1993) and Ph.D. (1995) in
computer science from Purdue University,
W. Lafayette, Indiana. Since 1995, she is
has been on the faculty of the Department
of Computer Science of the University of
Ioannina, Greece, where she leads the dis-
tributed data management group. Her
publications include more than 80 articles
in international journals and conferences
and a book on mobile computing. She has
also co-authored two tutorials on mobile

computing for IEEE ICDE 2000 and 2003.
She has received the IEEE ICDE 1999 best
paper award and two recognition of ser-
vice awards from ACM.

Thomas Plagemann is a professor at the
Department of Informatics of the Univer-
sity of Oslo, where he heads the Distrib-
uted Multimedia Systems Group.

Christos Politis received his engineering
degree from Technological University of
Athens, Greece, in 1996, his M.Sc. in
mobile and satellite communications from
the University of Surrey (UniS) in 1999,
and his Ph.D. in mobile networking from
the Centre for Communication Systems
Research (CCSR) at the same university in
2004. Past positions include telecommuni-
cations engineer with INTRACOM SA, Ath-
ens; IT engineer at AMSAT; wireless
communications engineer at Hellenic Air
Force; and general staff and senior
researcher with CCSR, where he was
involved in several EU-funded IST projects.
He is the R&D manager with OFCOM. He
is a patent holder and the author of more
than 35 papers published in international
journals and conference proceedings.

Radu Popescu-Zeletin is a professor at
the Technical University Berlin and Direc-
tor of the Fraunhofer Institute for Open
Communication Systems (FOKUS). He led
the R&D department of the BERKOM
project of the German Telekom pilot
project for the development of new appli-
cations in the broadband ISDN environ-
ment . He has been ac t ive in
standardization committees (DIN, ISO,
EURESCOM) and has contributed to the
development of telecommunication stan-
dards. He is chairman-elect of the Wireless
World Research Forum (WWRF) Working
Group 2. He earned his Ph.D. from the
University of Bremen, Germany, and cer-
tification from the Technical University
Berlin. He is a doctor honoris causa of the
Polytechnical Institute, Bucharest, and pro-
fessor honoris causa of the Catholic Uni-
versity of Campinas, Brazil. He is a bearer
of the Public Service Medal of the Republic
of Romania.

AU3833_C00.fm Page xxi Thursday, August 24, 2006 7:36 AM

xxii ■ Mobile Middleware

Antonio Puliafito is a full professor of
computer engineering at the University of
Messina, where he is the coordinator of
the Ph.D. course in advanced technologies
for information engineering. He has con-
tributed to the development of the soft-
ware tools WebSPN, MAP, and DAVID,
which are widely used today, and is in
charge of the ICT and e-learning initiatives
for the University of Messina.

Matija Puzar is a Ph.D. student at DMMS,
Department of Informatics, University of
Oslo.

Ilja Radusch received his M.Sc. in com-
puter science from the Technical Univer-
sity of Berlin. Since then, he has been a
researcher with the Open Communication
Systems department of the Technical Uni-
versity of Berlin, where he is responsible
for the AVM (Autonomous Distributed
Microsystems) project, which is funded by
the German Ministry of Education and
Research.

David Reich is a senior software engineer
and tools architect in IBM’s Application
Integration Middleware division. He has
been with IBM for 18 years. He has held
positions in programming and technical
leadership, spent several years in devel-
opment management, and took a side trip
into corporate IT. He holds several patents
(with many more pending) and has
authored three books and numerous trade
journal articles. He is also a requested
speaker at industry conferences world-
wide. He has B.S. and M.S. degrees in
computer science from the State University
of New York at Albany.

Daniele Riboni received his M.Sc. degree
in computer science from the University of
Milan in 2002 and is a Ph.D. student at the
DICo Department of the same university.

Marco Roccetti is a professor of com-
puter science at the Faculty of Science of
the University of Bologna, Italy. He
received his Laurea degree in electronics
engineering from the University of Bolo-
gna. He has served as the general co-chair
for SCS International Conferences on Sim-
ulation and Multimedia in Engineering

Education (2002, 2003) and for IEEE Work-
shops on Networking Issues in Multimedia
Entertainment (2004, 2005). He has
authored and co-authored more than 100
technical refereed papers published in the
proceedings of international conferences
and journals.

Ricardo Rocha Ricardo Rocha is a Ph.D.
candidate at the Department of Informat-
ics, Pontifícia Universidade Católica do Rio
de Janeiro. He received his M.Sc. in com-
puter science from IME–USP, Brazil, in
2001. He is member of the ACM and the
Brazilian Computer Society (SBC).

Gruia-Catalin Roman is a professor and
chairman of the Department of Computer
Science and Engineering at Washington
University in St. Louis, Missouri. He was a
Fulbright Scholar at the University of Penn-
sylvania, where he received a B.S. degree
(1973), an M.S. degree (1974), and a Ph.D.
(1976), all in computer science. He was
an associate editor for ACM TOSEM and
served as the general chair of ICSE 2005.

Manuel Roman is a member of the
Mobile Software Lab at DoCoMo Commu-
nications Laboratories USA, Inc. He
received his Ph.D. from the University of
Illinois at Urbana–Champaign.

Hana Rubinsztejn is a Ph.D. candidate
at the Department of Informatics, Pontifí-
cia Universidade Católica do Rio de Jan-
eiro. She received her M.Sc. in computer
science from the Universidade Estadual de
Campinas (UNICAMP), Brazil, in 2001.

Vagner Sacramento is a Ph.D. candidate
at the Department of Informatics, Pontifí-
cia Universidade Católica do Rio de Jan-
eiro. He received his M.Sc. in computer
science from the Universidade Federal do
Rio Grande do Norte (UFRN), Brazil, in
2002.

George Samaras received a Ph.D. in com-
puter science from Rensselaer Polytechnic
Institute, Troy, New York, in 1989. He is
an associate professor at the University of
Cyprus, Greece. He was previously at IBM
Research in Triangle Park, North Carolina,
where he served as the lead architect of

AU3833_C00.fm Page xxii Thursday, August 24, 2006 7:36 AM

Contributors ■ xxiii

IBM’s distributed commit architecture. He
has co-authored a book on data manage-
ment for mobile computing and holds a
number of patents relating to transaction
processing technology. He received the
best paper award of the 1999 IEEE ICDE.
He has also served as program co-chair
and program committee member on a
number of conferences.

Norun Sanderson is a Ph.D. student at
DMMS, Department of Informatics, Uni-
versity of Oslo.

Roberto Saracco has been a researcher for
over 30 years in the telecommunications
area of the Telecom Italia Research Lab.
He has been director of the Future Centre,
has worked on a World Bank project in
Latin America to foster the application of
innovation to business, and has led the
technology trajectory and disruptions
group within the EU program FISTERA.

Marco Scarpa received his degree in com-
puter engineering in 1994 from the Univer-
sity of Catania, Italy, and the Ph.D. in
computer science in 2000 from the Univer-
sity of Turin, Italy. From 2000 to 2001, he
was an assistant professor of computer sci-
ence at the Faculty of Engineering of Cat-
ania University. He is an associate professor
in operating systems at the Faculty of Engi-
neering of Messina University.

Henning Schulzrinne received his Ph.D.
from the University of Massachusetts in
Amherst. He was a member of the techni-
cal staff at AT&T Bell Laboratories, Murray
Hill, New Jersey, and an associate depart-
ment head at the Fraunhofer Institute for
Open Communication Systems (FOKUS) in
Berlin before joining the Computer Science
and Electrical Engineering departments at
Columbia University, New York. He is chair
of the Department of Computer Science.
Protocols he has helped develop, such as
RTP, RTSP, and SIP, are now Internet stan-
dards used by almost all Internet telephony
and multimedia applications.

Basit Shafiq received a B.S. degree in
electronics engineering from the GIK Institute
of Engineering Sciences and Technology,

Pakistan, in 1998 and an M.S. degree in
electrical engineering from Purdue Univer-
sity, W. Lafayette, Indiana, in 2001. He is
working toward a Ph.D. degree in the
School of Electrical and Computer Engi-
neering at Purdue University.

Waseem Sheikh received a B.S. degree
in electronics engineering from the GIK
Institute of Engineering Sciences and
Technology, Pakistan, in 2000 and an M.S.
degree in electrical engineering from Pur-
due University, West Lafayette, Indiana, in
2002. He is working toward a Ph.D. degree
in the School of Electrical and Computer
Engineering at Purdue University.

Muhammad Sher is a Ph.D. research fel-
low at the Technical University of Berlin
and the Fraunhofer Institute for Open
Communication Systems (FOKUS), Berlin,
Germany. In addition, he is assistant pro-
fessor for the Faculty of Applied Sciences,
International Islamic University, Islama-
bad, Pakistan, in the field of computer
networks and network security. He is an
author of more than 25 research papers
and one book. He received the National
NCR IT Excellence Award in the field of
research and development in 2000 and the
Dr. Razi-ud-Din Saddiqui Award from IIU
for his book in 2004.

Pauline P.L. Siu received her M.Sc. in
computer science from the University of
Hong Kong in 2004. She helped develop
the context-aware state management sys-
tem (CASM) for the Sparkle project.

Katrine S. Skjelsvik is a Ph.D. student at
DMMS, Department of Informatics, Uni-
versity of Oslo.

Stephan Steglich obtained his Ph.D.
degree in Computer Science from the
Technical University Berlin in 2003. He
has worked intensively in the research
area of intelligent mobile agents and since
1999 has been involved in research activ-
ities in the area of user-centric communi-
cation. He has worked on a number of
projects related to human–machine inter-
action, UMTS/VHE, personalization, and
user profiling. He manages international-

AU3833_C00.fm Page xxiii Thursday, August 24, 2006 7:36 AM

xxiv ■ Mobile Middleware

and national-level research activities and
has been an organizer and a member of
program committees of several interna-
tional conferences. He has participated in
standardization activities within the Object
Management Group and gives lectures at
the Technical University Berlin.

Rahim Tafazolli is the head of the Mobile
Communications Research Group in CCSR,
School of Electronics and Physical Sci-
ences, the University of Surrey. He is the
author of more than 300 research papers
published in refereed journals and inter-
national conference proceedings. He
holds more than 15 patents in the field of
mobile communications. He is an advisor
and consultant to a number of mobile
companies and founder and past chairman
of the International Conference on 3G
Mobile Technologies. He is also a member
of the IEEE Committee on U.K. Regula-
tions on Information Technology and Tele-
communications, a member of the
Wireless World Research Forum (WWRF)
Vision Committee, past chairman of the
New Technologies group of the WWRF,
and academic coordinator of the U.K.
Mobile Virtual Centre of Excellence.

Javid Taheri received his bachelor’s
degree in electrical engineering in 1998 and
his master’s degree in electrical engineering
in 2000, both from Sharif University of
Technology, Tehran, Iran. He is a Ph.D.
student in the field of mobile computing at
the School of Information Technologies,
University of Sydney, Australia. Before
beginning his Ph.D. program, he worked
as a professional software developer for the
largest car manufacturer in Iran, IKCO,
where he developed sophisticated pro-
grams to achieve machine vision in highly
industrial environments such as automobile
assembly lines and body shops.

Giovanni Turi has been a junior
researcher at the CNR Institute for Infor-
matics e Telematics (IIT) in Pisa, Italy, since
2003. He received the Laurea degree in
computer science from the University of
Pisa in 2000, after which he spent two years

as consultant and software engineer for
IBM and Agilent Technologies, working on
software related to license and remote
management services. Since 2002, he has
been pursuing a Ph.D. in information engi-
neering at the University of Pisa.

Can Türker heads the Data Integration
Group of the Functional Genomics Center
Zurich (FGCZ). Before joining FGCZ in
2005, he was a postdoctorate fellow in
the Database Group at ETH Zurich. He
earned his Ph.D. degree in computer sci-
ence from the University of Magdeburg
in 1999. He is the author or co-author of
the lecture books Object Databases,
SQL:1999 and SQL:2003, and Mobile and
Wireless Information Systems (all in Ger-
man). He has served as the chair for a
number of program committees of data-
base-related conferences.

Luís Veiga received his B.Sc. (1998) and
M.Sc. (2001) degrees in computer engi-
neering from the Technical University of
Lisbon (Instituto Superior Técnico), Por-
tugal, where he is a lecturer and Ph.D.
candidate in the Computer and Informa-
tion Systems Department. He has been a
researcher at INESC–ID (Distributed Sys-
tems Group) since 1999 and has partici-
pated in projects such as Mnemosyne,
MobileTrans, OBIWAN, DGC-Rotor, and
UbiRep. He has authored or co-authored
numerous peer-reviewed scientific
papers published in workshop and con-
ference proceedings and journals, and he
has served as a reviewer for international
conferences.

Nalini Venkatasubramanian is an asso-
ciate professor at the Bren School of Infor-
mation and Computer Science, University
of California, Irvine. When she was a
member of the technical staff at Hewlett-
Packard Laboratories in Palo Alto, Califor-
nia, she worked on large-scale distributed
systems and interactive multimedia appli-
cations. She has also worked on various
database management systems and on
programming languages/compilers for
high-performance machines. She earned

AU3833_C00.fm Page xxiv Thursday, August 24, 2006 7:36 AM

Contributors ■ xxv

her M.S. degree and Ph.D. in computer
science from the University of Illinois,
Urbana–Champaign.

Cho-Li Wang received his B.S. degree in
computer science and information engi-
neering from National Taiwan University
in 1985. He earned his M.S. and Ph.D.
degrees in computer engineering from the
University of Southern California in 1990
and 1995, respectively. He is an associate
professor of the Department of Computer
Science at the University of Hong Kong.

Tony White is an associate professor of
computer science at Carleton University,
Ontario, Canada, where he is conducting
research into problems in autonomic com-
puting, telecommunications, and peer-to-
peer computing. He has written over 60
published papers and is the co-author of
six patents (two pending). He earned a
master’s degree in theoretical physics from
Cambridge University, England, and a
Ph.D. in electrical engineering from Carle-
ton University.

Wai-Kwong Wing received his B.S. degree
in computer science and information sys-
tems in 2001 from the University of Hong
Kong, where he is a Ph.D. candidate.

K. Daniel Wong received his B.S.E.
degree in electrical engineering from Prin-
ceton University, New Jersey, and M.S. and
Ph.D. degrees in electrical engineering
from Stanford University, California. He
has been a senior research scientist at Tel-
cordia since 1998. Since 2003, he has also
taught at the Malaysia University of Sci-
ence and Technology (MUST). He is a
member of the editorial board of IEEE
Communications Surveys and Tutorials
and the author of Wireless Internet Tele-
communications (2004). He received the
G. David Forney, Jr., Prize from Princeton
University in 1992, the Telcordia Technol-
ogies CEO Award in 2002, and the best
paper award at IEEE EIT 2005.

Dapeng Wu received his bachelor’s degree
in electrical engineering in 1990 from the
Huazhong University of Science and Tech-

nology, Wuhan, China, his master’s degree
in electrical engineering in 1997 from
Beijing University of Posts and Telecom-
munications, Beijing, China, and his Ph.D.
in electrical and computer engineering in
2003 from Carnegie Mellon University,
Pittsburgh, Pennsylvania. Since 2003, he
has been an assistant professor in the
Electrical and Computer Engineering
Department at the University of Florida,
Gainesville. He is an associate editor for
the IEEE Transactions on Vehicular Tech-
nology and received the IEEE Circuits and
Systems for Video Technology (CSVT)
Transactions best paper award in 2001.

Stephen S. Yau is a professor in the
Department of Computer Science and
Engineering at Arizona State University,
Tempe. He served as chair of the depart-
ment from 1994 to 2001. He was previ-
ously with the University of Florida,
Gainesville, and Northwestern University,
Evanston, Illinois. He served as the presi-
dent of the IEEE Computer Society and
editor-in-chief of IEEE Computer maga-
zine. He received a B.S. degree from
National Taiwan University, Taipei, and
M.S. and Ph.D. from the University of Illi-
nois, Urbana–Champaign, all in electrical
engineering. He is a life fellow of the IEEE
and a fellow of American Association for
the Advancement of Science.

Eiko Yoneki is a Ph.D. candidate in the
Computer Laboratory at the University of
Cambridge, England. She received a post-
graduate diploma in computer science from
the University of Cambridge in 2002. Pre-
viously, she spent several years working
for IBM on various networking products.

Franco Zambonelli has been an associ-
ate professor in computer science at the
University of Modena and Reggio Emilia
since 2001. He obtained his Laurea degree
in electronic engineering in 1992 and his
Ph.D. in computer science in 1997, both
from the University of Bologna. He was a
founding member of the Autonomic Com-
munication Forum.

AU3833_C00.fm Page xxv Thursday, August 24, 2006 7:36 AM

xxvi ■ Mobile Middleware

Dong Zhou is a research engineer at
Mobile Software Lab at DoCoMo Commu-
nications Laboratories USA, Inc. (DoCoMo
USA Labs). He earned a Ph.D. in computer
science from the Georgia Institute of Tech-
nology, Atlanta, and his B.S. and M.S.
degrees in computer science from Nanjing
University, China.

Albert Y. Zomaya is head of the school
and CISCO Systems chair professor of
Internetworking in the School of Informa-
tion Technologies, University of Sydney,
Australia. Previously, he was a full profes-
sor in the Electrical and Electronic Engi-
neering Department at the University of
Western Australia, during which time he
also led the Parallel Computing Research
Laboratory and held visiting positions at

Waterloo University and the University of
Missouri–Rolla. He is the author or coau-
thor of six books and more than 200
articles in technical journals and confer-
ence proceedings and is the editor of
numerous books. He is an associate edi-
tor for 14 journals, the founding editor
of the Wiley Book Series on Parallel and
Distributed Computing, and a founding
coeditor of the Wiley Book Series on
Bioinformatics. He was chair of the IEEE
Technical Committee on Parallel Process-
ing and serves on its executive commit-
tee. He received the 1997 Edgeworth
David Medal from the Royal Society of
New South Wales for outstanding contri-
butions to Australian Science and an IEEE
Computer Society’s Meritorious Service
Award in 2000.

AU3833_C00.fm Page xxvi Thursday, August 24, 2006 7:36 AM

xxvii

Contents

Section 1. Fundamentals

1 Toward a Software Infrastructure for
Ubiquitous Disappearing Computing.. 3
Roberto Saracco

2 Mobile Computing .. 27
Radu Popescu-Zeletin, Stefan Arbanowski,
Stephan Steglich, and Ilja Radusch

3 Wireless Technologies .. 55
Marco Chiani

4 Mobile Ad Hoc Communication Issues... 75
Hamid Harroud, Dineshbalu Balakrishnan, and Ahmed Karmouch

5 Infrastructure Versus Ad Hoc Wireless
Networks: Mobility Issues and Solutions.................................... 103
Ling-Jyh Chen, Shirshanka Das, Mario Gerla, and Alok Nandan

6 Evolution of Application Models for Pervasive Computing 125
Guruduth Banavar

7 Mobile Middleware: Definition and Motivations 145
Dario Bruneo, Antonio Puliafito, and Marco Scarpa

Section 2. Emerging Technologies for Mobile Middleware

8 Name Resolution and Service Discovery
on the Internet and in Ad Hoc Networks 171
Paal E. Engelstad and Geir Egeland

9 Data Synchronization ... 207
Sachin Agarwal

AU3833_C00.fm Page xxvii Thursday, August 24, 2006 7:36 AM

xxviii ■ Mobile Middleware

10 Uncoupling Coordination: Tuple-Based Models for Mobility... 229
Giacomo Cabri, Luca Ferrari, Letizia Leonardi,
Marco Mamei, and Franco Zambonelli

11 Content-Based Publish–Subscribe in a Mobile Environment 257
Gianpaolo Cugola, Amy L. Murphy, and Gian Pietro Picco

12 Code Mobility and Mobile Agents ... 287
Andrzej Bieszczad and Tony White

13 Proxy-Based Adaptation for Mobile Computing 311
Markus Endler, Hana Rubinsztejn, Ricardo Rocha,
and Vagner Sacramento

14 Reflective Middleware... 339
Paul Grace and Gordon Blair

15 Techniques for Dynamic Adaptation of Mobile Services.......... 363
John Keeney, Vinny Cahill, and Mads Haahr

Section 3. Requirements and Guidelines for Mobile Middleware

16 Naming and Discovery in Mobile Systems................................. 387
Guanling Chen, Kazuhiro Minami, and David Kotz

17 Efficient Data Caching and Consistency
Maintenance in Wireless Mobile Systems................................... 409
Sajal K. Das and Mohan Kumar

18 Code-on-Demand and Code
Adaptation for Mobile Computing .. 441
Francis C.M. Lau, Nalini Belaramani, Vivien W.M. Kwan,
Pauline P.L. Siu, Wai-Kwong Wing, and Cho-Li Wang

19 Session Maintenance... 465
Oliver Haase

20 Openness and Interoperability in Mobile Middleware 487
Eiko Yoneki and Jean Bacon

21 Trust in Pervasive Computing ... 519
Jim Parker, Anand Patwardhan, Filip Perich,
Anupam Joshi, and Tim Finin

Section 4. Mobile Middleware for Seamless Connectivity

22 Seamless Connectivity in Infrastructure-Based Networks 547
Michael E. Kounavis and Andrew T. Campbell

23 Peer-to-Peer Computing in Mobile Ad Hoc Networks............... 569
Marco Conti, Franca Delmastro, and Giovanni Turi

AU3833_C00.fm Page xxviii Thursday, August 24, 2006 7:36 AM

Contents ■ xxix

24 Supporting Continuous Services to Roaming Clients 599
Ashutosh Dutta, Henning Schulzrinne, and K. Daniel Wong

25 Impact of Mobility on Resource
Management in Wireless Networks... 639
Majid Ghaderi and Raouf Boutaba

26 Seamless Consistency ... 663
Evaggelia Pitoura, George Samaras, and Can Türker

27 Seamless Service Access via Resource Replication.................... 699
Paulo Ferreira and Luís Veiga

Section 5. Mobile Middleware for Location-Dependent Services

28 An Overview of the Location Management
Problem for Mobile Computing Environments 731
Javid Taheri and Albert Y. Zomaya

29 Location Privacy Protection in Mobile Wireless Networks 769
Jieyan Fan, Dapeng Wu, Qi He, and Pradeep Khosla

30 Location-Based Service Differentiation....................................... 787
Spyros Panagiotakis and Nancy Alonistioti

31 Location-Dependent Database Access ... 819
Faïza Najjar, Sean Kelley, and Margaret H. Dunham

32 Location-Dependent Service Accounting 851
Michael Georgiades, Christos Politis,
Nadeem Akhtar, and Rahim Tafazolli

Section 6. Mobile Middleware for Context-Dependent Services

33 Mobile Middleware: Processing Context-
Related Data in Mobile Environments.. 877
Yih-Farn (Robin) Chen and Rittwik Jana

34 Integrated Profiling of Users, Terminals,
and Provisioning Environments ... 901
Alessandra Agostini, Claudio Bettini, and Daniele Riboni

35 QoS-Aware Resource Discovery in Mobile Environments 939
Yun Huang, Shivajit Mohapatra, Qi Han,
and Nalini Venkatasubramanian

36 QoS Control and Management... 969
Xia Gao

37 IT-Based Open Service Delivery Platforms for Mobile
Networks: From CAMEL to the IP Multimedia System.............. 999
Thomas Magedanz and Muhammad Sher

AU3833_C00.fm Page xxix Thursday, August 24, 2006 7:36 AM

xxx ■ Mobile Middleware

38 Mobile Middleware and Context for Service Composition 1037
Soraya Kouadri Mostéfaoui, Zakaria Maamar,
and Nanjangud C. Narendra

39 Mobile Middleware for Situation-Aware
Service Discovery and Coordination .. 1059
Stephen S. Yau and Dazhi Huang

Section 7. Current Experiences and Envisioned Application
Domains for Services Based on Mobile Middleware

40 Mobile Middleware for Integration with Enterprise
Applications: WebSphere® Everyplace® Access 1089
David Reich

41 Context Middleware for Adaptive Mobile Services.................. 1105
Theo Kanter, Carl-Gustav Jansson, Martin Jonsson, Fredrik Kilander,
Wei Li, Peter Lönnqvist, and Gerald Q. Maguire, Jr.

42 Middleware Support for Autonomous Cellphones.................. 1137
Nayeem Islam, Manuel Roman, and Dong Zhou

43 Middleware for Wearable Computing 1169
Chandra Narayanaswami

44 Middleware for
Mobile Entertainment Computing... 1189
Vittorio Ghini, Fabio Panzieri, and Marco Roccetti

45 Software Support for Application Development
in Wireless Sensor Networks... 1227
Chien-Liang Fok, Gruia-Catalin Roman, and Chenyang Lu

46 Mobile Middleware for Automotive Applications.................... 1255
Francesco Lilli

47 A QoS Framework for Multimedia Communication
for Wireless Mobile Ad Hoc Defense Networks....................... 1269
Raymond Paul, Waseem Sheikh, Basit Shafiq, and Arif Ghafoor

48 Mobile Middleware for Rescue and Emergency Scenarios 1291
Ellen Munthe-Kaas, Ovidiu Drugan, Vera Goebel,
Thomas Plagemann, Matija Puzar, Norun Sanderson,
and Katrine S. Skjelsvik

Index... 1321

AU3833_C00.fm Page xxx Thursday, August 24, 2006 7:36 AM

Section 1

FUNDAMENTALS

AU3833_S01.fm Page 1 Monday, August 14, 2006 3:01 PM

AU3833_S01.fm Page 2 Monday, August 14, 2006 3:01 PM

3

Chapter 1

Toward a Software
Infrastructure for
Ubiquitous Disappearing

Computing

Roberto Saracco

CONTENTS

Introduction... 4
Technology Evolution... 6

Storage ... 6
Processing.. 7
Communications.. 8
Data Capturing .. 10

Paradigm Evolution .. 11
One for Many, One Each, Many for One, Many for Everybody 12
Storage Infrastructures .. 13
Profiling.. 15
Information Searching and Sharing ... 15
Terminals as Network Nodes... 17
Terminals as Networks ... 18

AU3833_C01.fm Page 3 Tuesday, August 15, 2006 1:02 PM

4

■

Mobile Middleware

The Market View .. 18
Technology Evolution Versus Market.. 18
From Information to Applications: The Grid ... 21
Tagging .. 22
Sensor Networks ... 23
Impacts on the Value Chains... 24
Getting There .. 26

Acknowledgments... 26

Introduction

In the next ten years, we will witness a continuous evolution of technology
much like we have observed over the last 50 years. We have come to
expect it; it has become a part of our life. No one is surprised to find
less expensive and more powerful PCs, larger television screens, higher
resolution digital cameras, and so on. Hence, should it not be easy to
predict what is going to happen, from a technological perspective? Yes
and no: “Yes,” because, indeed, we know a lot about technology; “no,”
because many factors must be considered that we know very little about.

Fifteen years ago people were saying that it was no longer an issue
of

technology push

; instead, what we were beginning to see was a

market
pull

. Technology evolution could make something possible but was not
sufficient to steer the market. The market was deciding which of the
available technologies to use, so it was indeed the market that was pulling
technology. Now we are on the brink of a major change that is going to
have a deep and possibly disturbing effect on research and its relation
with the evolution of technology. We are on the dawn of a

market push

.
Researchers within big enterprises (small enterprises can no longer

afford to do research in technology areas) and universities are having a
tough time securing funding for their work. To obtain funding, they must
tell a story that investors can understand; for example, they might explain
that conducting research in a particular area will generate a significant
market response and a healthy return on their investment. Researchers
must point out what investors probably already know as a result of
analyzing a particular market — that the current market is promising so
let’s exploit it by injecting new technology.

This is happening everywhere. The venture capitalists and investor
angels in the Silicon Valley are no longer investing money in 20 different
start-ups without really understanding what they are up to and assuming
that if just one hits the bull’s eye then they will recoup their investment
and then some. Today, such investors want solid data on return expec-
tations, and researchers can offer such information only by talking about
today, not about tomorrow.

AU3833_C01.fm Page 4 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

5

Investing in a certain technology is likely to push its evolution; hence,
it is the market today that steers the evolution of technology. It is likely
that we are going to experience, and suffer through, a

market push

 in
the near future. This can be very bad for those countries and enterprises
that lack the vision and courage to invest. They will cultivate only a linear
evolution and will be displaced by those who are more aggressive.

I have had several opportunities to talk to some key people in a
number of industries about the potential evolution of sensors, e-tags,
multiple radio access infrastructures, and potentially unlimited radio band-
width. In most cases, the reaction I have gotten is of the “let’s wait and
see” variety. These are not issues to be dealt with tomorrow morning so
why care? Individual enterprises often are not able to make a dent in the
overall evolution of a technology, particularly when this evolution requires
the significant build-up of infrastructures: physical (networks), logical
(platforms), or relational (regulations and standards).

In South Korea, the government has launched a comprehensive
“8–3–9” strategy for which they have identified eight broad classes of
services, three basic infrastructures, and nine “growth engines.” The
three infrastructures are the Broadband Convergent Networks, Ubiqui-
tous Service Network, and IPv6. (I will be discussing the first two later
in this chapter.) The point I want to make here, in the introduction, is
that, unless some entity such as a government or a national or supra-
national initiative funds and steers effort toward building a comprehen-
sive infrastructure, it will not happen as result of individual enterprise
nor demand from the market.

The title of this chapter is “Toward a Software

Infrastructure

 for
Ubiquitous Disappearing Computing.” Achieving such an infrastructure is
not going to be the result of accidents or the uncoordinated efforts of
individual enterprises. It will require much more. The United States,
Europe, and East Asia are all competing in the evolution of the technology
business and are trying to maintain or acquire a dominant position. China,
because of the sheer volume of its market; Japan, because of its well-
coordinated industry sector; and South Korea, because of its government-
led initiatives, are all very strong threats to current U.S. dominance and
European hopes.

A discussion of the “2G–3G–4G” evolution may be instructive here.
Europe won the 2G battle because it set a universal standard, the GSM.
In the United States, 3G is based on a market-oriented paradigm of letting
the market decide what is best; Europe is losing ground to U.S. companies
holding patents. Because 4G is still on the starting block, it may be
premature to draw any conclusion, but a very real risk is that 4G tech-
nology will be steered and dominated by terminal equipment manufac-
turers from Korea and Japan.

AU3833_C01.fm Page 5 Tuesday, August 15, 2006 1:02 PM

6

■

Mobile Middleware

This is a book about technology, but it is also about the future. I
believe we should try to put our technical expectations into the wider
perspective of a global vision, and that is what I have tried to do in this
opening chapter.

Technology Evolution

Let’s consider some of the newer technologies driving the business incen-
tive to create a software infrastructure for ubiquitous disappearing com-
puting: storage, processing, communications, and data capturing. In
considering each of them, I will make reference to the role the technology
is likely to play in supporting ubiquitous disappearing computing and in
establishing a software infrastructure.

Storage

Several technologies are available for storing information, including silicon-
based, polymer, magnetic, holographic, and nanostorage. All may play a
role in the topic at hand, although the two most important are the silicon-
based and magnetic technologies. Holographic storage will likely be used
to support specific areas where searching through huge amounts of data
is important (such as in e-citizen applications managed by institutions).
Nanostorage is still a little bit into the future and may be considered, from
a conceptual point of view and in terms of applications, as a 1000-fold
evolution of silicon-based memory. It may be available somewhere toward
the end of the next decade. Polymer memory offers potential as read-
only memory; it is capable of storing terabytes of information in very-
low-cost packaging. Memory that is credit-card sized will be able to store
2000 movies and could eliminate the need to send movies over a network.

Silicon and magnetic memories will play a major role in many areas
where data must be stored, retrieved, and processed. Magnetic storage
has slower transfer times but it is much less expensive than silicon-based
storage. In 2005, top-of-the-line hard drives could store 1 TB at a cost of
about $1000. Even more interesting is a tiny hard disk with a capacity of
1.5 GB available since 2004 at a cost of about $10. By 2010, we can
reasonably expect to find 1-TB hard drives in any medium-class consumer
PC being sold, and the tiny hard drives will be found in every cellphone
and portable device with a capacity on the order of 10 GB or so.

Silicon-based memory will exceed 1 GB per chip, and compact flash
memories will top 100 GB early in the next decade. Much smaller storage
will be embedded in sensors, directly in the sensor chip. System-on-a-chip
(SoC) will include a significant amount of memory, not just for processing

AU3833_C01.fm Page 6 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

7

purposes, as is the case today, but also to serve as storage. More and more
objects will have local storage capability to track the history of the object
itself. This can be in the form of rewritable radio-frequency identification
(RFID) tags. In the next decade, any object, including consumables, is
quite likely to have an RFID tag, and many will have rewritable tags. By
the end of the next decade, a sheet of paper could have an embedded
rewritable tag to supplement the information written on the paper. The
aspect of synchronization will become very important, and a number of
service will be offering to support synchronization.

Processing

Processing has been steadily evolving over the last 40 years at an aston-
ishing rate (overall, storage has evolved faster than processing but in more
sporadic bursts), and it should continue to do so for the next seven years,
at least; however, ten years ago it had already reached a threshold for
certain types of chips for which the processing capacity offered had only
marginal demand, thus leading to a drop in price. This allowed the
insertion of processing capabilities at basically no cost in a number of
objects. Think about checking into a hotel and the desk clerk giving you
a key card to enter your room. In either the key card or the room lock
is a processor performing some operations. The same goes for sprinklers
or for greeting cards that play a tune when touched. Within the next four
years the same will happen to microprocessors found in today’s PCs. This
will provide tremendous processing power for a variety of objects.

The evolution of processing will continue in several directions.
Increased processing speed will no longer be the measuring stick of
evolution; rather, we are going to see other characteristics becoming more
relevant, such as low energy consumption (and low dissipation), commu-
nications capabilities embedded on a chip, programmable wiring to adapt
the architecture to the task at hand (which may turn out to be a way to
further decrease power consumption), the coexistence of several micro-
processors on the same sliver of silicon, highly specialized architectures,
SoC, and direct coupling with optoelectronic interfaces. Additionally, we
will see the emergence of alternatives to silicon, such as molecular
computers and hybrid structures (bioelectronics) that are particularly suit-
able to the area of sensors. Quantum computing is still far away, and it
is impossible to know when such processors will be available, if ever.
For the sake of this chapter, we will disregard quantum computers, but
molecular computers, particularly their application to sensors, are consid-
ered. Energy and communications capabilities (often tightly coupled) are
possibly the most important factors to be addressed when discussing the
factors enabling ubiquitous disappearing computing.

AU3833_C01.fm Page 7 Tuesday, August 15, 2006 1:02 PM

8

■

Mobile Middleware

From the point of view of business, the key issue is the trend toward
embedding processors in any objects and the shift toward SoC. In principle,
processing may enter into the design of any object, but most of the
companies producing these objects today are not prepared to manage this
technology. It is possible, from a purely technological point of view, to
place a processor in any table. From the service point of view, however,
the manufacturer would ask why customers would want to have processors
in their tables. One might also ask if any customer would be willing to
pay the price to get a processing-enabled table, but this kind of question
will no longer apply as the manufacturing costs for embedded processing
decline. The other question — why customers would want a table with
an embedded chip — remains to be answered, though, and that is exactly
the type of question most companies are not prepared to answer. When
a company does find a convincing answer to this question, it will imme-
diately gain a competitive advantage in the market, displacing other
competitors. Catching up will not be easy because of the changes required
in the production process. A carpenter is not likely to be prepared to
manage the embedding of chips in his tables when he discovers that a
market exists for such a thing. It is not simply the assembly that matters,
though; it is also the configuration, the general architecture, … the list
goes on and on.

When SoC becomes the normal way to provide functionality, chips
will no longer be a commodity. The cost of assembling together several
chips, as is being done today to provide certain functions, is not going
to decrease, thus this approach is less desirable compared to producing
similar products using SoC (the single chip is going to follow Moore’s
law, thus price will decrease over time). Ubiquitous disappearing com-
puting requires a significantly different production approach.

Communications

The field of communications has progressed in a completely different way
compared to storage and processing. Transmission capacity has basically
remained stable for many years, providing more capacity by deploying
extra cable. The advent of digital transmissions in the 1960s created the
first discontinuity, which introduced a multiplication factor of approxi-
mately 30. A second, greater, discontinuity occurred at the turn of this
century, with the massive deployment of optical fibers and the introduction
of dense wavelength-division multiplexing (D-WDM) and coarse wave-
length-division multiplexing (C-WDM; still in progress). The capacity of
networks multiplied thousands of times in the blink of an eye, completely
disrupting the market. The economic bottleneck is no longer the trans-
mission of data but the conversion of data from analog to digital and the

AU3833_C01.fm Page 8 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

9

other way around. The technological bottlenecks are found in the various
technologies comprising today’s networks. Backbones have overabundant
capacity. The advent of Asymmetrical Digital Subscriber Line (ADSL) and
the like has provided the capacity to satisfy demand as it is voiced (and
the customer is prepared to pay for it), with some notable exceptions in
some areas. Metropolitan area networks (MANs) have both technological
and economic bottlenecks that force operators to make some tough
decision over the medium term.

In the longer term, signs clearly point to an all-optical network (AON),
where capacity is no longer an issue; however, no consensus has been
reached with regard to the architecture of this network. It is likely that
this network will include a phase of interconnected optical islands, none
of which requires signal amplification. Signal amplification may take place
(with associated costs) in the links connecting the various islands. Distri-
bution and some metropolitan rings may be based on C-WDM, and links
and backbones will utilize D-WDM.

As important as these issues are for an operator, they are not the most
crucial, as all of these technical options are being played out on their turf
and are under their control. Much more difficult is understanding the
strategic choices to be made regarding a completely new phenomenon that
has just emerged: alternative access infrastructures potentially owned by
myriad players and in many cases completely outside the operator’s control.

This new development can be traced back to the emergence of
competition in the wireless market, where for the first time operators have
had to compete and cooperate to ensure that their customers can talk to
one another regardless of the access network being used. However,
additional issues are just emerging due to the proliferation of WiFi access
and the transparency of the network technology to the service. On the
one hand, these developments are highly desirable for all parties, but on
the other hand they are eliminating distinctive values of the infrastructure.

Hotels that have traditionally charged high fees for international calls
are seeing their revenues drop because travelers are connecting via Skype
and paying less for an intercontinental call than a local call. The same
situation will arise for fixed-line and mobile operators alike, possibly
within the next five years (or sooner, in some areas).

Progress in propagation technology, along with the already-mentioned
evolution in processing that allows communication on every chip, is
creating a completely different scenario that was simply inconceivable ten
years ago. Low-power, pulse-based communications (ultrawideband, or
UWB) and other varieties of WiFi (such as 802.11n, which provides 540
Mbps capacity per micro cell) are increasing radio access capacity to the
point where supply exceeds demand, thus removing the need for regu-
lating the spectrum.

AU3833_C01.fm Page 9 Tuesday, August 15, 2006 1:02 PM

10

■

Mobile Middleware

By the next decade, the progress expected in processing and energy
storage may well lead to a negotiation of interference by terminals, thus
effectively making available unlimited bandwidth for all practical pur-
poses. That, together with the existence of a variety of infrastructures
(including the one provided by the terminal itself), will deal the final
blow to the concept of the “value of the infrastructure.” Operators will
not be unprepared. The value of the infrastructure will not simply vanish
into thin air; instead, it will shift to services and other types of infra-
structures, such as one enabling services, which I am discussing in this
chapter.

Data Capturing

Data capturing technologies will evolve significantly. Under this banner
we have a variety of technologies, such as ones that capture images
of three-dimensional objects, that locate objects, that spot or track
people and goods, that capture various sources of data such as music,
sounds, biometric parameters, voice, emotions, gestures … the list is
very long. However, for the sake of this discussion, the relevant data
capture technologies are the ones that sense the environment and are
embedded in objects. Tagging technologies are well suited for identi-
fying, locating, and providing the relative positions of objects in a given
environment which can be derived from calculating the identification
signal propagation time.

The evolution of sensor technology will provide ways to create an
awareness of the surrounding environment — to a limited extent in
the sensor itself and to a greater extent within the network of a sensor.
Complete awareness is probably beyond the capability of these net-
works and may require external computation and the integration of
other information.

Particularly interesting is the increased flexibility of individual sensors
that can change their sensing strategy and what they are sensing (to a
certain extent) according to a cooperative defined strategy. This requires
evolution in another direction that is also central to any discussion of
software infrastructures for ubiquitous disappearing computers: the
emergence of autonomous systems. Autonomous systems form islands
of independent processing, creating an inner environment clearly sep-
arated from the outer environment. Decisions are made based on the
outer environment as perceived at the edges and obviously on the goal
of the autonomous network and the transitions required to maintain
internal stability. (This is exactly what occurs in a living being, where

AU3833_C01.fm Page 10 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

11

the biological processes endeavor to maintain the

status quo

 by taking
into account the goals of the being and the external environment as
perceived at the boundary.) Autonomous systems do not communicate
with the external environment; they are only aware of the situation at
the boundary. This is quite a departure from the way engineers are
used to designing systems. They tend to sit together for lengthy periods
of time to agree on communications standards and who is doing what,
and then they have to negotiate for feature interactions.

Quite simply, such an approach does not work for complex systems.
The time required to agree on an interface would be greater than the
time required for that interface to evolve, thus making any agreement
irrelevant. This is what is already beginning to happen in the communi-
cations area due to the emergence of a variety of access infrastructures,
and this has already happened with regard to interactions between appli-
cations. The concepts of plug-ins, client–server architectures, and peer-to-
peer communications are testimony of a completely different approach to
communications.

Sensor networks, designed to reduce energy consumption, will likely
decide on a case-by-case basis the appropriate communications protocol.
The software radio, which will begin being applied in 2007 and beyond,
is another instance. Technology is evolving not just in performance but
also in the direction of creating new paradigms that in turn are creating
new challenges to the value chains and to the market.

Paradigm Evolution

What it is meant by “ubiquitous computing”? This term can be interpreted
in at least three ways. It can refer to (1) the pervasiveness of systems
providing local processing power, (2) the presence of processing capacity
in many objects within any environment, or (3) the possibility of accessing
processing power at any point to satisfy any processing need. In the first
meaning, the focus is basically on the progressive dissemination of PCs,
laptops, and personal digital assistants (PDAs). In the second meaning,
the focus is on smart objects — everyday objects that are modified by
embedding the processing power necessary to interact with the environ-
ment and to process information locally. This application is sometimes
referred to as “pervasive computing.” In the third meaning, the focus is
on connectivity, on a network able to connect any processing request
with processing capabilities residing in some other place. In this meaning,
the attention shifts to grid structures. All of these three meanings are of
interest for the topic at hand.

AU3833_C01.fm Page 11 Tuesday, August 15, 2006 1:02 PM

12

■

Mobile Middleware

One for Many, One Each, Many for One,
Many for Everybody

In the beginning, man created the mainframe. And this was so
expensive and so complex that only few elected could access
it and share its resources.

Hence,

one for many

! At one time, it was difficult to imagine that many
companies, not to mention many people, would need to access processing
resources. Then the PC arrived and the paradigm shifted to

one each

.
Now people have laptops, PDAs, cellphones, and organizers, and the
paradigm has shifted to

many for one

. Let’s look at this last paradigm and
consider that “many” also includes the pocket calculator, the car navigator,
the remote control — basically any object that in one way or another is
processing today information. The evolution of these systems has basically
been in line with Moore’s law. The crucial point here it is not to determine
when Moore’s law will stop working because of physical limitations; rather,
it is determining whether we will reach a point where any further increase
of processing power will no longer be required by the market.

Over the years, demand has always exceeded the supply of processing
power, in both the business and consumer markets (in the latter, due in
no small part to video games and digital video and film processing). Is
this situation going to change? In fact, we are already beginning to see
the first signs of change. Intel and AMD are no longer trumpeting the
increased speed of new processors, although the fact that a chip hit the
1-GHz milestone and then 2 GHz was known to everybody because of
advertisements and articles in the media. Beginning in 2004, few headlines
celebrated hitting the 3-GHz or more recently the 4-GHz mark. People
do not really care anymore. The rate of replacing PCs is decreasing, and
their life-cycles are growing longer. As a consequence, we might expect
a significant decrease in the price of microprocessors that in turn will
make possible their broader application, as is the case today, where the
microchips of the 1980s have found use in remote controls, keys, and
locks. Notice that what goes down is the chip price, not necessarily the
price of the PC. The PC box contains much more than the microprocessor;
for example, it contains wires and has packaging costs that are not likely
to decrease significantly.

Personal computer sales in the world are now stable at around 130 million
pieces. Currently, PDA sales are around 11 million units, and cellphone sales
are around 400 million. In Italy, the 2003 figure was 13 million PCs, 6 of
which were bought for family use, a market having reached a penetration
of about 28 percent. In the United States, the penetration is stabilizing at
around 50 percent of homes, and we are witnessing a lengthening of the

AU3833_C01.fm Page 12 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

13

life of PCs there. Features offered by new models are not sufficient to push
consumers toward replacing what they already have.

Personal computers have given rise to a strong discontinuity in the
market. It is interesting to note that the factor leading to this discontinuity
is not technological progress measured in terms of MIPS (million instruc-
tions per second, or the processing power); rather, it is the size of the
market. One implication is that PDAs, not tablet PCs, are likely to create
further discontinuity. A transformation of the business is likely to derive
from the penetration of microprocessors into everyday objects, as this
would create a market size at least one order of magnitude larger than the
current one. Smart objects and grids are the next revolution. Ubiquitous
disappearing computers along with the supporting communications and
software infrastructures discussed here are likely to be the “brave new
world.” This creates a new paradigm. When computers are embedded in
any object and they have become invisible, they are no longer “your”
computers; instead, they are shared with everybody. Does the market really
need this kind of paradigm shift, from

many for one

 to

many for everybody

?

Storage Infrastructures

Local storage technology has increased enormously and has become a
way of life. People have 100 MB dangling from their key holders. Rather
than continuing to embed ever greater storage capacity into devices, today
we see storage devices (e.g., USB memory sticks) embedding digital
cameras, MP3 players, and WiFi gateways. Some telecommunications
companies have begun to offer storage services to the consumer market.
Customers take pictures with their cellphones, and their providers offer
to save the pictures on their networks so the customers can share them
with friends and family. Google is offering 1 GB of memory space in their
network for e-mail. Customers will never have to delete e-mails to free
space; they can essentially record their social lives there and access the
space at any time. Nokia is working on the idea that everything passing
through a customer’s cellphone can be stored in the network for later
use. A lot of information passes through cellphones: calls, messages,
agendas, and pictures. In the future, this information will be supplemented
by metadata, such as time of day, location, and nearby cellphones. The
network becomes a place to store information to make better use of it.
It is possible to actually create a network based on information.

Only ten years ago distributed storage was developed as a response
to the need to replicate information for availability and reliability purposes.
We are now seeing two completely new approaches to distributed storage.
One is typified by the OceanStore project, which proposes to use the
myriad servers connected to the Internet as repositories of fragments of

AU3833_C01.fm Page 13 Tuesday, August 15, 2006 1:02 PM

14

■

Mobile Middleware

information. The information is split into little pieces, which are duplicated
a thousand times and distributed on the network. Only the owner of the
information knows the retrieval algorithm and therefore can reassemble
the split fragments into coherent information. A failure in any server is
not going to have any affect because that same fragment is present on a
thousand other servers. Any hacker attacking a server will only retrieve
nonsensical data. This approach is not particularly new. It is the one used
by animals’ brains to store memories and experience. That is why our
memories are so long lasting, in spite of the continuous death of our
brain cells (one a second, according to some studies, or 100.000 a day!).

The second approach for distributed storage is DataGrid. The objective
of DataGrid is to make it possible to share huge quantities of data and
allow parallel analyses, the results of which would be information that is
not the sum of what is available but something brand new and whose
value is greater than the sum of the parts. Each data storage is basically
influencing every other one in a dynamic way but without requiring any
change in any of them. In this case, we are in the autonomous system
environment.

Oracle has made its grid software development kit available to interface
its databases and produce a grid infrastructure. The company clearly hopes
that its database will become the storage medium for any grid application.
This is interesting given the number of enterprises using Oracle who may
now find a seamless path to becoming part of a business grid. Oracle’s
vision is one of complete transparency. The client should no longer care
where the data is stored nor where the data will be processed. Electronic
Arts has created a virtual-reality game based on these Oracle interfaces
and exploiting the grid architecture to support parallel gaming of up to
100,000 players. A project in the Adriatic Basin is working along these
same lines to create a shared ubiquitous infrastructure for business to
enhance service provision.

In 2002, Oxford University announced the use of the grid for their
eDiamond project, aimed at sharing medical information on breast cancer.
The name of the project underscores the many facets that are addressed,
including the aim of using the same data for both advanced research and
everyday care of patients. The project is part of a wider initiative aimed
at making processing power, information, and applications available to
the scientific community. eDiamond does more than simply provide access
to information for institutions, researchers, medical doctors, and patients
alike. It also guarantees the privacy of sensitive information and provides
applications for analyses, cure identification, and progress monitoring.
Researchers can study and compare hundreds of thousands of cases and
analyze the effect of the different therapies. It is interesting to note that
the basic applications are commercially available; they have not been

AU3833_C01.fm Page 14 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

15

created specifically for the project. The value added is the transparency,
dissemination, and accessibility provided by the software infrastructure.

Profiling

“Profiling” is a name that has been used extensively in marketing to identify
characteristics of market segments and to associate potential clients with a
specific segment. It is going to take a completely different twist in the
coming years to radically change the concept of service itself, from both
the client’s and the provider’s points of view. Beyond that, profiling will
be applied to any entity engaging in any activity on a network. Profiling
will become a sort of characterization of user expectations merged with the
experiences of specific users, their current needs, their locations, and the
environments within their reach. It is this web of connections reaching into
the environment that is of particular interest for the purposes of this chapter.
The presence of a software infrastructure connecting a variety of ubiquitous
invisible computers can significantly change the way we access and make
use of services. Again, we are confronted with the concept of autonomous
systems. The capability and willingness to disclose these environments and
negotiate services with providers will change from situation to situation.
Service selection and adaptation may be done only within the current
environment or may result from negotiations with providers.

The creation of a profile is likely to become a very sophisticated
activity, something that itself is a service provided by trusted parties.
Intelligent agent technologies are particularly attractive for monitoring
experiences and creating and updating profiles. They may also be used
in the negotiation of services.

A profile may result from the synchronization of information captured
at different times by different devices. This synchronization should take
place automatically and seamlessly, but at the same time it should be
trusted and under the control of the person or object owning the profile.
The sharing of profiling information should be at the owner’s discretion,
which opens up a can of worms. To get the maximum from profiling,
the owner must share information, but at the same time it can be difficult
to maintain control over the information. The software infrastructure
should provide for some anonymity features to allow information to be
exchanged without revealing identities.

Information Searching and Sharing

At the turn of the last century, Pointcast proposed a mechanism to push
information to people. Users would subscribe to an information channel

AU3833_C01.fm Page 15 Tuesday, August 15, 2006 1:02 PM

16

■

Mobile Middleware

from their PCs, and every time they used their PCs information would be
pushed on the screen for their perusal. The service did not create sufficient
market interest (in the sense of people willing to pay for it) and was
discontinued.

In the meantime, the amount of information available has continued
to grow; it has doubled in the last three years, whereas the previous
doubling took over 30 years. The expectation is for continuous increases,
with a doubling every two to three years for the next 15 years. Additionally,
more and more of this information is digital and is stored somewhere,
thus it is potentially within reach.

Having too much information is not that different from having very
little. Suppose you have just ten pointers as a result from a query on the
Internet. Would that be so different from receiving 200,000 results? No.
Most people look only at the first four to six result lines returned by
Google. Almost no one ever continues to look beyond the third page of
Google results. The market is ripe for some sort of information push and
for different ways of information sharing.

As was already pointed out when discussing the DataGrid, the value
of information resides more in relationships than in a single bit of infor-
mation. The overall information of an environment may be more valuable
than the information contained in one of the entities of that environment.
It may be more interesting to grasp the know-how of a research center
than to determine what each researcher there knows. Knowledge man-
agement is likely to significantly shift direction by taking a much more
holistic view.

Today, knowledge is quite segmented, and the more outstanding an
organization is the more likely it is that there is no single point to focus
on. Actually, the knowledge society is exactly what the name implies:
a web of interactions that are the knowledge. The model where the
value of a library can be found in its individual books is rapidly fading
away, to be replaced by the value of an interconnected world. This is
going to have a tremendous impact on the market. A seemingly far-
fetched example: When an association of engineers in Italy commis-
sioned a study in 2002 on the possible future of engineers, they found
that the future will see the aggregation of engineers into enterprises,
each containing a variety of engineers providing different skills. Engi-
neers will no longer be hired as individuals but as a collective force to
address ever more complicated issues.

The software infrastructures will be crucial enablers in this transforma-
tion from information to relations, from data to meaning. The so-called
platforms and middleware, further addressed in this book, are necessary
components in this transformation.

AU3833_C01.fm Page 16 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

17

Terminals as Network Nodes

Terminals, be they cellphones, PDAs, digital cameras, or WiFi enabled,
are embedding more and more processing power, storage capacity, and
a growing communications capability. This trend is going to continue in
the future. Already today some terminals can act as gateways for other
devices. A cellphone may be used as such by a PDA, which will com-
municate via Bluetooth

®

 with the cellphone, which in turn will relay
information anywhere by providing network connectivity.

By the middle of the next decade we can expect terminals to become
network nodes capable of selecting an appropriate communications chan-
nel based on the user profile and the specific service being requested. A
significant portion of this decision making will be completely transparent
to the end user. Already today, when using a 3G cellphone, the user is
not aware of whether the communication is carried out on a 3G or 2G
network, and he does not care. When we are roaming abroad we usually
do not notice whose network we are using. The same will happen with
multi-standard cellphones where connectivity may be provided by either
WiFi or cellular networks.

We might not even give much thought to the fact that the video call
we are receiving on a window in the television on which we were
watching a football game was actually routed there by our cellphone,
which was aware of the existence of such a television and that we are
right in front of it. It will seem entirely ordinary to have the video call
pop up on the screen. Such a scenario requires a significant effort on
the technology, infrastructure, and standardization side to make it happen
in a seamless way. The usual rule applies: The easier a service is for a
user, the more complex its implementation. The main issue here, how-
ever, is not a technical one but one of shifting power among different
players. The situation at the beginning of 2005 is still pretty uncertain.
Who is going to play the role of the integrator, the orchestra director,
of the PC, entertainment system, applications, services, and those who
are behind these?

In Korea, this concept of integration is considered fundamental to
tomorrow’s business. Most importantly, the home environment will seam-
lessly extend into and integrate with all other environments. The software
infrastructure supporting the seamless use of any appliance and service
within the home will have to reach out and accommodate services,
information, and applications residing on other platforms — at schools,
offices, and healthcare facilities, for example.

The network of today will extend its reach into any environment and
into any device, and these devices will no longer be seen as terminals
but as network nodes. They will be designed and produced in ways that

AU3833_C01.fm Page 17 Tuesday, August 15, 2006 1:02 PM

18

■

Mobile Middleware

are beyond the control of operators but they will find themselves forced
to interact with them. Actually, successful operators will learn to leverage
them to provide more services financed by their customers.

Terminals as Networks

The next step is almost natural. When terminals have all these capabilities
they may also begin communicating with others in the vicinity. For
terminals that are not in the vicinity, other terminals will be used to
establish a connection path to distant ones. Moving in this direction
requires some significant progress in propagation studies and

ad hoc

 and
mesh networks, all items on researchers’ agendas that are unlikely to lead
to marketable products within this decade, as some significant hurdles
must still be overcome. Notice, however, that an infrastructure based on
terminals with basically no external infrastructure support is in keeping
with the concept of ubiquitous disappearing computers and requires
significant evolution in the software infrastructure. This is the idea behind
generating an infrastructure out of the physical connection capabilities
offered by terminals. We are likely to see this kind of network-based
infrastructures in some market niches and in some application sectors.

The Market View

To close this chapter it is appropriate to examine our previous discussion
from a market point of view. The market is going to be affected more by
the paradigm shifts presented in the previous section than by the tech-
nology evolution, which remains in the background as a crucial enabler
but nothing more. Clearly, the story would be different if we were to
consider a manufacturing business where adopting one technology over
another may tip the scales of success toward one manufacturer over
another one. Here we are looking at the end-user market, the kinds of
services this market is likely to need, and the implications on the value
chains.

Technology Evolution Versus Market

Technology is going to evolve in the future just as it has done in the past,
but even more so. A variety of researchers, enterprises, and businesses
will be inventing, perfecting, and deploying technology at a faster pace.
The era of standardization and painful and lengthy discussions among
international committees is, to a certain extent, over. I do not mean to

AU3833_C01.fm Page 18 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

19

suggest that we will no longer have standardization committees, forums,
and international organizations trying to come to agreements. Actually,
these are essential. What I am saying is that technology innovation and
deployment are almost impossible to plan.

Some studies performed within the FISTERA group, in cooperation
with the Polytechnic of Torino, Italy, seem to indicate that the expected
evolution, as forecasted by scientists, will not behave according to a
completely random set but it will not behave as a planned set, either. It
will be somewhere in between. The expected evolution would seem to
conform to the theories of “small worlds”; that is, evolution happens in
an unstructured way but some attractors over time steer the direction,
creating a sort of structure. FISTERA has identified some of these attractors
within the technology set studied: batteries, storage, embedded systems,
microkernel and

ad hoc

 protocols, bandwidth, information semantics, and
radio propagation. It is interesting to note that most of these relate to the
topic of this chapter and book — namely, embedded systems, microkernel
and

ad hoc

 protocols, information semantics, and radio propagation.
Batteries and storage may be considered as instrumental and therefore
loosely related to the topic.

These attractors, however, only underscore the obvious fact that evo-
lution in these technology areas is likely to accelerate evolution in many
other connected areas. The interesting attractors should be studied at the
market level, as it is the market that will push technology evolution in
certain directions. The South Korean identification of eight services to be
promoted, three infrastructures, and nine information technology growth
engines is a clear attempt to stimulate the overall scenario by forcing the
creation of attractors. Software infrastructures, platforms, and middleware
can be viewed as being instrumental in enabling some attractors to initiate
a virtual circle of evolution.

The market today has plenty of technology from which to choose.
Technology in a way is not the stumbling block. The iPod

®

 miracle, as
many call it, is filled to the brim with technology, but it was not technology
that created the miracle. Plenty of MP3 players were on the market with
very similar characteristics, but there was only one iPod. And the iPod
has become an attractor. Look at ipodder.com, which provides a way to
receive audio information in a push mode, and podcasting, which is a
new way for people to communicate. iPod, as an attractor, is not simply
making business for the company that owns it; rather, it is generating
additional business for potentially anybody. It has basically created an
infrastructure, a

de facto

 standard, that no one had to agree upon.
The embedding of processing capacity in appliances along with com-

munications is creating yet another attractor. Why would an appliance
producer begin to create processing-enabled appliances? Ariston, an Italian

AU3833_C01.fm Page 19 Tuesday, August 15, 2006 1:02 PM

20

■

Mobile Middleware

white goods company, has incorporated processing into its product lines.
Margherita is a washing machine that can connect to the Internet and
communicate with the repair center when it malfunctions. In principle, it
can also talk to the refrigerator. Why should it do that? A dialogue among
the various appliances can decrease power consumption and can ensure
that it remains within the agreed-upon target usage. If the refrigerator
knows that the washing machine is heating water, it will wait to run its
compressor. The same goes for the microwave oven. When a user turns
on the microwave oven, it immediately asks the washing machine to
suspend heating water for the next 20 seconds to avoid overloading the
power line. The Internet connection used by the washing machine for
proactive maintenance control can, in the future, be used to obtain
information on how to wash a certain dress, the identity of which is
embedded in an RFID tag woven in the fabric. And, of course, all of this
is performed automatically. The pervasive computing environment takes
care of that.

How much does it cost to embed a computer in an appliance? Ubicom
offers a microprocessor for this kind of application at less than $10. This
microprocessor also embeds communications capability. Emware offers
software supporting the remote monitoring of these appliances.

Microsoft’s Smart Personal Object Technology (SPOT) software foresees
a variety of everyday objects embedding processing and communications
capability. A simple key chain may receive traffic information via FM
signals and tell us which route to take. Of course, a car navigator can
access the same information and prompt us on the quickest way to get
home. Assume, though, that one night we are not going directly home;
in fact, earlier in the day we called a restaurant to make a reservation.
The cellphone is aware of this call, and it can inform the car navigator
of our destination as we step into the car. Or, a digital frame in our living
room may select and display photographs depending on who is in the
room, recognizing what that person likes and learning from that, or it can
show the faces of people who have left messages on the answering
machine. Again, these are trivial examples of a seamless intelligent envi-
ronment with ubiquitous pervasive computers.

Clearly, in moving from technology to market, two basic questions
must be answered: What is a person willing to pay and does a sufficient
market exist? Most of the examples we can think of in the ar ea of
ubiquitous pervasive computing and intelligent environments are fairly
trivial, including the ones I have already mentioned. The point is that our
life is made up, 90 percent of the time, by such rather trivial things but
they become integral parts of our life. Once I checked into a low-cost
hotel in the United States with my younger son. In the room he looked
for the remote control to switch on the television. It was an old model

AU3833_C01.fm Page 20 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

21

and had no remote control. When I explained that to him he could not
believe that there was a time when televisions did not have remote
controls. “Did you really have to walk from the couch to the television
set to change channels? Unbelievable!” Before remote controls were the
norm, how much would we have been prepared to pay for a remote
control? Probably nothing, as most of the people would not have seen
any need for a remote control. It was such a straightforward thing to
manually change the channel. This is how habits are entrenched in our
culture, and that is why the intelligent environment we are imagining
today looks rather irrelevant and not worth the cost; however, once we
get there we will never look back. Simplicity is a must for any technology
that hopes to win the market, and the grid is a step in that direction.

From Information to Applications: The Grid

The Internet was designed to provide ubiquitous computing, but it does
more than that in that today it serves as a data communications network,
a way to share information. More importantly, though, is the fact that it
does not serve as a way to share processing resources, basically because
these got so inexpensive over time that the need for additional resources
was felt only in some niches. By the middle of the 1990s, many of the
PCs connected to the Internet were idle most of the time. The idea was
put forward to take advantage of this idle time, and SETI@home was born.
This occurred in July 1996, a date we can probably mark as the birth of
massively distributed processing. In a very short time, hundreds of thou-
sands of computers were participating in the effort, resulting in an overall
processing capacity exceeding that of supercomputers.

A few years before that, however, in 1992, many telecommunications
operators decided to initiate a consortium to create a distributed environ-
ment to facilitate the creation of complex applications and services,
building upon the variety of applications already existing and ones that
would come. The initiative was known as TINA (Telecommunications
Information Networking Architecture). In the end, though, the goals (or
dreams) were not achieved, as it was probably ahead of its time; however,
the idea of sharing applications as basic blocks in a distributed environ-
ment that can be used as building blocks to create other applications is
still valid today and still remains a challenge for the future, a challenge
taken up by the application grid, one of the many forms the grid concept
has taken. I have already mentioned the grid in terms of processing to
harvest processing capacity through the use of many processors intercon-
nected in a distributed environment. The DataGrid is a way to share
massively distributed information to derive meta information of higher
value.

AU3833_C01.fm Page 21 Tuesday, August 15, 2006 1:02 PM

22

■

Mobile Middleware

The application grid is a further step. The basic idea is to harvest
application resources available in a distributed environment. This objective
is achieved through the use of three types of interfaces: the connection
protocol, the resource protocol, and the collective protocol. The connection
protocol provides a set of interfaces that allows one application to establish
a connection with another application to provide authentication services
and negotiation support while establishing and carrying out the commu-
nication. The resource protocol allows an application to discover the
existence of other applications that may be available in that particular
distributed environment. At the same time, it establishes a mechanism to
declare what an application is doing, thus allowing others to understand
if it is of interest for their purpose. The collective protocol supports the
aggregation of several distributed applications, managing them, from the
point of view of the application calling upon them, as if they were a single
application providing a higher level service (this is, as a matter of fact, the
result of the services provided by the individual applications, appropriately
synchronized). The interactions that the collective protocol is required to
support are very complicated and as of today represent the biggest obstacle
for effective use of an application grid. Still lacking is what the HTML and
browser have used to tie together information created in a distributed
environment. Current implementations of the application grid work only
in very specific areas where the people who have designed the individual
applications have followed agreed-upon ways to describe them.

It is not possible to predict the kind of evolution the application grid
will have in future years. Surely, if an effective solution is developed, it
will have a significance similar to that of HTML and Mosaic on the Internet.
In this case, however, the impact will not be felt directly by the consumer,
as has been the case for the Web, but by the businesses offering complex
services, wherever they are in the world. This would really change the
market and value chains. A company in a developing country in Africa
may come up with a service that exploits the capabilities of applications
embedded in appliances in Bill Gates’ home to provide him with out-
standing services. That company could use the same service to provide
enhanced facilities to a client in Asia making use of the devices the client
has installed in his home which are likely to be different from those of
Bill Gates. The existence of a software infrastructure tying together various
computers present in any environment will allow this kind of service
creation and delivery. Notice the importance here of the concept of
“creation,” which takes place at the delivery point.

Tagging

At the end of 2004, China had produced 5 billion RFID tags. This number
may exceed 1000 billion in the next decade. The impact on business will

AU3833_C01.fm Page 22 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing

■

23

be astounding, but it is not going to be, as some people are speculating,
due to changes in the production or supply chain enabled by this tech-
nology; rather, these changes will be significant because they will make
the production and supply processes more efficient and less costly. Of
major importance will be the creation of a direct link between production
and the end client because of the transformation of products into services.
This is really going to change the value chain.

For this to happen, in addition to reducing the cost to manufacture
and embed e-tags, a pervasive communications infrastructure is neces-
sary, as is overcoming privacy concerns in the developed world, at
least in the deployment phase. My personal opinion is that, while we
are discussing privacy violation concerns that might result from the use
of tags, some countries, such as China, are moving forward and creating
a

de facto

 environment that will force the remainder of the world to
go along with it. I do not want to take a stance on complex ethical
issues such as stem cell research and cloning, but I do want to emphasize
that while many countries do not condone research in these areas others
are continuing with it. If this research will lead to some drugs that
prove effective in curing cancer, I doubt that we will not take advantage
of them because of ethical considerations. At that point, the value will
shift to those who invested and brought forward the innovative products
and solutions. It may be better to remain a part of the game, keeping
a close eye on all issues, including ethical ones, rather than peering in
through the window.

E-tags are nothing more than a technology, and not a particularly
sophisticated one, but the context they create is a very sophisticated one
that enables ambient intelligence and acts as an attractor for a variety of
infrastructures, terminals, and services. Software infrastructures for ubiq-
uitous disappearing computing are going to be affected by the evolution
of tags and their usage. At the same time, they can take advantage of tags
to create a richer fabric for a variety of applications. We may expect to
see tags systematically pervading any environment by the end of this
decade, although it is likely that most of the impact will be felt in the
next decade.

Sensor Networks

Sensor networks are fairly similar to tags with regard to their global effect
on business, although the impact is likely to be limited to some vertical
markets. They may become part of a pervasive infrastructure and managed
as such. Today, sensor networks focus on very specific tasks and are
deployed to respond to specific needs of a company, institution, or
government. As sensors become more flexible and the range of parameters

AU3833_C01.fm Page 23 Tuesday, August 15, 2006 1:02 PM

24

■

Mobile Middleware

they can capture becomes broader, we may see growing interest among
infrastructure-related enterprises, such as telecom operators, utilities, and
municipalities, to provide sensor networks by piggybacking on their
infrastructure and selling the information captured as just another service.

A typical home may contain a variety of sensors designed to detect
malfunctions, fires, and intruders, but some also contain monitoring sys-
tems that track the well-being of the inhabitants. Cars, too, have sensors,
which gather information that may be used by others (e.g., to monitor
pollution level). The environment will be progressively populated by
sensors. More and more objects will embed sensors (most already do)
and will be capable of sharing the information captured (which today is
not the case).

Cellphones may contain sensors and are in an ideal position to share
the information captured. The very presence of a cellphone is a sensor
by itself; for example, one could monitor the presence of people in certain
areas to determine the potential for congestion. Of course, marketing data
can easily be derived from such information. Assuming that the identities
of the people being tracked are not disclosed, one could create a wealth
of information for advertisers. Similarly, the control of epidemics may be
aided by this kind of knowledge.

Today we are basing many decisions on a few very costly sensors that
must be carefully tuned to ensure their appropriate functioning. Tomorrow,
a vast amount of data will be derived from hundreds of thousands of
sensors, and averaging of such information will greatly offset possible
local inaccuracies. Moreover, today we have to plan in advance the type
of information we want to capture and deploy the appropriate sensors in
the most effective places well in advance. In the future, sensors will be
everywhere, and it will be simply a matter of deciding what we want to
know and receiving an answer almost immediately.

Telecom operators must decide whether to enter into this market by
deploying the required infrastructures (obviously leveraging on what they
already have, which is a lot) or to just sit and wait for someone else to
do it and hope to get a share of the pie in terms of traffic rights.

Impacts on the Value Chains

The advent of an intelligent environment composed of a software infra-
structure that supports communications locally and acts as a gateway with
the outer world and the variety of applications independently developed
by a variety of actors and present on appliances of any type will deeply
transform the way we live and the way business is being carried out.
Today’s assumption is one of a value chain that ends at the retail point.

AU3833_C01.fm Page 24 Tuesday, August 15, 2006 1:02 PM

Toward a Software Infrastructure for Ubiquitous Disappearing Computing ■ 25

Additionally, each link in the value chain effectively separates an actor
from others further down (or up) the value chain. Telecom operators, as
an example, have had a very clear termination point for their network
(the NT, or network terminator) and whatever is beyond that is no longer
their business. ADSL has begun to change that because ASDL is viewed
as connectivity by the operator but as a service by the client. The result
has been a nightmare on both sides. When customers call the support
center to complain that the service is not working, the engineers there
perform remote checks and come back to them saying that on their side,
up to the NT, everything looks fine and it is not a network problem.
Customers do not care where the problem is; they just want it fixed. Most
of the time, fixing the problem would require getting inside the customer’s
PC, the set-top box, or the appliance to look at the software and the
drivers of newly activated peripherals — something that the operator is
not technically prepared to do and, more than that, is not prepared
culturally to do.

This very same situation is going to be faced by product manufacturers.
As the product operates and cooperates in an intelligent environment it
can talk back to the producer. As it talks, it morphs itself into a service.
This is a great opportunity for establishing a connection with the end
customer but it is a double-edged sword. Companies selling services can
continuously monitor the ways their customers are using their services
and can come back to the customer with new services, thus further
developing their business. They can focus advertisements on specific
customers and deliver them at the most effective moment.

At the same time, a customer buying a product basically loses all the
leverage over the seller once he has paid for it. He can obviously complain
if something is wrong, but it is very difficult to get any money back. A
customer buying a service pays for it as he is using it. The very moment
he stops using it, he stops paying for it. Making money from a service
requires continuously satisfying customers; making money on a product
means convincing a customer once. The target market of a car manufac-
turer is people who have yet to buy cars, not those who already have
bought cars.

As the world shifts toward services, competition will truly become
global as services can be delivered from anywhere in the world to
anywhere in the world. Products are likely to become a way to deliver
services, and in many cases products will be given away for free in the
hope of making money on the services. This is basically what has already
happened in the ink-jet market, where the printer is either free with the
purchase of a computer or is sold at a very low price, and revenue is
made on cartridges. Another example would be gaming consoles, which
are sold at a loss in return for the potential profits to be made on the games.

AU3833_C01.fm Page 25 Tuesday, August 15, 2006 1:02 PM

26 ■ Mobile Middleware

Such a development can be a threat for many local businesses who
risk losing their location advantage, but at the same time it can open up
new opportunities. Tourists visiting a nice spot in Italy may subscribe to
a service to enjoy virtual visits once they are back home. Or, when they
are back home these same tourists can use their entertainment systems
to show friends and family what they saw. Think about developing an
album of pictures that here and there contains links to the places visited
that allow a real-time view of what is going on there. The world is
shrinking, and lots of opportunities and challenges await.

Getting There

In closing this chapter, it might be worth considering for a moment the
problems facing us as we attempt to make ubiquitous computing a reality
and to also consider the problems that will result from such an achieve-
ment. The rapid growth of applications and processing power, combined
with reduced costs in production processes that have enabled the embed-
ding of microprocessors in any object at a marginal cost, is leading to the
creation of environments having a local intelligence. The evolution of
telecommunications, specifically on the access side, is making it possible
to interconnect these local environments and potentially control them from
a central location. These two opposing forces, one centrifugal (local
processing) and the other centripetal (telecommunications as the core),
are not balanced and in my opinion the centrifugal one will take the
upper hand. In a way, this should be good news for those who fear the
advent of “Big Brother.” The localization of processing power brings along
the issue of management. New architectures and new structures are
required, and the evolution toward the autonomic systems is a step in
this direction. Looking further into the future, the existence of highly
distributed and communicating processing structures may radically change
what we consider a telecommunications network to be and in particular
where its boundaries are.

Acknowledgments
The ideas presented here derive from work performed in the FISTERA
project (http://fistera.jrs.es), funded by the European Community, and
from discussion with many researchers within TILAB and in other orga-
nizations in Europe and abroad. They do not necessarily represent the
positions of Telecom Italia Lab nor of Telecom Italia.

AU3833_C01.fm Page 26 Tuesday, August 15, 2006 1:02 PM

27

Chapter 2

Mobile Computing

Radu Popescu-Zeletin, Stefan Arbanowski,
Stephan Steglich, and Ilja Radusch

CONTENTS

Mobility.. 28
Challenges in Mobile Computing .. 29

Code Mobility.. 30
Personal and Service Mobility ... 33

Reference Model for the I-Centric Service Architecture 38
Communication Layer ... 39
Service Platform Layer .. 39

Service Interfaces... 41
Generic Service Elements... 42

Service Discovery .. 43
Service Reservation ... 45
Service Monitoring .. 45
Event Notification.. 46
Service Configuration .. 46

Service Features .. 46
Personalization... 46
Ambient Awareness... 47
Adaptability .. 48

Summary.. 49
References ... 49

AU3833_C02.fm Page 27 Monday, August 14, 2006 10:04 AM

28

■

Mobile Middleware

Mobility

To begin,

mobility

 can be swiftly explained by stating that things are
moving from A to B; therefore, explaining mobile computing and appro-
priate middleware systems simply requires us to state

what

 exactly and

how

 exactly things are moving. This is, as you will discover, more difficult
than one might anticipate.

Apparently, from a network-technology-centric point of view the first
— and only — thing moving is a

network

terminal

device

. Research in
mobile computing should therefore focus on allowing mobile devices to
easily disconnect and reconnect to different networks, but this seems
rather insufficient. Because most terminal devices are not able to move
autonomously, one could argue that research should rather have the

user

moving the device to be addressed. Additionally, such user mobility can
be extended to cases where users move from one device to another,
demanding support for the same services. This can be expressed with the
more general term of “personal mobility.” Most users, however, do not
care about the inner workings of their devices; they just want, among
other things, the appropriate

services

 to be available at all times, which
we can denote as “service mobility.” Because a service is expressed
through

program

code

, we have now identified the following four key
types of mobility:

■

Terminal mobility

■

Personal mobility

■

Service mobility

■

Code mobility

Terminal mobility

, then, subsumes in general all changes in the network
topology. These changes can be due to the physical disconnection of devices
(and reconnection to other networks) or moving wireless network devices
in and out of the radio footprint of their neighbors. Examples are laptops
connected via Ethernet or wireless LAN or mobile phones moving from one
base station to another. Coping with terminal mobility is a well-known and
well-addressed problem, as the network reference model implied that
providing network access was the first (and to some people only) problem
to solve; however, research in mobile computing showed that this approach
must be extended for most practical applications of mobile users.

Personal mobility

 differs from device mobility as users do not need to
carry terminal devices with them but instead use different terminal devices
in their vicinity. So, a user accessing his mailbox from different locations
would not carry a specialized terminal device but would contact his central
mailbox server directly from available terminals. Another example is the
follow-me phone, where all new calls addressed to the user are routed

AU3833_C02.fm Page 28 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

29

to the fixed-line telephone nearest the current location of the user.
Additionally, personal mobility is often divided into

user mobility

, covering
the description above, and

user session mobility

 (often also referred to as

session mobility

). In the latter, users can carry their current session data
to various terminal devices. Extending the concept of the follow-me phone,
user session mobility allows active conversations to be transferred to the
new location. Furthermore, the counterparts of personal and session
mobility are actor and role session mobility. With

actor mobility

 a specific
user is replaced by a group of people belonging to a certain role; for
example, all employees currently working at the reception would be able
to answer service calls.

Role session mobility

 implies the reactivation of
actor sessions at the new terminals.

This more general paradigm of user-centric mobility emerged with the
advance of “ubiquitous computing,” a concept coined by Mark Weiser in
1991 [54]. The traditional view of explicitly used computers and terminal
devices is superseded by smart and autonomous computing technology
embedded in every device. Instead of relying on specialized devices that
must be carried and maintained by the user, such as mobile phones, the
focus is now on services provided for the user, such as reachability for
phone calls, as mentioned above. In this regard, service mobility means
that each device or each group of devices able to record and render audio
could be made to function like a traditional phone for the user. Addition-
ally, this scenario also foretells two additional concepts important for
personal and service mobility: dynamic

adaptation

 and

personalization

of devices and services. We will explain these further in the following
sections.

Challenges in Mobile Computing

In the previous section, we established what types of mobility are relevant
for mobile computing. The key challenges can be divided into physical,
connectivity, performance, and terminal challenges.

Physical challenges

 reflect the fact that mobile devices are often more
fragile and more vulnerable to damage or loss, thus rendering service
provision to the mobile user impossible. Furthermore, mobile terminals
today rely on limited energy sources. While this restraint can be relieved
somewhat with true service mobility, applications and middleware for
mobile computing must be careful about energy consumption. Although
it would seem that few choices are available to compensate for the loss
of equipment or final discharge of batteries, research into mobile com-
puting systems can nonetheless seek solutions by utilizing, for example,
graceful degradation (i.e., shut down less useful services first in case of
a power shortage).

AU3833_C02.fm Page 29 Monday, August 14, 2006 10:04 AM

30

■

Mobile Middleware

Connectivity challenges

 are obvious in mobile systems. Due to mobility,
the connectivity of devices can be unstable in both performance and
reliability; for example, users or devices may not be connected to the
network at all over extended periods of time or the bit rate available to
the application might vary over time and location.

The first two challenges generally imply the third:

performance chal-
lenges

. These are twofold. First, mobile devices are usually less powerful
compared to their static counterparts. This is mostly due to constraints in
size, weight, and ergonomics for mobile devices. Second, mobility — or,
in general, all changes to a given system — greatly inhibits traditional
optimization. Furthermore, given the connectivity challenges outlined
above, services for the user must be developed with reduced bandwidth
in mind (compared to static setups); thus, the performance of mobile
services is often perceived as less satisfying by the user compared to
similar services in static networks.

Terminal challenges

 arise from the vast variety of devices available.
Providing consistent service quality for a wide range of devices and
environments requires maintenance of several input sources or a general
framework to dynamically generate output according to the terminal
capabilities. This includes the need for adapting service content as well
as the need for supporting various input methods, ranging from keyboards
to mobile phones, as well as single-value input devices such as switches
or sensors and varying screen sizes and color resolutions.

Based on these challenges, we explain in this chapter the fundamental
functional and nonfunctional requirements for mobile computing. One
approach to tackle terminal, connectivity, and performance challenges is
to bring parts of the service logic to the terminal device. Application code
(e.g., an applet) is transferred to the terminal and must utilize the available
resources as best as possible. The next section describes this code mobility
in further detail.

Code Mobility

Traditional approaches to achieve personal and service mobility have often
implied

code mobility

, whereby program code is either explicitly or implic-
itly migrated to another device. This approach stems from the fact that
this is a simple way of describing distributed service logic to a new device.
Code mobility, as described in Fuggetta et al. [53], discriminates compu-
tational environments (CEs) (i.e., originating and target systems) hosting
one or several execution units (EUs) along with resources. Examples of
EUs are sequential flows of computation or different threads of a multi-
threaded process.

AU3833_C02.fm Page 30 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

31

In general, moving a running application from one (originating) CE to
another (target) CE requires three basic steps. First is the

transfer of
program code

 (i.e., passing executable code to the target system). Second,
one must

restore the execution state

 at the new system; of course, this
implies that the execution state was safely backed up at the originating
system. Third, all

resources or data

 associated with the old system must
be propagated to the target system. Research in mobile computing has
shown that these three basic steps can be implemented in various ways.
A detailed classification of code mobility is given in Figure 2.1.

With regard to the implementation of code mobility in mobile middle-
ware systems, we distinguish two key issues: application support (i.e., how
much developer involvement is demanded) and which objects are to be
transferred during code mobility. The former denotes whether code mobil-
ity is hidden from the developer (application transparent) through the
framework or relies on special application assistance. The second key issue
characterizes whether full applications are transferred or mere code frag-
ments. The notion of code fragments also includes application-specific
scripting code. These issues have great impact on the middleware systems
implementing code mobility and their ability to solve the challenges of
mobile computing outlined above.

Figure 2.1 Classification of code mobility.

AU3833_C02.fm Page 31 Monday, August 14, 2006 10:04 AM

32

■

Mobile Middleware

Regarding code mobility that is transparent to the application (also
referred to as

strong mobility

), we can further distinguish it according to
the circumstances under which the code transfer is initiated: proactive or
reactive. In the case of a mobile user, this translates to either before the
user changes his location (proactive) or after he has changed his location
(reactive). This is an important tradeoff with regard to the performance
challenges mentioned earlier, as proactive systems will almost certainly
appear more responsive in user experience than reactive systems. Addi-
tionally, we distinguish whether applications on the originating system
are removed completely (migration) or are duplicated on the target system
(remote execution). The latter is especially useful for displaying locally
rendered content on devices near to the user or for load balancing by
distributing heavy computation to one or several different systems.

On the other hand, application-assisted code mobility (often denoted
as

weak mobility

) is further distinguished according to the transfer mode:
asynchronous or synchronous, depending on whether or not the originat-
ing EU is suspended during transfer. Furthermore, asynchronous code can
be executed immediately on the target CE or be deferred until a given
condition (e.g., the first invocation request or an external event occurred)
is satisfied. Additionally, weak mobility can be characterized by the transfer
direction. Program code can be pushed to the target CE or pulled from
the originating CE.

Within application-transparent implementations, execution state is
either automatically or semi-automatically transferred through special seri-
alization and deserialization functions. Within application-assisted systems,
the logical execution state is usually encoded in the code transfer call or
must be restored by the application itself. Likewise, associating the exe-
cution state with a resource can help in developing application-assisted
code mobility, because the transfer task is then assigned to the resource
mobility subsystem. Figure 2.2 depicts the classification of resource mobil-
ity as a complement to code mobility.

Resource mobility is characterized by three aspects: resource binding,
transfer method, and transfer constraints. Resources can include almost
anything in a mobile computing environment, ranging from status variables
of code objects to files on a network share to printers connected to a CE.
Resources can be bound by reference, value, or type. Type is most
applicable for resources bound to a specific CE, such as printers, which
must and can be replaced by similar resources available in the target CE.
Furthermore, resources are also characterized by their transfer constraints
at the time of the resource transfer. They are freely transferable, bound
to the system, or only uniquely transferable. Please note that these con-
straints can be highly volatile; for example, a huge file that, considering
the current bandwidth available, is bound to the originating CE can become

AU3833_C02.fm Page 32 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

33

a freely transferable resource when the bandwidth is improved. The former
would imply that this resource is addressed by reference at the target CE.
Uniquely transferable resources describe resources that cannot or must
not be duplicated (e.g., resources describing tokens). These must either
be addressed by reference or be moved between CEs. Resource transfers
can occur by moving or copying resource values, rebinding to resource
references, or compensating with similar resource types.

Personal and Service Mobility

Traditional services architectures of telecommunications and information
systems have been designed and implemented from the bottom up in an
independent way, from network to end system, as have the corresponding
services offered to consumers: public switched telephone networks
(PSTNs) for telephony, cable distribution networks for television, radio
networks for mobile telephony, etc. The results of this bottom–up process
are a continuous search for killer applications for the expensive infrastruc-
ture and a cumbersome and costly integration of services over different
communication systems; however, the development of the Internet, per-
vasive computing, and sensor networks technologies has provided the
required technological basis to devise future communication architectures
via a top–down approach.

Figure 2.2 Classification of resource mobility.

AU3833_C02.fm Page 33 Monday, August 14, 2006 10:04 AM

34

■

Mobile Middleware

At one time, the communication space of humans was limited to their
actual physical surroundings (village, home, or office) due to the limited
spatial range of human senses. Morse’s telegraph system led to the
development of an ever-expanding communication space. Thanks to the
telegraph, people were for the first time confronted with communication
content (or “news”) about people and locations of public interest that
they had not directly experienced. The introduction of telephony
expanded the average communication range as well as communication
content as fast as the telephone network grew and the price for phone
calls fell. By now, people were able to communicate with relatives across
continents about topics purely relevant to the sender and recipient. This
differed greatly from the communication habits of a couple of hundred
years ago, when either the communication content had to be important
enough to justify the cost of someone carrying the message or the content
had to be durable, such that less expensive but more time-consuming
message propagation methods did not render the message obsolete.

Eventually with the introduction of mobile phones, it became possible
not only to reach locations very far away but also to address and com-
municate with people regardless of their location. Later, with asynchronous
services such as electronic mail and short message service (SMS), the
dimension of time was expanded. Today, people can send e-mails and
do not have to be concerned about whether or not the addressees are
ready to receive the messages. Over time, technology has eliminated
distances in time and space, or at least has made the boundaries almost
imperceptible. Of course, allowing people to interact with each other over
unlimited space and time implies an exponential increase of messages
and communication channels for each user. Reducing the number of
messages addressed to a user to a comfortable level is essential to future
communication and one task of

personalization

. Likewise, making com-
munication channels interchangeable and thereby reducing their number
for the user is the task of

adaptation

.
From the perspective of someone utilizing future communication ser-

vices, one may draw some initial conclusions:

■

Individuals are interested in the content, not the presentation, of
a specific service. Further, in various situations or locations, the
service presentation must differ to suit the current situation; for
example, someone who is driving a car requires a different service
presentation than a user who is sitting in a chair in an office.

■

A human being has a limited and individualized communication
space (the user does not know everybody in the world and is not
interested in everything); hence, services must adapt to and per-
sonalize each individual communication space.

AU3833_C02.fm Page 34 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

35

■

Presentation of a service has to adapt to the quality of each
individual’s senses, life stage, and environmental situation.

Out of these requirements, we observe that modeling the individual
communication space for future communication systems is the starting
point for developing an all-embracing service architecture, which is further
extended to a full reference model for future I-centric services. I-centric
services refer generally to all services that are able to adapt to and
personalize service behavior according to the needs and preferences of
the user.

The

individual communication space

 is defined by a set of personal-
ized and adaptable I-centric services offered to the user (the individual)
by various objects within the user’s range. Objects are, in general, logical
representations of substantial (e.g., hardware, lights, terminals) or insub-
stantial (e.g., software, money, preferences, user context) entities, provid-
ing well-defined services and encapsulating specific semantics. See Figure
2.3 for examples of objects in the individual communication space.

Individual communication spaces grow and shrink over time based on
the individual’s life stage, personal interests, and working and living
environments, as well as the availability of new kinds of telecommunica-
tion services and devices. Furthermore, objects may and will pertain to
different communication spaces. They can be controlled by individuals or
other objects. More importantly, all communication between individuals

Figure 2.3 The individual communication space.

AU3833_C02.fm Page 35 Monday, August 14, 2006 10:04 AM

36

■

Mobile Middleware

takes place by sharing objects of their respective communication spaces
(see Figure 2.4); for example, a text message is first created in the
communication space of the sender and then passed to the recipient. This
message is likely to be transformed along the way to the recipient due
to different networks or encoding schemes. Future communication systems
may extend this transformation process up to the presentation layer,
adapting messages according to the best suited end device available to
the recipient.

Each individual communication space must provide a set of objects,
the services of which an individual can use to achieve his goals. Individuals
always communicate with objects in their environment according to a
certain context. Orchestrating these objects in context provides the defi-
nition of relationships and causalities between different objects of an
individual communication space. A context represents a “universe of
discourse” in an individual communication space. It defines relationships
and causalities of an individual to and between particular objects of the
individual communication spaces currently providing I-centric services.

Being surrounded with objects and interacting through and with these
in a specific context is quite natural for human beings; however, computer
systems so far have no understanding and (more importantly) almost no
access to these objects. Therefore, service mobility requires software
representations of these objects. They must be able to cooperate within
a service platform providing universal access to, as well as ways for basic
semantic understanding of, all objects involved in human communication.

Figure 2.4 Communication through sharing common objects.

AU3833_C02.fm Page 36 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

37

The aim of the service platform is to provide a seamless environment
for these objects. This service platform must be open, distributed, and
scalable, integrating heterogeneous devices ranging from tiny actuators to
large computers. It must combine architectures, operating systems, mid-
dleware, programming models, and tools to support location and context
sensitivity, personalization, and real-time adaptation. An object represented
within this service platform may be as simple as a sensor or as complex
as a portable device, a car, or a building.

To enable

ad hoc

 interaction of previously unrelated objects, the service
platform must also provide an interaction model between objects. This
interaction model describes the dynamic cooperation of these objects to
perform a specific task. Together with an organizational model, which
describes relations between objects such as ownership issues, such types
of interactions can be used to stimulate the social behavior of objects,
such as multi-agent systems do [1,7,39].

Furthermore, objects may and will pertain to different contexts. Generic
contexts are defined independently from a specific environment; however,
an individual acting in his own communication space is always in a specific
environment that must be captured by the communication system; there-
fore, an active context has to be modeled in the service platform. An

active context

 defines the relationship of an individual to and between
particular resources and people at a certain moment in time in a specific
environment. Selecting and activating a context involves:

■

Identification of objects required in the context and in a specific
ambient environment

■

Evaluation of the relationships and causalities between these
objects

■

Orchestration of these objects to perform the required I-centric
service

The difference between

context

 and

active context

 is characterized by the
entities, which are considered in relations and causalities.

Context

 refers
only to objects as an abstract model of what kind of objects must be
taken into account in a certain context, whereas an

active context

 refers
to the selected resources that have been identified during the activation
process. Active contexts have a dynamic nature reflecting the current
environment in which an individual resides. A context is active when it
is adapted to a certain environment at a certain moment in time. It defines
the relationships and causalities of an individual to a particular number
of objects at certain a moment in time, in a certain environment.

I-centric services can define, manage, and activate or deactivate con-
texts in an individual communication space, taking the preferences of

AU3833_C02.fm Page 37 Monday, August 14, 2006 10:04 AM

38

■

Mobile Middleware

individuals and ambient information into account. They support an indi-
vidual (I-centric), adaptive, personalized, and ambient-aware way to inter-
act with objects in individual communication spaces. Based on the
evaluation of personal preferences, service capabilities, and sensed infor-
mation about the actual environment, the individual can be provided with
I-centric services for his actual demands. A reference model for this I-
centric service architecture that provides ubiquitous service mobility based
on the above rationales has been defined by the World Wireless Research
Forum (WWRF) and is further explained below.

Reference Model for the
I-Centric Service Architecture

Figure 2.5 illustrates the reference model for the I-centric service archi-
tecture. The reference model is divided into four horizontal basic layers
(terminals, networks, Internet Protocol [IP]-based communication sub-
system, and service platform) and several vertical supporting generic
service elements, as well as service features, which are all explained further
in the following text.

Figure 2.5 I-centric reference model.

AU3833_C02.fm Page 38 Monday, August 14, 2006 10:04 AM

Mobile Computing

■

39

Communication Layer

The

IP-based communication subsystem

 is responsible for providing the
linkage between different objects in the communication spaces. These
links have to be maintained and managed even when they are subject to
change because of roaming between different network topologies or
access networks. Non-IP-based communication networks might exist
underneath the IP-based communication subsystem. They have to be
wrapped by bridging facilities to include them in I-centric communication
systems. IP communication is seen as the common denominator to har-
monize heterogeneous network infrastructures. The IP-based communica-
tion subsystem consists of three layers:

■

Service support layer

, which provides well-defined application pro-
gramming interfaces (APIs) for the service platform to access the
IP-based communication subsystem

■

Network control and management layer

, which combines the tra-
ditional concepts of network management with required real-time
aspects needed for systemwide control functions

■

IP transport layer

, which basically represents OSI layer four

The wired or wireless network layer implements all aspects of the
physical connections between different objects. Due to the hierarchical
structure of the reference model, a connection in the IP-based communi-
cation subsystem might use multiple connections in the underlying net-
work. Devices and communication end systems provide the physical
infrastructure that hosts all other layers. They can serve as switches
responsible for connecting different networks or even as multimodal
terminals able to interact with a certain individual.

Service Platform Layer

The service platform layer is responsible for shaping the communication
system, based on individual communication spaces, contexts, prefer-
ences, and ambient information. Additionally, it activates or deactivates
objects (as advised by I-centric services), identifies causalities between
them based on sensed environmental data, controls the services offered
by these objects, and converts data structures and operations for inter-
actions between services. The equipment is configured dynamically, its
state is profiled, distributed objects are controlled, service creation and
deployment are supervised, and the interaction among domains is
enabled by the platform. The service platform is an infrastructure that

AU3833_C02.fm Page 39 Monday, August 14, 2006 10:04 AM

40 ■ Mobile Middleware

supports the development and operation of I-centric services by providing
a set of service features:

■ Execution environment for services and objects
■ Generic abstraction as well as semantic description of objects and

services
■ Deployment of services
■ Discovery of services and objects
■ Generic access interfaces for services on objects
■ Interworking of services and objects

The service platform is divided as follows:

■ Application support API — Provides well-defined APIs to applica-
tions, services, and objects. It offers universal access to generic
service elements that can be used by developers of these entities
to ease and fasten the process of design, implementation, deploy-
ment, and management.

■ Service middleware — Provides the actual runtime environment of
applications, services, and objects. It supports their secure, QoS-
aware, and managed execution.

Moreover, the service platform provides functional blocks that directly
support the I-centric approach. These functional blocks manage ambient
information, preferences, and adaptability to be offered to I-centric ser-
vices. To fulfill the functionalities requested by I-centric communications,
I-centric service platforms impose requirements on the underlying com-
munication subsystem. Furthermore, the service platform provides abstract
software representations of objects in the individual communication space,
referred to as cooperative objects (COs). These cooperative objects utilize
the following properties:

■ Autonomy — COs are autonomous entities. Each of them can act
fully independently from the others. They should interact in a peer-
to-peer manner without any dependencies from specialized servers
(client–server paradigm). Whenever two COs are connected in a
network, they should be able to use the services provided by the
other, without any central instance.

■ Ad hoc communication — A characteristic of COs is their potential
mobility. It should be taken into consideration that COs can appear,
disappear, and move along the network rapidly. COs have to be
able to communicate, to use core functions of the system, and to
negotiate service usage. Furthermore, they must provide a generic

AU3833_C02.fm Page 40 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 41

and semantic description of their services in order to enable ad
hoc usage.

■ Diversity of processing capabilities — COs are entities with all
conceivable intermediate stages of the possible spectrum of com-
puting capabilities, from highly capable computers and PDAs to
plain light switches with almost no computing power. All COs
provide a standardized interface for access and understanding their
capabilities.

■ Communication technology independence — Every device or soft-
ware, irrespective of the network communication technology it
supports, may use benefits of the service platform and, in turn,
offer its services to other COs. The prerequisite for participation
is conformance to the CO interface and CO description standards.

■ Scalability — The number of objects in the individual communi-
cation space can grow rapidly, is very dynamic, and changes over
the time; therefore, interfaces and communication protocols must
consider this characteristic and include appropriate concepts.

The characteristics of a CO are further defined by its properties and the
services it offers. A CO is dynamically characterized by its status, which
is nonambiguous for every point in time. The status of a CO can be
modified solely through the invocation of its services. Services define the
capabilities of a CO. A service is represented by a group of operations
that can be executed.

Although some COs can act autonomously, others must make use of
the services of other COs before they can complete their own services;
for example, consider a service, wrapped by a CO, that sustains a constant
brightness level in each room the user enters. This service must find a
CO offering a brightness-measuring service as well as one or several COs
able to adjust the brightness level (via, for example, lights, dimmers,
window blinds) to build and execute its own service.

Because cooperative objects wrap objects of the individual communi-
cation space, a CO usually wraps a device able to interoperate with the
user. Thus, the CO maps the device capabilities to the operations of its
service interface and makes these available to all COs in the service
platform. However, as seen in the constant brightness example, a CO can
also wrap certain service functionality without wrapping any devices.

Service Interfaces

A CO offers two different types of interfaces: operational interfaces and
management interfaces. Operational interfaces represent CO-specific ser-
vices that can be invoked to perform actions on a CO or to request CO-

AU3833_C02.fm Page 41 Monday, August 14, 2006 10:04 AM

42 ■ Mobile Middleware

specific information. Complementing the operational interfaces are the
management interfaces. They allow the discovery of CO services, service
control, monitoring, and configuration of a CO. Most notable for manage-
ment interfaces are the monitoring, configuration, reservation, and discov-
ery interfaces:

■ Monitoring allows subscription to CO resources.
■ Configuration allows configuration of the CO resource data.
■ Reservation allows reservation of CO utilization.
■ Discovery allows a CO to advertise its capabilities in the CO system.

These necessary management interfaces are explained further in the fol-
lowing sections.

Generic Service Elements

The main features of I-centric communication (ambient awareness, person-
alization, and adaptability) affect all layers; therefore, supporting functions
must be provided as a vertical solution. The reference model introduces
the concept of generic service elements, which implement common func-
tionalities on all layers. I-centric communication systems will have to cope
with such issues as numerous service providers, always connected indi-
viduals, automatic service adaptation, and ambient awareness. Aspects such
as dynamic service discovery and service provisioning in unknown envi-
ronments and personalized services usage requires new mechanisms to
support I-centric communication systems.

To simplify the definition and realization of I-centric services and
applications, a set of reusable software components is necessary to support
functionalities common to the different services and applications. These
components are referred to as generic service elements to emphasis their
general applicability for all kinds of services. Generic service elements
can be seen as a toolbox with which complex services can be assembled
and executed dynamically. The vertical approach allows I-centricity on all
layers (e.g., for establishing I-centric private virtual networks). Notable
generic service elements are as follows:

■ Service creation covers the building and composition of generic
services.

■ Service deployment allows the distribution of services even in
unknown and distributed environments.

■ Service discovery is a mechanism for discovering service features
that are provided within a certain environment or by a certain
physical resource.

AU3833_C02.fm Page 42 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 43

■ Service configuration is the process for configuring the resources
needed for a specific service.

■ Service reservation manages the exclusive usage of objects.
■ Event notification publishes and subscribes the interfaces for event

distribution.

Each generic service element exposes a well-defined collection of interface
specifications designed for its specific domain. The idea is to equip the
same types of objects with standardized interfaces for functional (usage)
and nonfunctional (management) interfaces. From the aspect of telecom-
munications, open service APIs such as OSA/Parlay build the basis for
such interfaces [55].

The following sections present the functions that a CO system archi-
tecture should offer to facilitate CO communication and cooperation. This
scenario can be used as example of CO interaction in the system: Several
COs that control electrical appliances in an office build a CO environment.
A new CO joins this environment. The newcomer offers a service that
turns off the office appliances (e.g., lighting, air conditioning system) at
7 p.m. The existing COs in the environment should supply some manda-
tory functions that allow the newcomer to become integrated in the
environment so it will be able to communicate and cooperate with the
other COs. A first collection of these mandatory functions is listed below.

Service Discovery

A CO may require other COs to accomplish its services. When a CO
changes its location and joins a new CO environment, it must discover
the services offered by other COs that it requires before its services can
be executed. Because it knows what services are necessary, the CO should
be able to initiate a search for COs that provide these services. The
discovery facility is required by the system to support CO cooperation.
At the same time, a newcomer CO in the system should have the capability
to announce services it can offer to other COs in the system.

The discovery mechanism specifies procedures that enable publishing
of CO capabilities in the network/group and a dynamic search for COs
based on certain criteria. This chapter describes mechanisms that could
be leveraged in CO networks/groups to allow discovery of COs and their
services. It also discusses the data that should be exchanged among COs
to facilitate the discovery process. Generally, it is possible to obtain data
regarding CO availability in the system in two ways:

■ Announcements
■ Search requests

AU3833_C02.fm Page 43 Monday, August 14, 2006 10:04 AM

44 ■ Mobile Middleware

An announcement is a message containing information on some topic
that should be published. The announcement messages are spread across
the system parts. In the case of COs, the object properties and offered
services can be announced. The search procedure allows retrieval of the
locations of specific COs or services based on well-defined search criteria.
In a CO system or group, searching for COs with special properties or
offering desired services would be possible.

To enhance the efficiency of the discovery mechanism, a hybrid
approach embracing both CO announcements and search requests has
been proposed. The discovery interface includes operations for both the
announcement of COs and searching. CO announcements are a mecha-
nism that allows COs to spread information about their capabilities
throughout the CO network. A CO announcement is a brief message
specifying the CO properties and services. When joining a network/group,
the new CO can send announcements to notify the other COs of its
presence and to supply information about itself. When it leaves the
network/group, the CO so informs the other COs so they can update their
information on currently available COs and services. Because many COs
will very likely leave the network unexpectedly, limiting the validity time
of announcements is being considered.

A CO announcement contains basic information specifying the CO and
the services it offers. It should also include data required to contact the
CO and a description of services offered. When a CO joins a network/
group, it spreads announcements across the system using the discovery
interface. COs that are interested in using the services of this particular
CO can save the announcement and later connect to the CO and request
further data or service descriptions.

When a CO has just joined a network and must use the services of other
participants immediately, without waiting for their announcements, it must
fall back on the second type of discovery by issuing a search request. The
search mechanism allows the active search of all COs registered at the
service platform based on specific criteria. When a CO joins a network, it
can immediately begin searching for the services it requires. The search is
performed by broadcasting search messages across the network.

The CO announcement and search mechanisms are assumed to operate
in a decentralized system. In this case, when publishing services by an
announcement or searching for the services of other COs, the announce-
ment and search messages should be broadcast to all COs present in the
network.

In contrast, in systems with centralized discovery services, all the data
concerning the COs currently available in the system is collected in the
service; consequently, it is not necessary to broadcast announcements to
all the COs, as an announcement sent only to this central entity suffices.

AU3833_C02.fm Page 44 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 45

The search for a CO or service can be performed in a similar way, by
sending a search request to the discovery service. Because the discovery
service possesses information on all CO available in the network or group,
it is possible to retrieve information on all CO possessing certain properties
from it.

Service Reservation

For certain applications, COs should be able to reserve the utilization of
other CO resources. This requirement has arisen due to the need to get
exclusive access to services. Operations enabling the reservation of CO
utilization are collected in the reservation interface. The three modes for
CO reservation are pessimistic, optimistic, and unlimited access. The unlim-
ited access mode indicates that the CO is not currently reserved. In this
mode, reservation operations can be accepted. In the optimistic access
mode, all COs except for the reserving CO can only access the resource
data of that CO in the read-only mode. Other COs can inquire about the
services that the CO offers and the current state of its parameters, but no
service invocations or configuration operations are allowed. State notification
subscriptions through the monitoring interface are permitted for everyone,
as well. A CO reserved in the pessimistic mode acts as if it has disappeared
from the network. For the duration of the reservation, it does not announce
its presence in the network and does not react to search requests sent by
objects in the network; it is visible only to the reserving CO. Further, only
the reserving CO can execute its services, subscribe to the state notifications
of the CO, and monitor and configure its resource data.

Service Monitoring

Cooperative objects also provide interface functions enabling monitoring
of their services’ state. Services can require monitoring capabilities to control
the service state. The CO state can be actively monitored either by polling
or by notification of state changes. Thereby, monitoring by polling consists
of periodically checking the state of the CO by the observer. The monitoring
of service state by a polling mechanism can be disadvantageous, as it is
difficult to estimate the most appropriate polling frequency. If too high of
a frequency is chosen, it can lead to unnecessary network workload; if it
is too low, the service client would get the information about the new
service state long time after it has changed. For this reason, event notifi-
cations can be used to complement the polling operations. Event notifica-
tions are sent across the network to inform other objects about CO state
changes. The COs that would like to monitor the state of certain COs

AU3833_C02.fm Page 45 Monday, August 14, 2006 10:04 AM

46 ■ Mobile Middleware

(called further notification subscribers, or subscribers for short) subscribe
the state change notifications at a CO of interest. Event notifications are
sent to all subscribers when the CO state changes.

Event Notification

A mechanism for the propagation of state information is useful to avoid
resource-consuming polling. When a CO state changes, other COs can
subscribe to receive immediate notification of this state change. With the
introduction of a subscription concept, COs may subscribe to receive
notification of any events they are interested in. Event notifications that
are sent to subscribers can be predefined. When subscribers are informed
of a state change immediately, as soon as it occurs, this type of notification
is referred to as on-change notification. Another option is to allow sub-
scribers to predefine how often they would like to get information about
the CO state; if the subscriber chooses this option, the notifications are
sent to it once during a specified time interval, even if the state has changed
since the last notification. This option is referred to as interval notification.
Other options concerning when event notifications are issued can be
conceived, but in this chapter only these two options are considered.

Service Configuration

Cooperative object interfaces also provide functions that allow configuration
of the resource data and service parameters of COs. This function can be
used to configure CO location information, services, notification intervals,
etc. The configuration interface offers operations enabling the configuration
of CO resource data. Because every CO possesses more or less unique
collections of resource data, information about the parameters to configure
should be requested before the first operation is invoked. All resources that
can be configured in a CO belong to its resource data and are specified in
the CO configuration. It is also possible to set the current CO configuration
to one of the predefined configurations specified in the profile.

Service Features

Personalization

Personalization is considered the key factor for I-centric communication.
Information and services must become increasingly tailored to individual
preferences to make the usage of services easier and the perception of
the individual communication space richer. Personalization integrates and
relates aspects such as user preferences, user roles, and user tasks. An

AU3833_C02.fm Page 46 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 47

extended personalization concept allows value networks (e.g., value
chains) of content providers, network providers, and service providers to
offer personalized services to mobile users in a way that suits their needs
at a specific place and time. For I-centric communication, this means that
objects available in an individual communication space must adapt to the
preferences of individuals. The personalization service feature models each
individual in the I-centric service platform by managing its preferences
and providing these preferences to I-centric services. Furthermore, per-
sonalization provides the information for modeling preferences for an
individual communication space in the I-centric system [56]. Personaliza-
tion gathers profile information (containing preferences) and incorporates
dynamic behavior to enrich the stored and gathered information and
enable proactive I-centric services. This personalization leads to an overall
profiling infrastructure managing the individual preferences.

Ambient Awareness

Ambient awareness is the functionality provided by an I-centric system to
sense and exchange information about the individual’s current environ-
ment [56]. In future communication systems, services will be tailored to
the contexts of the individual’s communication space, and the services
will adapt themselves to changes in the environment. The services must
be able to deal with the changing environments of nomadic individuals,
and these adaptations to current situations (in a certain context) must be
hidden from the individual. In addition, the environment itself can be
influenced by the presence and activities of an individual and adapt itself
accordingly.

The ambient-awareness service feature gathers ambient information
from the network, application, individual, terminal, and contexts. The
gathering of ambient information from various sources, depending on the
individual’s mobility and roaming, is an integral part of ambient awareness.
Sensor networks embedded in mobile equipment, communication net-
works, and living and working environments will sense who the user is,
where he is, what he is doing, and what the environmental conditions
are to provide ambient information to I-centric services.

In general, ambient information is information that can be collected,
gathered, or sensed from the environment using the objects of the indi-
vidual communication space of a certain individual. Ambient information
includes temporal and spatial characteristics such as user input, temper-
ature, noise level, light intensity, and the presence of other people, to
give just a few examples. Ambient information can also include geograph-
ical information (e.g., location), environmental information (e.g., temper-
ature), and life conditions (e.g., blood pressure).

AU3833_C02.fm Page 47 Monday, August 14, 2006 10:04 AM

48 ■ Mobile Middleware

I-centric services require ambient information in order to adapt to the
environment. Temporal and spatial characteristics are only two examples
of information that may affect the service behavior. Note that a particular
environment can restrict the functionality requested in a certain context.
Interacting in a “TV context” while driving a car may reduce the available
functionality to “record the movie for later viewing” or listening just to
the audio part.

Adaptability

Adaptability provides the functionality to adapt I-centric services to per-
sonal preferences and environmental conditions; therefore, adaptability
can be seen as a function that activates a context based on whatever
information is provided by ambient awareness and personalization. In
general, I-centric adaptability translates the wishes of individuals (which
are usually inaccurate, incomplete, and sometimes even contradictory)
into a set of rules precise enough to be automated with sufficient reliability.
It has implications in the structure of the services to allow adaptability
and is the engine that activates a context at a certain moment in time in
a certain environment [56]. Adaptation typically results in a substantial
change in the connectivity characteristics, entering into a new service
domain, or changing terminal devices in the service session. Adaptability
requires the adaptation of media, content, and service behavior. Over the
past several years, several concepts for adaptation have been developed
[24,46]:

■ Communication streams are altered during transmission (e.g., bit-
rate adaptation).

■ Media types are changed (e.g., text-to-speech conversion).
■ The type of presentation is adapted (e.g., downscaling an image

to fit a PDA screen).
■ The content of a message is altered (e.g., adding or stripping

information).
■ The service behavior is modified (e.g., by customer service control

functions).

Adaptability is not only reactive. When the battery of a mobile device
dies or the connectivity is broken, many actions become impossible;
however, something could have been done beforehand to prevent these
situations. Adaptation, therefore, has to be proactive, as well, which in
turn requires predictability of the near future.

AU3833_C02.fm Page 48 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 49

Summary
In this chapter, we discussed various types of mobility. Beginning with
traditional code mobility, we developed a reference model for personal
and service mobility for I-centric services. This reference model combines
an IP-based communication layer with a universal service platform, which
is used by generic service elements to provide the necessary infrastructure
for more elaborate service features, such as personalization, ambient
awareness, and adaptability.

We identified these three service features as basic building blocks for
I-centric services. These I-centric services are aware of the user context
and the environment, including the objects surrounding the user. The
service platform provides the means to interact with these objects in a
generic way. We also presented a general vision of the I-centric service
architecture for personal service mobility. In summary, personal service
mobility consists of:

■ A coherent adaptation framework
■ Personalized user interaction
■ Ambient-aware user interaction
■ Device-independent service invocation

These general requirements reflect the relevant areas of concern and
suggest the starting points for development of an approach to enable I-
centric services.

References
[1] Arbanowski, S., Breugst, M., Busse, I., and Magedanz, T., Impact of standard

mobile agent technology on telecommunications, in Proc. of the 5th Conf.
on Computer Communications (AFRICOM–CCDC’98), Tunis, Tunisia, Octo-
ber 20–22, 1998, pp. 189–203.

[2] Abowd, G.D., Dey, A.K. et al., Towards a better understanding of context and
context awareness, in Proc. of the First Int. Symp. on Handheld and Ubiquitous
Computing (HUC’99), Karlsruhe, Germany, September 27–29, 1999.

[3] Barbir, K., Bennett, N., Penno, R., Pham, H.T. et al., A Framework for Service
Personalization, Internet draft, 2002, http://quimby.gnus.org/internet-drafts/
draft-barbir-opes-fsp-00.txt.

[4] van Bekkum, M., Bijlsma, M., van Kranenburg, H., and Lankhorst, M.,
Personal Service Environment: Analysis and Research Issues, Telematica
Instituut, Enschede, The Netherlands, 2000.

AU3833_C02.fm Page 49 Monday, August 14, 2006 10:04 AM

50 ■ Mobile Middleware

[5] Bunt, H., Ahn R., Beun R. et al., Cooperative Multimodal Communication
in the DenK Project, Institute for Language Technology and Artificial Intel-
ligence (ITK), Tilburg University, Tilburg, The Netherlands; Institute for
Perception Research (IPO), Eindhoven, The Netherlands; Faculty of Math-
ematics and Computing Science, Eindhoven University of Technology, Eind-
hoven, The Netherlands.

[6] Butler, M. H., Current Technologies for Device Independence, HP Laborato-
ries, Bristol, 2001.

[7] Breugst, M. and Magedanz, M., On the usage of standard mobile agent
platforms in telecommunication environments, in Proc. of the 5th ACTS IS&N
Conf., Antwerp, Belgium, May 25–28, 1998.

[8] Carroll, L., Alice’s Adventures in Wonderland/Through the Looking-Glass,
Bloomsbury, London, 2001.

[9] OMG, The Common Object Request Broker: Architecture and Specification,
Revision 2.2, Object Management Group, Needham, MA, 1998.

[10] DEC, Universal Messaging [white paper], Digital Equipment Corporation,
Maynard, MA, 1997.

[11] Dey, A. and Abowd, G., Towards a better understanding of context and
context awareness, in Proc. of the Computer–Human Interaction 2000 (CHI
2000) Workshop on the What, Who, Where, When, and How of Context
Awareness, The Hague, The Netherlands, April 1–6, 2000.

[12] Eckardt, T., Magedanz, T., and Pfeifer, T., On the convergence of distributed
computing and telecommunications in the field of personal communications,
in Proc. of Kommunikation in Verteilten Systemen (KiVS’95), Franke, K. et
al., Eds., Springer, Berlin, 1995, pp. 46–60.

[13] Eckardt, T., Magedanz, T., Ulbricht, C., and Popescu-Zeletin, R., Generic
personal communications support for open service environments, in Proc.
of the IFIP World Conf. on Mobile Communications, Canberra, Australia,
September, 1996.

[14] Eckardt, T., Ed., Deutsche Telekom Project: Personal Communications Sup-
port in TINA, Report No. 1, GMD Fokus, June, 1996.

[15] ETSI, Universal Mobile Telecommunication Systems (UMTS): Service Aspects,
Service Principles, Technical Specification TS 22.01v3.1.0, European Tele-
communications Standards Institute, Sophia Antipolis, France, 1997.

[16] Faroogui, K. and Logrippo, L., Introduction to ODP Computational Model,
Department of Computer Science, University of Ottawa, Canada.

[17] Fink, J., Koenemann, J., Noller, S., and Schwab, I., Putting personalization
into practice, Comm. ACM, 45(5), 41–42, 2002.

[18] International Telecommunication Union, Telecommunication Standardiza-
tion Sector (ITU-T), Memorandum of Understanding on Global Mobile Per-
sonal Communications by Satellite, World Telecommunications Policy
Forum, October 1996/February 1997.

[19] Göbel, S., Buchholz, S., Ziegert, T., and Schill, A., Device independent
representation of web-based dialogs and contents, in Proc. of the IEEE Youth
Forum in Computer Science and Engineering (YUFORIC’01), Valencia, Spain,
November 29–30, 2001.

AU3833_C02.fm Page 50 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 51

[20] Göbel, S., Buchholz, S., Ziegert, T., and Schill, A., Software Architecture
for the Adaptation of Dialogs and Contents to Different Devices, Depart-
ment of Computer Science, Technische Universität Dresden, Germany,
2002.

[21] Guntermann, M. et al., Integration of advanced communication services in
the personal services communication space: a realisation study, Mobile
Kommunikationssysteme, March, 127–131, 1994.

[22] van der Meer, S., Arbanowski, S., Steglich, S., and Popescu-Zeletin, R., The
human communication space: toward I-centric communications, in Proc.
of the Computer–Human Interaction 2000 (CHI 2000) Workshop on the
What, Who, Where, When, and How of Context Awareness, The Hague,
The Netherlands, April 1–6, 2000.

[23] Arbanowski, S., van der Meer, S., Steglich, S., and Popescu-Zeletin, R., I-
Centric Communications, Springer-Verlag, Berlin, 2001.

[24] van der Meer, S., Arbanowski, S., and Steglich, S., Flexible control of media
gateways for service adaptation, in Proc. of the 5th IEEE Intelligent Network
Workshop, Cape Town, South Africa, May 7–11, 2000.

[25] Arbanowski, S., van der Meer, S., and Popescu-Zeletin, R., I-centric services
in the area of telecommunication: the I-talk service, in Proc. of the 6th Ifip
Tc6/Wg6.7 Conf. on Intelligence in Networks (SmartNet 2000), Vienna,
Austria, September 18–22, 2000, pp. 499–508.

[26] Arbanowski, S., van der Meer, S., Steglich, S., and Popescu-Zeletin, R., The
human communication space: towards I-centric communications, J. Pers.
Ubiquitous Comput., 5(1), 34–37, 2000.

[27] Steglich, S. and Popescu-Zeletin, R., Towards I-centric user interaction, in
Proc. of the ICME 2001 Int. Conf. on Multimedia and Expo, Tokyo, Japan,
August 22–25, 2001.

[28] van der Meer, S., Arbanowski, S., and Steglich, S., User-centric communi-
cations, in Proc. of the IEEE Int. Conf. on Telecommunications (IEEE ICT
2001), Bucharest, Romania, June 4–7, 2001, pp. 452–444.

[29] Arbanowski, S. and Steglich, S., Profiling contextual information, in Proc.
of the IEEE Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT’2001), Workshop on Ubiquitous Computing and Communication,
Barcelona, Spain, September 10–12, 2001.

[30] Arbanowski, S. and Steglich, S., Profile information based service creation,
in Proc. of the 4th Asia–Pacific Symp. on Information and Telecommuni-
cation Technologies, Tribhuvan University, Kathmandu, Nepal, 2001.

[31] Arbanowski, S. and Steglich, S., Service architectures for 3G and beyond,
in Proc. of the Sixth SICE Annual Conf., Fukui, Japan, August 4–6, 2003.

[32] Radusch, I., Arbanowski, S., Steglich, S., and Popescu-Zeletin, R., I-centric
services based on super distributed objects, in Proc. of the Med–Hoc
NET’2003 Workshop, Mahdia, Tunesia, March 26–27, 2003.

[33] Arbanowski, S., Steglich, S., and Popescu-Zeletin, R., Super distributed
objects: an execution environment for I-centric services, in Proc. of the 9th
IEEE Int. Workshop on Object-Oriented Real-Time Dependable Systems
(WORDS 2003F), Capri Island, Italy, October 1–3, 2003.

AU3833_C02.fm Page 51 Monday, August 14, 2006 10:04 AM

52 ■ Mobile Middleware

[34] van der Meer, S. and Arbanowski, S., Service interoperability through
advanced media gateways, in Proc. of the 6th Ifip Tc6/Wg6.7 Conf. on
Intelligence in Networks (SmartNet 2000), Vienna, Austria, September 18–22,
2000, pp. 583–595.

[35] van der Meer, S. and Arbanowski, S., Flexible media and content adaptation
for communication systems, in Proc. of the IEEE Conf. on Protocols for
Multimedia Systems (PROMS 2000), Krakow, Poland, October 22–25, 2000,
pp. 461–477.

[36] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., and Burgelman, J-C.,
Scenarios for Ambient Intelligence in 2010, ISTAG Report, European Com-
mission, Institute for Prospective Technological Studies, Seville, 2001.

[37] Manber, U., Patel, A., and Robison, J., Experience with personalization on
Yahoo!, Comm. ACM, 43(8), 35–39, 2000.

[38] Mandyam, S., Vedati, K., Kuo, C., and Wang, W., User Interface Adaptations:
Indispensable for Single Authoring, position paper of W3C Workshop on
Device Independent Authoring Techniques, SAP University, S. Leon-Rot,
Germany, September 25–26, 2002.

[39] Martin, D., The open agent architecture: a framework for building distributed
software systems, Appl. Artificial Intell., 13(1/2), 91–128, 1999.

[40] Menkhaus, G., Architecture for client-independent web-based applications,
in IEEE Proc. of the TOOLS–Europe Conf., Zürich, Switzerland, March 12–14,
2001.

[41] Mohamad, Y. et al., Supporting Device Independent Accessible Authoring by
a Next Generation Web Publishing Framework, position paper of W3C
Workshop on Device Independent Authoring Techniques, SAP University,
S. Leon-Rot, Germany, September 25–26, 2002.

[42] Müller, A., Forbrig, P., and Cap, C., Model-Based User Interface Design Using
Markup Concepts, Department of Computer Science, Rostock University,
Rostock, Germany, 2001.

[43] Nanneman, D., Unified messaging: a progress report, Telecomm. Mag.,
March, 1997.

[44] IPTC, NITF 3.0: News Industry Text Format, International Press Telecommu-
nications Council, Windsor, U.K., 2001.

[45] W3C, The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, World
Wide Web Consortium Recommendation, 16 April 2002.

[46] Pfeifer, T., Automatic Conversion of Communication Media, Ph.D. disserta-
tion, Institute for Open Communications Systems (OKS), Technical Univer-
sity of Berlin, 1999.

[47] The Parlay Technical Team, Parlay APIs 2.1: Mobility Data Definitions, The
Parlay Group, Inc., San Ramon, CA, 2000.

[48] Rakotonirainy, A., Wai Loke, S., and Fitzpatrick, G., Context Awareness for
the Mobile Environment, proposal for Computer–Human Interaction 2000
(CHI 2000) Workshop, April, 2000.

[49] Raymond, K., Reference model of open distributed processing (RM-ODP):
introduction, in Proc. of the Int. Conf. on Open Distributed Processing
(ICODP’95), Brisbane, Australia, February 20–24, 1995.

AU3833_C02.fm Page 52 Monday, August 14, 2006 10:04 AM

Mobile Computing ■ 53

[50] Lassila, O. and Swick, R., Resource Description Framework (RDF) Model
and Syntax Specification, World Wide Web Consortium (W3C) Recommen-
dation, February 22, 1999.

[51] Rossi, G., Schwabe, D., and Guimarães, R., Designing personalized web
applications, in Proc. of the Tenth Int. World Wide Web (WWW10) Conf.,
Hong Kong, May 1–5, 2001, pp. 275–284.

[52] Sandkuhl, K., Ein Referenzmodell für informationslogistische Anwendungen,
in Report Informationslogistik, Vol. 1, Auflage, Deiters, W. and Lienemann,
C., Eds., Symposion Publishing, Düsseldorf, Germany, 2001.

[53] Fuggetta, A., Picco, G.P., and Vigna, G., Understanding code mobility, Trans.
Software Eng., 24(5), 342–361, 1998.

[54] Weiser, M., The computer for the 21st century, Sci. Am., 265(3), 94–104,
1991.

[55] OSA/Parlay Group, http://www.parlay.org/.
[56] WWRF, WG2: Service Infrastructure of the Wireless World, white paper on

service personalization, ambient awareness, and service adaptability, Wire-
less World Research Forum, http://www.wireless-world-research.org/.

AU3833_C02.fm Page 53 Monday, August 14, 2006 10:04 AM

AU3833_C02.fm Page 54 Monday, August 14, 2006 10:04 AM

55

Chapter 3

Wireless Technologies

Marco Chiani

CONTENTS

Introduction... 56
Technical Challenges in Wireless Communications... 56

Data Rates, Mobility, and Area Coverage ... 56
Wireless Channel Characteristics ... 57
Multiple Antenna Systems: Diversity,
Interference Mitigation, and MIMO... 60
Modulation and Error Control Techniques ... 62
Multiple Access and Resource Allocation ... 63

Current Wireless Systems and Beyond ... 65
Cellular Systems .. 65
Wireless Local Area Networks ... 67
Wireless Personal and Body Area Networks.. 69
Licensed Versus Unlicensed Spectrum:
Spectrum Regulation and Cognitive Radio ... 70

Concluding Remarks... 72
Acknowledgments... 72
References ... 72

AU3833_C03.fm Page 55 Tuesday, August 15, 2006 3:17 PM

56

■

Mobile Middleware

Introduction

This chapter provides an overview of communication technologies for
wireless networks. The main characteristics of wireless technologies are
presented, with special emphasis on the emerging techniques that are
changing the mobile wireless communications capability from voice appli-
cations to broadband multimedia, toward the goal of “multimedia wireless
communications anytime, anywhere.” The topic is so vast and changing
so rapidly that obviously this brief chapter cannot provide exhaustive
coverage. For this reason, the reader who wants to know more is invited
to refer to specific journals covering wireless communications, mainly those
by the Institute of Electrical and Electronics Engineers (IEEE), some of
which are listed at the end of this chapter, which provide up-to-date
research results or tutorial overviews of the latest developments [1–3,5]. In
this chapter, we first review some basic facts about wireless communica-
tions, including technologies such as multiple antennas and multicarrier
modulation. We then describe the main characteristics of current wireless
systems, with a discussion on possible evolution toward cognitive radio.

Technical Challenges in Wireless Communications

Data Rates, Mobility, and Area Coverage

Wireless communications have significant peculiarities that must be clearly
identified, and it is important not to apply to wireless communication
systems concepts or solutions that are valid only for cable or fiber systems.
Mobile communication systems aim to provide mobile users the same
services as those provided by wired networks; however, channel interfer-
ence, the scarceness of radio resources, and mobility itself impose severe
limitations on the quality of service in terms of data rates and area
coverage. The tradeoff between data rates and user mobility results in
specific solutions for different application scenarios (see Figure 3.1). It is
worthwhile to note the strong relationships among data rates, area cov-
erage, and mobility. In mobile cellular communication systems, small cells
are preferable to achieve high data rates. At the same time, small cells
imply efficient handover mechanisms and implementations that are more
and more demanding as a user’s speed increases.

The traditional way of categorizing digital wireless networks operating
worldwide is based on the distinction between cellular networks (prima-
rily carrying voice calls and with extensive area coverage) and local and
personal area networks (wireless local area networks [WLANs] and wire-
less personal area networks [WPANs]). Recently, however, the evolution
of the latest generation of cellular networks with the potential to provide

AU3833_C03.fm Page 56 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

57

multimedia content to mobile users, area coverage being extended through
the use of several WLAN spots, and the possibility of Voice-over-IP (VoIP)
are making the distinction somewhat less clear. A more clear taxonomy
could be based on usage of the radio spectrum and the use of licensed
wireless applications such as the cellular Global System for Mobile Com-
munications (GSM) and Universal Mobile Telecommunications System
(UMTS), as opposed to systems using unlicensed bands such as WLANs
and WPANs.

Wireless Channel Characteristics

Mobile radio propagation is the reason for the pronounced difference
between wireless and wired communication systems. In wireless systems,
we can identify such complicating factors as thermal noise (related to the
physics of circuits and apparatus, hence unavoidable), signal power atten-
uation (related to the distance between transmitting and receiving anten-
nas), multipath propagation (due to more rays arriving at the receiving
antenna after reflection, diffraction, and scattering), and interfering signals
(related to the scarcity of the radio spectrum and the consequent need
for several users to use the same spectrum band). Moreover, for mobile
radio systems where users are moving, the radio channel changes in an
unpredictable way. In this subsection, we address path loss and multipath
propagation for a single-transmitter/single-receiver scenario; interference
issues are discussed later in this chapter.

Figure 3.1 Comparison of wireless communication systems.

Walking
Userʼs Mobility

ZigBee

Stationary Driving

Bluetooth

UWB

AU3833_C03.fm Page 57 Tuesday, August 15, 2006 3:17 PM

58

■

Mobile Middleware

Path loss is due to dissipation of the power radiated by the transmitting
antenna. Consider an ideal free-space environment with no obstructions
between the transmitter and the receiver, where the signal propagates along
a straight line. This scenario is referred to as a

line-of-sight

 (LOS) channel.
In this case, the received signal power (

P

r

) is related to the transmitted
signal power (

P

t

) and to the link distance (

d

) by

P

r

 =

α

P

t

d

–2

, where the
constant

α

 depends on the carrier wavelength and on the antenna direc-
tional gains. Unfortunately, in many cases, we cannot use this simple LOS
model for the radio channel; in fact, the radiated electromagnetic field is
diffracted, reflected, and scattered by a multiplicity of obstacles, such as
trees and walls, buildings, and vehicles, before reaching the mobile wireless
receiver. The presence of objects and obstacles in the environment pro-
duces at the receiving antenna several copies of the transmitted signals.
Another important phenomenon that can be observed for high-speed users
is the frequency shift of the received signal due to the Doppler effect.

Without going into the details of propagation, an instructive example
is depicted in Figure 3.2. Here we can distinguish two different phenom-
ena. The first is related to the power loss due to the presence of obstructing
objects and is usually modeled by means of a deterministic path loss
(related to distance

d

 and to a quite broad classification of the environ-
ment) with, superimposed, a random variation of power, called

shadowing

.
This random fluctuation is caused by variations in the obstructions (e.g.,
terrain obstruction such as hills, trees, manmade obstructions such as
buildings) such that the received signal power can vary considerably at
different locations, even when they are at the same radial distance from
the transmitter. This effect is often referred to as the

large-scale propagation
effect

, as it describes variations that can be observed by moving the
receiver over a length of the order of the dimension of the obstacles

Figure 3.2 Example of wireless communication, including path loss, shadowing,
and multipath.

AU3833_C03.fm Page 58 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

59

obstructing the propagation (10 to 100 m outdoors, less for indoors). This
slow variation is well described by a log-normal distribution.

A second effect is related to the presence of many objects surrounding
the antennas that act as scatterers. Instead of one path, we now have a
multipath channel. Signals arriving from different paths can add construc-
tively or destructively, depending on their relative phases as determined
by reflections and by the delays associated with each path. Now, denote
the light speed by

c

 = 3·108 m/s and assume we are transmitting an
unmodulated carrier with frequency

f

0

. Let us first focus on a particular
path. Observe that we have a phase variation of

π

 radians when we move
the receiver position by half a wavelength (

λ

/2) along the direction of
the wave. If we assume more paths are coming from different directions,
we can understand why, in the multipath scenario, a displacement of the
order of

λ

 =

c

/

f

0

 in the receiver antenna position or in the position of
the surrounding objects causes different changes in the phases of the
paths that can result in a dramatic variation in the overall received power.
Just to give an idea of the relevance of this phenomenon, Table 3.1
provides the wavelengths for some carrier frequencies of interest. As can
be seen in this table, a change in the position of the user or of surrounding
objects of only a few centimeters can cause a large fluctuation in the
received power; thus, this effect is often referred to as the

small-scale
propagation effect

.
Figure 3.3 illustrates the typical behavior of the received power for a

carrier frequency of 2.4 GHz, where variations of tenths of decibels can
be observed due to the presence of multipath. The same figure also shows
the average of the received power over a window of a few wavelengths.
By averaging, we can remove the small-scale propagation effect; thus, the
behavior of this average power can be described in terms of shadowing
on top of the power as predicted by path-loss models.

Table 3.1 Frequencies and

Corresponding Wavelengths

Carrier Frequency Wavelength (cm)

900 MHz 33
1800 MHz 16.7
2400 MHz 12.5

5 GHz 6
10 GHz 3

AU3833_C03.fm Page 59 Tuesday, August 15, 2006 3:17 PM

60

■

Mobile Middleware

Multiple Antenna Systems: Diversity,
Interference Mitigation, and MIMO

We have just shown that a major problem in wireless communications is
the received power fluctuation due to multiple paths. To overcome this
problem, diversity techniques can be employed. Diversity systems combine
different copies of the same information (copies possibly subject to inde-
pendent fading) so as to minimize the probability of a reception failure.
Diversity can be achieved by exploiting time (e.g., by error-correcting
codes and interleaving), frequency (e.g., by frequency hopping and error-
correcting codes), or space (with multiple antennas).

Over the last several decades multiple antennas have been used to
combat fast fading. When multiple antennas are used to counteract fast
fading, the advantage is an increased robustness with respect to the
deleterious effects of multipath [1,2,7–9]. As an example, with one trans-
mitting antenna we can use two receiving antennas at the receiver (single-
input/multiple-output, or SIMO) (Figure 3.4) and choose at each instant
the output of the antenna with the strongest signal power. If the receiving
antenna elements are sufficiently spaced apart, the fading can be assumed
to be independent on the two antennas. Hence, if

p

 < 1 is the probability

Figure 3.3 Example of received power (normalized, in dB), including fast fading,
shadowing, and path loss for a carrier frequency of 2.4 GHz. The smoother curve
is the large-scale propagation effect due to path loss and shadowing, obtained
by averaging over few wavelengths.

AU3833_C03.fm Page 60 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

61

that one antenna is experiencing a deep fade, then the probability that
both antennas are in a deep fade and therefore that the communication
is degraded is

 p

2

 <

p

. In this case, we are exploiting the spatial dimension
to achieve a diversity gain.

Receiver diversity is well known and has been employed for quite
some time to improve wireless links; however, there is also an interest in
determining whether or not it is possible to achieve diversity with multiple
transmitting antennas and possibly one receiving antenna (multiple-
input/single-output, or MISO) (see Figure 3.4). This scenario arises, for
example, with regard to the downlink (DL) in mobile cellular systems,
the link between the radio base station and the mobile user. Putting more
antenna elements on the base station is simple enough, but doing the
same on the user’s terminal is not as easy because of space limitations.
Only recently techniques have been developed to provide diversity with
multiple transmitting antennas (transmitter diversity). Transmitter diversity
is one of the novel techniques introduced in cellular mobile communica-
tions third-generation standards [4]. Another well-known technique is to
use smart antennas to mitigate the effect of co-channel interference. Simple
approaches for interference reduction include sectored antennas and
multibeam antenna systems. To maximize the desired output signal power
and reduce interfering signals as much as possible, a more advanced

Figure 3.4

Single-input/multiple-output, multiple-input/single-output, and multiple-

input/multiple-output systems.

AU3833_C03.fm Page 61 Tuesday, August 15, 2006 3:17 PM

62

■

Mobile Middleware

technique consists of weighting and adding the signals from multiple
antenna elements at the receiver (e.g., to modify the radiation pattern if
signals have a clear direction of arrival, although with dense multipaths
where rays come from many directions this geometric interpretation is
not useful). The use of smart antennas to reduce co-channel interference
has a strong impact on the system capacity [8,14].

In the last few years, it has been also recognized that the capacity
(in terms of bps/Hz) of wireless communication links can be increased
by using multiple antennas both at the transmitter and at the receiver
(multiple-input/multiple-output, or MIMO) (see Figure 3.4), thus exploit-
ing the spatial dimension to construct virtual parallel channels [7,9,10,
15,17]. Motivated by theoretical capacity analysis, the increasing demand
for higher capacity has given rise to the proposal of practical transmis-
sion schemes based on MIMO, where different signals are simulta-
neously transmitted to achieve high spectral efficiencies. These schemes
are known as high-spectral-efficiency MIMO systems. Toward achieving
these capacities, a promising transmission system, called

D-BLAST

 (Diag-
onal Bell Laboratories Layered Space-Time), has been proposed [10].
This scheme is able to provide a high spectral efficiency in a rich and
quasi-static scattering environment. Due to the large computational
complexity required for this scheme, a simplified version, called

V-
BLAST

 (Vertical BLAST), has also been proposed [11]. The large spectral
efficiency of transmission systems based on MIMO is due to their
capacity to exploit the spatial dimension in environments characterized
by rich scattering, thus allowing high spectral efficiencies with an
important multiplexing advantage [9,16,18].

Modulation and Error Control Techniques

The radio resource is so limited and precious that it must be used with
the maximum possible efficiency. In this regard, one important parameter
is the number of bits per second (bps) per frequency units we are able
to transmit — that is, the spectral efficiency in terms of bps/Hz. From
basic communications theory, we recall that a modulation format with

L

points in the constellation can transmit log

2

L

 bps/Hz. For example, the
theoretical spectral efficiency of binary phase-shift keying (BPSK) is 1
bps/Hz, and for quadrature phase-shift keying (QPSK) it is 2 bps/Hz.
From this perspective, it seems convenient to use higher order modulations
such as 64 quadrature amplitude modulation (QAM), giving us 6 bps/Hz.
Unfortunately, the requirements in terms of link budget are more strict as
the modulation order increases, and the wireless channel impairments are
so severe that the difficulties in demodulating these high-order constella-
tion signals increase with the data rate. Indeed, by increasing the data

AU3833_C03.fm Page 62 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

63

rate the signal band increases and so increases the distortion due to the
multipaths. One possible solution to counteract channel distortion due to
multipaths consists of subdividing the available band into several sub-
bands over which the channel is nearly nondistorting. Over each sub-
band a low data rate signal can be transmitted with the maximum possible
constellation size using BPSK, QPSK, or 16-QAM, depending on the
channel quality for that subchannel. By multiplexing all subchannels a
high data rate is achieved. This is the idea behind multicarrier modulation
techniques, such as orthogonal frequency-division multiplexing (OFDM),
which is one of the most important recent advances in wideband wireless
communication systems.

Moreover, the presence of severe channel impairments requires the
adoption of powerful error-correcting codes (channel codes) to recover
errors introduced by the wireless channel. So, the actual spectral efficiency
must include the redundancy added for error correction. The most impor-
tant error-correcting codes in wireless applications are convolutional
codes, turbo codes, and low-density parity check codes (LDPCCs). Spectral
efficiency is further reduced due to the redundancy introduced by the
error-correcting code. So, for example, a rate 1/2 channel code with QPSK
gives only 1 bps/Hz. If the target would be, for example, 1 Gbps, this
means that a frequency bandwidth of 1 GHz would be needed! If we
realize that the radio spectrum ranges from few hundreds of KHz to few
GHz in total (for all applications), it is apparent that to target wireless
Gbps systems we must resort to higher spectral efficiencies.

Indeed, the solution to the high-data-rate problem in wireless systems
is multiple antenna systems (MIMO), as discussed in the previous section.
With MIMO it is possible to achieve a very high spectral efficiency, taking
advantage of the scattering to obtain as many virtual parallel channels as
possible between the number of transmitting and receiving antennas. For
example, a 3

×

3 MIMO (three transmitting and three receiving antennas)
with QPSK can achieve a spectral efficiency of 6 bps/Hz. MIMO technol-
ogies are thus of extreme importance for high-data-rate wireless systems
[15,16,18].

Multiple Access and Resource Allocation

When the channel used to communicate is radio, users in a given area
must share the common radio resource to keep interference at tolerable
levels. The capacity of the system, then, in terms of served users per area
is strictly related to the capability to cope with co-channel interference.
The three basic methods to provide multiple access for cellular mobile
systems are frequency-division multiple access (FDMA), time-division mul-
tiple access (TDMA), and code-division multiple access (CDMA).

AU3833_C03.fm Page 63 Tuesday, August 15, 2006 3:17 PM

64

■

Mobile Middleware

Consider first FDMA. In its simplest form, it divides a given frequency
band into sub-bands and allocates each sub-band to an active user. In
TDMA, time is repetitively subdivided into frames and each frame into a
fixed number of time slots. Each active user is assigned a specific time
slot per frame. CDMA, the third type of multiple-access technique for
cellular mobile radio systems, is based on spread spectrum (SS). Spreading
can be obtained by frequency hopping (FH), by time hopping (TH), or

by multiplication in the time domain of the data with a higher rate sequence

(direct sequence SS, or DSSS). More precisely, in DSSS we can roughly
assume that for each information bit (0 or 1) a sequence of bits (called

chips

) or its complement is transmitted. The code sequence of

N

 > 1
chips is called the

spreading sequence

, and the resulting SS transmitted
signal has a bandwidth much larger than the data rate. In direct sequence
CDMA (DS-CDMA), each user is assigned a spreading sequence, and
sequences are chosen to be nearly orthogonal, so, even if users transmit
at the same time and in the same frequency band, it is still possible to
distinguish the various information bits from the different users at the
receiver end.

In circuit-switched systems, for all three cases a logical channel (a
carrier for FDMA, a time slot for TDMA, or a code sequence for CDMA)
can be allocated to a user as long as needed (i.e., until a call is completed).
In contrast, in packet-switched systems the data is bundled into blocks
of bits (packets) that are individually transmitted through the network; in
this case, the channel (carrier, time slot, or code) is only assigned to a
given packet for the time required to transmit that packet.

Other access techniques include random access protocols such as
ALOHA and its evolutions, in some cases jointly utilized with collision
avoidance mechanisms, such as the well-known Carrier Sense Multiple
Access/Collision Avoidance (CSMA/CA) used in WLANs. Here, a station
wishing to send a message listens to the channel. If the channel is free,
the station waits a prescribed time and then transmits. This time interval
is introduced to reduce the chance of collision with a message that has
been transmitted by another station and has not yet been sensed. If the
channel is busy, access is still deferred until the medium is sensed free,
then the station waits for a prescribed time extended in a random manner
(random backoff), and finally transmits if no transmission on the medium
is sensed during this time. In this mechanism, random backoff is introduced
to reduce the probability that more waiting stations will begin to transmit
at the same time after the channel is released; however, collisions may
still occur, as other stations might have begun transmitting at the same
time. So, after transmission, the transmitting station monitors the channel;
if a collision is detected, it stops transmitting and defers retransmission
for a random time interval to reduce the possibility of users again colliding.

AU3833_C03.fm Page 64 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

65

In cellular systems, the available radio resources are used in a cellular
environment with reuse constraints built in to keep interference at a tolerable
level. The capacity of the system (e.g., in terms of served users per unit area)
depends on how often in space the same resource is reused. To increase
system capacity, one possibility is to reduce the cell size from larger macrocells
to microcells and picocells. An immediate consequence of reducing cell sizes
is that handoffs become more frequent. Another possibility is to use smart
antennas to mitigate co-channel interference. Other methods to improve
system capacity include dynamic channel allocation (DCA) strategies to reduce
call blocking, as well as power control for reducing interference.

In fixed channel allocation (FCA), channels are assigned permanently
to each cell following a prescribed reuse patterns. In contrast, DCA refers
to techniques where channels are dynamically assigned to cells according
to traffic demands to control co-channel interference. DCA techniques
range from one where no permanent assignments of channels to cells are
made and all radio resources are kept in a pool to techniques where
channels are nominally assigned to cells but it is possible for a cell to
borrow unused channels from other cells when necessary.

In any case, communication is possible if the signal-to-interference
ratio (SIR) is above a minimum level that depends on the radio interface
(e.g., coding, modulation, receiver structure). A particular case is that of
CDMA; here, because all signals are superimposed in time and frequency,
a strong received power for one signal can prevent the reception of other
users’ signals. In the uplink (from users to the base station, or BS), because
users are generally at different distances, if the transmitted power levels
were the same for all users then the corresponding received power levels
at the BS would be very different, obscuring some users. It is therefore
necessary to implement techniques to change the transmitted power to
produce received power levels at the BS that are as constant as possible
for all users. This is the basic concept of power control techniques.
Changing the transmitted power level can also be used to cope with
multipath power fluctuations. For this reason, cellular systems based on
CDMA have adopted the so-called

fast power control

 with a high adaptation
rate to both control interference and reduce fast fading. Another possibility
is to adaptively change coding and modulation format [27,28].

Current Wireless Systems and Beyond

Cellular Systems

Table 3.2 summarizes the main characteristics of second-generation (2G)
digital cellular phone standards. These systems were principally focused on
providing voice communication services over a wide area for users with

AU3833_C03.fm Page 65 Tuesday, August 15, 2006 3:17 PM

66

■

Mobile Middleware

high mobility. For speech transmission, the data rate is on the order of 10
kilobits per second (Kbps), and the resulting equivalent spectrum occupancy
per active user is around 25 to 30 KHz (note that, in GSM, each carrier has
eight time slots and each can carry a speech channel). The objective of
wide coverage has led to the well-known concept of subdividing the area
in the cells (cellular space division), with base stations taking care of users
within each cell. When a communicating user moves from one cell to
another, a procedure known as

handover

 must take place to ensure con-
tinuity in the service during the transition to the new base station.

In the late 1990s, the 2G systems became 2.5G with some modifications
introduced to support data services in addition to voice. In particular, the
GSM evolution has included high-speed circuit-switched data (HSCSD),
General Packet Radio Service (GPRS), and Enhanced Data Rates for GSM
Evolution (EDGE). For HSCSD, up to four time slots can be assigned to
a single user, with an overall data rate of up to 57.6 Kbps. In GPRS, a
major enhancement was introduced with packet-switched data in addition
to circuit-switched voice. The maximum data rate for GPRS is 171.2 Kbps
when all eight time slots of a GSM carrier are assigned to a single user.
With EDGE the GSM is enhanced by the introduction of adaptive modu-
lation and coding, with data rates of up to 384 Kbps.

Further innovations led to third-generation (3G) mobile cellular stan-
dards, the main characteristics of which are summarized in Table 3.3. All
of these approaches are aimed at supporting high mobility in conjunction
with advanced services such as high-data-rate Internet access and video

Table 3.2

2G Cellular System Characteristics

Characteristic GSM IS-136 IS-95

Multiple access TDMA TDMA CDMA
Modulation GMSK

π

/4 DQPSK BPSK/QPSK
Uplink frequencies (MHz) 890–915,

1715–1785
824–849 824–849

Downlink frequencies (MHz) 935–960,
1810–1880

869–894 869–894

Carrier separation (KHz) 200 30 1250
Compressed speech rate (Kbps) 13/6.5 7.95 1.2–9.6

(variable)

Note:

BPSK, binary phase-shift keying; CDMA, code-division multiple access;
DQPSK, differential quadrature phase-shift keying; GMSK, Gaussian minimum-
shift keying; QPSK, quadrature phase-shift keying; TDMA, time-division multiple
access.

AU3833_C03.fm Page 66 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies

■

67

communication, and they are based on the CDMA technique. Data rates
range from 384 Kbps up to 2.4 Mbps, depending on the level of interfer-
ence and on channel impairments. Both fast power control and transmitter
diversity techniques are adopted in 3G systems.

Wireless Local Area Networks

Table 3.4 provides a description of current wireless local area network
(WLAN) standards. Note that in LANs the original focus was on using
wireless communications in place of cables for data communication.
Because the primary application was originally considered to be “local”
(indoor), these systems operate in unlicensed radio bands and support of
user mobility is quite limited. The baseline standard, IEEE 802.11, has
allocated 83.5 MHz of bandwidth in the unlicensed 2.4-GHz radio band
for this purpose. Because this is an unlicensed band, it is necessary to
transmit at a low power for conventional modulation systems or to use
some form of spectrum spreading for higher power levels. The 802.11
standard includes both frequency-hopping spread spectrum (FHSS) and
direct sequence spread spectrum (DSSS). The latter uses Barker sequences
for spreading, allowing data rates up to 2 Mbps with a channel bandwidth
of 22 MHz. An evolution of the baseline standard is IEEE 802.11b, where
complementary code keying (CCK) is used instead of Barker sequences,
and a data rate of up to 11 Mbps can be achieved. The maximum link
range is on the order of 100 m.

A further evolution is represented by the IEEE 802.11a standard, which
allows operating in an unlicensed band around 5 GHz (in some parts of
the world, 300 MHz are allocated from 5.2 to 5.825 GHz, but not in Europe)
and data rates of up to 54 Mbps. This standard incorporates orthogonal

Table 3.3

3G Cellular System Characteristics

Characteristic CDMA2000 W-CDMA

Subclass 1xEV-DO Rev. A UMTS

Channel bandwidth (MHz)

1.25 5
Peak data rate (Mbps) 3.1 (DL), 1.8 (UL)

2 (14.4 with HSDPA)

Modulation

QPSK/8-PSK/16-QAM (DL),
QPSK/8-PSK (UL)

QPSK/16-QAM (DL),
QPSK (UL)

Power control 600 Hz 1500 Hz

Note:

DL, downlink; HSDPA, high-speed downlink packet access; PSK, phase-shift
keying; QAM, quadrature amplitude modulation; QPSK, quadrature phase-shift
keying; UL, uplink; UMTS, Universal Mobile Telecommunications System.

AU3833_C03.fm Page 67 Tuesday, August 15, 2006 3:17 PM

68

■

Mobile Middleware

frequency-division multiplexing (OFDM) to cope with the distortion due to
large signal bandwidth and multipath propagation. Here, different transmitter
power levels are specified, ranging from 50 mW to 1 W, to permit both
indoor and outdoor applications. Because the 5-GHz band is not available
worldwide, the IEEE 802.11g standard was introduced which has the same
characteristics of IEEE 802.11a but allows operating in the 2.4-GHz unli-
censed band. In principle, under 802.11g data rates could reach 54 Mbps;
however, it is important to note that all systems working in the unlicensed
band are limited primarily by the number of active users and, more
generally, by the unpredictable amount of interference. This interference

Table 3.4

IEEE 802.11 Wireless LAN Link Layer Standards

IEEE Standard

802.11 802.11a 802.11b 802.11g

Bandwidth (MHz) 83.5 300 83.5 83.5
Frequency range (GHz) 2.4–2.4835 5.15–5.25

(lower)
5.25–5.35
(middle)

5.725–5.825
(upper)

2.4–2.4835 2.4–2.4835

Number of channels 3 12 (4 per
subband)

3 3

Modulation BPSK,
QPSK

OFDM BPSK,
QPSK

OFDM

Spectrum spreading FH, DS
(Barker)

None DS (CCK) None

Channel coding — Conv.
(rate 1/2,
2/3, 3/4)

— Conv.
(rate 1/2,
2/3, 3/4)

Maximum data rate
(Mbps)

2 54 11 54

Range (m) — 27–30
(lower
band)

75–100 30

Random access CSMA/CA CSMA/CA CSMA/CA CSMA/CA

Note: BPSK, binary phase-shift keying; CCK, complementary code keying; CSMA/
CA, Carrier Sense Multiple Access/Collision Avoidance; DS, direct sequence;
FH, frequency hopping; OFDM, orthogonal frequency-division multiplexing;
QPSK, quadrature phase-shift keying.

AU3833_C03.fm Page 68 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies ■ 69

depends both on the number of active transmitters in the area using the
same band (not necessarily adopting the same standard) and on the
presence of manmade interference such as that due to microwave ovens.
For this reason, the data rate that can be practically achieved could be
considerably lower than the maximum data rate noted above. Multiple
antenna systems have been recently introduced in WLAN systems to cope
with multipath propagation and to increase the data rate by utilizing the
high-spectral-efficiency MIMO techniques described earlier.

Wireless Personal and Body Area Networks

In this section, we summarize the characteristics of some standards and
emerging proposals for short-distance wireless networks. The most impor-
tant standards are in the IEEE 802.15 family, where already-issued stan-
dards include IEEE 802.15.4 (related to ZigBee™) and IEEE 802.15.1
(related to Bluetooth®). Ultrawideband (UWB) is emerging as the tech-
nology that could bring about further evolution. ZigBee generally targets
wireless networks with a large number of nodes and low energy con-
sumption, is able to operate for many months with a single battery charge,
and has relatively low data rates (less than 250 Kbps). Bluetooth targets
applications with fewer nodes, requires higher data rates (up to 1 Mbps),
and features low-latency voice channels.

Ultrawideband is an emerging technology characterized by signals with
a large occupied bandwidth (larger than 500 MHz). UWB can be obtained
by utilizing very short pulses in the time domain (so-called impulse radio)
or by using OFDM. To prevent disturbing primary users, UWB signals
must have a very low power spectral density; as a consequence, the
overall transmit power must be kept low, and the distance range is on
the order of some tenths of meters. UWB has some advantages over
traditional systems, including its potential for very high data rates, its
ability to cope with multipath propagation, its inherent localization capa-
bility, and its ease of implementation (for impulse radio UWB). UWB will
most probably be the technology to support both low-data-rate wireless
sensor networks and high-data-rate systems for short-range wireless mul-
timedia applications (see Table 3.5).

Finally, we should mention IEEE 802.16 (and the related WiMax), which
was designed to provide wireless access to buildings as an alternative to
fiberoptic or coaxial links. The standard, which is intended more for fixed
wireless stations than for mobile users, addresses frequencies from 10 to 66
GHz, with data rates of up to 70 Mbps over large distances. For users with
moderate mobility, the standard adopts frequencies ranging from 2 to 11
GHz to cope with situations where there is no line-of-sight propagation.

AU3833_C03.fm Page 69 Tuesday, August 15, 2006 3:17 PM

70 ■ Mobile Middleware

Licensed Versus Unlicensed Spectrum:
Spectrum Regulation and Cognitive Radio

Traditionally, we divide the radio spectrum into licensed and unlicensed
bands. In unlicensed bands, users can freely transmit, but with some
limitations on the power spectral density to minimize the amount of
interference for other users operating in the same frequency band. If too
many users are operating in the same unlicensed band in the same area,
however, the resulting interference can be sufficiently high to prevent
communications. For this reason, we cannot have any guaranteed quality
of service for systems in the unlicensed band; in other words, we must
consider these systems as being not very efficient in terms of served users
per area. Licensed services, on the other hand, are designed to efficiently
utilize the spectrum.

Table 3.5 Principal Wireless Short-Range Network Standards

ZigBee
(802.15.4)

Bluetooth
(802.15.1)

UWB
(Under Study)

Frequency range (GHz) 2.4–2.4835 2.4–2.4835 3.1–10.6
Bandwidth (MHz) 83.5 83.5 7500
Modulation BPSK, OQPSK GFSK BPSK, QPSK,

PPM, or PAM
Spectrum spreading DS FH FH/OFDM or

TH, DS
impulse radio

Maximum data rate
(Mbps)

0.25 1 >100

Range (m) 30 10 10
Power consumption

(mW)
5–20 40–100 80–150

Access CSMA/CA TDMA Undefined
Networking Mesh/Star/Tree Subnet

clusters
(8 nodes)

Undefined

Note: BPSK, binary phase-shift keying; CSMA/CA, Carrier Sense Multiple Access/
Collision Avoidance; DS, direct sequence; FH, frequency hopping; GFSK, Gaussian
frequency-shift keying; OFDM, orthogonal frequency-division multiplexing;
OQPSK, offset quadrature phase-shift keying; PAM, pulse-amplitude modulation;
PPM, pulse position modulation; QPSK, quadrature phase-shift keying, TDMA,
time-division multiple access, TH, time hopping.

AU3833_C03.fm Page 70 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies ■ 71

An emerging concept in spectrum usage is known as cognitive radio
(CR) [22–26]. Indeed, a key observation is that the radio spectrum is often
not used very efficiently. For example, in some applications, the licensed
spectrum is not used in some geographical areas, or, in some emergency
applications, the use of the spectrum has a very low duty cycle (e.g.,
services that use the spectrum only occasionally but with high priority).
By investigating radio spectrum usage in some revenue-rich urban areas,
it was observed that some frequency bands are largely unoccupied most
of the time, that some other frequency bands are only partially occupied,
and that the remaining frequency bands are heavily used [23–26]. Based
on this research, a spectrum hole has been defined as occurring when a
band of frequencies assigned to a primary user is not utilized by that user
at a particular time and in a specific geographic location [23]. To improve
spectrum utilization, these spectrum holes could be utilized by secondary
users at the appropriate time and location.

The means for achieving such an efficient utilization of the spectrum
is cognitive radio. The basic idea in cognitive radio is that a device can
sense its environment and location and then alter its power, frequency,
modulation, and other parameters so as to dynamically reuse available
spectrum. This could in theory allow multidimensional reuse of the spec-
trum over space, frequency, and time, thus eliminating the spectrum and
bandwidth limitations that have slowed wireless services development.

This new technology is the natural evolution of software-defined radio
(SDR). With SDR, the software embedded in a radio terminal, for example,
would define the parameters under which the phone should operate in
real time as its user moves from place to place. Cognitive radio is even
smarter than SDR, as the aim is to have a radio that can sense and is
aware of its environment and that can learn from its environment for the
best spectrum and resources usage. Some of the most important tasks that
a cognitive radio should encompass are related to radio environment
analysis (for the detection of spectrum holes and to estimate interference
effects), channel identification (for estimating channel state information
and available channel capacity), dynamic spectrum management, and
cooperation and competition among users (related to game theory).

An early example of altering the traditional spectrum subdivision was
the release by the Federal Communications Commission (FCC) of up to
7.5 GHz of bandwidth for ultrawideband signaling in the region between
3.1 and 10.6 GHz. In this band where other licensed applications are
operating, UWB transmission is allowed with some limits in the transmitted
power to ensure a negligible impact in terms of interference. Although
the power levels allowed for UWB are extremely low (–41 dBm/MHz),
with UWB the FCC has allowed for the first time unlicensed use across
otherwise licensed bands. Cognitive radio, then, could represent a more

AU3833_C03.fm Page 71 Tuesday, August 15, 2006 3:17 PM

72 ■ Mobile Middleware

complete solution as it actively looks for unused spectrum and begins to
transmit inside those bands, stopping when necessary if the primary users
show up.

Concluding Remarks
We have reviewed the main characteristics of wireless communication
systems, from channel characteristics to multiple antennas and orthogonal
frequency-division multiplexing. With regard to wireless physical-layer
technology, various solutions for different data rates and mobilities are
currently available; however, the future will certainly witness the integra-
tion of radio interfaces to provide users a single, wireless terminal that
can operate according to the various standards depending on both avail-
able resources and user profiles. In particular, the emerging concept of
cognitive radio and dynamical usage of the radio spectrum could represent
a major breakthrough for the evolution of wireless systems.

Acknowledgments
The author wishes to thank Dr. A. Giorgetti and Dr. G. Liva for their
careful reading of the manuscript. This research was supported in part by
the University of Bologna (Progetto Pluriennale d’Ateneo).

References
[1] Stuber, G.L., Principles of Mobile Communication, 2nd ed., Kluwer Aca-

demic, Norwell, MA, 2001.
[2] Rappaport, T.S., Wireless Communications, Prentice Hall, Upper Saddle

River, NJ, 1996.
[3] Parsons, J.D., The Mobile Radio Propagation Channel, John Wiley & Sons,

New York, 1992.
[4] Holma, H. and Toskala, A., WCDMA for UMTS: Radio Access for Third

Generation Mobile Communications, rev. ed., John Wiley & Sons, New
York, 2002.

[5] Goldsmith, A., Wireless Communications, Cambridge University Press, Cam-
bridge, U.K., 2005.

[6] IEEE, Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band,
IEEE Std. 802:11TM, Institute of Electrical and Electronics Engineers, New
York, 1999 (http://standards.ieee.org/).

[7] Winters, J.H., Salz, J., and Gitlin, R.D., The impact of antenna diversity on
the capacity of wireless communication systems, IEEE Trans. Commun.,
42(2/3/4), 1740–1751, 1994.

AU3833_C03.fm Page 72 Tuesday, August 15, 2006 3:17 PM

Wireless Technologies ■ 73

[8] Winters, J.H., Smart antennas for wireless systems, IEEE Pers. Commun.
Mag., 5(1), 23–27, 1998.

[9] Winters, J.H., On the capacity of radio communication systems with diversity
in a radio fading environment, IEEE J. Selected Areas Commun., 5(5),
871–878, 1987.

[10] Foschini, G.J., Layered space-time architecture for wireless communication
in a fading environment using multiple antennas, Bell Labs Tech. J., 1(2),
41–59, 1996.

[11] Foschini, G.J., Golden, G.D., and Valenzuela, A., Simplified processing for
high special efficiency wireless communication employing multi-element
arrays, IEEE J. Select. Areas Commun., 17(11), 1841–1851, 1999.

[12] Telatar, E., Capacity of multi-antenna Gaussian channels, Eur. Trans. Tele-
commun., 10, 585–595, 1999.

[13] Foschini, G.J. and Gans, M.J., On limits of wireless communications in a
fading environment when using multiple antennas, Wireless Pers. Commun.,
6, 311–335, 1998.

[14] Chiani, M., Win, M.Z., and Zanella, A., Error probability for optimum
combining of M-ary PSK signals in the presence of interference and noise,
IEEE Trans. Commun., 51(11), 1949–1957, 2003.

[15] Chiani, M., Win, M.Z., and Zanella, A., On the capacity of spatially correlated
MIMO Rayleigh fading channels, IEEE Trans. Inform. Theory, 49(10),
2363–2371, 2003.

[16] Zanella, A., Chiani, M., and Win, M.Z., MMSE reception and successive
interference cancellation for MIMO systems with high spectral efficiency,
IEEE Trans. Wireless Commun., 4(3), 1244–1253, 2005.

[17] Giorgetti, A., Smith, P.J., Shafi, M., and Chiani, M., Mimo capacity, level
crossing rates and fades: the impact of spatial/temporal channel correlation,
KICS/IEEE Int. J. Commun. Networks, 5(2), 104–115, 2003 (special issue on
coding and signal processing for MIMO systems).

[18] Paulaj, A.J., Gore, D.A., Nabar, R.H., and Bolcskei, H., An overview of MIMO
communications: a key to gigabit wireless, Proc. IEEE, 92(2), 198–218, 2004.

[19] Proakis, J.G., Digital Communications, 4th ed., McGraw-Hill, New York,
2001.

[20] Tarokh, V., Seshadri, N., and Calderbank, A.R., Space-time codes for high
data rate wireless communication: performance criterion and code construc-
tion, IEEE Trans. Inform. Theory, 44(2), 744–765, 1998.

[21] Vucetic, B. and Yuan, J., Space–Time Coding, John Wiley & Sons, New
York, 2003.

[22] FCC, Spectrum Policy Task Force, ET Docket No. 02-135, Federal Commu-
nications Commission, Washington, D.C., 2002.

[23] Kolodzy, P. et al., Next generation communications: kickoff meeting, in
Proc. Defense Advanced Research Projects Agency (DARPA) Workshop, Octo-
ber 17, 2001.

[24] McHenry, M., Frequency agile spectrum access technologies, in Proc. of
FCC Cognitive Radio Workshop, May 19, 2003.

[25] Staple, G. and Werbach, K., The end of spectrum scarcity, IEEE Spectrum,
41(3), 48–52, 2004.

AU3833_C03.fm Page 73 Tuesday, August 15, 2006 3:17 PM

74 ■ Mobile Middleware

[26] Haykin, S., Cognitive radio: brain-empowered wireless communications,
IEEE J. Selected Areas Commun., 23(2), 201–220, 2005.

[27] Nanda, S., Balachandran, K., and Kumar, S., Adaptation techniques in
wireless packet data services, IEEE Commun. Mag., 38(1), 54–64, 2000.

[28] Conti, A., Win, M.Z., and Chiani, M., On the performance of slow adaptive
M-QAM with antenna subset diversity in fading channels, in Proc. of IEEE
Global Telecomm. Conf., Dallas, TX, December, 2004, pp. 3373–3378.

AU3833_C03.fm Page 74 Tuesday, August 15, 2006 3:17 PM

75

Chapter 4

Mobile

Ad Hoc

Communication Issues

Hamid Harroud,

Dineshbalu

 Balakrishnan,
and Ahmed Karmouch

CONTENTS

Introduction... 76

Ad Hoc

 Communication Approaches.. 77
Characteristics and Classifications.. 77

Ad Hoc

 Networking .. 78
Mobile

Ad Hoc

 Applications.. 80
Context, Mobile Agents, and Policies ... 80
Virtual Conferencing ... 81
Session Initiation Protocol.. 81
Agent Technology and Platforms .. 82

Personal Assistant .. 83
Mobile Agents.. 84

Sample

Ad Hoc

 Application Scenario ... 85
Overall Environment... 87
Tools and Techniques .. 87

MANTIS Kit .. 88
XML .. 88
Audio Conference Tool .. 88
Video Conference Tool... 89

AU3833_C04.fm Page 75 Monday, August 14, 2006 1:26 PM

76

■

Mobile Middleware

Service Discovery.. 90
Samples .. 92
Discussion.. 95

Conclusion... 98
References ... 98

Introduction

The availability of portable computing devices and advances in wireless
networking technologies have contributed to the growing acceptance of
mobile computing applications and opened the door for the possibility
of seamless and pervasive services in mobile environments. However,
due to the restraints of limited device capabilities, network connectivity,
transmission range, and frequent changes caused by user or device
mobility, a considerable burden is placed on applications to be deployed
in an environment where mobile devices must connect to each other
through automatic configuration and communicate with each other over
wireless links.

Mobile devices (also referred to as

mobile nodes

), including phones,
personal digital assistants (PDAs), laptops, and sensors, dynamically coop-
erate with each other to form and set up a mobile

ad hoc

 network
(MANET) [1] by wirelessly communicating with other nearby mobile
devices without the support of a fixed infrastructure or centralized con-
trolling system.

Ad hoc

 communication is a type of spontaneous commu-
nication wherein software and devices communicate directly with other
nodes within wireless transmission range and indirectly with other nodes
by relying on some nodes that act as routers. To exchange information
with another node, a dynamically determined multi-hop route may be
required, depending on various parameters such as the distance between
nodes, directions, and the mobile

ad hoc

 network topology, with nodes
joining, leaving, and moving at any time.

Ad hoc

 communication and mobile

ad hoc

 network environments can
be used in smaller areas, such as conferences, or in larger areas, such as
for battlefield communications or disaster recovery. Table 4.1 lists some
of the common applications of

ad hoc

 networks that benefit from

ad hoc

communication [1,2].

Among the services required by the various

ad hoc

 applications are
service discovery and location service. Joining an

ad hoc

 environment,
mobile nodes must explore and locate the available services in the envi-
ronment, and these exploration and location activities must be carried out
in a context-aware manner, using the current position of the node, prox-
imity, available resources, and additional context information. Mobile
agents have also been proposed to serve as a mechanism to support

AU3833_C04.fm Page 76 Monday, August 14, 2006 1:26 PM

Mobile

 Ad Hoc

 Communication Issues

■

77

transient data sharing between nodes within communication range to highly
simplify the development and deployment of various

ad hoc

 applications.

Ad Hoc

 Communication Approaches

Ad hoc

 networks have gained great importance in a variety of domains,
including home and sensor networks, the fields of education and enter-
tainment, and other industries. Providing efficient

ad hoc

 communication
network environments requires the use of appropriate approaches for
solving challenging issues related to an

ad hoc

 network. These issues can
be related to the interconnectivity of the mobile devices, the routing
protocols (the

ad hoc

 network topology frequently changes and multi-
hop communication is required), and the applications and services to be
provided to mobile users. The main characteristics of

ad hoc

 network
environments, their classification, and the technology required in such
environments are discussed in the following subsections.

Characteristics and Classifications

The main characteristics of an

ad hoc

 environment include [3]:

■

Autonomicity

■

System and device heterogeneity

■

Flexibility and scalability

■

Self-configuration

■

Dynamic network topology

TABLE 4.1

Ad Hoc

 Network Applications

Field Application

Telecooperation Delay-sensitive applications, interactive
television

Collaborative groupware Scheduling
Hypermedia Web-based transactions
Home and enterprise

networking
Personal area networks (PANs)

Mobile agent models Digital personal assistants (PDAs)
Sensor networks Mobile wireless local area networks (WLANs)
Context-aware systems Location-dependent applications
Emergency services Disaster recovery, military communications

AU3833_C04.fm Page 77 Monday, August 14, 2006 1:26 PM

78

■

Mobile Middleware

The main constraints, from a mobile

ad hoc

 environment point of view,
include [3]:

■

Wireless medium constraints

■

Resource constraints

■

Connectivity (bandwidth) constraints

■

Security and privacy issues

Ad hoc

 communications can be classified based on the environments in
which they are to be used, such as:

■

Ubiquitous computing environments

■

Pervasive real-time environments

■

Agent-based computing environments

■

Ambient computing environments

They can also be classified based on their configuration:

■

Flat

ad hoc

 networks

■

Hierarchical networks

■

Proactive

■

Reactive

■

Sensor-based

■

Semantic- and collaboration-based

A broad technical classification of the use of

ad hoc

 communications could
be based on the utilization of such communications in networks and
applications (i.e.,

ad hoc

 networks and

ad-hoc

-communications-based
applications). Because the literature of

ad hoc

 networks is too extensive
to be analyzed in detail here, this chapter focuses on

ad hoc

 applications
and provides a detailed introduction to service discovery.

Ad Hoc

 Networking

An

ad hoc

 network [4,35] is formed dynamically by mobile devices and
is managed by the nodes that enter and leave this network; for example,
mobile agents themselves could organize and administer

ad hoc

 wireless
networks. Thus, an

ad hoc

 network may have any network topology and
may or may not have a gateway to any particular fixed network. The
users might be able to bring their mobile devices and get connected to
the network without any prior configuration. The

ad hoc

 network can be
visualized as a wireless LAN where the users bring in various types of

AU3833_C04.fm Page 78 Monday, August 14, 2006 1:26 PM

Mobile

 Ad Hoc

 Communication Issues

■

79

wireless devices such as PDAs or notebooks. When the devices are turned
on, they are spontaneously connected and can communicate with other
connected devices or use the services that are in this network. Due to
this spontaneous and dynamic nature of

ad hoc

 networks, they are proving
to be an interesting and challenging problem for researchers.

The operation of mobile

ad hoc

 networks does not rely on fixed
infrastructures. As they are autonomously formed by wireless associations
between mobile terminals (and users), they are highly flexible, infrastruc-
ture independent, and convenient. But, the features do have a price, such
as

ad hoc

 wireless networking constraints. One of the major concerns of
such a network is the security of the nodes, as they are more prone to
attacks such as eavesdropping or spoofing. The attacks largely arise due
to dynamic reconfigurability and the absence of a single centralized
controller. An example of a MANET is illustrated in Figure 4.1.

The main concepts that challenge researchers from an

ad hoc

 network-
ing point of view include routing, connectivity, and service and resource
discovery [3]. In MANETs, efficient routing protocols and standards are
required to establish communication between involved networks. These
routing standards should take into consideration the constraints of a mobile

ad hoc

 environment. Among the several proposed routing solutions, the
hybrid routing protocols, which proactively route nearby nodes and reac-
tively route distant nodes, are promising [3]. Other routing approaches
that could be employed in a mobile

ad hoc

 environment include location-
based routing, time-based routing, and clustering.

Figure 4.1 A mobile

ad hoc

 network example.

AU3833_C04.fm Page 79 Monday, August 14, 2006 1:26 PM

80

■

Mobile Middleware

Various predictive architectures could be used to reduce the impact of
wireless constraints in

ad hoc

 wireless networks. Another important con-
cern of

ad hoc

 wireless networks is security. Several frameworks proposed
for the security of ad hoc wireless networks are still in the development
phase [5].

Due to the popularity of Internet Protocol (IP) standards, one has to
employ IP addresses even though they face several constraints in mobile
ad hoc networks due to node mobility and overhead [3]; hence, novel
solutions are required for Internet connectivity and addressing. Among
the several connectivity models that have been proposed, the main pos-
sible approaches include: (1) the use of Mobile IP for connectivity, (2)
the use of subnets for addressing, and (3) utilization of network address
translation (NAT) for Internet connectivity [3].

Mobile Ad Hoc Applications
The introduction of terminologies such as the Bluetooth®, 802.11, and
Hyperlan greatly facilitated the deployment of ad hoc technology. In
contrast to applications specific to the military domain, several new ad
hoc networking applications appeared. In this section, we focus on
addressing ad hoc networking challenges by using ad hoc approaches via
applications and tools such as Session Initiation Protocol (SIP), agents,
mobile agents, context awareness, XML, and conferencing tools. The
scalability and flexibility characteristics of mobile ad hoc networks make
this technology attractive for several applicative scenarios such as personal
area networks (PANs).

Context, Mobile Agents, and Policies

Context plays an important role in managing ad hoc environments. Because
the environment is dynamic and reconfigurable, knowledge of the related
entities in the ad hoc environment becomes essential. Capturing the context
and analyzing and matching context data from various related resources
allows collaboration among various devices. Context can also be used to
address the security issues in an ad hoc space in that it can act as a firewall
against entities possessing irrelevant or questionable context. The use of
mobile agents in ad hoc communications is also an important alternative
and is further discussed later.

Policies are rules or conditions set by the user in order to govern the
behavior of entities with a specific domain (for example, an ad hoc
environment). Policies [7] are generally applied in security (for restricting
access), management (to assign rules for participating entities), and

AU3833_C04.fm Page 80 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 81

conversational policies (to structure and carry out conversations between
entities). Several policy languages aim at formalizing the specifications of
policies so they can be represented and interpreted by machines [7]. Future
applications could learn from the current system behavior and create
policies at run-time, an asset of MANETs. The behavior of an agent system
can thus be modified without influencing the system architecture.

Virtual Conferencing

Unlike a traditional conference wherein people must be physically present,
virtual conference participants can be physically separated along networks
but virtually joined in a meeting place where they can participate in live
interaction and information exchange. Virtual conference applications
include audio and video conferences, common multimedia conferences,
and ad hoc conferences. An ad hoc conference is a dynamic meeting
based on ad hoc networks where users randomly join or leave the network.

Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application-layer-controlling
protocol that can establish, modify, and terminate multimedia sessions or
calls. It is a standardized signaling protocol for establishing real-time calls
and conferences over the Internet [8]; its basic architecture is client–server
based in nature. SIP is most commonly utilized in applications such as
multimedia conferences, distance learning, and Internet telephony.
Although the text-based SIP protocol is similar in both syntax and seman-
tics to the Hypertext Transfer Protocol (HTTP) [9], it can be easily extended,
unlike HTTP. This extensibility feature aids in the provision of various
services such as instant messaging, call transfer, and call control. Because
SIP is a general-purpose protocol, it is independent of packet layers and
supports both the User Datagram Protocol (UDP) and the Transmission
Control Protocol (TCP). SIP cooperates with other protocols for multimedia
communication and control; for example, it works with the Session
Description Protocol (SDP) for multimedia session description during SIP
session establishment [10], and it works with the Real-Time Transport
Protocol (RTP) [11] for real-time data transportation after SIP session
establishment.

The main entities in SIP are the user agent, SIP proxy server, SIP redirect
server, and registrar [28]. The SIP user agent works at the client end and
frequently updates users’ contact information to the SIP registrar. Every SIP
entity has a unique SIP address for the purposes of identification. The SIP
address is presented in the form of an SIP universal resource locator (URL)

AU3833_C04.fm Page 81 Monday, August 14, 2006 1:26 PM

82 ■ Mobile Middleware

as follows: “sip: username@domain.” The six request methods defined in
the SIP by which entities exchange SIP messages are [28]:

■ INVITE is used by the SIP user agent to initiate a session.
■ BYE terminates a session between two users.
■ ACK confirms session establishment.
■ CANCEL terminates call processing.
■ REGISTER registers a user’s SIP address with the SIP registrar server.
■ OPTIONS queries server capabilities without setting up a call.

Agent Technology and Platforms

A common interest among researchers is providing global and efficient
technologies, standards, execution environments, and security solutions
for mobile middleware [12]. A related interest is the employment of agent
technology to develop these requirements. An agent is an entity that
represents a person, an organization, or an application and which inde-
pendently or by interacting with other agents executes a task or set of
tasks. Agents can be created, moved, cloned, or destroyed dynamically
which adds to the flexibility of their usage. For example, in the case of
intelligent agents, the itinerary may change dynamically depending on the
agents’ status at a particular terminal or node in a network. The agents
are autonomous and usually carry out specific sets of tasks they are
programmed to do. The most interesting feature of these agents is that
they are mobile, which means they can be created at one location and
executed in another. Agents can also be viewed as components of a
software application in certain cases [13].

Agent models, unlike client–server models, promise an entirely new
approach to problem solving. Instead of the client sending a request to
the server, a representation of the client (its agent) moves itself to the
server, executes its task, and brings back the results using the Agent
Communication Language (ACL). The efficiency of applications related to
information technology could be improved by utilizing agent technology
[14]. The main attributes of agent technology that would benefit ad hoc
communications include:

■ Agents will become more prominent as the Internet and Web
technologies continue to grow [15]. They are well suited for mobile
applications due to their small size, limited bandwidth require-
ments, and properties such as adaptability, scalability, and mobility.

■ Agent-based computing can be considered as a natural extension
to object-oriented programming [15]. The distributed nature of
agents makes them extensible and simple.

AU3833_C04.fm Page 82 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 83

■ Voice recognition, mobility, location sensitivity, and personalized
intelligent filters can be enabled in software applications using
agents [16,17]. Information monitors and filters considerably reduce
the mobile user’s small-size, low-resolution screen problem.

The main drawbacks of agent technology include:

■ Trust, privacy, and security issues
■ Unreliability of nascent agent platforms and execution environ-

ments for mobile devices
■ Time required to implement agents learning from people, people

learning from agents, and agents improving the creative perfor-
mance of people

The third constraint arises because agents should have access to all data
that may be relevant, the accessed data should be scriptable and record-
able, and every user’s behavior is different.

For an agent to move from one node or network to another and
interact with the foreign agents, the platform at the target must be able
to recognize this agent and understand its language; therefore, it is
necessary to have a common platform that recognizes the agents and its
semantics. An agent platform is the execution environment wherein agents
are created, moved, cloned, and destroyed. So far, several agent platforms
have been built as applications on the operating system; these agent
platforms have general specifications given by the Foundation for Intelli-
gent Physical Agents (FIPA) [16]. Current prevalent agent platforms include
JADE (http://jade.tilab.com) and FIPA-OS [18]; lightweight versions for
mobile wireless devices are the Lightweight Extensible Agent Platform
(LEAP) (http://leap.crm-paris.com) and MicroFIPA-OS [18], respectively.

Personal Assistant

New trends and emerging technologies focus on the performance of user
tasks with the least user intervention. The personal assistant application
framework was developed using agent technology [29]. It is an effort taken
to develop a new application for mobiles that semi-autonomously assists
users in utilizing various Internet applications on their mobile devices
with minimal involvement; that is, the software agent-based application
simplifies employing the Internet in mobile devices. Assistance is provided
based on the particular user’s personal preferences, so each user could
have a customized personal assistant [19].

The personal assistant framework is not restricted to providing assis-
tance with specific Internet applications for mobile device users but can
also be used for various other applications. The components of the

AU3833_C04.fm Page 83 Monday, August 14, 2006 1:26 PM

84 ■ Mobile Middleware

framework keep track of the actions performed by the user and commu-
nicate with each other to perform tasks; for example, a mobile user who
wants to schedule a meeting with his colleagues can instruct his personal
assistant to do so by specifying his case-specific preferences. If necessary,
the personal assistant will communicate with external agents in remote
platforms; that is, inter-platform agent communication is facilitated through
integration with other agent-based systems. Common tasks performed by
personal assistants include:

■ Access and store most of the frequently used information and
quickly search and locate documents of interest and importance.

■ Organize information hierarchically according to the user’s personal
settings and preferences.

■ Eliminate the mobile user’s dependence on using touch-screen
keypads and small-sized buttons by including icons and other
visual aids in the graphical user interface (GUI).

■ Assist user-oriented services such as e-mail retrieval, file or media
transfers, and reporting weather conditions and news.

■ By integrating with the mobile-agent-based ad hoc communication
system, assist services such as printing, PDF writing, MP3 playback,
and conferencing.

Although the personal assistant is intended for mobile devices, an
agent-based system could also execute in devices such as laptops and
tablet PCs. Related contributions of the personal assistant framework
include: (1) design and implementation of the proxy agent that resolves
problems in mobile devices such as unstable execution environments,
overloading, and insufficient resources; and (2) design and implementation
of the adaptation agent that resolves compatibility problems in mobile
devices. The latter is achieved through a decrease in the hardware and
software requirements of mobile devices utilizing personal assistants. Other
aspects include support for unrecognized file formats without additional
software requirements and the need for an active wireless interface only
when sending and receiving data. The personal assistant can result in
adaptability problems [20], primarily due to constraints in their execution
environments and current mobile device limitations.

Mobile Agents

Inter-platform agent communication can be effectively performed by using
the concept of agent mobility [21]. Mobile agents (i.e., agents possessing
the agent mobility feature) dynamically move from one location (i.e., agent
environment) to another under their own control to perform tasks. They

AU3833_C04.fm Page 84 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 85

are capable of performing various roles in an ad hoc network, such as
routing [22], network management, and security. Network connectivity and
communication are less reliable in an ad hoc network, but mobile nodes
can hand their tasks over to an agent and wait for it to return with the
results. Due to this capability of mobile agents, network traffic is optimized
because the agent carries out its tasks when the connection is reliable and
enough bandwidth is available to execute the task. Mobile agents require
approximately four times less bandwidth to complete tasks involving
intense remote communication compared to the client–server approach
[21]. Moreover, mobile agents provide security at a higher level, on top of
the network layer, thereby reducing security threats to the mobile nodes.
Agents provide authentication of requests and maintain the confidentiality
of private information, attributes that are highly sought after in ad hoc
networks. Because mobile nodes primarily run on batteries, saving power
becomes another important criterion. The agents play an important role in
reducing power usage by carrying out tasks on behalf of the nodes even
after the mobile nodes have left the network. Thus, from both the user
point of view and the network point of view, mobile agents can be
employed for a wide variety of operations in the ad hoc network.

Agent systems could produce performance bottlenecks due to a lack
of resources or overloading [23]; for example, the personal assistant model
could suffer from this problem. Although this problem was predicted and
handled in Balakrishnan and Karmouch [29], who used proxy and adap-
tation agents, other common solutions include the migration of agents to
foreign hosts via the agent mobility concept [23]. An alternative approach
to agent mobility is agent cloning [23]. The cloning approach solves both
the insufficient resources issue and the agent overloading problems. This
approach features both agent mobility and task transfer. An agent clone
could be created on a foreign host, and tasks could be transferred from
an overloaded agent in the local host to the cloned agent. This cloned
agent could finally die after performing the required tasks. If additional
resources are available at the local host, then agents could first be cloned
locally and later migrate to a foreign host [23].

Sample Ad Hoc Application Scenario
In this section, we provide an example of a mobile-agent-based ad hoc
communications project to aid in understanding ad hoc communications
(Figure 4.2). The central idea of this mobile ad hoc communications
project is to bring various types of users and services together in a
network where they can collaborate with one another and share services
in the network.

AU3833_C04.fm Page 85 Monday, August 14, 2006 1:26 PM

86 ■ Mobile Middleware

In Figure 4.2, the room manager is the central controller. The main
purpose of this project is to able collaboration among different entities
(users and services). The users and services enter and leave the room in
a dynamic fashion. The users may or may not carry personal devices such
as laptops or PDAs. The presence of these entities is identified spontane-
ously, and appropriate tools for collaborating with the environment are
supplied to the client devices in case they do not possess the required
tools. The underlying network can be wired or wireless, depending on
the devices that are connecting to it. Every privileged user is made aware
of the services and other users in the room after passing policy tests. The
users are allowed to share their own services and use the available
authorized services when they need to, and this is handled by an exclusive
service discovery module. The service discovery module provides suitable
service matching of requests from clients in the same room or from other
similar rooms. When the target devices are identified by their capabilities,
a communication session is formed among them and monitored constantly
via the SIP. This session is managed by using the context information of
the room and that of the participating entities. The resource connectivity
module is responsible for creating and managing the communication
sessions between the entities. It provides session management for the
user–service or user–user interactions.

Every user, after connecting to the ad hoc network, will be provided
with a GUI that displays other users and services in the network with

Figure 4.2 Overview of the mobile-agent-based ad hoc communications project.

Printing service

PDF service

Conferencing

Proxy service

AU3833_C04.fm Page 86 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 87

which the user can collaborate. These services and user lists are displayed
after performing policy checks for the users and services. If the user wants
to use these services, he simply selects the service and clicks on “submit.”
The request goes to the appropriate service agent, and the agent migrates
to the user’s terminal to perform further operations.

Overall Environment

The prototype of this project was implemented in a resource rich envi-
ronment with wired and wireless LANs. It was tested in Java because it
is system independent and ensures adaptability when it comes to mobile
devices. The agents (e.g., service agents) were created and deployed using
the FIPA-OS agent platform. For hand-held devices, the compact
MicroFIPA-OS version was used along with the Jeode JAVA runtime envi-
ronment (http://www.insignia.com). Because the agents use a common
platform, all the agents must follow the FIPA standards if they must
communicate with one another or move from one platform to another
platform. Necessary information is cached by the proxy agent as XML
files, and the created files are named after the conversation ID ACL field
to ease the information-retrieval process.

The main components — the room manager, CMS server, proxy agent,
and service agents (e.g., printing service agent) — ran on Pentium IV 2.4-
GHz systems with 512 MB RAM. The radiofrequency (RF) sensor (MANTIS
kit) used to identify the physical presence of entities in a room was from
RF Code. The reader was equipped with the 802.11b wireless protocol and
connected to the wired LAN through an ORINOCO access point. Two
portable devices (a Compaq IPAQ 3800 Series Pocket PC and a Pentium
III 1.1-GHz laptop) were used as terminal devices for mobile users. Both
the mobile devices featured the 802.11b wireless capability. The personal
assistant was implemented on the Pocket PC and the laptop was loaded
with a PDF writer, which the user of the laptop could opt to share with
the environment. In addition, four Pentium IV Windows XP desktops
connected to the wired LAN were used as terminals for users not possessing
a personal device.

Tools and Techniques

This section introduces the different tools and techniques employed in
the ad hoc communications project prototype in addition to the already
discussed techniques. These discussions will help the reader better under-
stand the application scenario described in the previous section.

AU3833_C04.fm Page 87 Monday, August 14, 2006 1:26 PM

88 ■ Mobile Middleware

MANTIS Kit

The MANTIS kit (http://www.rfcode.com) was used for tag sensing. There
is an error of approximately ±5 feet (maximum) in calculating the distance
of a tag. This directly affects the precision in finding a tag if it is inside
or outside the room; therefore, we set a time limit of 20 seconds between
beacon emissions. If the beacon was not heard for more than 20 seconds,
then the tag was considered to be out of range. Major issues that arise
in such a scenario are the interface and communication among various
types of services, because no one common language or protocol is
understood by all services. X10 (http://www.x10.com) is a communication
language that allows electrical appliances to talk with each other. The
prototype implementation basically monitors, manages, and stores con-
textual parameters. The entities considered are services and people in a
physical room space. There can be more than one room space, and the
users and services in these rooms can collaborate with each other.

XML

eXtensible Markup Language (XML) was used as the encoding language
for entity profiles because it provides portability and flexibility. The profiles
of the entities are represented in XML, and object backup is performed
after converting them to XML and storing them as XML files. Also, the
contents of any ACL message (including the fields performative, sender
address, receiver address, content, language, encoding, ontology, protocol,
conversation ID, reply with, and in reply to) are stored in an XML file.
An XML file containing a particular ACL message is either stored in the
mobile device or in the workstation, or even both, depending on the
contents and significance of the particular ACL message. The Xerces Java
parser [25] was employed to retrieve the cached XML files.

Audio Conference Tool

The Robust Audio Tool (RAT) [30] is a tool primarily developed for
multiparty audio conferencing over the Internet. It can be started from
the command line as follows: Prompt> rat [options] <IP address/port>.
For multicasting, the IP address must be in the range of 224.2.0.0 to
224.2.255.255 (except while using admin scope). The port number must
be an even number and at least 1024. The IP address and the port number
indicate the address where a multicast conference could be started. All
participants must start RAT at the same IP address and port number to
join a particular multicast conference.

AU3833_C04.fm Page 88 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 89

As shown in Figure 4.3b, RAT has a main window that displays all
conference participants. The current speaker is highlighted, and clicking
on any participant displays the user profile window, which includes the
participant’s name, e-mail, transmission status, etc. (Figure 4.3a). In this
example, two users are participating in the ongoing conference, and the
highlighted user “Prasanna” is speaking. More information about RAT can
be obtained from http://www-mice.cs.ucl.ac.uk/multimedia/software/rat.

Video Conference Tool

A video conferencing application, VIC [31] is a tool for multiparty video
conferencing over the Internet and was developed by the Network
Research Group at Lawrence Berkeley National Laboratory and the
University of California, Berkeley. VIC, similar to RAT, can also be
started from the command line, and the even port number must be at
least 5002. Again, all participants must start the tool at the same IP
address and port number to take part in the same video conference.
As illustrated in Figure 4.4, VIC has a main window that streams all of
the conference participants’ videos. In addition to video streaming, the
participants’ names, e-mails, etc. are also displayed. Clicking the button
labeled “Info” will lead to a window displaying a user’s detailed profile,
including RTP status. The “Menu” button at the bottom of the main
window opens the “Menu” window. By checking “Transmit” displayed
at the top of the “Menu” window, the corresponding user’s image will
be transmitted to other conference participants. Clicking “Release” halts
all ongoing transmissions. Any participant’s “thumb” image can be

Figure 4.3 RAT windows: (a) user profile window, and (b) main window.

AU3833_C04.fm Page 89 Monday, August 14, 2006 1:26 PM

90 ■ Mobile Middleware

enlarged in a new window. More information about VIC can be found
at http://www-mice.cs.ucl.ac.uk/multimedia/software/vic.

Service Discovery

Service discovery has become a highly desirable feature in today’s net-
works. It allows for the automatic and spontaneous discovery and con-
figuration of shared network services [36]. Because the network topology
is constantly changing in an ad hoc environment, service discovery
becomes even more important but more difficult. Possible services or
resources include printing, writing PDFs, storage, access to databases or
files, and Internet access. A variety of research is being conducted in the
field of service discovery for ad hoc networks, but here we discuss an
entirely agent-based approach to take advantage of the benefits introduced
by agent technology [12,23].

Although it is critical to ensure that the network is aware of its active
services at all times, an important goal is to create as little work for the
user side as possible; hence, a push-based scheme would provide the
user side with all the available services regardless of their current require-
ments. Such a scheme would also reduce delays for the user when initiating
the services. Using a common centralized approach, the required agents
include service agents (SAs) to represent the services, personal agents
(PAs) to represent the users, and a fixed central service discovery agent

Figure 4.4 VIC user interface windows.

AU3833_C04.fm Page 90 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 91

(SDA) that manages services and satisfies the needs of both SAs and PAs
(see Figure 4.5). Because services can come and go without notice in an
ad hoc network, the SAs must be dynamically generated and destroyed.

Service agents must register and deregister with the SDA. PAs are
responsible for listening to service announcements and making search
requests. As service information changes, announcements are made by
the SDA to those PAs authorized to access the affected services; therefore,
mobile users always have the most current list of services in the network
they are allowed to use, thus reducing their search effort to a minimum.

A user who enters the conference room with a mobile device is
detected (via tag sensors) by the context-awareness system of the ad hoc
environment (in this case, by the MANTIS kit). The presence of a user
triggers the verification of the corresponding sensed tag ID. If the tag has
a profile associated with it, then that profile is parsed and a presence
agent is created. A tag ID could also be associated with a service, and
similarly a service agent would be created after a service becomes avail-
able. The presence/service agent is set to monitor the activities of the
user or service and transmit the readings to the application. Any further
conversations with the entity will pass through this agent. The agent will
also be responsible for changes in the state values of the context variables.
Some software services may not be associated with any tags. In this case,
their availability is determined by their registration to the platform when
devices on which they execute are connected.

Figure 4.5 Service discovery using a central discovery agent.

AU3833_C04.fm Page 91 Monday, August 14, 2006 1:26 PM

92 ■ Mobile Middleware

Samples

This section further explains the mobile-agent-based ad hoc communica-
tions model by illustrating the user interface snapshots, command prompt
snapshots, and code snippets. Figure 4.6 and Figure 4.7 show screenshots
of the log window that displays the activities that take place when a user

Figure 4.6 Person entering with PDA.

Figure 4.7 Person leaving with PDA.

AU3833_C04.fm Page 92 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 93

enters the room with a PDA and leaves after some time. The first line of
the screenshot displays the time and distance at which the user was
spotted via the MANTIS kit. The name of the user is obtained from the
local database after mapping the tag ID of the user with the profiles. The
context information from the local database is displayed as a hash table
containing the basic and cached attributes. Similar procedures will be
followed if a service enters and leaves the room.

The next two snapshots deal with caching of necessary information.
Figure 4.8 shows a screenshot of the user’s archive over a period of time.
The enter time and exit time of the user are archived along with the status
of the user at a particular time. The status value can be interpreted as
follows:

0 — The user is available for interaction.
1 — The user is busy.
2 — The user is not at his desk.
3 — The user will be there for a few minutes.

As discussed previously, the ACL messages are cached in XML format.
This is illustrated in Figure 4.9.

An integral part of the personal assistant GUI, the ACL message creation
and sending screen is shown in Figure 4.10. This frame allows mobile users
to create ACL messages in their PDAs by filling in mandatory and optional
ACL fields. Users can select values from combo boxes for mandatory ACL
fields. The mandatory ACL elements are distinguished from optional ACL
elements by the button components placed between them. The user can

Figure 4.8 User archive.

AU3833_C04.fm Page 93 Monday, August 14, 2006 1:26 PM

94 ■ Mobile Middleware

then send the created ACL message to the intended receiver by clicking on
the appropriate button. This figure represents a user’s request for the printing
service via the personal assistant model.

Alternatively, services can be selected from the available list via the
integrated mobile-agent-based ad hoc communications model. Based on
the user’s policy profiles, the list of available services and users (for

Figure 4.9 Cached XML file composed of ACL elements.

Figure 4.10 User interface snapshot — create and send ACL message screen.

AU3833_C04.fm Page 94 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 95

conferencing) varies. They are visible in the available services GUI via
the room manager when the user successfully logs on. A sample
snapshot is shown in Figure 4.11. For example, if the printing service
is selected, the printing service GUI (Figure 4.12) is moved to the user’s
device via the room manager (and proxy agent). Figure 4.13, Figure
4.14, and Figure 4.15 illustrate use of the SIP to provide conference
and sidebar services.

Discussion

Some of the significant points regarding this sample scenario include:

■ Because the personal assistant application is integrated with the
mobile-agent-based ad hoc communications system, authorized
users of the application can also utilize various services offered by
the mobile-agent-based ad hoc communications system.

■ The GUI listing the available services and users and the GUI of
the requested service are dynamically moved to the personal
assistant interface via the proxy agent. Instead of actually making
the agents mobile, we can clone them via the proxy service based
on the requirements.

Figure 4.11 Snapshot displaying available users.

AU3833_C04.fm Page 95 Monday, August 14, 2006 1:26 PM

96 ■ Mobile Middleware

Figure 4.12 The printing service snapshot.

Figure 4.13 How a SIP call is initiated via the SIP user agent.

AU3833_C04.fm Page 96 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 97

■ The mobile device user can then execute the requested service
using the service GUI and forward necessary information to the
proxy agent. Any data passed between the room manager and
personal assistant is intercepted by the proxy agent. The intercepted
data is then cached, forwarded, and adapted accordingly. The
adaptation is performed by the adaptation agent integrated with
the proxy agent.

■ The GUI listing the available services automatically gets updated
whenever the status (present or absent) of a service changes.

Figure 4.14 SIP INVITE interface.

Figure 4.15 Users communicating in the main conference.

AU3833_C04.fm Page 97 Monday, August 14, 2006 1:26 PM

98 ■ Mobile Middleware

■ The GUI also lists the users currently available to join the public
conference or initiate a private conference. Service requests are
sent to the room manager, which in turn moves the GUI of the
requested service to the appropriate user’s device.

■ A private conference (i.e., a sidebar association) is a conference
controlled by the user. It is more like a scheduled conference in
that users may define policies for sidebars, such as scheduled
conference times, maximum number of participants allowed, side-
bar media types, etc.

Conclusion
This chapter has provided an overview of the great potential of ad hoc
networks for providing new communication models in mobile environ-
ments and enhancing the existing infrastructure-based communication pro-
tocols. In fact, mobile ad hoc networks are expected to become an
important part of fourth-generation wireless communication networks [3],
as they can be used to extend base station coverage and address current
deficiencies of the infrastructure-based network. The increasing use of
wireless devices with the emergence of potential mobile applications may
further expand the use of mobile ad hoc networks in future pervasive
computing environments. A list of such potential applications and a sample
usage scenario of an ad hoc communications network have been provided
in this chapter. Sensor networks, as components of ad hoc communications
networks, can be utilized for military applications (e.g., to detect chemical
or biological weapons), as environmental sensing networks, and as traffic
sensors to monitor traffic congestion. Even though the concept of mobile
ad hoc networks has been around for a while, many challenging issues
remain to be solved, such as the power consumption of the devices and
the proactive and reactive routing protocols required (as an ad hoc network
frequently changes and multi-hop communication is required). The scope
of research on ad hoc networks is too vast to be covered here; as a result,
several aspects of ad hoc networks have not been discussed, including
routing protocols, security, and interlayer interactions, to name a few.

References
[1] Basagni S., Myers, A.D., and Syrotiuk, V.R. Mobility-independent flooding

for real-time, multimedia applications in ad hoc networks, in Proc. of the
1999 IEEE Emerging Technologies Symp. on Wireless Communications and
Systems, Richardson, TX, April 12–13, 1999.

AU3833_C04.fm Page 98 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 99

[2] Kaminsky, A., Infrastructure for Distributed Applications in Ad Hoc Net-
works of Small Mobile Wireless Devices, IT Lab Technical Report, May 22,
2001 (http://www.cs.rit.edu/~anhinga/publications/AnhingaPaper200105
22.pdf).

[3] Hoebeke, J., Moerman, I., Dhoedt, B., and Demeester, P., An Overview of
Mobile Ad Hoc Networking: Applications and Challenges, Department of
Information Technology, Ghent University, Belgium, 2004.

[4] Johnson, D.B. and Maltz, D.A., Dynamic source routing in ad hoc wireless
networks, in Mobile Computing, Imielinski, T. and Korth, H., Eds., Kluwer
Academic, Norwell, MA, 1996, pp. 153–181.

[5] Hughes, B. and Cahill, V., Towards Real-Time Event-Based Communication
in Mobile Ad Hoc Wireless Networks, Tech. Report TCD-CS-2003-25, Distrib-
uted Systems Group, Department of Computer Science, Trinity College,
Dublin, Ireland, 2003.

[6] Corson, S. and Macker, J., Mobile Ad Hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations [memo], Request
for Comments 2501, The Internet Society, Reston, VA, January, 1999
(http://www.ietf.org/rfc/rfc2501.txt).

[7] Kagal, L., Finin, T., and Joshi, A., A Policy Language for a Pervasive
Computing Environment, in Proc. of the IEEE 4th International Workshop
on Policies for Distributed Systems and Networks (POLICY 2003), Lake Como,
Italy, June 4–6, 2003, pp. 63–76.

[8] Session Initiation Protocol (SIP), Computer Science Department, Columbia
University (http://www.cs.columbia.edu/sip/).

[9] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and Berners-Lee, T., Hypertext
Transfer Protocol (HTTP/1.1) [memo], Request for Comments 2068, The
Internet Society, Reston, VA, January, 1997 (http://www.ietf.org/rfc/
rfc2616.txt).

[10] Handley, M. and Jacobson, V., SDP: Session Description Protocol [memo],
Request for Comments 2327, The Internet Society, Reston, VA, April, 1998
(http://www.ietf.org/rfc/rfc2327.txt).

[11] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., RTP: A Transport
Protocol for Real-Time Applications [memo], Request for Comments 1889,
The Internet Society, Reston, VA, January, 1996 (http://www.freesoft.org/
CIE/RFC/1889/index.htm).

[12] Poslad, S. and Calisti, M., Towards improved trust and security in FIPA
agent platforms, in Proc. of the Autonomous Agents 2000 Workshop on
Deception, Fraud and Trust in Agent Societies (AGENTS 2000), Barcelona,
Spain, June 3–7, 2000, pp. 87–90.

[13] Millier, M., Software agents, in Proc. of the Conf. on Human Factors in
Computing Systems (CHI 97), Atlanta, GA, April 18–23, 1997 (http://www.
acm.org/sigs/sigchi/chi97/proceedings/tutorial/mm.htm).

[14] Nwana, H.S., Software agents: an overview, Knowl. Eng. Rev., 11(3), 1–40,
1996.

[15] AgentLand, http://www.agentland.com.
[16] Foundation for Intelligent Physical Agents (FIPA), http://www.fipa.org.

AU3833_C04.fm Page 99 Monday, August 14, 2006 1:26 PM

100 ■ Mobile Middleware

[17] CRUMPET (Creation of User-Friendly Mobile Services Personalised for
Tourism), Information Society Technologies, London, U.K. (http://www.
ist-crumpet.org).

[18] FIPA-OS and MicroFIPA-OS Agent Platforms, Emorphia, Ltd., Harlow, U.K.
(http://fipa-os.sourceforge.net).

[19] Englmeier, K. and Mothe, J., Trustworthy personal assistance: a design
objective for interactive agents, tech. meta-track, in Proc. of the 2001
Americas Conference on Information Systems, Boston, MA, August 3–5, 2001
(CD-ROM).

[20] Raatikainen, K. et al., Monads: adaptation agents for nomadic users, in Proc.
of World Telecom ’99 (http://www.cs.helsinki.fi/research/monads).

[21] D’Agents Tutorials, Computer Science Department, Dartmouth College,
Hanover, NH (http://agent.cs.dartmouth.edu/tutorials).

[22] Marwaha, S., Tham, C.K., and Srinavasan, D., Mobile agents based routing
protocol for mobile ad hoc networks, in Proc. of the 2002 IEEE Global
Telecommunications Conference (GLOBECOM'02), Taipei, Taiwan, Novem-
ber 17–21, 2002.

[23] Shehory, O. et al., Agent cloning: an approach to agent mobility and
resource allocation, IEEE Comm., 36(7), 58–67, 1998.

[25] Xerces Java Parser, v. 1.2.1, The Apache XML Project (http://xml.apache.org/
xerces-j).

[27] PersonalJava Application Environment, Sun Microsystems, Santa Clara, CA
(http://java.sun.com/products/personaljava).

[28] Rosenberg, J. et al., SIP: Session Initiation Protocol, IETF Internet Draft,
Internet Engineering Task Force (http://www.ietf.org/internet-drafts/draft-
ietf-sip-rfc2543bis-09.pdf).

[29] Balakrishnan, D. and Karmouch, A., A personal assistant for mobile
device users using agents, in Proc. of the 22nd Biennial Symp. on
Communications, Kingston, Ontario, Canada, May 31–June 3, 2004, pp.
405–407.

[30] Robust Audio Tool (RAT), University College, London (http://www-mice.
cs.ucl.ac.uk/multimedia/software/rat).

[31] Videoconferencing Tool (VIC), Network Research Group, Lawrence Ber-
keley National Laboratory, and University of Califor nia, Berkeley
(http://www-mice.cs.ucl.ac.uk/multimedia/software/vic).

[32] Gerla, M. and Tsai, J.T., Multicluster, mobile, multimedia radio network,
J. Wireless Networks, 1(3), 255–265, 1995.

[33] Plagemann, T., Goebel, V., Griwodz, C., and Halvorsen, P., Towards
middleware services for mobile ad hoc network applications, in Proc.
of the Ninth IEEE Workshop on Future Trend of Distributed Computing
Systems (FTDCS) San Juan, Puerto Rico, May 27–30, 2003, pp. 249–255.

[34] El-Sayed, A. and Roca, V., A survey of proposals for an alternative
group communication service, IEEE Network, 17(1), 46–51, 2003.

[35] Perkins, C.E. and Royer, E.M., Ad hoc on-demand distance vector
routing, in Proc. of the Second IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, LA, February 25–26, 1999, pp.
90–100.

AU3833_C04.fm Page 100 Monday, August 14, 2006 1:26 PM

Mobile Ad Hoc Communication Issues ■ 101

[36] Lu, Y., Karmouch, A., Ahmed, M., and Impey, R., Agent-based service
discovery in ad hoc networks, in Proc. of the 22nd Biennial Symp. on
Communications, Queen’s University, Kingston, Ontario, Canada, May
31–June 3, 2004.

AU3833_C04.fm Page 101 Monday, August 14, 2006 1:26 PM

AU3833_C04.fm Page 102 Monday, August 14, 2006 1:26 PM

103

Chapter 5

Infrastructure Versus

Ad Hoc

 Wireless
Networks: Mobility

Issues and Solutions

Ling-Jyh Chen, Shirshanka Das,
Mario Gerla, and Alok Nandan

CONTENTS

Introduction... 104
Mobility Management in Last-Hop Wireless
Networks: Horizontal Handoff and Mobile IP ... 105

Handoffs .. 106
Smart Vertical Handoff.. 107
Managing Server Rate and Content During Handoff: CapProbe 109

The Mobile

Ad Hoc

 Network (MANET) ... 111
The Evolution of MANETs: From Battlefield
to Campus Networks and Urban Grids .. 113

Handling Large Scale and Mobility in the Battlefield.. 114
Landmark Routing for Group Mobility ... 114

MANETs and P2P Mobile Middleware.. 116

AU3833_C05.fm Page 103 Monday, August 14, 2006 2:13 PM

104

■

Mobile Middleware

CarTorrent: Mobile Middleware for Vehicle Networks .. 117
Content Delivery Techniques for Vehicular Networks 117
A Swarming Protocol for Vehicular Networks ... 118
The Future of VANETs.. 121

Conclusions ... 121
References ... 122

Introduction

Over the past two decades we have witnessed a major shift from fixed
to mobile phones all over the world. The number of mobile phones has
surpassed that of fixed phones in most countries. This is no surprise, as
telephony is an inherently mobile application. The same shift has been
happening in personal computing platforms, from desktops to laptops
and personal digital assistants (PDAs). The proliferation of mobile com-
puting platforms has coincided with the emergence of mobile data com-
munications, namely, wireless local area network (WLAN) 2.5G and 3G
cellular data services. This phenomenon has caused a major paradigm
shift in the way we access the Internet, from fixed to wireless and mobile.
Already, wireless Internet access has exceeded wired access; in fact, one
expects that within a few years the great majority of clients will be not
only wireless and portable but also equipped with multiple wireless
interfaces. Today, the majority of Internet applications are still stationary
in nature; that is, we e-mail, browse the Web, download files, and play
Internet games from our homes or offices. We exploit the wireless interface
primarily to avoid cables; however, we are witnessing an emergence of
truly mobile access scenarios (from cars or public transport vehicles or
while walking in shopping malls). In parallel is the emergence of new
mobile applications and services, such as location-based services, car
navigation services, dynamic workgroups, pervasive computing, and inter-
action with the environment.

Clearly, several concurrent factors are favoring the mobilization of
computing and communications, including the miniaturization of devices
(which have become portable); the availability of long-life, light-load
batteries; the availability of efficient wireless access media (cellular and
wireless LANs, personal wireless media, and

ad hoc

networks); and the
emergence of mobile, nomadic applications. As these mobile scenarios
are emerging, another important layer of services must be implemented
to make them possible: mobile middleware. Mobile middleware is essential
for both mobilizing legacy infrastructure applications (e.g., e-mail, Web
browsing) and enabling applications that are purely mobile (e.g., car
navigation safety).

AU3833_C05.fm Page 104 Monday, August 14, 2006 2:13 PM

Infrastructure Versus

Ad Hoc

 Wireless Networks

■

105

In this chapter, we focus on various wireless media access schemes and
on the mobile middleware requirements of each. Three major wireless
access and network techniques exist today: cellular, wireless (infrastructure)
LAN, and

ad hoc

 wireless networks. Because cellular and wireless LAN
technologies are well understood and have been extensively covered in the
open literature, here we focus mainly on the emerging

ad hoc

 wireless and
personal networks. In the process, we identify key mobile applications and
discuss emerging mobile middleware functions required to support them.

In the following section, we study mobility management in last-hop
wireless networks and discuss various handoff solutions that manage client
movements. The next section provides a review of the MANET architecture
and study its evolution from battlefield to commercial applications, which
is followed by a discussion of scalable routing in presence of mobility.
Then, we examine the need of P2P overlays in MANETs, with specific
application to commercial scenarios. Finally, we study an emerging com-
mercial application (file sharing in the vehicular network), and we propose
P2P swarming middleware for this application.

Mobility Management in Last-Hop Wireless
Networks: Horizontal Handoff and Mobile IP

We begin with an overview of mobile services required in last-hop wireless
networks. The scenario of interest is potentially extremely broad. It
includes cellular networks (e.g., GSM, CDMA, 2.5G, 3G); indoor wireless
LANs (e.g., 802.11abg for basic Internet access; 802.11n for high-speed
access; 802.11e for QoS-oriented multimedia access); outdoor, urban wire-
less access networks (e.g., 802.11s for urban Mesh Network access; 802.16
for urban high-speed distribution); and short-range, low-data-rate access
networks (e.g., Bluetooth

®

 and ZigBee™ for personal and pervasive
access). All of these scenarios are examples of infrastructure-type net-
works. The physical environment is partitioned into cells. Each cell is
controlled by an access point that acts as a gateway to the wired Internet.
(Some of the schemes, such as 802.11s and 802.16, do have a wireless
fixed backbone between the access point and the Internet gateway, but
the following considerations still apply to these cases.) A user may move
from one cell to another, either within the same technology (e.g., UMTS)
or across technologies. In fact, a mobile client is often equipped with
multiple radio interfaces and can roam across technologies. When this
happens, the user must “re-register” with the new access point or base
station. This registration may happen at one or more layers of the protocol
stack. Often, it happens at the middleware layer, thus requiring mobile
middleware services. This registration procedure goes under the name of

handoff

. The next section describes various handoff modes.

AU3833_C05.fm Page 105 Monday, August 14, 2006 2:13 PM

106

■

Mobile Middleware

Handoffs

Handoff occurs when the user switches between different network access
points. Handoff techniques have been well studied and deployed in the
domain of cellular systems and are gaining a great deal of momentum in
wireless computer networks as Internet Protocol (IP)-based wireless net-
working increases in popularity. Differing in the number of network
interfaces involved during the process, handoff can be characterized as
either

vertical

 or

horizontal

 [1], as depicted in Figure 5.1. A vertical handoff
involves two different network interfaces, which usually represent different
technologies; for example, when a mobile device moves out of an 802.11b
network and into a 1xRTT network, a vertical handoff occurs. A horizontal
handoff occurs between two network access points that use the same
technology and device interface; for example, when a mobile device
moves between 802.11b network domains, the handoff event would be
considered horizontal because the connection is disrupted by the change
of 802.11b domain (i.e., different frequency channel) but not by the change
of wireless technology.

 A handoff is

seamless

 if it maintains the connectivity of all applications
running on the mobile device. Seamless handoffs are designed to provide
continuous end-to-end data service in the face of any link outages that
might occur during switchover. Low latency and minimal packet loss are
the two critical design goals. Low latency requires that the switch from
one path to the other be completed almost instantaneously; service inter-
ruptions must be minimized.

Various seamless handoff techniques have been proposed [2–5]. These
proposals can be classified into two categories:

network layer approaches

and

upper layer approaches

. Network layer approaches are based on IP

Figure 5.1 Horizontal and vertical handoff.

AU3833_C05.fm Page 106 Monday, August 14, 2006 2:13 PM

Infrastructure Versus

Ad Hoc

 Wireless Networks

■

107

address “indirection” through a home agent and a foreign agent. They
can be accomplished using IPv6 [6] or Mobile IPv4 [7] standards. These
network layer approaches, however, are costly to implement. They require
the deployment of several agents on the Internet for relaying or redirecting
the data to the moving host (MH). For these reasons, the upper layer
approaches are becoming increasingly popular. These approaches imple-
ment a session layer (in fact, a mobile middleware layer) above the
transport layer that hides any connection changes at the underlying layers
and makes them transparent to the application [8–12]. Some upper layer
approaches implement mobility support at the transport layer, thus requir-
ing the development of new transport layer protocols such as the Stream
Control Transmission Protocol (SCTP) [13] and the Transmission Control
Protocol/Multi-Home (TCP-MH) [14].

Smart Vertical Handoff

As mentioned earlier, several devices today have multiple radio interfaces.
The opportunity then arises to select the best radio option, leading to a
user-initiated (as opposed to infrastructure-driven) vertical handoff. Basi-
cally, smart handoff has all the ingredients of soft handoff; in addition, it
includes mobile middleware software to select the best alternative. In this
section, we present an example of smart handoff, the

Smart Decision
Model

 [15], to support flexible configuration in executing vertical handoffs.
Figure 5.2 illustrates the Smart Decision Model. In this figure, a Handoff
Control Center (HCC) provides the connection between the network
interfaces and the upper-layer applications. The HCC is composed of four
components: Device Monitor (DM), System Monitor (SM), Smart Decision

Figure 5.2 Smart Decision Model.

Handoff Executor

Smart Decision

Device Monitor System Monitor

H
an

do
ff

C
on

tr
ol

 C
en

te
r

AU3833_C05.fm Page 107 Monday, August 14, 2006 2:13 PM

108

■

Mobile Middleware

(SD), and Handoff Executor (HE). The DM is responsible for monitoring
and reporting the status of each network interface (i.e., the signal strength,
link capacity, and power consumption of each interface). The SM monitors
and reports system information (e.g., current remaining battery). The SD
integrates user preferences (obtained from user set default values) and all
other available information provided by the DM and SM to make a “smart
decision,” or identify the best network interface to use at that moment.
The HE then performs the device handoff if the current network interface
is different from the best network interface. The HCC is implemented in
the vertical handoff testbed to perform automatic handoffs to the best
network interface. In our design, the SD has two phases:

priority

phase
and

normal

 phase. The SD algorithm is illustrated in Figure 5.3.

Priority and normal phases are necessary in the SD to accommodate
user-specific preferences regarding the usage of network interfaces; for
example, a user may decide not to use a device when the device could
cause undesirable interferences with other devices (e.g., 802.11b and
2.4GHz cordless phones). With priority and normal phases in place, the
SD module provides flexibility in controlling the desired network interface
to the user. Additionally, the SD deploys a

score function

 to calculate a
score for every wireless interface; the handoff target device is the network
interface with the highest score. More specifically, we must consider

k

factors in calculating the score. The final score of interface

i

 will be the
sum of

k

 weighted functions. The

score function

 used is the following:

Figure 5.3 Algorithm for making smart decisions on HCC.

AU3833_C05.fm Page 108 Monday, August 14, 2006 2:13 PM

Infrastructure Versus

Ad Hoc

 Wireless Networks

■

109

(5.1)

In the equation,

w

j

stands for the weight of factor

k

, and

f

j,i

 represents
the normalized score of interface

i

 of factor

j

. The best target connection
interface at any given moment, then, is the one that achieves the highest
score among all candidate interfaces. We further break down the score
function into three components, accounting for usage expense (

E

), link
capacity (

C

), and power consumption (

P

); therefore, Equation 5.1
becomes:

(5.2)

Additionally, a corresponding function exists for each term

f

e,i

,

f

c,i

, and

f

p,i

,
and the ranges of the functions are bounded from 0 to 1. The functions
are illustrated below:

(5.3)

The coefficients

α

i

,

β

i

, and

γ

i

 can be obtained via a lookup table or a
well-tuned function. In Equation 5.3, we used the inversed exponential
equation for

f

e,i

 and

f

p,i

 to bound the result to between 0 and 1 (i.e., these
functions are normalized) and properly model user preferences. For

f

c,i

,
a new term (

M

) is introduced as the denominator to normalize the function,
where

M

 is the maximum bandwidth requirement demanded by the user.
When not specified by the user, the default value of

M

 is defined as the
maximum link capacity among all available interfaces. Note that the
properties of bandwidth and those of usage cost and power consumption
are opposite (i.e., the more bandwidth the better, whereas lower cost and
power consumption are preferred).

Managing Server Rate and Content
During Handoff: CapProbe

So far we have considered the client side of the handoff; that is, the
client selects the best option. Suppose now that the client is a thin client
— say, a smart phone. It is receiving a soccer game video stream from
the server. The client moves from indoor 802.11 at 5 Mbps to outdoor
1xRTT at 100 Kbps. A smooth handoff guarantees that the connection is
maintained, but it is obvious that chaos will result unless the server (or

S w f S wi j

j

k

j i i j

j

k

= < < =
= =

∑ ∑
1 1

0 1 1, ,

S w f w f w fi e e i c c i p p i= + +, , ,

f
e

f
e

e
f

e
Me i c i M p i i i ii

i

i, , ,, , , ,= = = ≥ ≥ ≥ ≥1 1
0 0α

β

γ α β γwhere

AU3833_C05.fm Page 109 Monday, August 14, 2006 2:13 PM

110

■

Mobile Middleware

the transcoding-capable proxy that caches the server stream) detects the
change in client Internet access capacity and adjusts its rate and content
accordingly (from full-motion video to highly compressed MPEG4 video
or even still frames).

A new mobile middleware software (server adaptation middleware) is
required to make the server (or proxy) immediately aware of client changes
and to select the best server delivery strategy. We have recently imple-
mented such a middleware service using a basic capacity-estimation tech-
nique known as

CapProbe

 [17]. CapProbe is a packet-pair method that
measures the capacity of the narrow link on the path (in our case,
invariably the last wireless hop) with extreme speed (order of seconds).
The concept is illustrated in Figure 5.4. A packet pair is launched by the
source. The packets get separated along the path due to varying link
capacities. The ratio of packet size to the inter-packet interval at the
destination yields the narrow link capacity. Details on the actual CapProbe
tool can be found in Chen et al. [16]. Referring to Figure 5.5, we see an
Internet path ending with an 802.11 link. This was the actual setup of an
experiment carried out at UCLA in the Network Research Lab [18]. The
802.11 client is exposed to interference from a Bluetooth user operating
in the same frequency. Interference notwithstanding, CapProbe manages
to evaluate the exact capacity of the 802.11 channel.

The server mobile middleware embeds periodic packet pairs in the
multimedia stream (by transmitting some of the video packets back to
back) and is constantly informed (by client feedback) of the last-hop
capacity. It can then dynamically adjust the rate and content to client

Figure 5.4 CapProbe: a simple and fast capacity estimation tool.

AU3833_C05.fm Page 110 Monday, August 14, 2006 2:13 PM

Infrastructure Versus

Ad Hoc

 Wireless Networks

■

111

capacity. Using the same principle of client feedback, the server middle-
ware can also adjust to changes in device form and type (e.g., the user
switches from a laptop to smart phone when stepping out of a car, yet
maintains UMTS connectivity).

The Mobile

Ad Hoc

 Network (MANET)

A wireless mobile

ad hoc

 network (MANET) is a network established for
a special, often extemporaneous, service customized to particular appli-
cations. An

ad hoc

 network is typically set up for a limited period of time,
in an environment that may change from application to application. As
opposed to the Internet, where the TCP/IP protocol suite supports a vast
range of applications, in a MANET the protocols are tuned to a specific
customer and application (e.g., send a video stream across a battlefield,
detect a fire in the forest, establish a videoconference among several teams
engaged in a rescue effort). The customers move and the environments
may change dynamically and unpredictably. For the MANET to retain its
efficiency, the

ad hoc

 protocols at various layers may have to self-tune
to adjust to environment, traffic, and mission changes. From these prop-
erties emerges a vision of the MANET as being an extremely flexible,
malleable, yet robust and formidable network architecture. Indeed, it is
an architecture that can be deployed to monitor the habits of birds in
their natural habitat, organized to coordinate rescue crews after a tsunami
disaster, or structured to launch deadly attacks onto unsuspecting enemies.

Figure 5.5 CapProbe testbed with last-hop wireless link.

AU3833_C05.fm Page 111 Monday, August 14, 2006 2:13 PM

112 ■ Mobile Middleware

MANETs are set apart from conventional wired or wireless infrastructure
type networks by a number of unique attributes and requirements. Perhaps
the two most critical attributes are self-configurability and mobility. A third
important requirement (which is critically impacted by the first two) is
scalability. A review of these attributes follows:

■ Self-configurability — The MANET is deployed and managed
independently of any preexisting infrastructure. This is the most
important prerequisite to qualify a wireless network as ad hoc;
consequently, the network must autonomously determine its own
configuration parameters including addressing, routing, cluster-
ing, position identification, and power control. In some large
networks, special nodes (e.g., mobile backbone nodes) coordi-
nate their position and motion to provide coverage of discon-
nected islands. In this way, an infrastructure can be created
within the ad hoc network itself.

■ Mobility — The fact that nodes move is probably the most impor-
tant attribute of MANETs. Mobility differentiates MANETs from their
close cousins, the sensor networks. Mobility dictates network- and
application-level protocols. For example, rapid deployment in
unexplored areas with no infrastructure may require that some of
the nodes form scouting teams or swarms. These, in turn, coordi-
nate among themselves to create a task force or a mission. Mobility
may be in some cases a challenge for the designer and may become
part of the solution in other cases. We can have several types of
mobility models: individual random mobility, group mobility,
motion along preplanned routes, etc. The mobility model can have
a major impact on the selection of a routing scheme and thus can
influence performance.

■ Scalability — In both military and civilian applications (e.g., large
battlefield deployments, urban vehicle grids) the ad hoc network
can grow to several thousands of nodes. For wireless infrastructure-
type networks (e.g., urban mesh networks), scalability is simply
handled by a hierarchical construction. Mobility appears to be the
discriminator between easy and difficult scaling. A hierarchical
model is very scalable in static networks (as demonstrated by the
Internet). Limited mobility in an infrastructure can be easily handled
using Mobile IP or other handoff and redirection techniques. Pure
ad hoc networks, due to their self-configuring nature and conse-
quent unrestricted mobility, do not tolerate a classic hierarchy
structure and Mobile IP approach. Thus, mobility on a large scale
is one of the most critical challenges in ad hoc designs.

AU3833_C05.fm Page 112 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 113

The Evolution of MANETs: From Battlefield
to Campus Networks and Urban Grids

In the early 1970s, MANETs were born on the heels of the success of the
Advanced Research Projects Agency (ARPANet), when the Defense
Advanced Research Projects Agency (DARPA) recognized the strategic
importance of the packet-switching technology in the automated battlefield.
Since then, the military has been the major sponsor of MANET research
and development in industry and academia. A few years ago, the National
Science Foundation (NSF) also joined in the support of MANET research
to explore the transfer of this technology to civilian and possibly commer-
cial applications. Support of MANETs by the industry, however, has been
minimal (as compared to other areas of networking), in part due to the
fact that commercial applications have been very slow in materializing.
Because of the source of the funding, it is no surprise that most of the
MANET problems addressed today by researchers are directed toward large-
scale, specialized scenarios, such as battlefields, civilian defense, and
disaster recovery. These are typically self-configured networks, totally
decoupled from any commercial network infrastructure. One may say that
even the network scenarios addressed by the MANET Internet Engineering
Task Force (IETF) working group are better fit to military and civilian
disaster recovery applications than to commercial ones.

Recent new technology developments might give rise to new alterna-
tives in the MANET area and help the transition to commercial MANET
applications. The first emerging technology is the personal area network
(PAN), spearheaded by Bluetooth (802.15.1) and by the recently introduced
ZigBee and 802.15.4 standards. It would make sense to interconnect a
few Bluetooth piconets in a small-scale MANET (called a scatternet) to
facilitate work-group communications (e.g., the exchange of business
cards, files, and images) and to have a more efficient connection to the
Internet (e.g., 802.11, UMTS). The second technology is the wireless LAN
(802.11). The 802.11 technology and its derivatives dominate in the home,
in university and industrial campuses, in public areas (e.g., malls, airport
lounges, coffee shops), and in urban mesh networks. The single-hop
wireless LAN, however, has range limitations. Two- or three-hop MANETs
can be used to opportunistically extend the range of the wireless LAN.
The third technology is digital short-range communications (DSRC). This
technology addresses car- to-car and car-to-Internet communications for
navigation safety purposes. The DSRC technology will pave the way for
the “urban communications grid” concept, where car-to-car communica-
tions between any two vehicles will be made possible in a MANET, without
using the fixed Internet. Although navigation safety is the top DSRC

AU3833_C05.fm Page 113 Monday, August 14, 2006 2:13 PM

114 ■ Mobile Middleware

priority, the urban grid will eventually enable the support of a broad
range of new mobile applications.

This brief overview shows that many different MANET scenarios are
possible, each enabling different types of peer-to-peer (P2P) and overlay
applications. In the next section, we present some emerging P2P examples
for different MANET scenarios.

Handling Large Scale and
Mobility in the Battlefield
Future battlefield operations will be characterized by the massive deploy-
ment of autonomous agents such as unmanned ground vehicles (UGVs)
and unmanned air vehicles (UAVs). These autonomous agents will be sent
to the front lines for intelligence, surveillance, strikes, enemy anti-aircraft
suppression, damage assessment, search and rescue, and other tactical
operations. These agents will interact with and support ground and
airborne manned assets (e.g., tank battalions and jet fighter and helicopter
squadrons). They will also communicate with ground sensors. One can
easily imagine how this scenario could involve thousands of mobile nodes
(some manned, some unmanned) and several more thousands of smaller,
fixed nodes. Similar large-scale mobile networks could be formed to
facilitate recovery from extensive civilian disasters, such as earthquakes,
tsunamis, chemical spills, and urban terrorist attacks.

A critical problem in ad hoc networks is routing. If the ad hoc network
is stationary, then hierarchical routing proves to be a very scalable solution.
When the network is mobile, however, the hierarchical routing solution
introduces excessive overhead because the hierarchical addresses must
be continuously updated to reflect the dynamically changing topology.
Mobility causes problems also with other protocol layers besides routing
(e.g., Media Access Control [MAC] layer or TCP). In particular, one of the
major challenges in ad hoc TCP design is dealing with path disruptions
caused by mobility. In large-scale routing, however, mobility can also be
an asset, in that it can be exploited to improve performance. In this
section, we show that group mobility can be harnessed via landmarking
to lead to more scalable routing. Moreover, if mobile backbone nodes are
deployed in the ad hoc network, connectivity can be enhanced.

Landmark Routing for Group Mobility

Typically, when wireless network size and mobility increase (beyond
certain thresholds), current flat proactive routing schemes (i.e., distance

AU3833_C05.fm Page 114 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 115

vector and link state) become altogether unfeasible because of line and
processing overhead. Chen and Gerla [21] introduced a novel table-driven
routing protocol for wireless ad hoc networks named Landmark Ad Hoc
Routing (LANMAR), which combines the features of Fisheye State Routing
(FSR) [19] and landmark routing [21,22]. The novel idea behind LANMAR
is the notion of keeping track of logical subnets in which the members
have a commonality of interests and are likely to move as a group (e.g.,
brigade in the battlefield, colleagues in the same organization, a group of
students from the same class). Moreover, a landmark node is elected in
each subnet. LANMAR improves scalability by reducing the routing table
size and update overhead. More precisely, it resolves the routing table
scalability problem by using an approach similar to the landmark hierar-
chical routing proposed for wired networks [21,22]. In the original land-
mark scheme, the hierarchical address of each node reflects its position
within the hierarchy and helps find a route to it. Each node has full
knowledge of all the nodes within the immediate vicinity. At the same
time, each node keeps track of the next hop on the shortest path to
various landmarks at different hierarchical levels. Routing is consistent
with the landmark hierarchy, and the path is gradually refined from a top-
level hierarchy to low levels as a packet approaches its destination.

 Kleinrock and Stevens [20] applied the wired network landmark
concept to FSR to reduce the routing update overhead for nodes that are
far away. Each logical subnet has one node serving as a landmark. Beyond
the fisheye scope, the update frequency of the landmark nodes remains
unaltered, but the update frequency of the regular nodes is reduced to
zero. As a result, each node maintains accurate routing information about
the immediate neighborhood and as well as the landmark nodes. When
a node must relay a packet, if the destination is within its neighbor’s
scope (as indicated in the routing table), the packet will be forwarded
directly; otherwise, the packet will be routed toward the landmark corre-
sponding to the destination logical subnet. The packet does not have to
go all the way to the landmark; instead, when the packet moves within
the scope of the destination, it is routed to it directly.

At the beginning of the execution, no landmark exists. The LANMAR
protocol uses only the FSR functionality. As the FSR computation
progresses, one of the nodes will learn (from the FSR table) that more
than a certain number of group members (say, N) are in the FSR scope.
It then proclaims itself as a landmark for this group. The landmark infor-
mation will be broadcast to the neighbors jointly with the topology update
packets. In case of a tie, the lowest ID breaks the tie. The competing
nodes defer. When a landmark dies, its neighbors will detect the silence
after a given timeout. A new round of landmark election then begins anew
for the group in question.

AU3833_C05.fm Page 115 Monday, August 14, 2006 2:13 PM

116 ■ Mobile Middleware

In conclusion, LANMAR is an excellent example of a routing protocol
that exploits group mobility by “summarizing” routes and reducing table
storage and line overhead. Simulation results have shown that a LANMAR-
empowered network can easily scale to thousands of nodes.

MANETs and P2P Mobile Middleware
In the wired Internet, a P2P network is basically an overlay network
justified by the need for specialized functions that are not possible (or
not cost effective) in the IP layer. These functions must be performed at
the middleware or application layer. Classic examples of Internet overlay
networks include real-time multicast overlays, which overcome the lack
of multicast support in the IP routers, and P2P distributed index systems
such as Gnutella, BitTorrent, and Pastry. These P2P indices are typically
implemented as overlays that permit efficient content routing based on
distributed hash tables (DHTs), for example. Content-based routing is not
possible in the IP layer.

MANETs give rise to an even stronger need for P2P overlays for the
following reasons: (1) mobile ad hoc applications require sophisticated
routing functions (e.g., location awareness, content addressing) that are
well beyond what is available from standard routing protocols, and (2)
the unpredictability of the radio channel combined with user mobility
poses major challenges to routing and to connectivity. The preferred
strategy to overcome these problems is to implement customization func-
tions in the upper layers and P2P networking overlays while keeping the
basic routing and transport protocols simple.

As an example of a MANET overlay, consider a delay-tolerant file-
sharing application that includes hosts partly on the Internet and partly
on ad hoc “opportunistic” network extensions. Wireless nomadic users
can rapidly change their connectivity to the Internet from Kbps (e.g.,
GPRS) to Mbps (e.g., 802.11). Temporarily, the users may also become
disconnected. The use of the standard network routing protocols may
lead to inefficiencies, violation of delay constraints, and possibly retrans-
mission of large portions of the file. A P2P overlay network instead can
keep track of connectivity among the various hosts. The overlay network
can extend to wired, wireless, and ad hoc network segments. It can predict
disconnection and reconnection dynamics and can exploit them to deliver
files efficiently and within constraints (by using, for example, intermediate
proxy nodes for bundle storing and forwarding).

Another promising environment for the emergence of opportunistic ad
hoc networking and P2P mobile middleware is the vehicle communication
grid. Future cars will come equipped with radios (for safe navigation) and

AU3833_C05.fm Page 116 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 117

with plenty of on-board storage and processing power. Car-to-car com-
munications will be enabled by a standard architecture derived from DSRC
and promoted by the Institute of Electrical and Electronics Engineers (IEEE)
and the Department of Transportation. Most importantly, cars will have a
captive audience — the passengers — with plenty of time to burn. In the
following section, we describe CarTorrent, a hypothetical application for
the vehicular grid. CarTorrent, inspired by the Internet-based BitTorrent
distributed file-sharing system, allows cars to partially download multime-
dia files from highway WiFi access points and to cooperatively complete
file assembly using a unique P2P mobile middleware solution.

CarTorrent: Mobile Middleware for Vehicle Networks
CarTorrent is a cooperative strategy for content delivery and sharing in
future vehicular networks [23]. CarTorrent represents an interesting example
of mobile middleware in a scenario that oscillates spatially from being
infrastructure supported to being completely infrastructure independent.
CarTorrent targets the problem of downloading files to a moving car from
the Internet. CarTorrent aims to utilize efficiently the unused bandwidth
between hot spots on the freeway. Without it, cars would have to park at
a hot spot (kiosk) and wait to get served. This section discusses the issues
involved in using such a strategy from the standpoint of vehicular ad hoc
networks (VANETs). VANET applications will include onboard active safety
systems leveraging vehicle–vehicle or roadside–vehicle networking. These
systems may assist drivers in avoiding collisions. Non-safety applications
include real-time traffic congestion and routing information, high-speed
tolling, mobile “infotainment,” and content delivery (as discussed here),
among many others.

Content Delivery Techniques for Vehicular Networks

Future vehicular networks are expected to deploy short-range communi-
cation technology for inter-vehicle communications. In addition to vehicle–
vehicle communication, users will be able to access the multimedia-rich
Internet from within the vehicular network. Kids sitting in the back seat
of the car could play online games with their friends sitting at home,
while Mom in the front seat might want to check out www.cnn.com and
www.sigalert.com for the latest breaking news and traffic alerts on all the
major freeways. Within a limited radius, access to the Internet would be
in the form of infostations or WiFi hot spots. We are focusing here on
the content-delivery application, where Internet content must be delivered
to the user (upon request) within a certain time constraint.

AU3833_C05.fm Page 117 Monday, August 14, 2006 2:13 PM

118 ■ Mobile Middleware

Content can be obtained directly from the hot spot, but also from
peers. Referring to the latter mode, swarming is a peer-to-peer content
delivery mechanism that utilizes parallel download among a mesh of
cooperating peers. Scalability is achieved because the system capacity
increases with the number of peers participating in the system. The primary
purpose of the protocols is twofold: First, from the conventional server
perspective, reduce the load of the origin server or the content publisher.
Second, from the client perspective, reduce the download time.

On the Internet, the above file content download and sharing proce-
dure is embodied in BitTorrent, a popular file-sharing tool that accounts
for a significant proportion of Internet traffic. BitTorrent is a swarming
P2P file-sharing solution. Simply put, BitTorrent allows a single source to
disseminate a single file to many users by having each user share what
they just downloaded. It can be used to share any type of file of nearly
any size, with minimal bandwidth investment by the original distributors.

BitTorrent requires a few things to run: a client, a torrent, and a tracker.
The client opens a .torrent file, chooses a location to save the file, and
connects to the tracker. The tracker keeps track of how much each user
is downloading and uploading and what parts they have and gives infor-
mation to the client about where to get the next piece of the file. Note
that BitTorrent downloads are in a primarily random order, although it
prefers to get pieces that the fewest people have so even if no one person
has the entire file then every piece will be available. Also, the tracker
watches the users’ “karma.” A user’s download speed is tied to his upload
speed, so a user who is not uploading much is likely to have a low
download speed. Thus, BitTorrent builds its overlays by randomly selecting
peers, a fact that can be potentially wasteful in a MANET environment.

A Swarming Protocol for Vehicular Networks

Consider a VANET with short-range communication technology. Given an
average speed of 50 miles per hour and a gateway radio range of 500
meters, a simple calculation gives a car a transmission window to and from
a fixed Internet access point on the order of a minute at the most. Taking
into account competition from other cars, it is possible that the available
bandwidth is not sufficient to allow each user to download e-mail and
songs, as well as browse multimedia-rich Web sites in the short time they
are connected to the gateway. Another practical issue is that, on inter-city
highways, the gateways would be hosted by gas stations and food con-
cessions and thus would be located farther apart — say, every 5 to 10
miles. Thus, the vehicle would be connected for about a minute to the
Internet before being disconnected for around 5 minutes. As we shall see,
the high mobility of nodes in VANETs coupled with the intermittent

AU3833_C05.fm Page 118 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 119

connectivity to the Internet provides an incentive for individual nodes to
cooperate while accessing the Internet to achieve some level of seamless
connectivity.

For these reasons, an interesting problem is the design of cooperative
protocols to improve client-perceived performance of the vehicular net-
work as a whole. The key contribution of CarTorrent is the development
of P2P mobile middleware that includes the following features:

■ A gossip mechanism to propagate content availability information
■ A proximity-driven content selection and delivery strategy
■ Leveraging the broadcast nature of wireless networks to reduce

redundant message transmission

Before presenting the protocol, we define the network model and
introduce some definitions. The network consists of a set of N nodes
with the same computation and transmission capabilities, communicating
through bidirectional wireless links between each other. This is the
infrastructureless ad hoc mode of operation. Wireless gateways at regular
intervals provide access to the rest of the Internet using infrastructure
support (either wired or multi-hop wireless). The data unit for the
swarming protocol is a chunk; that is, the content is broken up into
equal-sized chunks, each with its own unique identity. These chunks
are shared and transferred among the peers. We assume that each node
is reachable from every other node.

CarTorrent has the same generic structure of any swarming protocol.
Peers downloading a file form a mesh and exchange pieces of the file
among themselves. However, the wireless setting of VANETs, characterized
by limited capacity, intermittent connectivity, and a high degree of churn
in nodes (cars), requires adaptation in specific ways. Figure 5.6 illustrates
the basic operation of the CarTorrent protocol. Components of the Car-
Torrent protocol include peer discovery, peer and content selection, and
content discovery and selection. For the sake of brevity, we provide here
just a simple, intuitive version of the protocol; readers should refer to
Nandan et al. [23] for a more detailed discussion of the protocol and of
the various options.

When a new car enters the vehicular network (e.g., enters a freeway
or a section of freeway with access points), it requests the gateway for
the particular file. If the gateway has the file in its cache, it begins
uploading a chunk to the node. The node begins downloading chunks
from the gateway while it is in range. The gateway also bootstraps it with
a list of the last-known peers (cars) requesting the same file and when.
Thus, the car has an idea of how popular the file is and how likely it is
to benefit from cooperative strategies.

AU3833_C05.fm Page 119 Monday, August 14, 2006 2:13 PM

120 ■ Mobile Middleware

Peers generate gossip messages from time to time to advertise their
presence and current content. A naïve gossiping scheme has the potential
of generating a large number of gossip messages in addition to being
subject to the problem of messages ping-ponging when two peers keep
exchanging stale data. This scenario uses a gossip scheme utilizing meth-
ods that minimize redundant forwarding, such as minimum connected set
forwarding, passive clustering, or multipoint relay. Only the essential set
of neighbors forwards the data/control packet for a specified number of
hops. Forwarding nodes detect and suppress duplicates.

In the simplified swarming protocol, the newcomer (e.g., node A)
forwards upstream (in the direction of traffic) a gossip control packet with
the list of chunks it requires. Selected intermediate nodes (the forwarding
nodes for this file) turn on the forwarding flag (e.g., according to the passive
clustering scheme). The nearest peer (e.g., node B), a few hops away, upon
receiving the gossip packet will respond with the first requested chunk. It
also piggybacks its own current list. The forwarding nodes broadcast the
chunk, which is thus propagated back to node A. When node A receives
the first chunk it requested, it responds by transmitting in turn the first
chunk that node B requested (if any) and so on until node B has received
all the chunks it can possibly get from node A. Basically, this is a send-
and-wait protocol between nodes A and B that is concluded when node B
has received all it required from node A. From this point, the transfer is
simply downstream, from node B to node A, until nodes A and B have the

Figure 5.6 The basic operation of the CarTorrent protocol: A node (car) enters
the radio range of a gateway (1), initiates the connection (2), and begins down-
loading (3) pieces of the file. When it goes out of range (4), it begins to gossip
(5) and discovers other peers (nodes) with same content and exchanges pieces
of the file (6).

AU3833_C05.fm Page 120 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 121

same content. Typically, if the file is popular and the peer population dense,
the transfer will be mostly downstream, from node B to node A. The reader
will appreciate the fact that this swarming scheme requires chunk transmis-
sions only between neighboring peers; thus, the download overhead is
independent of network size and peer population, and the scheme scales
to any network size. Because the basic scheme employs User Datagram
Protocol (UDP) transport and broadcast MAC, a potential congestion is a
concern. To avoid congestion, rate control can be used. We refer the
interested reader to the details in Nandan et al. [23].

The Future of VANETs

Research on vehicular networks has made tremendous strides over the
past decade. Prominent players such as BMW, Daimler–Chrysler, and Toyota
are looking very closely at this area to determine the appropriate mix of
ingredients to make life easier for the driver without reducing control or
sacrificing privacy. Infotainment within the vehicle is one of those gray
areas where it is difficult to determine when entertainment becomes
distraction. We envision the day when a driver is zipping down the
highway, listening to his favorite radio station, and hears a really good
song. He hits the download button on his player and, when passing a
gateway, initiates a CarTorrent download of the file. After crossing the
gateway, the player begins gossiping with neighboring cars advertising the
driver’s interest in the file. Other cars are advertising some of the pieces
and the player begins downloading pieces from them. In about 5 to 10
minutes, all the pieces of the file have been assembled by downloading
through the gateway and exchanging pieces with the neighboring cars.
From then on, the driver can keep playing that song until he gets it out
of his head. Until that day, research on vehicular networks will continue
to strive toward getting information to cars in a better and faster way.

Conclusions
In this chapter, we have reviewed two types of wireless networks (infra-
structure and ad hoc) and have evaluated the impact of mobility. The two
systems indeed present very different mobility models and problems. For
the infrastructure, the key issue is handoff; we have examined the model
of the nomadic client that can connect to the infrastructure with multiple
wireless interfaces (e.g., GPRS, UMTS, 802.11) and must select the most
convenient one to switch to. For the ad hoc environment, one of the key
issues is the design of routing algorithms that can scale and are also robust
to mobility. We identified two different ad hoc scenarios and studied the

AU3833_C05.fm Page 121 Monday, August 14, 2006 2:13 PM

122 ■ Mobile Middleware

routing problems associated with each. First, we focused on the large-
scale automated battlefield scenario, where mobile middleware allows
recognition and exploitation of group motion, creating a robust hierarchical
routing solution based on landmarks. Then, we shifted our attention to
commercial applications and studied the vehicular network scenario by
examining the file-sharing application CarTorrent. We found that even in
this case the routing solution is highly dependent on coordinated car
motion. Here, again, mobile middleware is required to build a routing
overlay that supports swarming among cars. In summary, mobility impacts
last-hop wireless (i.e., infrastructure) applications in different ways than
ad hoc networks. In both cases, however, mobile middleware is required
to efficiently manage mobility.

References
[1] Stemm, M. and Katz, R.H., Vertical handoffs in wireless overlay networks,

Mobile Networks Appl., 3(4), 335–350, 1998.
[2] Dommety, G. et al., Fast Handovers for Mobile IPv6, Internet Engineering

Task Force (IETF) Internet Draft, March, 2002 (http://www3.ietf.org/pro-
ceedings/02jul/I-D/draft-ietf-mobileip-fast-mipv6-04.txt).

[3] Hsieh, R., Zhou, Z.G., and Seneviratne, A., S-MIP: a seamless handoff
architecture for Mobile IP, in Proc. of IEEE INFOCOM 2003, San Francisco,
CA, April 1–3, 2003.

[4] Johnson, D.B., Perkins, C., and Arkko, J., Mobility Support in IPv6, Internet
Engineering Task Force (IETF) Internet Draft, May, 2002 (http://tools.ietf.
org/wg/mip6/draft-ietf-mobileip-ipv6/draft-ietf-mobileip-ipv6-17.txt).

[5] El Malki, K. et al., Low Latency Handoffs in Mobile IPv4, draft-ietf-monileip-
lowlatency-handoffs-v4-03.txt, Internet Engineering Task Force (IETF) Inter-
net draft, November, 2001.

[6] Deering, S. and Hinden, R., Internet Protocol, Version 6 (IPv6) [memo],
Request for Comments 2460, The Internet Society, Reston, VA, December,
1998 (http://www.ietf.org/rfc/rfc2460.txt).

[7] Perkins, C., Ed., IP Mobility Support for IPv4 [memo], Request for Comments
3344, The Internet Society, Reston, VA, August, 2002 (http://mailman.rfc-
editor.org/pipermail/rfc-dist/2002-September/000078.html).

[8] Ghini, V., Pau, G., Salomoni, P., Roccetti, M., and Gerla, M., Smart download
on the go: a wireless internet application for music distribution over
heterogeneous networks, in Proc. of the IEEE Int. Conf. on Communications
(ICC 2004), Paris, June 20–24, 2004.

[9] Handley, M., Schulzrinne, H., Schooler, E., and Rosenberg, J., SIP: Session
Initiation Protocol [memo], Request for Comments 2543, The Internet Soci-
ety, Reston, VA, March, 1999 (http://www.ietf.org/rfc/rfc2543.txt).

[10] Maltz, D. and Bhagwat, P., MSOCKS: an architecture for transport layer
mobility, in Proc. of IEEE INFOCOM 1998, San Francisco, CA, March 29–April
2, 1998, pp. 1037–1045.

AU3833_C05.fm Page 122 Monday, August 14, 2006 2:13 PM

Infrastructure Versus Ad Hoc Wireless Networks ■ 123

[11] Schlaeger, M., Rathke, B., Bodenstein, S., and Wolisz, A., Advocating a
remote socket architecture for Internet access using wireless LANs, Mobile
Networks Appl., 6(1), 23–42, 2001.

[12] Snnoeren, A.C., A Session-Based Approach to Internet Mobility, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, 2002.

[13] Stewart, R. et al., Stream Control Transmission Protocol [memo], Request
for Comments 2960, The Internet Society, Reston, VA, October, 2000
(http://www.ietf.org/rfc/rfc2960.txt).

[14] Matsumoto, A., Kozuka, M., Fujikawa, K., and Okabe, Y., TCP Multi-Home
Options, Internet Engineering Task Force (IETF) Internet Draft, October,
2003 (http://www.potaroo.net/ietf/all-ids/draft-arifumi-tcp-mh-00.txt).

[15] Chen, L.-J., Sun, T., Chen, B., Rajendran, V., and Gerla, M., A smart decision
model for vertical handoff, in Proc. of the 4th ANWIRE International Work-
shop on Wireless Internet and Reconfigurability (ANWIRE 2004), Athens,
Greece, May 14, 2004.

[16] Chen, L.-J., Sun, T., Yang, G., Sanadidi, M.Y., and Gerla, M., Ad Hoc Probe:
Path Capacity Probing in Wireless Ad Hoc Networks, Technical Report
TR050005, Computer Science Department, University of California, Los
Angeles, 2005.

[17] Kapoor, R., Chen, L.-J., Lao, L., Gerla, M., and Sanadidi, M.Y., CapProbe:
A simple and accurate capacity estimation technique, in Proc. of ACM Special
Interest Group on Data Communication (SIGCOMM 2004), Portland, OR,
August 30–September 3, 2004.

[18] University of California, Los Angeles, Network Research Laboratory,
http://www.cs.ucla.edu/NRL/.

[19] Pei, G., Gerla, M., and Chen, T.-W., Fisheye state routing in mobile ad hoc
networks, in Proc. of the 20th Int. Conf. on Distributed Computing Systems
(ICDCS) Workshop on Wireless Networks and Mobile Computing (WWNMC
2000), Taipei, Taiwan, April 10–13, 2000.

[20] Kleinrock, L. and Stevens, K., Fisheye: A Lenslike Computer Display
Transformation, Technical Report, Computer Science Department, Uni-
versity of California, Los Angeles, 1971.

[21] Chen, T.-W. and Gerla, M., Global state routing: a new routing scheme for ad
hoc wireless networks, in Proc. of IEEE Int. Conf. on Communications (ICC 98),
Atlanta, GA, June 7–11, l998, pp. 171–175.

[22] Xu, K., Hong, X., and Gerla, M., Landmark routing in ad hoc networks with
mobile backbones, J. Parallel Distributed Comput., February (special issue),
110–123, 2003.

[23] Nandan, A. et al., Cooperative downloading in vehicular ad hoc networks,
in Proc. of Second Annual Wireless On-Demand Network Systems and Ser-
vices (WONS 2005), St. Moritz, Switzerland, January 19–21, 2005.

AU3833_C05.fm Page 123 Monday, August 14, 2006 2:13 PM

AU3833_C05.fm Page 124 Monday, August 14, 2006 2:13 PM

125

Chapter 6

Evolution of
Application Models

for Pervasive Computing

Guruduth Banavar

CONTENTS

Introduction... 126
Interactive Pervasive Computing Applications ... 127

Mobile Personal Applications... 128
Thin-Client Application Models.. 129
Rich-Client Application Models .. 131

Smart-Space Applications ... 133
Sense-and-Respond Pervasive Computing Applications...................................... 135
Summary of Current Programming Model Approaches 137

Device-Independent Views .. 137
Platform-Independent Controllers.. 138
Host-Independent Models .. 139
Source-Independent Context Data... 140

Conclusions ... 141
Acknowledgments... 142
References ... 142

AU3833_C06.fm Page 125 Monday, August 14, 2006 2:39 PM

126

■

Mobile Middleware

Introduction

Pervasive computing fundamentally takes computing off the desktop and
into the spaces where we live and work in every day. It is about enabling
access to relevant applications and data at any location and on any device
in a manner that is customized to the user and the task at hand. Mark
Weiser [19] called it “invisible” computing, and much work has been done
in support of that vision.

One of the key requirements of pervasive applications is mobility

.

Because mobile devices come with many capabilities, mobile applications
must run on a wide variety of devices, including the devices embedded
in various environments and devices carried by users. Applications must
also support varying levels of network connectivity. Ideally, an application
is hosted on the network and is able to execute on any device with
multiple levels of connectivity.

Another key requirement is that applications must adapt themselves to
the dynamics of the environment; for example, applications must customize
themselves to interact with a user in a manner appropriate to the user’s
current context (such as location and activity), exploiting locally available
devices and services without distracting the user from the task at hand.
This implies that the application must identify and bind to data sources
that provide the correct information, compose the information from these
sources to create information that is useful for an application, and, finally,
use that information in meaningful ways within the application itself.

Consider a simple example of a pervasive computing application: a
pervasive calendar application [3]. First, the application will be able to
run on multiple device platforms — from a networked phone (with a
limited user interface and limited bandwidth but always connected) to a
smart personal digital assistant (PDA) (with a richer user interface and
higher bandwidth but not always connected) to a conference room com-
puter (with a very rich user interface and very high bandwidth and always
connected). Furthermore, users should be able to interact with this appli-
cation using multiple user interface modalities, such as a graphical inter-
face, a voice interface, or a combination of the two. Second, the application
will be sensitive to the environment in which it is running; for example,
if a user brings up a calendar at home, the application might bring up a
family calendar by default, and, if the user brings up a calendar in an
office when running late for a meeting, the application might bring up a
work calendar with information about the meeting highlighted.

In this chapter, we discuss the evolution of the underlying programming
models that allow application developers to build such applications. For
the purposes of this discussion, we consider two classes of applications:

interactive

 applications, which involve a user, and

sense-and-respond

AU3833_C06.fm Page 126 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

127

applications, which combine data from a variety of sources and react to
them in significant ways. These two classes are not mutually exclusive;
in fact, the above example application combines elements of both classes.

Application models were originally designed for mobile applications
written for highly resource-constrained devices. More recently, mobile
devices are becoming highly capable in terms of processor and memory.
This allows the device to host a significant amount of runtime middleware
services capable of richer presentation and data management. The device
programming model is evolving in significant ways to support richer user
experiences. One development is the notion of extreme componentization,
where applications are specified in terms of small reusable components that
are composed dynamically to create specific instantiations. These compo-
nents can be created in radically different ways, yet they have to come
together to support the application function. This chapter discusses this trend.

Context-aware applications such as the one described earlier have been
discussed in the literature for awhile now; however, a significant trend in
pervasive applications is the evolution of a number of sensor-based
applications. These applications capture large amounts of data from a
variety of heterogeneous sensor data sources, combine that data in various
ways to determine trends and boundary conditions, and activate business
logic appropriately. An example is when a radiofrequency identification
(RFID)-based, supply-chain application has detected that the trend during
a holiday season will likely require many more items of a certain type to
be transported from a warehouse to retail locations in a certain area. The
programming model challenges regarding the support of these kinds of
applications are many, and this chapter also discusses this evolving area.

Banavar et al. [3] identified some of the current approaches being used
to address the complexity of building these kinds of pervasive applications.
One technique is

to capture the basic user interaction structures and control
flow in a manner that can be reused across multiple devices and modalities.
Another technique is to encapsulate business logic and data in a manner
that can be reused regardless of which host on which a component is
instantiated. Yet another technique is to specify the required context data
for an application and allow the infrastructure to manage the specific data
formats, locations, and combinations of physical data sources to provide
the actual data. We summarize these techniques at the end of this chapter.

Interactive Pervasive Computing Applications

This section considers the evolution of application models for interactive
pervasive computing applications and articulates the challenges in the
context of this evolution. Interactive pervasive computing applications are

AU3833_C06.fm Page 127 Monday, August 14, 2006 2:39 PM

128

■

Mobile Middleware

of two types:

mobile personal applications

 and

smart-space applications

.
Mobile personal applications are the classic pervasive applications com-
monly found on mobile devices such as phones and PDAs. Smart-space
applications are those that run on a collection of devices within integrated
and highly interactive environments.

To discuss the programming models for interactive pervasive comput-
ing applications, it is useful to consider the classic model–view–controller
application structure [14], where the view represents the presentation, and
the controller represents the application flow, including navigation, vali-
dation, error handling, and event handling. The view and the controller
together deal with the user interaction of the application. The model
component includes the application logic as well as the data underlying
the application logic.

Mobile Personal Applications

In the early days of mobile devices, the predominant applications were
native, standalone applications on devices such as the Palm and Windows
CE. Because the applications were standalone, the application model was
quite simple and straightforward, even primitive relative to their counter-
parts on desktop computers. The libraries of view components were
relatively simple and straightforward, with standard controls and not very
sophisticated interaction possibilities. The controller consisted of event
handlers and low-level navigation mechanisms. The model consisted of
basic storage and data-handling capabilities available natively on the
device. The programming abstractions were not very high level, and the
programmer was responsible for memory management, multitasking man-
agement, etc.

A key requirement of the data model of these early applications was
the ability to share and back up the data underlying applications; for
example, the data underlying personal information management (PIM)
applications, such as calendar and address book, had to be shared with
other devices that a user had, such as a PC. This need was supported by
placing devices in their cradles or docking stations. Programming model
mechanisms evolved for transferring data from a handheld device on a
docking station to the PC storage (e.g., the

Conduit

 programming model
for Palm devices). This programming model, which is an early model for
supporting disconnected operation, supports the function of maintaining
consistency between a data store on the handheld device and a data store
on the PC. Typically, this includes the ability to mark data structures as
“dirty” while operating in a disconnected mode and reconciling the data
structures once connected. Irreconcilable updates are flagged to the user,
who is expected to be able to resolve them one way or another.

AU3833_C06.fm Page 128 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

129

Thin-Client Application Models

True networked PDA applications began to emerge around the time that
the World Wide Web was expanding its reach. The earliest of these models
were met with the requirement of accommodating and extending the Web
application programming model. The early Web model, also referred to
as a

thin-client application model

, was built around the fact that a browser
is located on the client device that is capable of rendering a presentation
described by Hypertext Markup Language (HTML). The server side of an
application implemented: (1) the module that generated the presentation
markup (view), (2) the control flow and event handling (controller), and
(3) the data model and business logic underlying that application. This
application model evolved to use a view programming model such as
Java Server Pages (JSPs) [13], a controller programming model such as
Struts [17], and a data/business logic programming model such as Enter-
prise JavaBeans (EJB) [9]. From the user experience point of view, Web
applications typically contained text, limited forms of media, and form-
based applications.

Web browsers were being implemented for a variety of mobile devices.
Web applications began to be implemented to generate markup language
that could be appropriately rendered on mobile devices; however, a
problem began to emerge in that the number of devices with different
capabilities was expanding beyond anyone’s expectations. The differences
in capabilities included the markup language (e.g., WML, CHTML), as well
as the user interface of the devices, such as the size and capabilities of
the display, input mechanisms, color and media capabilities, network
capability, and so forth. Every Web application that had to be accessed
via multiple devices had to be customized for each of the devices. The
complexity of developing and maintaining those applications began to
increase dramatically.

The initial solution approach for customizing Web content to devices
was

transcoding

 [20]. A transcoder is an intermediary agent between a
server that generates markup and a device that consumes the markup.
The transcoder is responsible for understanding the capabilities of the
device and to suitably modify the markup while it is on its way from the
server to the device. The transcoder interprets rules for how to transform
its input to its output. Unfortunately, transcoding solutions only had limited
success, as they were too complex for third parties to write the rules and
policies by which the transcoding module could understand and modify
the content. Moreover, the original authors of the content typically want
full control over the content and do not want intermediaries to modify
the content without their approval.

As a result, authoring-oriented approaches for multi-device Web appli-
cations emerged. One example of this approach is Multi-Device Authoring

AU3833_C06.fm Page 129 Monday, August 14, 2006 2:39 PM

130

■

Mobile Middleware

Technology (MDAT) [4]. This technology allows application developers to
specify a generic form of an application (the view and the controller)
describing the overall function. The author is then able to “specialize” the
application to particular targets by specifying the deltas from the generic
application to individual target devices or classes of target devices. The
notion of specialization is akin to subclassing in object-oriented program-
ming, where the generic application is akin to the superclass containing
common behavior and the specialized versions are akin to subclasses.
Given this specification, the MDAT tool generates the concrete device-
specific versions of the Web applications for each target device, including
the view (JSPs) and the controller (Struts). Furthermore, the application
developer is able to test the generated application and modify it, if
necessary. The tool supports the ability to save the changes to the
generated application so the developer does not lose the changes if the
generic version of the application is modified and the device-specific
version regenerated.

This description of Web application models is not limited to graphical
user interfaces (GUIs) but also includes voice applications. In an appli-
cation that uses voice rather than GUIs as the user interaction paradigm,
the view and controller components are implemented in a radically
different way, as voice interaction is quite complex to implement. First of
all, voice input requires special information for proper functioning — for
example, a grammar that describes the vocabulary that can be used for
input. In more complex cases, acoustic models may also be associated
with voice recognition. Once we have achieved that, consider the simple
case of presenting a list of choices. If the list is long, it is not practical
to have a single arbitrarily ordered list; instead, the list should be appro-
priately prioritized (e.g., based on the likelihood of selection) and split
into sublists that are easier to present. Then, we have the case of exception
handling. In a voice interface, the user is always presented with the option
of escaping out of a menu, or selection list, or any dialog. This presents
a different method for flow control for applications compared with the
form-based interaction presented in Web-based GUI applications. The
view and controller parts of a voice application are implemented by
markup languages such as VoiceXML [18], and the model part of the
application is implemented by the standard component models such as
EJB. Specialized tooling for specifying VoiceXML-based application flows
at a high level have evolved to support this application model.

From a mobile user interaction point of view, GUI-only or voice-only
applications are less than optimal. A GUI provides a high-bandwidth way
for users to consume information, but data input is not as easy due to
the limited nature of input mechanisms on mobile devices. On the other
hand, a voice interface provides a high-bandwidth way for users to input

AU3833_C06.fm Page 130 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

131

information, but data output is not as easy to consume. The idea of

multimodal

 applications is to combine multiple modalities, such as GUI
and voice, to combine the benefits of each of these modalities. Markup
languages such as XHTML+Voice (X+V) [21] have evolved to support this
type of bimodal application. The application model for creating bimodal
applications is also based on the model–view–controller application struc-
ture, where the view and controller are encapsulated within the X+V
specification. The tooling for X+V is an interesting combination of GUI
and VoiceXML tools, where the GUI specification forms the basis and the
voice interactions take the form of annotations.

An early application model that emerged to support offline operation
was exemplified by AvantGo. The idea was that a user could specify the
Web universal resource locators (URLs) that should be downloaded into
the device for offline use. When the device was in the cradle, the
connected PC downloaded the contents of these URLs and stored them
on the device. This model allowed users to browse such content as news,
weather, stocks, and the like while offline; however, the obvious disad-
vantage was that any new content that was previously not planned for
could not be accessed. Web-based transactions were queued while offline
and released when the device was docked.

A more recent development in the support of offline Web applications
is the more powerful form-based application models such as XForms [22].
XForms supports a clean separation of form presentation from form data.
An XForms document encapsulates the specification of user interaction
elements as well as control-flow within that set of elements. Data that is
presented to the user or collected from the user through these user
interaction elements is represented via an XML data structure. The XML
data structure is downloaded to the device when the XForms document
is downloaded to the device, and the updated XML data structure is
uploaded back to the server. The XML data on the server can be received
and processed by standard Web componentry such as Web services.

Rich-Client Application Models

The application models presented above support a form of user interaction
that is quite limited in the following sense. First, the presentation structures
are form-based controls, such as selection lists and text inputs, rather than
the larger and more sophisticated set of user interaction elements found
in highly interactive computing applications. Second, the application is
partitioned in such a way that frequent round-trip communication with the
server is required, resulting in a lack of instant response. This results in a
user experience that is far from what can be expected from the processing
and storage capabilities of the device hardware on which an application

AU3833_C06.fm Page 131 Monday, August 14, 2006 2:39 PM

132

■

Mobile Middleware

is running. For the purposes of this discussion, let us consider two key
elements of good user experience:

responsiveness

 and

expressiveness

.

Rich-client application models aim to achieve the responsiveness and
expressiveness of interactive computing commensurate with the capabil-
ities of the device hardware platform. Let us consider the two factors in
turn. To achieve good responsiveness, we need to support a set of
capabilities directly on the device platform, so as to minimize the impact
of server round-trip communication. This also has the benefit of supporting
disconnected or weakly connected operation. And, incidentally, this must
be done to minimize the impact on the programming model; that is, a
device-local implementation of application services should not impose a
new programming model but should instead use as much of the existing
server programming model as is feasible. To achieve good expressiveness,
we need to support a broader set of functions on the platform, including
interaction, graphics, storage, and media. Not every device can support
the same rich set of features, so a subset of this set of features will have
to be supported according to the capabilities of each device platform.

Let us first consider local implementation of application services. Picking
up from the Web application programming model, the first approach that
comes to mind for supporting better responsiveness is to create a device-
local (or embedded) implementation of Web application services. For exam-
ple, an embedded Web application server and an embedded database on
a device can support the downloading of Web applications to the device
so as to significantly reduce round-tripping to the server. This also allows
us to download enough data and computation to the device so application
interaction can continue in the absence of a connection to the server (which
is an important requirement in itself). This then introduces the necessity to
synchronize the data between the device-local services and the network-
based services. These functions have been implemented in existing proto-
types, with minimal impact to the Web server programming model.

To support better expressiveness, the first thing that comes to mind is
to support richer graphical interaction models. This includes the ability
for arbitrary two-dimensional and three-dimensional graphics, animation,
and rich media support; however, better expressiveness goes beyond rich
graphics. It includes notions of the kinds of operations one can perform
with storage, such as save at will, browse, reorganize, and protect. It
includes support for common interactive desktop operations, such as copy-
and-paste, undo, and restructure. It includes rich context-sensitive help
and automated editing support. And, very importantly, it includes the
notion of multitasking: viewing the tasks being performed and managing
them. Implementing all of these features in a programming model goes
far beyond the Web programming model discussed earlier and requires a
device-local implementation of a number of significant new services.

AU3833_C06.fm Page 132 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

133

Implementing this set of services into a device platform poses a new
challenge. Although devices are increasing in capabilities, the range of
devices is large, and many of them still have quite limited capabilities in
terms of processing and storage. The solution to this problem is to
implement the services as components that can be managed intelligently.
This is a serious engineering challenge in the sense that the system should
be broken down into manageable components that can be loaded and
unloaded from the network as necessary. New component models that
support this kind of function are emerging.

Ultimately, an application can be viewed as a composition of a col-
lection of distributed components, some of which will reside on the user’s
device and others on various nodes on a network. The component
programming model will vary depending on the function being provided
and the class of platforms it is intended to run. The composition pro-
gramming model, on the other hand, should be uniform so as to allow
putting together any set of components with compatible interfaces to
support application functions. Once composed, the problem will be to
partition the components into the various nodes of the network, based
on the available resources, the required responsiveness and throughput,
and other factors such as cost and security. This is ultimately the vision
for Web services.

In this line of evolution, future application models for mobile interactive
applications will support a seamless, heterogeneous, managed, component
model. Components from multiple vendors that internally use different
programming models can be combined together seamlessly and managed
in a uniform manner. This type of application model will support the best
kinds of innovation in interaction models and allow independent functions
to come together seamlessly in support of user needs.

Smart-Space Applications

Smart or active spaces have been an early and consistent topic of
ubiquitous computing research. The basic concept of smart spaces is
that people will be surrounded by visible and invisible technology that
can sense and act, communicate, reason, and interact to make their
environment a better place to live and work. A smart space is thus an
indoor or outdoor environment with computing elements that can
perform the functions mentioned earlier in a robust, self-managing, and
scaleable way.

Smart spaces offer services that are composed from both the devices
embedded in the environment and portable devices worn or carried by
users into the spaces. The goal is for the combination of imported and

AU3833_C06.fm Page 133 Monday, August 14, 2006 2:39 PM

134

■

Mobile Middleware

native devices to support the information and collaboration needs of the
users in that space. Smart spaces may:

■

Perceive and identify users, their actions, and even their intent.

■

Facilitate interaction with information rich sources.

■

Support local and distributed collaboration.

■

Anticipate and support user needs during task performance.

■

Provide enriched records and summaries for later use.

The earliest and most well-known smart-space experiment was the
Xerox PARC [19], where Weiser and his colleagues developed what they
called

tabs

,

pads

, and

boards

, which are inch-scale devices like active
sticky notes, foot-scale devices like note pads, and yard-scale displays,
respectively. They placed many dozens of tabs, several pads, and a few
boards in indoor spaces and allowed people to accomplish their tasks
by using these devices. In his classic article [19], Weiser also discusses a
smart outdoor space where a car driver is able to look into a “foreview”
mirror to check for traffic in his projected path and to easily find a parking
space.

More recent experiments have integrated commercial off-the-shelf
devices and technologies to achieve some of the above objectives. The
Gaia project at the University of Illinois in Urbana–Champaign [11] is a
good example for considering the programming model for active spaces.
This project has built distributed-operating-system-like functions, such as
events, signals, shared file systems, and security, and has extended them
with concepts such as context awareness and device transparency. Appli-
cations are built using an application framework that includes standard
services and requires others to be specified by the developer.

The high-level programming model [10] for such a smart space includes
entities such as users, services, applications, devices, and other physical
objects. Application developers refer to these entities at an abstract level.
The application framework maps these virtual references to actual physical
objects in a space using the constraints specified by the developer, the
available resources in the space, the policies specified for the space, and
the current context of the space. The framework uses an ontological
representation to capture knowledge about the various entities and their
relationships and optimizes the discovery and binding of virtual references
to the best physical resources. Programmers can also manage the activities
in the space at a high level by specifying high-level commands such as
starting, stopping, and moving components and taking action when users
or devices enter or exit spaces. These high-level abstractions make it
considerably easier to program smart-space applications than was possible
previously.

AU3833_C06.fm Page 134 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

135

Sense-and-Respond Pervasive
Computing Applications

Context awareness is the ability of computing applications to be aware
of the environment in which the computation is taking place and poten-
tially to adapt accordingly. The attributes of the environment, such as
location, destination, other people in the vicinity, and activity being
performed, are referred to as the

context

 of the application. The need for
context-aware applications arises because pervasive computing makes
applications available in contexts other than a computer workstation with
a keyboard, mouse, and screen. The user of a pervasive-computing
application will typically be focused upon some task other than the use
of a computing device and may even be unaware that he or she is using
a computing device. Applications must customize themselves to interact
with a user in a manner appropriate to the user’s current context and
activities, exploiting locally available devices, without distracting the user
from the task at hand.

A context-aware application has a sensing aspect and a responding
aspect. The sensing aspect binds to data sources, collects data, analyzes
the data, and ensures that the data is relevant to the application. If so, it
notifies the responding aspect, which takes an action appropriate to the
sensed data. The complexity of these kinds of applications comes from
the fact the data sources are (1) heterogeneous (e.g., indoor location can
come from 802.11 triangulation or active badges or other means), (b)
dynamic (i.e., sources may come on and go off depending on many factors
such as the location of a person), and (c) low level (e.g., a person’s
location, phone usage, and a calendar entry noting that the person is in
a meeting are all low-level data that together signify the fact that the
person cannot be interrupted).

The programming model for context-aware applications [7] consists of
several parts. At the most basic level, an application should be able to
specify a data source at a high level so it can be independent of the
physical source of the data. It would be the responsibility of the underlying
infrastructure to discover and bind to the appropriate data source based
on the needs and the availability. The types of data and their relationships
can be captured in a data type of hierarchy. Also, the infrastructure should
be able to accommodate different types of data sources. Some data sources,
such as request–response Web services, are passive or pull based. Other
data sources, such as sensors that trigger alarms, are active or push based.
A flexible infrastructure is capable of discovering both kinds of data
sources. An application can then pull the current value from a passive
data source or subscribe to be notified each time an active data source
generates a new value. Finally, the programming model should support

AU3833_C06.fm Page 135 Monday, August 14, 2006 2:39 PM

136

■

Mobile Middleware

the flexible composition of data from multiple sources. The language for
specifying the composition typically resembles a rule language and sup-
ports notions of aggregation, filtering, and correlation.

Context-aware applications are instances of sensor-based applications.
The general structure of sensor-based applications consists of a collection
of data sources, a hierarchy of entities for collecting and composing the
data from these sources, and some decision logic to take action based on
the data collected. For example, an RFID supply-chain application has a
multitude of RFID-tagged objects moving from manufacturer to consumer,
a number of data aggregation points (e.g., at the manufacturer’s dock, at
a warehouses, at retailers), and a back-end information technology system
that gets the information from the aggregators to make decisions about
the demand for particular items and how best to manufacture and inven-
tory those items. Many aspects of the programming model for context-
aware systems are applicable in this broader context as well.

Even more broadly speaking, sensor applications are an instance of
sense-and-respond applications. As mentioned earlier, the responding part
of context-aware applications supports the adaptation of an application to
a user’s environment, or the responding part of an RFID supply-chain
application supports the throttling of the supply chain to support demand.
In many cases, sensor applications have a physical actuator that affects the
real world; for example, in an industrial setting, a sensor that detects an
overheated motor could result in the motor being slowed down or shut
off, or the filters of an oil well pumping a high level of impurities could
be adjusted. In a sense, these applications behave like control systems.
From a programming model point of view, the challenge is whether these
low-level control systems can be integrated effectively with the higher level
information technology decision systems to produce a seamless application
model that supports end-to-end sense-and-respond applications.

The elements of such an end-to-end, sense-and-respond programming
model include event discovery and binding, event propagation, event
correlation/aggregation, event storage, decision logic, and actuation. Dis-
covery and binding support a dynamic and heterogeneous set of data
sources. Event propagation supports the gathering of event data from pull-
based and push-based data sources. Event correlation and aggregation
support the combination of multiple event streams to create higher level
events that are of interest to applications. Event storage helps retain
historical events so they can be reconstituted for supporting applications
that require long-range sensed data. The decision logic in applications uses
events at all levels to arrive at a decision about how to react to the available
sensed data. And, finally, actuation takes action based on the decisions
made. These elements must come together in a comprehensive way for
future systems to support the full range of sense-and-respond applications.

AU3833_C06.fm Page 136 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

137

Summary of Current Programming
Model Approaches

In this section, we summarize the current state of pervasive programming
models [3]. As mentioned before, a key issue that programming models
are trying to address is application development

complexity

 to adequately
deal with heterogeneous devices, varying degrees of connectivity, and
dynamic data sources.

Reuse

 of application components is the fundamental
means of addressing this complexity. Four basic approaches to enhancing
reuse have been applied, based on the well-known model–view–controller
application structure (briefly described earlier), and these are described
in the following subsections. These approaches have reached different
levels of maturity in research projects and commercial offerings. Several
challenges remain before these approaches can become widely useful.

Device-Independent Views

Device-independent views allow an application to capture the basic user
interaction structures that should be reused across multiple devices and
modalities. This device-independent representation describes the intent
behind the user interaction within a view component (such as a page),
rather than the actual physical representation of a user-interface control.
For example, the fact that an application requires users to input their ages
is represented by a generic INPUT element with a range constraint. An
adaptation engine determines, based on the target device characteristics,
usability considerations, user preferences, and whether the INPUT element
should be realized as a text field, a selection list, or even voice input.
Several device-independent view representations have evolved over the
years, including UIML [1], AUIML/Druid [15], XForms [8], and Microsoft’s
Mobile Controls [16].

Automatic runtime adaptation

 is the common technique used to con-
vert the device-independent representation to a device-specific represen-
tation. The runtime adaptation engine retrieves the device identifier via
the request header of a Web application (specifically, the

user agent

 field)
and maps that to a database record containing detailed device information.
The information in this database record guides the adaptation of the
device-independent representation to device-specific representations.
Microsoft, Oracle, and Volantis have commercial products using some
variation of runtime adaptation.

One of the pitfalls of this approach is its reliance on automatic runtime
adaptation of the device-independent representation. Fully automatic
adaptation can work in certain cases, when the content is simple or when

AU3833_C06.fm Page 137 Monday, August 14, 2006 2:39 PM

138

■

Mobile Middleware

the device variations are not too great; however, experience shows that
it is extremely difficult for fully automatic adaptation to produce highly
customized and usable interfaces that are comparable to handcrafted user
interfaces. This is especially true in modern, highly interactive applications.
As a result, most successful systems that use this technique provide a way
for developers to provide additional information, or metadata, to guide
or augment the runtime adaptation process.

Design-time adaptation

 is a technique that converts the device-inde-
pendent representation to device-specific representations before the appli-
cation is deployed to the runtime. The result of design-time adaptation is
a set of target-specific artifacts that can be viewed and manipulated by
the developer. At the end of this process, the developer ends up with a
set of target-specific view components, similar to the components that a
developer would have built by hand [5]. This approach has two major
advantages: One, the developer has full control over the adaptation
process and the generated artifacts. If the developer is not satisfied with
the output, the process can be rerun with different parameters until the
result is satisfactory. The generated artifacts can also be manipulated to
add device-specific capabilities for particular devices. Two, there is no
runtime performance overhead for translating applications, because the
translations have occurred at design time.

Design-time adaptation only supports devices that are known at design
time. If new devices must be supported after an application has been
deployed, it may not be reasonable to depend on the application provider
to target those devices via the design-time tool. Also, for dynamic content
(again, that will be unknown at design time), it is necessary to have some
level of runtime adaptation. For these reasons, some systems, such as
MDAT [4], support a hybrid of design-time and runtime adaptation. Design-
time adaptation results in one or more device-specific application versions
that can be deployed to a Web application server.

Platform-Independent Controllers

As described earlier, the controller of an application represents the control-
flow, including data validation and error handling, typically via event
handlers. A platform-independent controller allows an application to spec-
ify the overall control-flow across multiple execution platforms but still
allows an application to have different control-flow structures for different
devices and uses. The reasons why the controller of an application must
be targeted to multiple devices include the following:

■

Different devices may have different types of input hardware, ranging
from a keyboard, tracking device, and microphone on a personal
computer to a pair of buttons and a scrolling wheel on a wristwatch.

AU3833_C06.fm Page 138 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

139

■

The flow of an application may be different on different devices;
for example, an application that contains a secure transaction may
not support this transaction on a device that does not have the
appropriate level of security infrastructure. Similarly, an application
that supports rich content may choose to skip those pages on
devices that are not capable of presenting rich content.

■

When a device-independent page is adapted and rendered on
multiple devices, the page may be split into multiple device-specific
pages for any device that is too small to contain the entire page.

■

The controller execution framework may be different for different
device platforms. Recall that a device platform is the end-to-end
distributed platform that supports the execution of all components
of the application. One device platform may support a Java-based
Struts framework, whereas another may support a different frame-
work, such as the base Servlet framework, or a different language
altogether, such as PHP or C#.

As a result, a complete solution for targeting multiple devices must include
the application controller. One approach [4] is to represent the controller
in a declarative way using a

generic

 graph representation, where the nodes
are device-independent pages and the arcs are control-flow transitions
from one page to another. This representation addresses the three require-
ments above as follows:

■

Developers can modify the flow of the application for particular
target devices. These are represented as incremental changes to
the generic controller.

■

When a device-independent page is split into multiple pages, the
appropriate controller elements for navigating among those pages
are also automatically generated.

■

The concrete controller code for specific controller platforms (e.g.,
Struts) is automatically generated from the declarative controller
representation. The specific controller framework can be changed
as necessary.

Host-Independent Models

Networked mobile applications vary in the distribution of logic and data
between the mobile device and the server. In a thin-client application,
views are generated on the server and then rendered on the client device
by a component such as a Web browser. Controller logic, model logic,
and model data all reside on the server, so disconnected operation is
impossible. At the other end of the spectrum, a rich-client application

AU3833_C06.fm Page 139 Monday, August 14, 2006 2:39 PM

140

■

Mobile Middleware

resides entirely on the client device. It maintains its own fully functional
model, which may be synchronized from time to time with replicas of
the model on a server.

We need a programming model that allows the model components of
an application (such as the view and controller components) to be shared
by multiple versions of a disconnectable application — that is, by con-
nected and disconnected versions of the application. In the ideal scenario,
the logic and the data for the model component are specified once, and
the tools and infrastructure supporting the programming model extract
the appropriate subset of logic and data for the disconnected mode on
each supported device. In reality, this extraction process will likely have
to be guided extensively by the developer. The developer will likely
specify the model, view, and controller in a generic way (view and
controller as described in previous sections), and the tools will enable
the developer to incrementally refine this generic representation for par-
ticular target environments. This is an ongoing area of work, and significant
issues remain to be resolved. Ultimately, host-independent models allow
an application to encapsulate the business logic and data in a manner
that can be reused regardless of which host a component is instantiated on.

Source-Independent Context Data

An application obtaining data from heterogeneous sources with inconsis-
tent availability and quality of service should not name a specific source
of data such as a sensor, a Web service, or a database; rather, it should
describe the kind of data that is required so the underlying infrastructure
can discover an appropriate source for the data. This approach, known
as descriptive, data-centric, or intentional naming [2,6,12], has a number
of advantages. It allows the system to select the best available source of
data, based on current conditions. If the selected source should fail, the
infrastructure can rebind to another source satisfying the same description,
thus making the application more robust. New data sources satisfying a
description can be introduced or old data sources removed without
modifying the application; likewise, the application can be ported to an
environment having a different set of sources for the described data.

The basic idea of this approach is for an application to specify the
desired context data without specifying the exact location and data type
of the source or whether it is coming from multiple sources. These are
considerations that will be handled transparently by the infrastructure. In
some cases, the infrastructure may discover a data source, such as a device
or a Web service, that directly provides the described data; for example,
suppose an application specifies that it is interested in a Boolean value
for “Is Jane at lunch?” The infrastructure may discover a data source that

AU3833_C06.fm Page 140 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing

■

141

directly reports whether Jane’s location is the cafeteria. Alternatively, the
infrastructure may discover a programmed component, referred to as a

composer

 in Cohen et al. [7], that computes the described data from other
data. In our example, some combination of Jane’s calendar, office status,
and computer status might be combined by a composer to determine with
a certain degree of certainty whether she is at lunch. A composer may
be reusable across multiple applications and may itself be built on top of
other composers that handle lower-level, more generic, data. For example,
the query “Is X at lunch?” could be answered using the answer to a query
of the form “Is X located at Y?” and queries of that form might themselves
be answered by consulting multiple sources of location data (e.g., active
badge, 802.11, or cell tower) with different resolutions and inferring a
composite location with a certain degree of confidence.

Some data sources, such as request–response Web services, are passive
or pull based. Other data sources, such as sensors that trigger alarms, are
active or push based. A flexible infrastructure is capable of discovering
both kinds of data sources. An application can then pull the current value
from a passive data source or subscribe to be notified each time an active
data source generates a new value. The kind of source-independent data
specification described here allows an application to specify the intended
context data to be supplied by reusable infrastructure components, which
in turn are concerned with the specific data formats, locations, and
combinations of physical data sources that provide the actual data.

Conclusions

This chapter has given a retrospective on the evolution of programming
models for pervasive computing applications, the two major classes of
which are interactive applications and sense-and-respond applications.
Interactive applications consist of mobile personal applications and smart-
space applications. Mobile personal applications evolved from the early
standalone applications to cradle-based applications to Web-based appli-
cations. Web applications evolved from the early browser-based applica-
tions to multiple-device application models to richer XForms-based
applications. Voice and multimodal applications converged with the Web
application programming model. All of these thin-client application mod-
els, however, were limited in their user experience.

To support a better user experience, including responsiveness and
expressiveness, richer forms of the programming model are evolving.
Responsiveness is typically supported by having device-local services,
which incidentally also support disconnected and weakly connected
operations. Due to resource constraints, device-local services are man-
aged via a strong component model that supports composition and

AU3833_C06.fm Page 141 Monday, August 14, 2006 2:39 PM

142

■

Mobile Middleware

lifecycle management. The ultimate vision here is to have a program-
ming model that supports the composition and management of heter-
ogeneous components to provide a seamless user experience.

Smart-space applications support a different kind of interactive expe-
rience, one where a number of computing devices embedded in a space
helps support the task that a user is trying to accomplish. In the early
experiments in this domain, the programming model was low level and
extremely complex. In more recent days, a higher level programming
model has evolved for such an environment which exposes the resources,
services, and their relations at a high level and allows the developer to
specify the application at the abstract level with the infrastructure mapping
it to the physical resources.

Context-aware applications support the adaptation of applications to
the environment of a user. These applications have evolved from stand-
alone applications using one or a few data sources to a common generic
infrastructure that supports a number of applications using a variety of
data sources. The programming model for these applications can support
more general sense-and-respond applications, such as RFID and industrial
control applications. The eventual goal in this domain is to have a
comprehensive end-to-end sense and respond application model that
supports event discovery, binding, storage, propagation, correlation/aggre-
gation, and actuation.

Acknowledgments

This article is a compendium of many ideas that have evolved from projects
and discussions with many individuals in the pervasive computing group
at IBM. The author is grateful to many researchers, and especially to
Norman Cohen and Danny Soroker, for the thoughts behind this article.

References
[1] Abrams, M., Phanouriou, C., Batongbacal, A.L., Williams, S.M., and Shuster,

J.E., UIML: an appliance-independent XML user interface language,
WWW8/Computer Networks, 31(11–16), 1695–1708, 1999.

[2] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and Lilley, J., The design
and implementation of an intentional naming system, in Proc. of the 17th
ACM Symp. on Operating Systems Principles (SOSP ’99), Kiawah Island
Resort, SC, December 12–15, 1999 [published in Operating Syst. Rev., 33(5),
186–201, 1999].

[3] Banavar, G., Cohen, N., and Soroker, D., Pervasive application development:
approaches and pitfalls, in Mobile Computing Handbook, Ilyas, M. and
Mahgoub, I., Eds., Auerbach, New York, 2004.

AU3833_C06.fm Page 142 Monday, August 14, 2006 2:39 PM

Evolution of Application Models for Pervasive Computing ■ 143

[4] Banavar, G. et al., An authoring technology for multi-device web applica-
tions, IEEE Pervasive Comput., 3(3), 83–93, 2004.

[5] Bergman, L.D., Banavar, G., Soroker, D., and Sussman, J., Combining
handcrafting and automatic generation of user-interfaces for pervasive
devices, in Proc. of the Fourth Int. Conf. on Computer-Aided Design of User
Interfaces (CADUI 2002), Valenciennes, France, May 15–17, 2002, pp.
155–166.

[6] Bowman, M., Debray, S.K., and Peterson, L.L., Reasoning about naming
systems, ACM Trans. Programming Languages Syst., 15(5), 795–825, 1993.

[7] Cohen, N.H., Purakayastha, A., Wong, L., and Yeh, D.L., iQueue: a pervasive
data-composition framework, in Proc. of the 3rd Int. Conf. on Data Man-
agement, Singapore, January 8–11, 2002, pp. 146–153.

[8] Dubinko, M., Klotz, Jr., L.L., Merrick, R., and Raman, T.V., Eds., XForms 1.0,
World Wide Web Consortium (W3C) recommendation, October 14, 2003
(http://www.w3.org/TR/xforms/).

[9] Enterprise JavaBeans Technology, http://java.sun.com/products/ejb/.
[10] Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell, R.H., and Mickunas,

M.D., Olympus: a high-level programming model for pervasive computing
environments, in Proc. of the IEEE Int. Conf. on Pervasive Computing and
Communications (PerCom 2005), Kauai Island, HI, March 8–12, 2005.

[11] Román, M., Hess, C.K., Cerqueira, R., Ranganathan, A., Campbell, R.H., and
Nahrstedt, K., Gaia: a middleware infrastructure to enable active spaces,
IEEE Pervasive Comput., 1, 74–83, 2002.

[12] Intanagonwiwat, C., Govindan, R., and Estrin, D., Directed diffusion: a
scalable and robust communication paradigm for sensor networks, in Proc.
of the Sixth Annual Int. Conf. on Mobile Computing and Networking (Mobi-
Com 2000), Boston, MA, August 6–11, 2000, pp. 56–67.

[13] Java Server Pages Technology, http://java.sun.com/products/jsp/.
[14] Krasner, G. and Pope, S., A cookbook for using the model–view–controller

user interface paradigm in smalltalk-80, J. Object-Oriented Programming,
1(3), 26–49, 1988.

[15] Merrick, R.A., Defining user interfaces in XML, in Proc. of Petrochemical
Open Standards Consortium (POSC) Annual Meeting, London, September
28–30, 1999 (http://www.posc.org/notes/sep99/sep99_rm.pdf).

[16] Microsoft, Mobile Web Development with ASP.NET, Microsoft Corporation,
Redmond, WA, 2003 (http://msdn.microsoft.com/vstudio/device/mobilecon-
trols/default.aspx).

[17] Apache Struts Web Application Framework, http://struts.apache.org/.
[18] VoiceXML Forum, http://www.voicexml.org/.
[19] Weiser, M., The computer for the twenty-first century, Sci. Am., 265(3),

94–104, 1991.
[20] IBM WebSphere Transcoding Publisher, http://www.ibm.com/software/

pervasive/transcoding_publisher/.
[21] XHTML + Voice Profile 1.0, http://www.w3.org/TR/xhtml+voice/.
[22] XForms: The Next Generation of Web Forms, http://www.w3.org/MarkUp/

Forms/.

AU3833_C06.fm Page 143 Monday, August 14, 2006 2:39 PM

AU3833_C06.fm Page 144 Monday, August 14, 2006 2:39 PM

145

Chapter 7

Mobile Middleware:
Definition and

Motivations

Dario Bruneo, Antonio Puliafito,
and Marco Scarpa

CONTENTS

Basic Concepts.. 146
Distributed Systems... 146
The Middleware Layer.. 148

Middleware Requirements for Fixed Distributed Systems................................... 150
How Mobility Affects Middleware Design.. 151

Mobile Middleware Requirements ... 152
Context Management .. 155
Connection Management .. 157
Resource Management .. 158

Middleware for Nomadic Systems ... 159
Middleware for

Ad Hoc

 Systems ... 161
Available Technologies for Mobile Middleware... 162

Mobile Agent Technology .. 162
Grid Computing Paradigm ... 163

References ... 164

AU3833_C07.fm Page 145 Monday, August 14, 2006 3:17 PM

146

■

Mobile Middleware

Basic Concepts

One of the main reasons for the wide and rapid spread of computer networks
is the concept of

transparency

, traditionally embodied in the layered protocol
stack [41]. Due to this simple but extremely powerful approach, users
accessing a computer network are not aware (and do not want to be) of
the technical details, protocols, and management issues. Usually, users want
to run an application and get results without any knowledge of all the
operations involved. If the application is a distributed application, very likely
a connection must be established, followed by negotiation with regard to
the most appropriate communication parameters and other complex activi-
ties. All of these activities are hidden to most network users.

Distributed Systems

With the increasing use of computer networks, the software architecture
has changed radically. From a relatively simple architecture (

centralized
system

) where all the software components are executed on a single
machine, new software architectures (

distributed systems

) have been
developed where software is organized into different modules distrib-
uted to different

elaboration nodes

, and data is exchanged by means
of a communication network. In a centralized system, an application
runs on a single node and constitutes a single process; the workstation
is the only

active

 component of the system because it hosts the
application itself. Terminals share the resources of the workstation in
such a way that different users can use the application. Terminals can
even exist without a CPU, being equipped instead with a communication
interface only for sending commands to the running application on the
workstation. To summarize, in such a system the communication net-
work is used to interconnect

stupid

 nodes (

terminals

) with the

elabo-
ration

 node, as depicted in Figure 7.1.
In a distributed system an application is composed of more processes

running on different nodes of the network. All the processes are cooper-
ating closely, and they execute in parallel. So, a characteristic of distributed
systems is that the processes do not share memory but instead rely on
message exchange, thus introducing delay during the computation. The
reference architecture changes, as depicted in Figure 7.2.

Because the network communication infrastructure has become very
inexpensive over time, the computational power achieved by a distributed
system is less expensive than that of an equivalent workstation. Moreover,
the entire infrastructure is more manageable, as it is relatively simpler to
increase the resources, to balance the workload, and to run parallel
applications. In a distributed system, the reference programming paradigm

AU3833_C07.fm Page 146 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations

■

147

usually adopted is the

client–server

 model.

Client

 and

server

 are distinct
processes running on different nodes characterized by a well-defined
interface. The server usually makes available some procedures for handling
the data that are designed for responding to criteria of general effective-
ness. The actual data processing is left to the server, where

ad hoc

procedures for the desired processing can be executed. The typical func-
tional scheme is (Figure 7.3):

■

The client asks the server for a service.

■

The server performs the requested elaboration and sends the results
back to the client.

Figure 7.1 Example of a centralized system.

Figure 7.2 Example of a distributed system.

AU3833_C07.fm Page 147 Monday, August 14, 2006 3:17 PM

148

■

Mobile Middleware

Note that the distinction between

client

 and

server

 is based purely on
function; in other words, a server could be a client of another server.

The Middleware Layer

Programming in a distributed system environment is a very tricky activity
for developers, who must manage all the details related to the commu-
nication (e.g., addressing, error handling, data representation). This is due
to the fact that developers use the low-level abstraction provided by the
network operating system. To free developers from the expensive and
time-consuming activity of resolving all the problems related to the net-
work management, greater abstraction must be introduced. This is exactly
the role of the

middleware

 layer.
Middleware is a software layer between the operating system and the

applications that provides a higher degree of abstraction in distributed
programming. Using middleware, a programmer can develop an improved-
quality distributed software by using the most appropriate, correct, and
efficient solutions embedded in the middleware. In other words, utilizing
middleware to build distributed systems frees developers from the imple-
mentation of low-level details related to the network, such as concurrency
control, transaction management, and network communication, in such a
way that they can focus on application requirements. Now consider the
International Organization for Standardization (ISO)/Open Source Initiative
(OSI) network reference model. Because middleware allows programmers
to develop distributed systems as integrated computing facilities, it must
address shortcomings of the network operating system; therefore, it imple-
ments the session and presentation layers of the ISO/OSI reference model
[41], as depicted in Figure 7.4. In this environment, developers are able
to request parameterized services from remote components and they can
execute them without worrying about implementation of the session and
presentation layers. Some examples of middleware successfully used thus
far include OMG’s CORBA™ [36], Microsoft’s COM [8], SUN’s Java Remote

Figure 7.3 Client–server interaction.

AU3833_C07.fm Page 148 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations

■

149

Method Invocation (RMI) [40], IBM’s MQSeries™ [23], and remote proce-
dure calls (RPCs), which were introduced by SUN in the 1980s [7].

As an example of middleware, we can take a look at RPC behavior.
RPC middleware was created to give developers some kind of mechanism
for accessing remote resources using just a local procedure call to hide
all the details on the connection setup, marshal all the parameters, and
hide all the problems related to the heterogeneity of different platforms.
When the client performs a call, it is intercepted by the middleware, which
runs the code for gathering the parameters, opening a socket, and so on
(see Figure 7.5). The user is completely unaware of what happens. The
middleware generates an appropriate message containing all the data
related to that call and transmits it to the server, which is able to understand
the request sent from the client and execute the procedure. When the

Figure 7.4 Software models and their relation with network models.

Figure 7.5 Remote procedure call (RPC).

AU3833_C07.fm Page 149 Monday, August 14, 2006 3:17 PM

150

■

Mobile Middleware

results are ready, they are sent back to the client middleware, which
returns to the application. The user perceives the process as being nothing
more than a traditional local call.

Middleware Requirements
for Fixed Distributed Systems

Middleware is a software layer that hides all the implementation details
of the communication infrastructure to developers in such a way that
they can overlook all the problems arising due to directly using network
operating system primitives. To create this kind of abstraction, some
requirements must be satisfied. It should be pointed out that some of
these requirements must be altered when the middleware is to be used
for mobile systems:

■

Communication

 — First of all, the middleware has to guarantee
the exchange of data among the nodes of a distributed system in
such a way that the system appears to the user to be an integrated
system. When two entities communicate, they exchange data as
parameters of some kind of service; due to the heterogeneity of
the nodes in the distributed system, the internal representation of
data could be different, and this problem must be anticipated by
the middleware. Moreover, all the parameters must be appropriately
composed to be correctly exchanged; the middleware has to imple-
ment marshaling–unmarshaling operations.

■

Coordination

 — The evolution of processes in distributed systems
has to be controlled to achieve maximum cooperation among the
different activities. Usually, most threads execute on the same host
concurrently, and all of them must be synchronized with the remote
one. Another issue is the fact that a distributed system could be
viewed as a big repository of services; each service runs on a host,
and it is available for invocation from other components of the
system. In general, it is unknown when an invocation might come,
and it is a waste of resources for the service to constantly execute;
for these reasons,

activation

 and

deactivation

 must be provided by
the middleware in order to start and stop the services when needed.

■

Reliability

 — The network layers below the middleware ensure
that communication errors and faults of the network are trans-
parently recovered, but other kinds of errors can arise in the
usual activities of a distributed application. As an example,
nothing can be said about correct execution of a service or the
order of the requests. This kind of reliability is implemented

AU3833_C07.fm Page 150 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations

■

151

directly by the middleware by using the

best effort

,

at most once

,

at least once

, and

exactly once

 services [17]. Reliability may also
be increased by replicating the services on multiple hosts to
make them more readily available, even if a host is unavailable
for either internal or external reasons.

■

Scalability

 — In this context, scalability is the ability to manage a
growing load in the future. In fact, in centralized systems the load
is limited by the load the node can support, but in distributed
systems a new load request can be directed toward different servers
according to necessity, while the user must be unaware of the real
used resource. The typical mechanism used to accomplish this
issue is

transparency

 (i.e., location, migration, access, and repli-

cation transparency) [17,34]. Particularly important is

location trans-
parency

, which demands that components do not know the physical
location of the components with which they interact. A detailed
discussion on transparency can be found in Emmerich [17].

For
efficient location

transparency, a load-balancing mechanism must
be provided to either reduce or increase load on different hosts
when a service is started or stopped somewhere in the distributed
system.

■

Security

 — Because the Internet is an important component of the
actual communication network, it is not possible to protect con-
nections from third parties. Sometimes, the data involved in dis-
tributed computations is private data, and users want to protect it
from unauthorized access. The middleware itself should be able
to provide cryptography mechanisms to the users.

Another issue is verifying the real identity of users to protect the server
from unauthorized people and to ensure the high quality of a given service
for the client. At least four security services can be incorporated:

■

Protection of data against reading by unauthorized users

■

Forbidding the creation and deletion of messages to unauthorized
users

■

Identity checking

■

Possibility of using electronic signed documents

How Mobility Affects Middleware Design

The rapid growth of wireless technologies and the development of smaller
and smaller devices have led to the widespread use of mobile computing.
Each user, equipped with a portable device, is able to access miscellaneous

AU3833_C07.fm Page 151 Monday, August 14, 2006 3:17 PM

152

■

Mobile Middleware

services in any way at any time and anywhere thanks to the connectivity
powered by modern network technologies. Mobile access to distributed
applications and services raises many new issues. A major problem is the
wireless technology itself, as the bandwidth provided is orders of magnitude
lower than in the wired networks, signal loss is very frequent, and the
noise level is influenced by external conditions. A second aspect is related
to the mobile devices, which are characterized by scarce resources in terms
of CPU, RAM, display, and storage; in particular, they are equipped with
smart batteries, which limit the autonomy of the device (in terms of power
consumption) and affect both wireless transmission and access to services
that require a high computational load. Finally, a third aspect that must
be considered is user mobility, which causes problems related to signal
loss during movement to a new cell (handoff), as well as problems with
address management caused by users traversing through different admin-
istrative domains and the need to adapt services to the position of the user.

Traditional middleware solutions are not able to adequately manage
these issues. Originally designed for use in a static context, such middle-
ware systems hide low-level network details to provide a high level of
transparency to applications. In mobile environments, though, the context
is extremely dynamic and cannot be managed by

a priori

 assumptions,
so it is necessary to implement reconfiguration techniques that can react
to changes in the operating context and develop powerful mechanisms
to propagate such changes until the application level is reached. It is
necessary, therefore, to develop new middleware for mobile systems in
the early stages of the design phase that will provide mobility support.

Mobile Middleware Requirements

To highlight the issues related to the mobile middleware design we present
a typical mobile computing scenario, focusing on the main aspects that
must be taken into account. Consider the case of a user equipped with a
personal digital assistant (PDA) who wishes to receive information about
movies playing at the nearest cinema. The user will select a movie after
viewing some video clips. To meet the user’s requirements, the system must:

■

Determine the user’s actual position, search for the requested
services, and select the ones more appropriate for the user.

■

Be aware of the user’s habits (e.g., the user’s favorite movie genre),
so it can select the results to be presented to the user.

■

Establish and rate the quality of service (QoS) level to be used.

■

Format the information to be presented according to the hardware
and software features of the device used.

AU3833_C07.fm Page 152 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations

■

153

■

Manage the user’s mobility by allocating the resources in advance
for using the service (e.g., the bandwidth required for streaming)
and managing the changes of address.

■

Manage the load of the wired network so as to optimize the
resources by changing the server from which the streaming will
be retrieved.

It may happen that the user goes from a WiFi area to a General Packet
Radio Service (GPRS) area with a consequent decrease in the bandwidth
available, or the user might change devices (e.g., the user may switch to
a PC upon arriving home). In these cases, the system should be able to
reconfigure the parameters to resume the view from the point where it
was stopped and to adapt it to the new device. Some operations of clip
transcoding, reallocation of resources, and QoS management will therefore
be necessary. When the movie has been chosen, the user may decide to
buy tickets online, in which case the system should be able to manage
the transaction with regard to issues of both security and the possible
disconnection and reconnection of the user.

Using our example of the moviegoer, some interesting issues involved
in the management of advanced services in mobile environments can be
identified, such as service discovery, QoS, service adaptation, and load
balancing. Service discovery plays a primary role, because it allows the
user to access the list of available services. The techniques currently used
include the use of distributed directory services, which are more scalable
than the centralized approach [30]. The user position and the user profile
will have to be managed to filter the services available by choosing,
initially, only those corresponding to the user preferences and habits and
located near the user’s actual position.

The streaming of multimedia flows over wireless channels requires
very strict QoS requirements. In fact, any variation in the quality of the
transmission can degrade the application requested and make it inacces-
sible; for example, when a user is viewing a movie clip, the bit rate cannot
be reduced below a specific threshold without affecting the viewing
quality. The QoS management is therefore very important.

A major problem is the limited bandwidth available in wireless chan-
nels. This involves the investigation of new techniques for bandwidth
reservation to anticipate the user’s handoff and reallocate resources in the
new access point that will be visited by the user [11]. The system cannot
disregard the user’s actual position, as it has to propose services and
resources available near the user’s position. This is necessary because of
restrictions in terms of QoS and because a crucial factor is the distance
(latency) between the server and the mobile client.

AU3833_C07.fm Page 153 Monday, August 14, 2006 3:17 PM

154

■

Mobile Middleware

Furthermore, the system will have to be able to recognize features of
the device to adapt the service requested to the type of terminal used;
for example, if the same movie clip is to be viewed on a notebook with
a 16.8-million-color display and on a PDA with a 256-color display,
different resolutions will be required. Considering the bandwidth savings
required in wireless environments, the need to transcode the same video
in several formats to tailor it according to the client device is evident; for
example, an MPEG-2 video could be encoded in MPEG-4 when switching
from a wired to a wireless station. Information can be distributed on the
wired network, which allows quicker and more effective access to the
resources and makes available more copies of the same video, even in
different formats.

Load-balancing operations are necessary to better exploit the use of
storage and computing resources. Wireless channels are characterized by
frequent disconnections, which cause QoS degradation and possible failures
due to data loss during a transaction; therefore, the system should be able
to manage such sudden disconnections by providing mechanisms for
information replication and transaction recovery. Finally, all of these oper-
ations must be carried out taking into consideration the limited resources
of mobile devices, particularly power consumption. Some power-saving
techniques must be applied to reduce the wireless transmission load during
both downloads and uploads [3].

In light of the many issues that must be addressed when developing
mobile middleware, it can be observed that the use of traditional middle-
ware originally conceived for fixed distributed systems is not always
feasible in such complex and heterogeneous environments. This is due
primarily to the remarkable differences between the two operating envi-
ronments (see Table 7.1). These differences call for new design strategies
that take into account features of the mobile environment to overcome,

Table 7.1 Main Differences Between Distributed

and Mobile Environments

Distributed
Environments

Mobile
Environments

Bandwidth High Low
Context Static Dynamic
Connection type Stable Unstable
Mobility No Yes
Communication Synchronous Asynchronous
Resource availability High Low

AU3833_C07.fm Page 154 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations

■

155

in an efficient way, all of the issues discussed here [16,31]. Such design
strategies can be classified into three main types: context management,
connection management, and resource management.

Context Management

The main assumption of middleware for fixed distributed systems (i.e.,
static representation of the context that is not transparent to upper layers)
is too restrictive in mobile environments, as such environments are char-
acterized by frequent context changes. Mobile computing applications
must adapt their behavior to these changes to overcome issues related to
high-level service provisioning. Context transparency, in fact, makes the
development of complex applications easier, but it does not allow the
service level to make decisions about the environments in which such
applications must run [14]. This approach is powerful in systems where
the operating conditions are static or where changes can be considered
as exceptional and predictable events.

Mobile environments do not satisfy these requirements. Disconnec-
tions can occur either voluntarily (due to power-saving policies) or
suddenly (due to signal loss), wireless technologies differ greatly in
terms of performances and reliability, and portable devices have a high
degree of heterogeneity. To enable applications to adapt to such context
evolutions, parameter reconfiguration at provision time is necessary
[4,13]. Mobile middleware systems cannot hide the context at the upper
layers but instead must both represent it and announce changes until
the service layer is reached. It is at this layer, in fact, that is possible
to make decisions about the best way to react to context changes. For
example, in a multimedia streaming session, in response to a drastic
reduction in bandwidth, the system could activate the movie transcoding
tasks (by reducing the bit rate or the color depth) or could decide to
transmit only the audio data, dropping all the video packets (possible
cases might include football matches, video conferences, video clips).
Clearly, such decisions can be made only when the service typology
is known and not on the basis of low-level information. It is necessary
to implement middleware systems in such a way as to achieve a trade-
off between transparency and awareness [12].

The operating context in a mobile computing scenario can be divided
into three main aspects: user context, device context, and network context.
The user context is composed of information related to the user’s position,
to user preferences, and to the QoS level requested. The device context
includes details on the status of the available resources (e.g., CPU, bat-
teries, display) and on the relative position of the device in the network
— for example, in terms of latency between the device and a service

AU3833_C07.fm Page 155 Monday, August 14, 2006 3:17 PM

156

■

Mobile Middleware

provider or in terms of distance from other hardware components (e.g.,
mobile devices, printers). The network context contains all the information
about the available bandwidth, noise level, wireless technologies adopted
(e.g., 802.11, Bluetooth

®

), and addressing. Such context representation is
shown in Table 7.2.

One of the main design considerations of context-aware middleware is
the study of a representation of the operating context to capture its features
and to make them available to the upper layers. Such a representation has
to be flexible and powerful to allow applications to easily react at provision
time to the frequent context changes. A common technique adopted for
context representation is the definition of metadata; in particular, profiles
and policies comprise metadata, which describes with a high level of
abstraction context features and actions to carry out in case of changes.
The metadata, represented by a meta-language (e.g., XML [1]), has to be
separated from the implementation details to simplify the management
operations. Suitable binding techniques must be impslemented to enable
applications to change their execution at runtime according to the estab-
lished policies. Such requirements have made computational reflection,
introduced in Smith [39], an attractive technique to adopt in the mobile

Table 7.2

Context Representation

Context Type Description

User context:

Location Real position of the user in the wireless environment
Profile User preferences and habits
QoS level QoS level requested by the user accessing the services

Device context:
Profile Device features (e.g., CPU type, display)
Resource status Updated usage level of the device resource
Location Latency from other devices and from the service providers

Network context:
Technology Adopted wireless technology (e.g., 802.11, Bluetooth, GPRS)
Noise level Quality level of the wireless signal
Activity Wireless activity in terms of throughput
Bandwidth

available
Bandwidth available in the wireless environment

Addressing Address protocol used by the wireless infrastructure

AU3833_C07.fm Page 156 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 157

middleware design. Reflection is the ability of a software system to monitor
its computation and to change, if necessary, the way it is executed. The
two phases of monitoring and adapting are generally referred to as intro-
spection and interception. Discussions of context-aware middleware based
on the concept of reflection can be found in the literature [2,29].

A context feature that has aroused quite a bit of interest in recent
years is location management [25]. Location-aware middleware that is able
to provide services according to the user’s position and to manage the
user’s movements has been developed for such scenarios as e-health [37],
e-learning [24], and cultural heritage [28].

Connection Management

User mobility, intermittent signals, and resource management policies
give rise to the frequent disconnection and reconnection of mobile
devices. Such behavior, which is not encountered in traditional distributed
systems, makes unsuitable the adoption of a synchronous communication
system that is based on the assumption that the sender and receiver are
continuously connected during the communication phases. Mobile mid-
dleware has to provide an asynchronous communication system able to
carry out all the tasks, notwithstanding the intermittent link between
sender and receiver. To this end, solutions to decouple the sender and
the receiver are required. Decoupled middleware systems have to manage
the issues related to data synchronization by implementing data replica-
tion techniques. One of the most widely adopted solutions is the use of
tuple space systems, which provide shared memory areas where both
the sender and the receiver can put their data in an asynchronous way
[33]. When a message has been sent (that is, after a write operation), the
sender can continue its tasks without waiting for the receiver to carry
out the read operation; thus, a mobile user can make a query, disconnect
from the network, and, when reconnected, retrieve the results of that
query. Examples of tuple-space-based middleware include TSpaces™ [43]
and JavaSpaces™ [22].

Another technique adopted for transaction management in mobile
environments is the use of data subsets downloaded in the mobile device
to create a local representation of information scattered over the wired
network; offline transactions can be carried out by mobile users using
these local data subsets, and the actual operations can be carried out
when the user goes online [18,38]. For example, these subsets can be
adopted in an e-commerce scenario to allow users to download a part of
the product list and to create, offline, a local shopping cart with the
selected products. When an online connection is established, the system
will retrieve the local shopping cart to complete the order.

AU3833_C07.fm Page 157 Monday, August 14, 2006 3:17 PM

158 ■ Mobile Middleware

A drawback of such solutions is the data synchronization that requires
the use of advanced techniques; in our offline shopping scenario, we have
to deal, for example, with issues related to potential price updates on the
official product list that are not indicated on the older, local product list,
or we might have to take into account problems related to product
availability. The system should be able to disseminate these updates and
to carry out effective comparisons among data, verifying the correctness
of the transactions. Such operations depend greatly on the manner in which
the data is structured.

Another issue related to connection management is the provision of
services based on the concept of session (e.g., multimedia streaming). A
temporary disconnection or change of address could cause the loss of the
session and the end of service provisioning. Such issues can be solved
by adopting proxies capable of decoupling the client and server and
hiding these disconnections from the service layer [5,9]. Proxies have to
interact with the specific protocol involved in service provisioning, and
then their development is strictly related to the particular typology of the
service that we want to use.

Resource Management

The design of mobile middleware and the management of the discussed
techniques are strictly related to the hardware resources to be used for
their execution, which are usually quite scarce, thus introducing another
constraint on the design of such systems: Mobile middleware has to be
lightweight [44]. Mobile middleware, on the one hand, has to implement
techniques capable of guaranteeing powerful usage of available resources
by reducing, for example, wireless transmissions and by adapting service
typology to the real features of the client devices. On the other hand,
mobile middleware has to be designed to be efficient to avoid overloading
the device itself.

First, we must take into account the use of the sensors required to
accomplish the goals of the middleware; an appropriate context repre-
sentation, in fact, foresees the use of several sensors (e.g., of position)
for the collection of the data that must be monitored to manage the context
evolutions. The use of sensors must to be restricted as much as possible
because such components are quite greedy in terms of resource consump-
tion; for example, if location management is needed, triangulation tech-
niques could be implemented rather than using global position system
(GPS) modules on the mobile devices [26].

A second aspect is related to the computational load of middleware;
in addition to being light in terms of memory usage, mobile middleware

AU3833_C07.fm Page 158 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 159

must reduce the amount of data to process so the limited computing
resources of mobile devices are not overloaded. To this end, it is
important to design highly modular middleware systems that are capable
of activating only the modules absolutely necessary for the required
operations (deactivating at runtime the unnecessary ones) [4] and del-
egating to other parts of the system (e.g., the wired infrastructure) those
operations that require a high computational load, such as multimedia
content tailoring [9].

Middleware for Nomadic Systems

Nomadic systems are characterized by a fixed infrastructure that provides
a wireless access to mobile devices through access points. Thanks to this
wireless link, mobile users are able to access services offered in the wired
network. Designers of mobile middleware for nomadic systems must take
into consideration many issues that involve both the services offered (in
terms of their heterogeneity and complexity) and the main features (per-
formance and dependability) of the processing and storage equipments.
A typical nomadic computing scenario is shown in Figure 7.6. Such a
setup includes the following areas:

Figure 7.6 A nomadic computing scenario.

Wired Area

Access Area 1 Access Area 2

Tablet PC

Hand held Laptop

Access Point
Access Point

PC

PC PC

Wireless Area 1
Wireless Area 2

AU3833_C07.fm Page 159 Monday, August 14, 2006 3:17 PM

160 ■ Mobile Middleware

■ Wireless
■ Access
■ Wired

The wireless area is the coverage area of an access point, where one or
more mobile devices can be found. The access area is the contact area
between the wireless area and the wired area. It consists of access points
that allow mobile devices to access services available in the wired area.
The wired area is the core network infrastructure.

Managing the issues related to service provisioning in wireless envi-
ronments calls for a middleware solution that covers all the areas presented
in this scenario [6]. In such a way, interactions between the wired and
the wireless components of the system can occur. Moreover, the distribu-
tion of this middleware over the three described areas will allow carrying
out expensive tasks whenever more convenient resources are available.
By responding to the resource management issues, mobile middleware
will never overload mobile devices.

It is in the wired area where all the tasks requiring a high computational
load must be carried out. Such tasks are related to service adaptation,
data storage, and load balancing. Powerful management of these tasks is
mandatory to make effective the QoS strategies provided by the other
areas of the scenario and to improve service provisioning [45]. Let us
consider, for example, tailoring a multimedia format to the features of a
client device. It can be easily observed that when we send high-resolution
multimedia data to a smart device we will experience a high percentage
of wasted resources, affecting other users present in the same cell and
making useless any resource reservation policy.

The access area contains tasks related to resource reservation and
context management. Resource reservation can be performed by admis-
sion-control techniques that restrict access to the wireless environment.
To guarantee service provisioning during user movement, the middleware
has to be able to reserve in advance resources in the new access point
where the user is headed [10]. The advanced reservation strategies must
know the user position and manage the bandwidth of each cell by leaving
a portion of it for users coming from neighboring cells. QoS levels have
to be created to allow bandwidth reconfiguration according to the users’
needs and resource availability. The middleware, at provision time, can
automatically adapt the bandwidth assigned to a user to accept new users
from neighboring cells, thus reducing the call-blocking probability. Proxy
solutions able to carry out tasks on behalf of the user have to be inserted
in this area to overcome issues related to signal loss [5,11].

The wireless area hosts middleware components related to mobile
devices. Due to the limited resources of such devices, these middleware

AU3833_C07.fm Page 160 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 161

components must be reduced to only an interface with the system. In
this area, we can find mobility management modules (only in the case
of GPS systems), user and device profile management modules, the
graphical interface for user–device interactions, and a communication
mechanism that exchanges data with other middleware components
present in the scenario.

Middleware for Ad Hoc Systems

Ad hoc systems are communication infrastructures where users can com-
municate notwithstanding previous agreements and can connect, discon-
nect, or move around in the surrounding space. This means that the nodes
that form the network cannot rely on a fixed infrastructure nor on a central
coordinating entity, because they all have the same computational potential
and the same probability of disconnecting or migrating. To ensure the
exchange of information among users, some routing protocols must be
created. Such protocols route the packets in multi-hop paths, which
consider a changing network topology.

The development of a mobile middleware for ad hoc systems is heavily
influenced by the features of such environments. In fact, the lack of a
fixed infrastructure limits most design choices. Any type of centralization
has to be removed, as the presence of a static entity capable of carrying
out tasks such as discovery of service, QoS management, and so on is not
allowed. All of these tasks have to be accomplished using distributed
approaches. Also, the mobile middleware implementation has to take into
account the high degree of mobility typical of such environments and must
produce an exhaustive context representation. The lack of a wired infra-
structure restricts the execution of such middleware to mobile devices, as
any distribution over different areas of the scenario, such as in the case
of nomadic systems, is not possible. For this reason, the design of mid-
dleware for ad hoc systems has the main goal of achieving a high level
of simplicity [44]. The most resource-expensive tasks cannot be delegated
to other network components scattered in the system; instead, it is necessary
to implement techniques that can accomplish the middleware operations
using only the limited resources provided by mobile devices.

Although the development of mobile middleware for ad hoc systems
is still in the early stages, some solutions and some guidelines are pre-
sented in the literature. Some authors have tried to modify middleware
for nomadic systems to operate in such complex environments [20]; others
have designed entirely new paradigms adapted to the features of ad hoc
networks [35]. Peer-to-peer (P2P) is one of the most used paradigms; it
is based on the concept of information dissemination between nodes and

AU3833_C07.fm Page 161 Monday, August 14, 2006 3:17 PM

162 ■ Mobile Middleware

on the use of advanced techniques searching and provisioning services
in accordance with the network topology [27].

To overcome the resource consumption issues, cooperation techniques
between nodes have to be developed such that it will be possible to
utilize the least-frequently used devices for accomplishing complex tasks.
These operations can be provided by designing middleware systems with
a high degree of modularity which are able to manage loading and
unloading operations at runtime and execute the component middleware
in a parallel way.

Available Technologies for Mobile Middleware
Mobile middleware design calls for new network technologies able to
manage the continuous changes of the environment and to provide
cooperative mechanisms that overcome the lack of resources of portable
devices. In this section, we show how the use of the mobile agent
technology and of the grid computing paradigm provides an effective
strategy in the deployment of an overall architecture that achieves the
goals of middleware.

Mobile Agent Technology

A software agent is a kind of software package that is smart enough to
act as an assistant to accomplish some tasks on behalf of human beings
[19]. The most salient feature that distinguishes agents and ordinary code
is autonomy. Agents can cooperate with other agents to carry out more
complex tasks than they themselves could handle. One special kind of
agent, the mobile agent, can move from one system to another to access
remote resources or even to meet other agents. The big success of mobile
agents can be attributed to their ability to combine the typical features of
software agents (e.g., autonomy, delegation) with the opportunity to
migrate by moving from one position to another [42]. On the one hand,
this feature allows the operations to be decentralized; on the other,
interaction is possible with the environment around the agent. The scal-
ability of the system can be increased, and some context- and location-
aware mechanisms can be used.

Mobile agents seem to be a natural choice for dealing with issues related
to providing advanced services in mobile environments. Agent program-
ming technologies have emerged as a flexible and complementary way to
manage the resources of distributed systems due to the increased flexibility
in adapting to the dynamically changing requirements of such systems [15].
Such technology is considered to be both promising and challenging with

AU3833_C07.fm Page 162 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 163

regard to addressing personal or terminal mobility issues. Mobile agents
are considered to be an enabling technology for automated, flexible, and
customized service provisioning in a highly distributed way, as network
nodes become active and take part in the computation of applications and
provisioning of customized services. In addition to the clear separation of
key functionality and aspects of deployment on the functional side, such
technology offers potential technical advantages. Among them are reduced
communication cost, reduced bandwidth usage, the possibility of using
remote interfaces, and support for offline computation.

Mobile agents enable both temporal (i.e., over time) and spatial (i.e.,
over different nodes of the network) distributions of the service logic.
These distributions add another technical advantage (namely, scalability),
while at the same time such bottlenecks of centralized approaches as
reduced network availability and malfunctioning are avoided. What makes
this approach so appealing is how the previously discussed benefits of
mobile agents address the typical issues and restrictions of wireless com-
munication (e.g., low-bandwidth, high-latency networks; high bit error
rate; low processing power; small area available for the user interface).

Grid Computing Paradigm

When developing a powerful infrastructure that must provide services of
a guaranteed quality while maintaining the user’s profile and addressing
characteristics of mobile devices and the limited availability of resources,
it becomes apparent that the wired and the wireless components are not
as different as they might appear to be at first. In fact, strong coordination
between these two environments is necessary. The grid computing para-
digm [21] is a valid solution to implement distributed management strat-
egies in the wired part of the system, which must strongly interact with
the mechanisms available in the wireless part to provide ever more
sophisticated services with a high level of QoS. It is extremely important
to develop an infrastructure that provides effective QoS management and
allows mobile users to benefit from the service requested, regardless of
the device used and the users’ moves.

Grid refers to a new distributed computational infrastructure that pro-
vides an innovative method for accessing and distributing data and
resources. The idea on which the grid is based is allowing people to share
transparently and on a wide scale computational data and resources with
members of communities working toward the same purposes. Interest in
the grid technology has been growing, primarily among scientific com-
munities. The grid technology arose from the wide use of Internet com-
puting. The grid makes use of the idle resources available on the Internet
to perform distributed computational operations.

AU3833_C07.fm Page 163 Monday, August 14, 2006 3:17 PM

164 ■ Mobile Middleware

The grid is intended to provide a more rational use of the resources
distributed on the network. This rational use includes many operations
such as load balancing, QoS management, and secure access. Incorpora-
tion of the grid in the design of mobile middleware systems would make
possible such operations as:

■ More effective management of distributed data in the network (e.g.,
databases, online libraries, video-clips) — This offers the oppor-
tunity of moving data to bring it closer to the user or to manage
overload and fault tolerance situations.

■ Management of services according to the user’s device — For the
same user to access services through different environments, the
terminal equipment may have to be different; for example, a
terminal with a high-resolution screen may be desirable at home,
but a handheld terminal with a low-resolution screen may be the
cost of mobility. Clearly, as the environment changes, the content
to be delivered to the user also changes. A video conference, for
example, may be delivered as video and voice communications at
a fixed terminal or as voice and text only at a mobile terminal.

■ Service discovery — It would be possible to offer this feature through
the use of distributed strategies based on data replication.

Grid computing would seem to be a powerful strategy for the development
of middleware for ad hoc environments. In fact, the use of cooperative
and resource-sharing techniques between nodes is mandatory in environ-
ments not equipped with any wired infrastructure.

The so-called wireless grid [32] is a new research field aimed at
introducing grid computing concepts to systems composed of resource-
constrained devices to carry out complex tasks in a parallel way by sharing
the resources of idle devices. The peer-to-peer paradigm is used to
discover the services and the resources provided by the devices, and
component-based programming techniques are adopted to bind at runtime
the software modules shared by nodes. At the moment, the use of a
mobile grid in the design of mobile middleware for ad hoc environments
appears to be one of the most interesting directions to pursue.

References
[1] eXtensible Markup Language (XML), http://www.w3.org/XML/.
[2] OpenORB Project, http://openorb.sourceforge.net.
[3] Anastasi, G., Conti, M., Gregori, E., and Passarella, A., A performance study

of power-saving policies for Wi-Fi hotspots, Computer Networks, 45,
295–318, 2004.

AU3833_C07.fm Page 164 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 165

[4] Bellavista, P., Corradi, A., Montanari, R., and Stefanelli, C., Context-aware
middleware for resource management in the wireless Internet, IEEE Trans.
Software Eng., 29(12), 1086–1099, 2003.

[5] Bellavista, P., Corradi, A., and Stefanelli, C., Mobile agent middleware for
mobile computing, IEEE Comput., 34(3), 73–81, 2001.

[6] Bellavista, P., Corradi, A., and Stefanelli, C., Application-level QoS control
for video-on-demand, IEEE Internet Comput., 7(6), 16–24, 2003.

[7] Birrell, A.D. and Nelson, B.J., Implementing remote procedure calls, ACM
Trans. Comput. Syst., 2, 39–59, 1984.

[8] Box, D., Essential COM, Addison-Wesley, Boston, MA, 1998.
[9] Bruneo, D., Villari, M., Zaia, A., and Puliafito, A., VoD services for mobile

wireless devices, in Proc. of the IEEE Symp. on Computers and Communi-
cations (ISCC’2003), Antalya, Turkey, June 30–July 3, 2003, pp. 602–207,

[10] Bruneo, D., Paladina, L., Paone, M., and Puliafito, A., Resource reservation
in mobile wireless networks, in Proc. of the IEEE Symp. on Computers and
Communications (ISCC’2004), Alexandria, Egypt, June 28–July 1, 2004, pp.
460–465.

[11] Bruneo, D., Villari, M., Zaia, A., and Puliafito, A., QoS management for
MPEG-4 flows in wireless environment, Microprocessors Microsyst., 27(2),
85–92, 2003.

[12] Capra, L., Emmerich, W., and Mascolo, C., Middleware for mobile comput-
ing: awareness vs. transparency, in Proc. of the 8th Workshop on Hot Topics
in Operating Systems (HotOS), Schloss Elmau, Germany, May, 2001, pp.
164–169.

[13] Capra, L., Emmerich, W., and Mascolo, C., CARISMA: Context-aware reflec-
tive middleware system for mobile applications, IEEE Trans. Software Eng.,
29(10), 929–945, 2003.

[14] Chan, A. and Chuang, S.-N., MobiPADS: a reflective middleware for context-
aware mobile computing. IEEE Trans. Software Eng., 29(12), 1072–1085, 2003.

[15] La Corte, A., Puliafito, A., and Tomarchio, O., An agent-based framework
for mobile users, in Proc. of the European Research Seminar on Advances
in Distributed Systems (ERSADS’99), Madeira, Portugal, April 23–28, 1999.

[16] Eliassen, F. et al., Next generation middleware: requirements, architecture
and prototypes, in Proc. of the 7th IEEE Workshop on Future Trends of
Distributed Computing Systems (FTDCS’99), Capetown, South Africa,
December 20–22, 1999, pp. 60–65, 1999.

[17] Emmerich, W., Engineering Distributed Objects, John Wiley & Sons, New
York, 2000.

[18] Mascolo, C. et al., Xmiddle: a data-sharing middleware for mobile comput-
ing, Wireless Pers. Commun. Int. J., 21(1), 77–103, 2002.

[19] Etzioni, O. and Weld, D.S., Intelligent agents on the Internet: fact, fiction,
and forecast, IEEE Expert, 10(3), 44–49, 1995.

[20] Fok, C., Roman, G., and Hackmann, G., A lightweight coordination middle-
ware for mobile computing, in Proc. of the Sixth Int. Conf. on Coordination
Models and Languages, Pisa, Italy, February 24–27, 2004, pp. 135–151.

[21] Foster, I., Kesselman, C., and Tuecke, S., The anatomy of the grid: enabling
scalable virtual organizations, Int. J. Supercomputer Appl., 15(3), 200–222, 2001.

AU3833_C07.fm Page 165 Monday, August 14, 2006 3:17 PM

166 ■ Mobile Middleware

[22] Freeman, E., Hupfer, S., and Arnold, K., JavaSpaces: Principles, Patterns,
and Practice, Addison-Wesley, Boston, MA, 1999.

[23] Gilman, L. and Schreiber, R., Distributed Computing with IBM MQSeries,
John Wiley & Sons, New York, 1996.

[24] Griswold, W.G. et al., ActiveCampus: experiments in community-oriented
ubiquitous computing, IEEE Comput., 37, 73–81, 2004.

[25] Hazas, M., Scott, J., and Krumm, J., Location-aware computing comes of
age, IEEE Comput., 37, 95–97, 2004.

[26] Hightower, J. and Borriello, G., Location systems for ubiquitous computing,
IEEE Comput., 34(8), 57–66, 2001.

[27] Hsieh, H. and Sivakumar, R., On using peer-to-peer communication in
cellular wireless data networks, IEEE Trans. Mobile Comput., 3(1), 57–72,
2004.

[28] Krosche, J., Baldzer, J., and Boll, S., MobiDENK: mobile multimedia in
monument conservation, IEEE Multimedia, 11, 72–77, 2004.

[29] Ledoux, T., OpenCorba: a reflective open brocker, in Proc. of the Second
Int. Conf. on Meta-Level Architectures and Reflection, Vol. 1616, Lecture
Notes in Computer Science, Springer, Berlin, 1999, pp. 197–214.

[30] Lee, D.L., Xu, J., Zheng, B., and Lee, W., Data management in location-
dependent information services, IEEE Pervasive Comput., 1(3), 65–72, 2002.

[31] Mascolo, C., Capra, L., and Emmerich, W., Middleware for mobile comput-
ing, in Networking 2002 Tutorial Papers, Vol. 2497, Lecture Notes on
Computer Science, Springer, Berlin, 2002, pp. 20–58.

[32] McKnight, L.W., Howison, J., and Bradner, S., Wireless grids: distributed
resource sharing by mobile, nomadic, and fixed devices, IEEE Internet
Comput., 8(4), 24–31, 2004.

[33] Nitzberg, B. and Lo, V., Distributed shared memory: a survey of issues and
algorithms, IEEE Comput., 24, 52–60, 1991.

[34] ISO, Open Distributed Processing: Reference Model, Technical Report ISO
10746-1, International Organization for Standardization, Geneva, Switzer-
land, 1998.

[35] Plagemann, T., Goebel, V., Griwodz, C., and Halvorsen, P., Towards mid-
dleware services for mobile ad hoc network applications, in Proc. of the
9th IEEE Workshop on Future Trends of Distributed Computing Systems
(FTDCS’03), San Juan, Puerto Rico, May, 2003, pp. 249–255.

[36] Pope, A., The CORBA Reference Guide: Understanding the Common Object
Request Broker Architecture, Addison-Wesley, Boston, MA, 1998.

[37] Rodriguez, M.D., Favela, J., Martinez, E.A., and Munoz, M.A., Location-aware
access to hospital information and services, IEEE Trans. Inform. Technol.
Biomed., 8(4), 448–455, 2004.

[38] Satyanarayanan, M., Kistler, J.J., Kumar, P., Okasaki, M.E., Siegel, E.H., and
Steere, D.C., CODA: a highly available file system for a distributed work-
station environment, IEEE Trans. Comput., 39(4), 447–459, 1990.

[39] Smith, B., Reflection and semantics in LISP, in Proc. of the 11th Annual
ACM Symp. on Principles of Programming Languages, Salt Lake City, UT,
January, 1984, pp. 23–35.

AU3833_C07.fm Page 166 Monday, August 14, 2006 3:17 PM

Mobile Middleware: Definition and Motivations ■ 167

[40] JavaSoft: Java Remote Method Invocation Specification, Revision 1.5, jdk 1.2
edition, Sun Microsystems, Santa Clara, CA, 1992.

[41] Tanenbaum, A.S., Computer Networks, 4th ed., Prentice Hall, Upper Saddle
River, NJ, 2002.

[42] Waldo, J., Mobile code, distributed computing, and agents, IEEE Intelligent
Syst., 16(2), 10–12, 2001.

[43] Wyckoff, P. et al., TSpaces, IBM Syst. J., 37(3), 454–474, 1998.
[44] Yu, Y., Krishnamachari, B., and Prasanna, V.K., Issues in designing middle-

ware for wireless sensor networks, IEEE Network, 18(1), 15–21, 2004.
[45] Zaia, A., Bruneo, D., and Puliafito, A., A scalable grid-based multimedia

server, in Proc. of Workshop on Emerging Technologies for Next Generation
GRID (ETNGRID-2004), Modena, Italy, June 14–16, 2004, pp. 337–342.

AU3833_C07.fm Page 167 Monday, August 14, 2006 3:17 PM

AU3833_C07.fm Page 168 Monday, August 14, 2006 3:17 PM

Section 2

EMERGING
TECHNOLOGIES FOR
MOBILE MIDDLEWARE

AU3833_S02.fm Page 169 Monday, August 14, 2006 3:19 PM

AU3833_S02.fm Page 170 Monday, August 14, 2006 3:19 PM

171

Chapter 8

Name Resolution
and Service Discovery
on the Internet and

in

Ad Hoc

 Networks

Paal E. Engelstad and Geir Egeland

CONTENTS

Name Resolution... 172
An Architecture for Naming Services .. 173

A Generic Model ... 173
The Domain Name System... 176

Resolving Names Without the Use of DNS Servers................................... 177
Multicast DNS Name Resolution .. 177
Link Local Multicast Name Resolution .. 178

Name Resolution in

Ad Hoc

 Networks ... 178
Characteristics of

Ad Hoc

 Networks .. 178
Reactive and Proactive Routing Protocols .. 179
The Importance of Name Resolution in MANETs............................ 181
Architectures for Resolving Host and
Service Names in

Ad Hoc

 Networks ... 181

AU3833_C08.fm Page 171 Tuesday, August 15, 2006 1:04 PM

172

■

Mobile Middleware

Emerging Principles for Name Resolution
in Reactive

Ad Hoc

 Networks .. 184
A Proposal for Name Resolution
in Reactive

Ad Hoc

 Networks .. 186
Service Discovery.. 188

A Generic Model... 189
User Agent ... 189
Service Agent ... 190
Directory Agent ... 190

Service Discovery on the Internet... 191
Current Practice for Service Discovery.. 191
Service Location Protocol ... 192
DNS Service Resource Records .. 193
XML Web Services/UDDI.. 194
Other Service Discovery Protocols .. 195

Service Discovery on Link Local Networks .. 195
Simple Service Discovery Protocol .. 195
Multicast DNS .. 196

Service Discovery in

Ad Hoc

 Networks.. 197
Service Discovery Mechanism for MANETs 197
Service Location Architectures
for Service Discovery on MANETs... 198
Emerging Principles for Service Discovery
on Reactively Routed MANETs .. 199
Proposed Solution for Service Discovery
in Reactive

Ad Hoc

 Networks .. 200
Evaluation of Service Location Architectures
in

Ad Hoc

 Networks ... 201
Architecture Evaluation ... 201

References ... 204

Name Resolution

As human beings, we prefer to remember the name of a computer.
Computers, on the other hand, prefer to address each other by numbers,
which on the Internet are 32 bits or 128 bits long, depending on the
Internet Protocol (IP) used (IPv4 or IPv6). This is one reason why we
need a naming service that handles mapping between computer names
that we humans find convenient to remember and the network addresses
(i.e., numbers) that computers deal with. Another reason is that, according
to the Internet model, an IP address does not identify a host, such as a
Web server, but a network interface. Although the host makes changes
to its network interface or network attachment, it is convenient for the
users and applications to allow the name of the host to remain unchanged.
As such, keeping different identifiers at different layers helps keep the

AU3833_C08.fm Page 172 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery

■

173

protocol layers more independent and also reduces problems associated
with layering violations. From a middleware perspective, naming services
are a question of keeping higher layer names of entities independent of
their lower layer identfiers and their actual locations. Here, the naming
service not only helps the users of applications but is also just as much
an aid for the software developer. This section familiarizes the reader with
the most common naming services used on the Internet and how names
can be resolved in wireless mobile

ad hoc

 networks (MANETs).

An Architecture for Naming Services

A fundamental facility in any computer network is the naming service,
which is the means by which names are associated with network addresses.
Network addresses are found based on their names; for example, to use
an electronic mail system the user must provide the name of the recipient
to whom the mail is being sent. To access a Web site, the user must provide
the universal resource locator (URL) of the site, which again is translated
into the network address of the computer hosting the Web site. To give
an example, the Domain Name System (DNS) [1,2] maps the host name
of the University of Oslo’s public Web server, which is www.uio.no, to
the IP address

129.240.4.44

. Another example is a Voice-over-IP (VoIP)
system that maps a Session Initiation Protocol (SIP) identifier to an E.164
number; for example, the URL

sip:dave@my_telecom.com:5060

 is
translated to

+47 904 30 495

. The association between a name and the
lower layer identifier of a network entity is called a

binding

. Some naming
services, such as DNS, can do reverse mapping (i.e., map an IP address
to a corresponding higher layer name) and mapping from one higher layer
name to another. In the following section, we will describe a generic model
for naming services, which will serve as a reference model for the remaining
part of the chapter.

A Generic Model

The process of looking up a name in a computer network normally
consists of the following steps: First, the binding between higher layer
names and lower layer addresses must be registered in the network. This
procedure can be referred to as

registration

. The registration is normally
done only once, and the binding is provided through some administrator
authority. The bindings are normally registered with a server that holds
a binding cache. An example of such an entity is a DNS server. With a
strict authentication regime, the registration can be done automatically, as
illustrated in message 1 of Figure 8.1. Second, the network entities that
desire to resolve a name must be informed of the corresponding binding

AU3833_C08.fm Page 173 Tuesday, August 15, 2006 1:04 PM

174

■

Mobile Middleware

that is registered in the network. This procedure can be referred to as

name resolution

. The two main approaches to name resolution are:

■

Push approach

 — The bindings are proactively broadcast to all
network entities that might have to use the bindings for name
resolution some time in the future.

■

Pull approach

 — A network entity that desires to resolve a name
to a network entity issues a request on demand at the time the
binding is needed.

Due to scalability issues, the

pull

 model has been chosen for use on the
Internet, and this model is the focus of the following sections.

The generic model involves four networking entities for the registration
and name resolution procedures:

■

A

user entity

 (UE) represents the network entity issuing a request
to resolve a name.

■

A

named entity

(NE) represents the network entity that a name
points to.

■

A

naming authority

(NA) is authorized to create a binding between
names and addresses of named entities (NEs).

■

A

Caching Coordinator Entity

 (CCE) provides intermediate storage
of bindings.

User Entity

The role of the user entity is to resolve the mapping between a name
and the lower layer identifiers of an NE by retrieving a binding from the
naming service. The UE may be software components or actual end users
who want to look up a specific name. In most cases, the UE will offer a
low-level functionality directed toward the system components. In the
Domain Name System, requests are issued by the

resolver

in the computer’s
operating system. The initiative to activate the resolver can come from an
end user typing a Web address in a browser or from an application
requiring access to a binding. The request will end up at the entity caching
the binding for the name requested, and the binding containing the
resolved identifiers will be returned to the resolver. This is illustrated with
messages 2 and 3 in Figure 8.1.

Named Entity

The named entity is the network entity (e.g., host or computer) identified
by a name. For communication, it uses the network interfaces referred to
by the lower layer identifiers of a binding.

AU3833_C08.fm Page 174 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery

■

175

Naming Authority

The naming authority is the authority or system of authorities permitted
to assign names to named entities and bindings between the names and
the lower layer identifiers of the NEs. This is normally only configured
once but might have to be updated if parameters of the network config-
uration changes. For example, an Internet Service Provider (ISP) can
perform the administrative task of configuring their DNS server to map
the network address of a customer’s public Web server to the network
address assigned to the customer, or the network administrator of an
enterprise network can configure the company’s local DNS server to map
a computer’s name to a fixed network address.

Solutions exist that enable a named entity to update its own binding
directly with a Caching Coordinator Entity. This requires the CCE to be
able to authenticate the NE. With no authentication, it would be possible
for someone to insert false information into the caching entity and, in a
worst-case scenario, impersonate another network entity by hijacking its
binding. The NE must also be authorized to automatically update its
binding, thus the node also plays a role in the naming authority.

Caching Coordinator Entity

The primary task of the Caching Coordinator Entity is to act as a cache
for name bindings. The CCEs are important for the efficiency of the naming
service in the presence of a large number of user entities and named
entities. Normally, the NE knows the location of the CCE with which it

Figure 8.1

A Cache Coordinator Entity (e.g., the enterprise DNS server) is updated
with a new binding for its named entity (e.g., a public Web server).

AU3833_C08.fm Page 175 Tuesday, August 15, 2006 1:04 PM

176

■

Mobile Middleware

is supposed to register its bindings. The UE, which somehow has to
retrieve this information, normally does not know the location of the CCE
where the binding is located. For the DNS, the location of the local CCE
(i.e., the local DNS server) is normally provided dynamically to the UE
by, for example, mechanisms such as the Dynamic Host Configuration
Protocol (DHCP). In this case, the UE normally uses the local CCE to
locate and retrieve a binding stored at another CCE on the Internet.

The Domain Name System

The distributed database of the DNS is indexed by domain names. Each
domain is basically just a path in an inverted tree referred to as the

domain
name space

. Figure 8.2 illustrates the structure of the domain name space.
The practical operation of the DNS system consists of three modules:

■

The

DNS resolver

, which generates DNS requests on behalf of
software programs

■

The

recursive DNS server

, which searches through the DNS in
response to queries from resolvers and returns answers to those
resolvers

■

The

authoritative DNS server

, which responds to queries from
recursive DNS servers

The DNS resolver acts as the user entity described earlier, and the DNS
servers act as CCEs. The registration is normally a manual process, and the
named entities normally do not take part in the name resolution process
(unless they use DNS Secure Dynamic Updates [5]).

Figure 8.2 Structure of the DNS name space.

AU3833_C08.fm Page 176 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery

■

177

Resolving Names Without the Use of DNS Servers

In some situations, it is not feasible to make use of the Domain Name
System to resolve name bindings, and in some cases the DNS might not
even be available. For example, consider a setting where people who
happen to meet in an airport lounge want to make use of the wireless
local area network (WLAN) feature of their laptops to connect to each
other to exchange music or other information they may find interesting
(Figure 8.3). Without any DNS service, they would have to identify
themselves using the network address, which for human beings is not
very appealing. If it was somehow possible to define a separate name
space in addition to the DNS, and if some mechanism could advertise
and resolve these names in such a spontaneous setting, users could search
and identify names in a more human-friendly way. Multicast DNS [6] and
Link Local Multicast Name Resolution [7] are two competing solutions
addressing this scenario.

Multicast DNS Name Resolution

Multicast DNS (mDNS) utilizes familiar DNS programming interfaces,
packet formats, and operating semantics in a small network where no
conventional DNS server has been installed [6]. In short, it enables a node
to search for the network address of a computer named X by sending a
multicast DNS message asking: “Does anyone know the network address
of node X?” If a node with the name X is present on the network, it will
respond by sending back a DNS response containing information about
its network address. Multicast DNS is a part of the Mac OS

®

 X operating
system, where its implementation is called

Rendezvous

.

Figure 8.3 Computers communicating without a DNS server.

AU3833_C08.fm Page 177 Tuesday, August 15, 2006 1:04 PM

178

■

Mobile Middleware

Link Local Multicast Name Resolution

Link Local Multicast Name Resolution (LLMNR) is a peer-to-peer name
resolution protocol focused on enabling resolution of names on the local
link [7]. LLMNR utilizes the DNS packet format and supports all DNS
formats, types, and classes. LLMNR is not intended as a replacement for
DNS, and as a result it is only used when a DNS server is either not
available or is not providing an answer to a query. LLMNR differs from
mDNS in many ways. First, LLMNR is an Internet Engineering Task Force
(IETF) standards track specification, while the mDNS that is used in Apple
Rendezvous is not. LLMNR is designed for use only on the local link, but
mDNS also offers sitewide usage. Furthermore, mDNS sends multicast
responses as well as multicast queries.

Name Resolution in

Ad Hoc

 Networks

Mobile

ad hoc

 networking was developed from military research on packet
radio networks. In the late 1990s, however, the topic was included as a
working group item of the IETF. The goal of the IETF was “to develop a
peer-to-peer mobile routing capability in a purely mobile, wireless domain.
This capability will exist beyond the fixed network (as supported by
traditional IP networking) and beyond the one-hop fringe of the fixed
network” [8].

Characteristics of Ad Hoc Networks

A mobile

ad hoc

 network consists of mobile routers, often simply referred
to as

nodes

. They are free to move about arbitrarily, and wireless tech-
nology is used for direct communication between the nodes. Due to the
dynamic nature of the wireless media and the arbitrary mobility of the
nodes, the network forms a random, multi-hop graph that changes with
time. The network is an autonomous system that may operate in isolation,
or it may optionally have gateways that connect it as a “stub” network to
a fixed network infrastructure. Because a node is not necessarily in direct
radio range with any other node in the network, the nodes must participate
in the routing process and be willing to forward packets on behalf of
other nodes in the network.

An

ad hoc

 network is a network that is created spontaneously, without
support from the existing fixed Internet infrastructure. The network might be
formed when people equipped with portable PCs come together at confer-
ences, or such a network can be used to combine a user’s personal wireless
devices into a personal area network (PAN).

Ad hoc

 networks may also be
formed during emergency situations when legacy network infrastructures are

AU3833_C08.fm Page 178 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery

■

179

unavailable or damaged. Yet another application of

ad hoc

 networking is on
a military battlefield where fixed network infrastructures are unavailable or
not feasible to use.

The salient characteristics of

ad hoc

 networks do not include simply
the dynamics of the network topology; in addition, the links are bandwidth
constrained and of ever-changing capacity. Furthermore, the nodes often
rely on energy-constrained batteries to move about freely, so energy
conservation is an important design goal for many

ad hoc

 networking
technologies. Due to the dynamic networking topology and the fact that
nodes might enter and leave the network frequently, it is often also
assumed that an

ad hoc

 network is without any preexisting infrastructure
and that it is difficult to maintain an infrastructure in such a dynamic
environment. Because of the lack of a preexisting infrastructure, it is
anticipated that direct peer-to-peer communication between nodes will
be popular on

ad hoc

 networks. This means that any node may in principle
operate as a server (e.g., Web server or SIP server) and be contacted
directly by other MANET nodes. Any node may also operate as a client
and contact other servers available in the network.

A mobile

ad hoc network that is equipped with IP-based routing is
normally referred to as a MANET. The two primary approaches to routing
in MANETs are reactive routing and proactive routing. These two
approaches are detailed below, with an emphasis on reactive routing.

Reactive and Proactive Routing Protocols

The routing protocols in mobile ad hoc networks can be reactive or
proactive. A reactive routing protocol has no prior knowledge of the network
topology but finds a route to a given destination on demand. A proactive
routing protocol, on the other hand, tries to always have a complete updated
picture of the network topology. Reactive routing protocols are normally
preferred when nodes are highly mobile, when only a subset of nodes are
communicating at any one time, and when communication sessions last for
relatively long times. Proactive routing protocols, on the other hand, are
preferred for lower levels of mobility and when communication is random
and sporadic. Reactive routing is not well known to most people, probably
because routing on the fixed Internet is proactive in nature.

A number of reactive routing protocols have been proposed over the
years. The most widely studied and popular proposals include the Ad
Hoc On-Demand Distance Vector (AODV) routing protocol [9] and the
Dynamic Source Routing (DSR) routing protocol [10]. Reactive protocols
allow source nodes to discover routes to an IP address on demand. Most
proposals, including AODV and DSR, work as follows: When a source
router requires a route to a destination IP address for which it does not

AU3833_C08.fm Page 179 Tuesday, August 15, 2006 1:04 PM

180 ■ Mobile Middleware

already have a route, it issues a route request (RREQ) packet. The packet
is broadcast by controlled flooding throughout the network, and it sets
up a return route to the source (Figure 8.4). If a router receiving the RREQ
is either the destination or has a valid route to the destination IP address,
it unicasts a route reply (RREP) back to the source along the reverse route.
The RREP normally sets up a forward route from source to destination;
thus, the pair of RREQ and RREP messages sets up a bidirectional unicast
route between source and destination. When the source router receives
the RREP, it may begin to forward data packets to the destination. (The
acronyms RREQ and RREP are borrowed from AODV.)

Most protocols let routes that are inactive eventually time out. If a link
becomes unavailable while the route is active, the routing protocol nor-
mally implements an algorithm to repair the route. Often the router
upstream of the link breakage would send an error message upstream
toward the source. The Ad Hoc On-Demand Distance Vector is a protocol
that stores state information in the network. Routers that receive RREQs
set up the return routes in the route tables as backward pointers to the
source router, and RREPs that are propagated back to the source along
the reverse route leave forward pointers to the destination in the route
tables. The Dynamic Source Routing protocol, on the other hand, does
not rely on routing state in the network; instead, DSR uses source routing.
The RREQ collects the IP addresses of all the nodes that it has passed on
the way to the destination. The destination subsequently sends a route
reply by source routing back to the source of the request, providing it
with the source route to the destination.

Figure 8.4 Route requests in AODV.

AU3833_C08.fm Page 180 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 181

The Importance of Name Resolution in MANETs

Name resolution is an important feature in an ad hoc network, as addresses
may change relatively frequently due to the network dynamics (nodes
entering and leaving the network). Furthermore, it is often not possible
to use the address as a well-known identifier, because IP addresses for
nodes on the MANET will normally be autoconfigured at random, and
nodes may also have to change addresses due to addressing conflicts.
Devices and resources should instead be identified by stable and unique
higher layer names (e.g., fully qualified domain names).

If a MANET is connected to the Internet, a MANET node may use the
existing mechanism for name resolution on the Internet (namely, DNS) to
look up the IP address of another MANET node; however, in most scenarios
the MANET will not always be permanently connected to a fixed infra-
structure, and the DNS infrastructure on the Internet might be unavailable.
Relying entirely on the DNS on the Internet would not be a robust solution
to name resolution in the MANET.

One option would be to introduce a DNS infrastructure into the
MANET; however, DNS is designed with a fixed network in mind and has
a relatively static, centralized, and hierarchical architecture that does not
fit well with MANETs. Without a name resolution method in place, MANET
users cannot easily use the applications that are developed for fixed
networks for local communication on the MANET. The following text
explores name resolutions in ad hoc networks. The focus is primarily on
name resolution in reactive MANETs, because name resolution in proactive
MANETs might be a less challenging task.

Architectures for Resolving Host and
Service Names in Ad Hoc Networks

For name resolution in ad hoc networks, a MANET node may play the
same role as discussed earlier for fixed networks. A node may act as a
user entity that wants to resolve a name, as a named entity that wants to
make its services available to other MANET nodes, or as a Caching
Coordinator Entity that holds a central repository for cached bindings and
assists other UEs and NEs with name resolution. A binding maps a name
to an IP address and possibly a port number that the UE may subsequently
use to contact the NE. Three name resolution architectures must be
considered for ad hoc networks:

■ Distributed architecture
■ Coordinator-based architecture
■ Hybrid architecture

AU3833_C08.fm Page 181 Tuesday, August 15, 2006 1:04 PM

182 ■ Mobile Middleware

Distributed Architecture

As shown in Figure 8.5, this architecture contains no CCE. Instead, a user
entity floods the name resolution request (NREQ) throughout its surround-
ings in the network. The flooding can be limited by a flooding scope
parameter. Each named entity responds to an NREQ for its own name (i.e.,
no name caching is allowed) with a unicast name resolution reply (NREP).

Coordinator-Based Architecture

Certain nodes in the MANET are chosen to be Caching Coordinator Entities,
a role quite similar to a DNS server. The interactions among user entities,
named entities, and Caching Coordinators are illustrated in Figure 8.6. The
CCEs announce their presences to the network by periodically flooding
CCE announcement messages. The flooding can be limited to a certain
number of hops, as determined by the Coordinator announcement scope
parameter. Due to the dynamics of ad hoc networks, the NEs must be
allowed to register their bindings automatically with the CCE; hence, an
NE that receives CCE announcements unicasts name registration messages
to register its bindings (i.e., names and associated IP addresses) with CCEs
in its surroundings. A UE that has received CCE announcement messages
may unicast an NREQ to a selected CCE to discover desired services. The
CCE finally responds with a unicast NREP. The selected CCE is often
referred to as an affiliated CCE.

Figure 8.5 Distributed architecture with user entities (UEs) and named entities
(NEs).

AU3833_C08.fm Page 182 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 183

Hybrid Architecture

This architecture combines the two architectures described previously. User
entities within the Coordinator announcement scope of one or more
Caching Coordinator Entities will register their bindings with them; how-
ever, they must also be ready to respond to flooded NREQs. When a UE
unicasts a NREQ to its affiliated CCE in line with the Coordinator-based
architecture (Figure 8.6), the CCE responds with a positive or negative
NREP; however, if there is no CCE in the surroundings of the UE or if the
affiliated CCE returned a negative NREP, the UE will simply fall back to
the distributed architecture (Figure 8.5). Both CCEs and NEs may respond
to a flooded NREQ with a positive NREP that matches the requested service.

Intermediate Node Caching

An additional alternative (or a supplement) to the three architectures is
to use intermediate node caching. The name resolution may, for example,
follow the distributed architecture, but intermediate nodes are allowed to
cache bindings found in NREPs that they are forwarding. Later, when
receiving a NREP for a cached binding, the intermediate node resolves
the name on behalf of the named entity according to the cached binding.
The bindings should contain a lifetime value that controls for how long
a binding should be kept valid in a cache.

Figure 8.6 Coordinator-based architecture with user entities (UEs), Caching
Coordinator Entities (CCEs), and named entities (NEs).

AU3833_C08.fm Page 183 Tuesday, August 15, 2006 1:04 PM

184 ■ Mobile Middleware

Emerging Principles for Name Resolution
in Reactive Ad Hoc Networks

Many ad hoc routing protocols are designed to conserve the scarce network-
ing resources by reducing the need for and negative impact of systemwide
flooded broadcasts. Flooded broadcasts exhaust the available bandwidth on
the network and reduce the scalability in terms of number of nodes accom-
modated on the network. Broadcasts also consume the battery power of all
networked devices. Reactive routing protocols, such as AODV, are designed
to reduce to the greatest extent possible the need for systemwide flooded
broadcasts associated with route discovery. Although route discovery is
efficient in terms of reducing the number of flooded broadcasts from two
to one, name resolution that is not optimized with respect to the route
discovery would not work efficiently with reactive routing. The process of
contacting a node on the MANET would require two or three broadcasts,
as illustrated in the left side of Figure 8.7. Two broadcasts are necessary for
the initial name resolution, because the user entities first have to flood a
name resolution request. The reply returned by a node that can resolve the
name also requires flooding, because the node does not have a route to the
node that issued the request. Finally, the UE will have to flood a regular
RREQ to find a route to the resolved IP address.

Alternatively, if the node resolving the name to an IP address is the
named entity of the name (and not a node that has cached the name
binding), the specification might mandate that the reply be returned by
unicast to the user entity. Then, before replying, the node must first flood
a RREQ to discover and set up a unicast route to the UE and send the
name resolution reply by unicast along this route. It would then be possible
to reduce the number of flooded broadcasts from three to two, because
the UE already has a route to the resolved IP address as a result of the
name resolution process when it contacts the NE. Further details are
provided in Engelstad et al. [11,12].

It is possible to reduce the number of flooded broadcast to one, as
illustrated in the right side of Figure 8.7. The solution is to use routing
messages as carriers for name resolution. First, the user entity floods the
name resolution request. By piggybacking the NREQ on a route request
packet, a return route to the UE is formed as part of this flooding. By also
piggybacking a name resolution reply on a route request packet, the NREP
is sent by unicast along the return route to the UE. The RREP also ensures
that a forward route is formed as part of this transmission. When the UE
finally contacts the service at the IP address of the resolved name, the
service request is unicast along the forward route that was put in place
by the RREP. In summary, only one flooded broadcast is required in total.
The idea of using routing messages as carriers has been proposed for name
resolution in Engelstad et al. [11]. In fact, the same mechanism can also

AU3833_C08.fm Page 184 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 185

be used for service resolution, as we will see in the discussion on service
discovery below.

Needless to say, this broadcast issue is a smaller problem in proactive
ad hoc networks, because all unicast communication (including the NREP)
can be sent along unicast routes established beforehand by the routing
protocol. The broadcasting of the NREQ might benefit from reusing the

Figure 8.7 Name resolution without optimization (left) and optimized (right).

AU3833_C08.fm Page 185 Tuesday, August 15, 2006 1:04 PM

186 ■ Mobile Middleware

efficient flooding capabilities (e.g., using multi-point relays) that are built-
in features of many proactive protocols, including the Optimized Link
State Routing (OLSR) protocol [13].

A Proposal for Name Resolution
in Reactive Ad Hoc Networks

Overview

A mechanism for name resolution in MANET is proposed in Engelstad et
al. [14]. It is mainly targeted at users that can supply their MANET node
with a fully qualified domain name (FQDN) from the globally unique DNS
name space. The user may have control over some part of the DNS name
space or may have received the FQDN from an organization to which the
user belongs or subscribes. The proposed name resolution scheme shares
characteristics of the Link Local Multicast Name Resolution protocol and
the multicast DNS protocol for local-link name resolution, presented earlier.
The mechanism proposed for ad hoc networks specifies compressed mes-
sage formats that allow for bandwidth-efficient name lookups. As an option,
it also specifies message formats that reuse the format of DNS messages,
which allows for name lookups that are fully compatible with DNS.

Name Resolution Requests and Replies

The proposed scheme uses the distributed architecture presented earlier,
with no intermediate node caching. No Caching Coordinators are allowed;
instead, only user entities and named entities are present on the MANET.
When a name resolution request is broadcast by flooding throughout the
MANET, each node with an NE processes the request. By carrying the
NREQ as an extension to a route request (Figure 8.8), the number of
broadcasts required for name resolution is reduced, as explained earlier
in this chapter; thus, a return unicast route to the UE of the request is
already in place for a node that wants to respond to the NREQ.

The destination IP address contained in the RREQ, which indicates the
address to which a route is sought, is set to a predefined value. This can
be a zero address, a broadcast address, or a preassigned multicast address
to which no node can cache a route. Intermediate nodes without a valid
address mapping for the requested name will not respond to the RREQ
part of the message. The NREP is carried as an extension to an RREP
message (Figure 8.8). The user entity sending the NREP will normally
include its own IP address as the destination IP address in the RREP
message to ensure that a forward route is formed. By carrying the response
in an RREP message, a responder that is identified by the name that is
sought can supply the UE with the resolved IP address in addition to a

AU3833_C08.fm Page 186 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 187

unicast route to that IP address. The UE does not have to issue an
additional broadcast to discover a route to the resolved address when it
subsequently tries to contact that address.

Interaction with External Networks

Mobile ad hoc networks might be connected to external networks through
Internet gateways (IGWs). An IGW is a MANET router that also is a host
or a router on an external network (with Internet connectivity). The IGW
may have access to a conventional DNS server over the external network,
and it may also provide other MANET nodes with access to the external
network. The scheme proposes to use each IGW as a DNS proxy, as
shown in Figure 8.9. The main advantage of using the IGW as a DNS
proxy is that there is only one name resolution scheme used on the
MANET and that nodes can resolve names in one single process.

Response Selection

A flooded name resolution request might result in reception of multiple
name resolution replies. If the named entity present in the MANET has
registered its name in the DNS, both the NE and each Internet gateway
present in the network may return an NREP. Furthermore, if the NREP

Figure 8.8 A name resolver (NR) floods a name resolution request (NREQ),
carried by a route request (RREQ) header, throughout the network (1). A name
server (NS) process with the requested name-to-address mapping unicasts a name
resolution reply (NREP), carried by a route reply (RREP) header, back along the
reverse route formed by the RREQ (2).

AU3833_C08.fm Page 187 Tuesday, August 15, 2006 1:04 PM

188 ■ Mobile Middleware

contains a DNS SRV resource record to resolve a non-unique service name
(as explained later in this chapter), many NEs present in the MANET may
respond to the same NREP. To deal with the possibility of multiple
responses, the user entity should wait for some milliseconds to collect
responses that might arrive. The proposal includes response selection rules
that ensure that a response from an NE present locally on the MANET
will always have preference over responses arriving from other nodes,
such as IGWs, because a local response might be more reliable and up
to date. Furthermore, a direct route through the MANET should normally
have preference compared to a route that goes through external networks.
If the UE has multiple addresses from which to select after applying this
selection rule, it should select (as a secondary selection rule) an IP address
to which it has a route that is preferred by the routing protocol. That
means that it will normally select an IP address to which it has valid
routes and select the IP address that is the fewest hops away from the UE.

Service Discovery
The only information two endpoints communicating over the Internet
must know, besides their own configuration, is the network address of
the end point with which they are communicating. Any of the two end
points might offer a wide range of services (e.g., e-mail, FTP, HTTP), but
no defined way exists for the other end point to find out which of these
services are being offered. Instead, the users themselves have to remember
the name of the computer offering the services and to know in advance
the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP)
port numbers associated with the set of services desired or to rely on the
well-known port numbers. Would it not be easier if services and the
associated IP addresses and port numbers could be searched for and
discovered dynamically? This was indeed the case for Macintosh computers

Figure 8.9 An Internet gateway (IGW) that receives a name resolution request
(NREQ) on the MANET (1) may try to resolve the requested name using the
Domain Name System (DNS) on the Internet (2). A successful response (3) may
be injected as a name resolution reply (NREP).

AU3833_C08.fm Page 188 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 189

that used AppleTalk® networking. The Mac user did not require any
assistance from a network administrator or even a complicated manual to
locate services. Service discovery worked automatically and was operated
by using a simple interface.

This section introduces the reader to various service discovery mech-
anisms that enable the same type of functionality that the AppleTalk
protocol offered [15]. Further, the reader is introduced to service discovery
mechanisms for an ad hoc network where traditional service discovery
mechanisms might be deficient and where service discovery is particularly
important because the availability of services is dependent on the network
dynamics.

A Generic Model

Users typically want to accomplish a certain task, not query a list of
devices to find out what services are running. It makes far more sense
for a client to ask a single question (“What print services are available?”)
than to query each available device with a question (“What services are
you running?”) and sift through the results looking for printers. This latter
approach, which is referred to as device-centric, not only is time consum-
ing but also generates a tremendous amount of network traffic, most of
it useless. On the other hand, a service-centric approach sends a single
query that generates only relevant replies. This is what service discovery
is all about. The process of discovering services on a computer network
is similar to the process of looking up a name described in the previous
chapter, but instead of asking “Who has this name?” service discovery
asks the question: “Who offers these services?” Normally three entities, or
agents, are necessary in a service discovery architecture for a computer
network:

■ A user agent (UA) that represents the network entity issuing a
request to find a service

■ A service agent (SA) that represents the service offered
■ A directory agent (DA) for intermediate storage of information

about available services

User Agent

The user agent represents the client part in the process of discovering
services. The UA may be a software component or an end user who wants
to locate a specific service. In most cases, the UA will offer a low-level
functionality directed toward system components.

AU3833_C08.fm Page 189 Tuesday, August 15, 2006 1:04 PM

190 ■ Mobile Middleware

Service Agent

The service agent represents the service in the architecture. This can be
the actual service or some entity representing it; such an entity is called
a proxy-SA. An SA will advertise the services it offers by either broadcast
or multicast service messages. If a directory agent exists, the SA will try
to register with it.

Directory Agent

A directory agent acts as a cache and will merely collect information from
the service agents and forward it on demand to user agents. The UAs and
SAs can use either passive or active DA discovery to find a DA (Figure
8.10). The service model can be divided into three architectures: distrib-
uted, centralized, and hybrid. In the distributed architecture, no DAs are
present. The UAs will issue a multicast message to find the SAs. The reply
from the SAs can be unicast, or multicast if the UAs have the ability to
use and manage a local cache of available SAs. In the centralized archi-
tecture, one or more DAs are present.

A variation of the centralized architecture is shown in Figure 8.11,
where the UA is retrieving service discovery bindings from the DA accord-
ing to the pull model. In this example, UAs are also proactively caching
announced bindings according to the push model, as illustrated in the left
part of the figure. (The push and pull approaches were described in the
previous section on name resolution.) In the hybrid approach, a UA will
first try to contact a DA according to the centralized architecture and fall
back to the distributed approach if no DA can be located.

Figure 8.10 Active and passive directory agent (DA) discovery.

AU3833_C08.fm Page 190 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 191

Service Discovery on the Internet

Current Practice for Service Discovery

When an application on computer A wants to connect with an application
on computer B, computer A requires the network address of computer B
and the port number of the service. The network address is necessary to
route A’s request to B. Because B may offer a multitude of services, a
port number is used to distinguish between the different services offered
at the same network address. Existing practice in IP networks is to go
through a three-step process to obtain the network address and the port
number of the services. The three steps consists of:

■ Mapping the service name to the name of the computer offering
the service

■ Mapping the port number of the service to a service name
■ Resolving the computer name to a network address using DNS or

a local name service

Figure 8.11 A service agent announces its services, and announcements can be
cached in both the directory agent (DA) and the user agent (UA) (a). If the UA
is searching for a service it has not heard being announced, it can broadcast a
service request or contact a DA directly. The DA will respond with information
about where the service can be located (b). The UA can access a service it has
learned about via a DA or from the SA directly (c).

AU3833_C08.fm Page 191 Tuesday, August 15, 2006 1:04 PM

192 ■ Mobile Middleware

Today’s IP network has no widely used mechanism to undertake the first
step of this process. A common method of advertising services is to map
the network address of the computer offering services and the service
name with the DNS service. Examples of such services can be a public
Web server, which is given the name “www” (e.g., www.some_domain.
com) or a public file transfer server, which is given the name “ftp” (e.g.,
ftp.some_domain.com).

The procedure for mapping port numbers to a service name is pretty
simple, and a one-to-one relationship exists between the service name and
the port number. The port number is assigned by the Internet Assigned
Number Authority (IANA) and is normally maintained in a database on the
local computer. The mapping between a service name and a port is typically:

<name> <port number>/<transport protocol> <aliases>

An example of mapping between a port and a service name is:

http → 80/tcp → www → www-http

The mapping of a network address to the computer offering the service
is normally done using address resolution through DNS or through a cache
at the local computer, if no access to any name server is available. As
can be seen, the procedure for discovering services on the Internet is
cumbersome and not very efficient.

Service Location Protocol

The Service Location Protocol (SLP) is an emerging Internet standard
provided by the IETF for automatic service discovery on the Internet [16].
SLP provides a framework to allow networking applications to discover
the existence, location, and configuration of networked services in enter-
prise networks. Traditionally, to locate services on the network, users of
network applications have been required to supply the host name or
network address of the machine that provides a desired service. Ensuring
that users and applications are supplied with the correct information has,
in many cases, become an administrative nightmare. SLP was inspired by
the AppleTalk® protocol [15], a mechanism created by Apple that proved
to be a huge success due to the simplicity and benefits of the solution.
The only drawback was that it did not scale very well. The main focus
of SLP is to be a mechanism that acts as an enabler for plug-and-play
functionality in IP networks with automatic and dynamic bindings between
services and service users. The SLP protocol introduces three major com-
ponents into the network:

AU3833_C08.fm Page 192 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 193

■ User agent (UA) — The SLP user agent is a software entity that is
looking for the location of one or more services. This search is
usually implemented (at least partially) as a library to which client
applications link, and it provides client applications with a simple
interface for accessing SLP registered service information.

■ Service agent (SA) — The SLP service agent is a software entity
that advertises the location of one or more services. SLP advertise-
ment is designed to be both scalable and effective, minimizing the
use of network bandwidth through the use of targeted multicast
messages and unicast responses to queries.

■ Directory agent (DA) — The SLP directory agent is a software entity
that acts as a centralized repository for service location information.
In a large network with many UAs and SAs, the amount of multicast
traffic involved in service discovery can become so large that
network performance degrades. By deploying one or more DAs,
both SAs and UAs make it a priority to discover available DAs, as
the use of a DA minimizes the amount of multicast messages sent
by the protocol on the network. The only SLP-registered multicast
in a network with DAs is for active and passive DA discovery.

The Service Location Protocol introduces dynamic naming services
without the need for any centralized name server or other agents. Because
SLP uses IP multicast for this purpose, it requires the cooperation of IP
routers that implement IP multicast. IP multicast is used for such features
as IP-based audio and video broadcasting and video conferencing, but IP
multicasting may not be completely implemented across some intranets.
In the absence of IP multicasting, SLP name lookups will only work within
the subnet on which they are performed or within the groups of subnets
over which IP multicast is supported.

The Service Location Protocol suffers from a lack of implementation
support, because individual companies, such as Apple and Microsoft, are
pushing different service discovery technologies. Generally, standardiza-
tion is a good thing but not very useful if no one provides implementation
support for the standards. The SLP has proved to be useful, especially for
UNIX® variants, and an open-source project exists to support service
discovery on operating systems such as Linux™ and BSD. (An implemen-
tation of SLP can be downloaded from www.openslp.org.)

DNS Service Resource Records

An alternative to building up a new SLP infrastructure on the Internet is
to reuse the existing DNS infrastructure and allow for service discovery
as an extension to DNS. Extensions to DNS are enabled through the use

AU3833_C08.fm Page 193 Tuesday, August 15, 2006 1:04 PM

194 ■ Mobile Middleware

of DNS resource records (DNS RRs). The most common resource record
for service location is the DNS SRV resource record [17]. DNS SRV was
originally designed to locate services on the global Internet. As an example,
let us assume that company_A has implemented the use of SRV in its DNS
server. Entries for the Hypertext Transfer Protocol (HTTP) and the Simple
Mail Transfer Protocol (SMTP) would look like this in the zone file for
company_A:

$ORIGIN company_A.com.
@ SOA server.company_A.com.

root.company_A.com. (
1995032001 3600 3600 604800 86400)

NS server.company_A.com.
http.tcp.www SRV 0 0 80 server.company_A.com.
smtp.tcp SRV 0 0 25 mail.company_A.com.
server A172.30.79.10
mail A172.30.79.11

For example, to locate an HTTP server that supports TCP and provides
Web service, it does a lookup for:

_http._tcp.www.company_A.com.

If the use of SRV had been widely deployed, a DNS server would have
answered with a list of Web servers that satisfied the searching criteria.

With no existing directory agent, this mechanism depends solely on
the DNS system. Critics claim that the deployment of it puts an extra
burden on an already overloaded DNS system. Furthermore, DNS SRV
only allows for simple service name resolution and has little support for
the type of service attribute negotiation that is accommodated by SLP.

XML Web Services/UDDI

An eXtensible Markup Language (XML) Web service is a service that
accommodates direct interaction using XML-based messaging (such as
Simple Object Access Protocol, or SOAP [18]) over Internet-based proto-
cols, such as HTTP. The interfaces and bindings of the Web service are
defined, described, and discovered by XML [19]. In addition to being able
to describe and invoke a Web service, publication of and discovery of
Web services should also be accommodated. The Universal Description,
Discovery, and Integration (UDDI) specification [20] is commonly accepted
to be the standard mechanism to handle this. UDDI registries provide a
publishing interface to allow for creation and deletion of entries in the

AU3833_C08.fm Page 194 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 195

registry and an inquiring interface to search for entries in the registry by
different search criteria. The interfaces are invoked by SOAP messages,
and as such UDDI itself can be thought of as an XML Web service. Each
entry in the UDDI registry contains three parts:

■ The white pages contain business information.
■ The yellow pages contain the service a business provides.
■ The green pages contain the specific services provided and tech-

nical information sufficient for a programmer to write an application
that makes use of the service.

Web services are described by XML using the Web Services Description
Language (WSDL) specification [21].

Other Service Discovery Protocols

The Salutation protocol [22] released by the Salutation Consortium in 1996
predates SLP. It introduces the same concept as a directory agent, referred
to as the Salutation Manager (SLM). In the Salutation protocol, user agents
and service agents are referred to as clients and servers, respectively. The
Salutation Manager Protocol (SMP) and Cisco’s Transport Manager™ are
used for the actual communication, utilizing remote procedure calls (RPCs).
SLM will also assist in establishing a session pipe over which a service
access between the client and the server can occur.

Jini™ [23] is another technology for service discovery that runs on top
of Java. It allows clients to join a Jini lookup service, which maintains
dynamic information about services in the network. The client can use it
for simple service discovery by requesting information about a particular
device. An attractive feature of Jini is that it also allows clients to download
Java code from the lookup service which is used to access the service;
however, it requires that the server must have already uploaded the Java
proxy that the client downloads from the lookup service. Jini also supports
the concepts of federations, where groups of devices may register with
each other to make their services available within the group.

Service Discovery on Link Local Networks

Simple Service Discovery Protocol

The Simple Service Discovery Protocol (SSDP) [24] is a part of Microsoft’s
Universal Plug and Play (UPnP™) [25] and provides a mechanism that
network clients can use to discover network services. UPnP supports self-
configuration networks by enabling the ability to automatically acquire an

AU3833_C08.fm Page 195 Tuesday, August 15, 2006 1:04 PM

196 ■ Mobile Middleware

IP address, announce a name, learn about the existence and capabilities
of other elements in the network, and inform others about their own
capabilities.

The UPnP protocols are based on open Internet-based communications
standards. UPnP is based on IP, TCP/User Datagram Protocol (UDP), HTTP,
and XML. The SSDP protocol specifies the use of multicast of UDP/HTTP
for announcements of services. The content of the service announcements
are described using XML. Hypertext Transfer Protocol Unicast (HTTPU)
and Hypertext Transfer Protocol Multicast (HTTMU) are used by SSDP to
generate requests over unicast and multicast. The SSDP architecture intro-
duces three entities into the network:

■ SSDP service — The SSDP service is a service agent and represents
the individual resources in an SSDP-enabled network. The agent
is defined in two versions, depending on whether or not an SSDP
proxy is available in the network. An SSDP service without proxy
support is a simple service where all messages are sent on an
SSDP reserved multicast group.

■ SSDP client — The SSDP client is a user agent. Initially, the SSDP
client will search for a proxy, followed by a search for other relevant
resources. If an SSDP proxy is available, all requests are done using
unicast. If it is not, the SSDP searches for services using multicast.
The SSDP client will cache all information about services and uses
a time stamp to manage the accuracy of the cache.

■ SSDP proxy — The SSDP proxy is a directory agent that gathers
information about available resources in the network. The proxy
can be viewed as a regular resource that caches and manages all
service information. An SSDP proxy is not a mandatory element
in an SSDP-enabled network, but it does improve the scalability
when deployed in large networks.

Multicast DNS

Domain Name System service discovery is a way of using standard DNS
programming interfaces, servers, and packet formats to browse the net-
work for services. As shown earlier, multicast DNS (mDNS) [26] can be
used to resolve names without the use of any DNS server. The same
multicast mechanism can be used to search for services, by requesting a
binding for the type of service wanted instead of requesting a binding
for a name. This is illustrated in Figure 8.12.

When a mDNS query is sent out for a given service type and domain,
any matching services reply with their names. The result is a list of available
services from which to choose. For example, an application that is searching

AU3833_C08.fm Page 196 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 197

for a printer that supports TCP and is located in the company_A domain
would issue a query for:

_lpr._tcp.company_A.com

Then, every printer attached to the LAN will answer with information
about its services, such as color and pages per minute. Using a mechanism
for automatic service discovery greatly simplifies the job of connecting
PCs, terminals, wireless units, and consumer electronics.

The caching of multicast packets can prevent hosts from requesting
information that has already been requested; for example, when one host
requests, say, a list of LPR print spoolers, the list of printers comes back
via multicast so all local hosts can see it. The next time a host requires
a list of print spoolers, it already has the list in its cache and does not
have to reissue the query.

Service Discovery in Ad Hoc Networks

Service Discovery Mechanism for MANETs

Discovery of services and other named resources is an important feature
for the usability of mobile ad hoc networks. The characteristics of ad hoc
networks were described earlier. We recall that a MANET is anticipated to
be without any preexisting infrastructure and that nodes may enter or leave
the network at any time. This makes efficient and timely service discovery
a challenging task. In a MANET, any node may in principle operate as a
server and provide its services to other MANET nodes. Any node may also
operate as a client and use the service discovery protocol to detect available
services in the network. The service attributes include service characteristics
and service binding information, such as IP addresses, port numbers and
protocols, that allow the client to initiate the selected service on the

Figure 8.12 The principle of multicast DNS.

AU3833_C08.fm Page 197 Tuesday, August 15, 2006 1:04 PM

198 ■ Mobile Middleware

appropriate server. Existing service discovery mechanisms, described in
previous sections, are designed with a fixed network in mind and might
not fit well with MANETs. Before a service discovery mechanism for ad
hoc networks can be designed, we must determine the necessary principles
for service discovery in ad hoc networks and evaluate which service
discovery architecture that is most suitable. The reader will observe that
name resolution and service discovery have many similar features in terms
of both discovery principles and possible architectures.

Service Location Architectures
for Service Discovery on MANETs

The architectures available for name resolution, as described for name
resolution above, are also available for service discovery. In the context
of service discovery, the Caching Coordinator Entity is normally referred
to as a service coordinator (SC), the user entity is referred to as a user
agent (UA), and the named entity (NE) is referred to as a service agent
(SA). Furthermore, the architectures are often referred to as distributed,
service-coordinator-based, and hybrid service location architectures. The
distributed architecture for MANETs is illustrated in Figure 8.13, and the
service-coordinator-based architecture is shown in Figure 8.14. The hybrid
architecture is a combination of the two: The UA tries to discover services
according to the service-coordinator-based architecture but falls back to
the distributed approach if the selected SC does not have the desired
binding or if no SC can be found.

Figure 8.13 Distributed architecture.

AU3833_C08.fm Page 198 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 199

Emerging Principles for Service Discovery
on Reactively Routed MANETs

The emerging principles for name resolution in reactive MANETs, in which
resolution requests and replies are carried by routing messages (outlined
earlier), are also useful for service discovery. In the context of service
discovery, service discovery requests (SREQs) and service discovery replies
(SREPs) are piggybacked on RREQ and RREP packets, respectively (Figure
8.15). The advantages of piggybacking service discovery on routing mes-
sages include:

■ Reverse routes to the user agent (i.e., client) are established along
with the SREQ so no additional route discovery is necessary to
relay the SREP back to the requestor.

■ Forward routes to the SC are established along with the SC
announcements so SREQs and service registrations can be unicast
to the SC.

■ A forward route is established along with the SREP so no additional
route discovery is necessary for further communication with the
node issuing the reply.

Figure 8.15 shows how service discovery can be streamlined with the
reactive routing protocol. Service Discovery Requests are piggybacked on
routing request packets, and service discovery replies are piggybacked on
routing reply packets. In addition, for the hybrid architecture, the SC

Figure 8.14 Service-coordinator-based architecture.

AU3833_C08.fm Page 199 Tuesday, August 15, 2006 1:04 PM

200 ■ Mobile Middleware

announcements are piggybacked on RREQ packets, and service registra-
tions are piggybacked on RREP packets. Thus, both the SC-based, hybrid
and distributed architectures can take advantage of this procedure.

Proposed Solution for Service Discovery
in Reactive Ad Hoc Networks

A solution for service discovery in reactive ad hoc networks has been
proposed in Koodli and Perkins [27]. It uses basically the same mechanism
as was presented for name resolution earlier in the chapter. It is based
on the distributed architecture without the use of any service coordinators,
but here the intermediate nodes are allowed to cache service bindings
and respond immediately if a valid binding is found. It also uses the same
technique to carry the discovery messages by the routing packets to allow
both services and the routes to the nodes providing these services to be
discovered in one round-trip. Koodli and Perkins [27] defined a service
binding as a mapping of a service name to an IP address. Different
encoding schemes, such as a service port request or service URL, can be
used to request a binding for an IP address. A service discovery request
for a service URL contains a service-type string and a service request
predicate of formats that are defined by SLP. The format of the URL and
the authentication block contained in the corresponding service discovery
reply are also defined by SLP; hence, not only are formats of SLP reused
but the authorization block also ensures that the service authorization
features of SLP are maintained. The use of SREQs for service ports assumes
that the user agents know in advance the well-defined (TCP or UDP) port
number associated with the requested service; hence, the SREQ only has
to contain the port number associated with the service application
requested. The proposed service discovery protocol considers the case
where the UA has neither a service binding nor an active route to a node
providing the desired service. It also considers the case where the route
is active but the service binding has expired (or is absent) and the case
where the service binding is active but the route has expired.

Figure 8.15 Routing packets carry service discovery messages.

Service discovery request (SREQ)

Service discovery reply (SREP)

Service coordinator announcement

Service registration

AU3833_C08.fm Page 200 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 201

Evaluation of Service Location Architectures
in Ad Hoc Networks

As a slight simplification, one could say that all of the service discovery
protocols presented earlier are based on two baseline mechanisms for the
management of service discovery information:

■ Information about services offered on the network is stored on
one or a few centralized nodes, referred to as service coordinators
(SCs) in this chapter.

■ Information about each service is stored on each node that is
offering the service.

In previous sections, we defined the service discovery architectures accord-
ing to the two mechanisms above. A solution that is based only on the
first mechanism is a service-coordinator-based architecture, and a solution
based only on the second mechanism is a distributed architecture. Finally,
a solution based on a mixture of both the first and the second mechanisms
is a hybrid architecture. In the next section, we evaluate the performance
of the hybrid and distributed architectures in a reactively routed MANET.
The architectures have been presented in detail earlier in the chapter.

Architecture Evaluation
The evaluation of the distributed and hybrid architectures is based on
results from Engelstad et al. [28]. The architectures can be configured by
different settings of the following two parameters:.

■ Flooding scope — This parameter determines the maximum number
of hops a flooded service discovery request is allowed to traverse
in the network (e.g., the flooding scope is four hops in Figure 8.13
and two hops in Figure 8.14).

■ SC announcement scope — This parameter determines the maxi-
mum number of hops a flooded SC announcement is allowed to
traverse in the network (e.g., Figure 8.14 illustrates a situation with
an SC announcement scope of two hops). This parameter is used
only in the hybrid architecture. Alternatively, the distributed archi-
tecture can be considered as a special case of a hybrid architecture
where the SC announcement scope is set to zero.

 The objective is to optimize the benefits of additional service availability
provided by the use of service coordinators against the cost of additional
overhead and possibly higher delay. We will consider the performance
measured by delay, by the service availability, and by the message
overhead.

AU3833_C08.fm Page 201 Tuesday, August 15, 2006 1:04 PM

202 ■ Mobile Middleware

Engelstad et al. [28] observed that the differences in delays between
the two architectures are only on the order of a few milliseconds. Because
service discovery is normally part of the service initiation, users would
normally accept an initial delay (e.g., when retrieving a Web page on the
Internet or for setting up an IP telephony call); hence, it was concluded
that the small observed differences in delay between the two architectures
should be considered negligible in this context. With delay out of the
picture, the key question is reduced to whether the increased service
availability is worth the increase in message overhead. The service avail-
ability can be defined as [29]:

A positive service discovery reply indicates successful contact with this
server via the given access information (i.e., a route to the resolved server
can be found).

It is observed in Figure 8.16 that the service availability is indeed higher
with the hybrid approach. Figure 8.16 also shows how the presence of
service coordinators (i.e., for the hybrid architecture) influences the service
availability. When comparing architectures that use the same flooding
scope, we find that the hybrid architecture improves the service availability
as compared to the distributed query-based architecture. The main reason
why SCs improve the service availability is that in some cases the SC will
be positioned in between the user agent and service agent. We may return
to Figure 8.14 for an example of such a situation. Here, the UA and SA
are four hops apart, but both are only two hops away from the SC. The
SC announcement and flooding scopes are both of two hops; hence, the
SA is able to register its services with the SC, and the UA is able to discover
the server by means of the SC. However, because the UA is four hops
away from the SA, the UA would not able to discover the SA if the
distributed architecture with a flooding scope of two hops had been used.

From Figure 8.16 we observe that, with SC announcement scopes of
one or two hops, the service availability is improved by 8.7 or 20.9 percent,
respectively, at a server density of 5 percent. Because the introduction of
SCs improves the service availability, it comes as no surprise that the
service availability increases with an increasing SC announcement scope.

Although the service coordinators introduced in the hybrid architecture
yield higher service availability, they also result in extra message overhead,
as observed in Figure 8.17. The SCs introduce two proactive elements to
the network — namely, SC announcements and service registrations. These
messages will take up a fixed bandwidth regardless of whether or not
there are clients doing service discoveries. In addition, these two types of

Service availability =
Number of positive service replies

Total number of service requests generated

AU3833_C08.fm Page 202 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 203

messages will also trigger pure route discovery messages when a reactive
routing protocol is being used. By comparing Figure 8.16 and Figure 8.17,
we observe that the additional cost of using SC in terms of percentage
increase in message overhead is much higher than the additional benefits
provided in terms of percentage increase in service availability.

A more rigorous analysis that compares the two architectures has been
undertaken in Engelstad et al. [28]. It takes into consideration a large range
of control parameters, such as server density, service coordinator density,
flooding scopes, SC announcement scopes, reasonable request frequen-
cies, number of different types of services, level of mobility, and so forth.
It is also argued that the conclusion is valid independent of the lengths
of the service discovery messages.

In Engelstad et al. [28], it is generally observed that for any hybrid
configuration with a given service coordinator announcement scope and
flooding scope it is always possible to find a distributed configuration
(with some flooding scope) that outperforms the hybrid configuration in
terms of both higher service availability and lower messaging overhead.
As the opposite is not the case, it is concluded that the distributed
architecture outperforms the hybrid architecture. Service discovery proto-
cols that are using SCs (or functionality similar to directory agents) do not

Figure 8.16 The introduction of SCs improves the service availability.

AU3833_C08.fm Page 203 Tuesday, August 15, 2006 1:04 PM

204 ■ Mobile Middleware

work well in ad hoc networks with reactive routing. The main reason is
that the increase in service availability by adding SCs is negligible com-
pared to the extra message overhead it causes.

In addition to the analyses presented in Engelstad et al. [28], several
other arguments would suggest against introducing service coordinators
in MANETs at large. First, the distributed architecture is considerably less
complex than the hybrid architecture. Furthermore, in a dynamic topology
with network entries and departures, the service coordinators of the hybrid
architecture have the disadvantage of sometimes providing the user agents
with “false positives” (i.e., with outdated bindings of servers that have
already left the network). Moreover, the hybrid approach may call for a
separate complicated mechanism for electing SCs, which might require a
substantial amount of network resources.

References
[1] Mockapetris, P., Domain Names: Concepts and Facilities, Request for Com-

ments 1034, Internet Engineering Task Force (IETF), November, 1987 (http://
www.ietf.org/rfc/rfc1034.txt).

Figure 8.17 Detailed comparison of message overhead by message type (server
density at 20 percent, flooding scope of two hops).

AU3833_C08.fm Page 204 Tuesday, August 15, 2006 1:04 PM

Name Resolution and Service Discovery ■ 205

[2] Mockapetris, P., Domain Names: Implementation and Specification, Request
for Comments 1035, Internet Engineering Task Force (IETF), November,
1987 (http://www.ietf.org/rfc/rfc1035.txt).

[3] Microsoft TechNet, Windows Internet Naming Service (WINS), Microsoft
Corporation, Redmond, WA (http://www.microsoft.com/technet/archive/
windows2000serv/evaluate/featfunc/nt5wins.mspx).

[4] Sun Microsystems, The Network Information Service (NIS)/Yellow Pages, Sun
Microsystems, Santa Clara, CA (http://www.sun.com).

[5] Wellington, B., Secure Domain Name System (DNS) Dynamic Update,
Request for Comments 3007, Internet Engineering Task Force (IETF),
November, 2000 (http://www.ietf.org/rfc/rfc3007.txt).

[6] Chesire, S. and Krochmal, M., Multicast DNS, IETF Internet Draft, draft-
cheshire-dnsext-multicastdns-04.txt, February, 2004 (http://files.dns-sd.org/
draft-cheshire-dnsext-nbp.txt).

[7] Aboba, B., Thaler, D., and Esibov, L., Linklocal Multicast Name Resolution
(LLMNR), draft-ietf-dnsext-mdns-39.txt, March, 2005 (http://tools.ietf.org/
wg/dnsext/draft-ietf-dnsext-mdns/draft-ietf-dnsext-mdns-39.txt).

[8] Macker, J. and Corson, S., Mobile Ad Hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations, Request for
Comments 2501, Internet Engineering Task Force (IETF), January, 1999
(http://www.ietf.org/rfc/rfc2501.txt).

[9] Perkins, C.E., Royer, E.M. and Das, S.R., Ad Hoc On-Demand Distance
Vector (AODV) Routing, Request for Comments 3561, Internet Engineering
Task Force (IETF), July, 2003 (http://www.ietf.org/rfc/rfc3561.txt).

[10] Johnson, D.B., Maltz, D.A. and Hu, J.-C., The Dynamic Source Routing
Protocol, IETF Internet Draft, draft-ietf-manet-dsr-10.txt, July, 2004
(http://www.ietf.org/internet-drafts/draft-ietf-manet-dsr-10.txt).

[11] Engelstad, P.E., Do, T.V. and Egeland, G., Name resolution in on-demand
MANETs and over external IP networks, in Proc. of the IEEE Int. Conf. on
Communications 2003 (ICC 2003), Seattle, WA, May 28–30, 2003
(http://www.unik.no/~paalee/publications/NR-paper-for-ICC2003.pdf).

[12] Engelstad, P.E., Do, T.V. and Jønvik, T.E., Name resolution in mobile ad
hoc networks, in Proc. of the 10th Int. Conf. on Telecom 2003 (ICT 2003),
Tahiti, February 23–March 1, 2003 (http://www.unik.no/~paalee/publica-
tions/NR-paper-for-ICT2003.pdf).

[13] Clausen, T. and Jacquet, P., Eds., Optimized Link State Routing Protocol
(OLSR), Request for Comments 3626, Internet Engineering Task Force (IETF),
October 2003 (http://www.ietf.org/rfc/rfc3626.txt).

[14] Engelstad, P.E., Egeland, G., Koodli, R., and Perkins, C.E., Name Resolution in
On-Demand MANETs and over External IP Networks, IETF Internet Draft, draft-
engelstad-manet-name-resolution-01.txt, February, 2004 (http://www.unik.no/
personer/paalee/publications/draft-engelstad-manet-name-resolution-01.txt).

[15] Apple Computers, Inside AppleTalk, 2006, http://www.developer.apple.com/
MacOs/opentransport/docs/dev/Inside_AppleTalk.pdf.

[16] Guttman, E., Perkins, C., Veizades, J., and Day, M., Service Location Protocol,
Version 2, Request for Comments 2608, Internet Engineering Task Force
(IETF), June, 1999 (http://www.ietf.org/rfc/rfc2608.txt).

AU3833_C08.fm Page 205 Tuesday, August 15, 2006 1:04 PM

206 ■ Mobile Middleware

[17] Gulbrandsen, A., Vixie, P., and Esibov, L., A DNS RR for Specifying the Location
of Services (DNS SRV), Request for Comments 2782, Internet Engineering Task
Force (IETF), February, 2000 (http://www.ietf.org/rfc/rfc2782.txt).

[18] Gudgin, M. et al., SOAP Version 1.2, Part 1: Messaging Framework, World
Wide Web Consortium (W3C) Recommendation, June, 2003 (http://www.
w3.org/TR/soap12-part1/).

[19] Bray, T. et al., Extensible Markup Language (XML) 1.0 (Second Edition),
World Wide Web Consortium (W3C) Recommendation, October, 2000
(http://www.w3.org/TR/2000/REC-xml-20001006).

[20] OASIS UDDI, Universal Description, Discovery, and Integration (UDDI) 2.0,
Organization for the Advancement of Structured Information Standards,
Boston, MA (http://www.uddi.org).

[21] Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S., Web Services
Description Language (WSDL) 1.1, World Wide Web Consortium (W3C)
Note, March, 2001 (http://www.w3.org/TR/2001/NOTE-wsdl-20010315).

[22] The Salutation Consortium, Salutation Architecture Specification Version
2.1, 1999.

[23] Sun Microsystems, Jini Network Technology, Sun Microsystems, Santa Clara,
CA (http://www.jini.org).

[24] Goland, Y. et al., Simple Service Discovery Protocol 1.0, IETF Internet Draft,
draft-cai-ssdp-v1-03.txt, October, 1999 (http://www.ietf.org/internet-
drafts/draft-cai-ssdp-v1-03.txt).

[25] Microsoft, Universal Plug-and-Play (UPnP) Forum, Microsoft Corporation,
Redwood, WA (http://www.upnp.org).

[26] Cheshire, S. and Krochmal, M., Multicast DNS, IETF Internet Draft, draft-
cheshire-dnsext-multicastdns-04.txt, February, 2004 (http://mirrors.isc.org/
pub/www.watersprings.org/pub/id/draft-cheshire-dnsext-multicastdns-
04.txt).

[27] Koodli, R. and Perkins, C.E., Service Discovery in On-Demand Ad Hoc
Networks, IETF Internet Draft, draft-koodli-manet-servicediscovery-00.txt,
October, 2002 (http://mirr ors.isc.org/pub/www.watersprings.org/
pub/id/draft-koodli-manet-servicediscovery-00.txt).

[28] Engelstad, P.E., Zheng, Y., Koodli, R., and Perkins, C.E., Service discovery
architectures for on-demand ad hoc networks, Int. J. Ad Hoc Sensor Wireless
Networks, 2(1), 27–58, 2006.

[29] Engelstad, P.E. and Zheng, Y., Evaluation of service discovery architectures
for mobile ad hoc networks, in Proc. of the 2nd Annual Conf. on Wireless
On-Demand Networks and Services (WONS 2005), St. Moritz, Switzerland,
January 19–21, 2005.

AU3833_C08.fm Page 206 Tuesday, August 15, 2006 1:04 PM

207

Chapter 9

Data Synchronization

Sachin Agarwal

CONTENTS

Introduction... 208
Need for Efficient Data Synchronization .. 209
Conflicts While Synchronizing Data.. 211
Characterization of Data-Synchronization Applications....................................... 213

Based on What Is Exchanged During Synchronization 213
Based on Application Tolerance to Inconsistency..................................... 213
Server Push Versus Client Pull... 214

Host-to-Host Data Synchronization Techniques... 215
Time Stamps.. 215
Version Vectors.. 216
Copy Sync.. 218
CPISync .. 219
Open Mobile Alliance (SyncML

®

).. 220
Multiple Device Synchronization... 222

The Coda File System... 224
Conclusions ... 225
Acknowledgments... 226
References ... 226

AU3833_C09.fm Page 207 Tuesday, August 15, 2006 3:18 PM

208

■

Mobile Middleware

Introduction

Distributed applications are modeled around replicating copies of the same
data on many hosts in a network for a variety of reasons. For one, system
designers can alleviate the single-server implosion problem and instead
distribute client requests for data across many hosting servers. Second,
making data locally available on a host speeds up applications because
the applications do not block for network input/output as data is trans-
mitted; in some networks, this latency can be on the order of hundreds
of milliseconds. Also, a desirable side effect is data robustness due to the
existence of redundant copies on geographically separated hosts.

Replicating data on mobile devices allows users to cut the chord and
carry data around without the need to always be connected to the data
server. Newer mobile devices are increasingly equipped with WiFi [1],
Bluetooth

®

 [2], and cellular-based data links to the Internet. Thus, the
amount of dynamic content stored on these devices has increased as
compared to earlier devices that only offered very limited or no connec-
tivity; consequently, stored data was rarely updated. The ability to dis-
connect with the network, make local changes, and then synchronize
these changes back into the system makes the mobile device a vital
extension of modern databases and collaborative tools.

Data synchronization allows users to work with offline data and make
independent edits (additions, deletions, and modifications) to the data
while disconnected from the network. These edits are later synchronized
with a server or possibly other mobile devices. Thus, data synchronization
is an enabling mechanism that removes the stringent requirement of
maintaining constant connectivity and allows users to run applications
while being disconnected from the network.

Data synchronization middleware has been an important component
of mobile device software offerings. For example, Microsoft provides the
ActiveSync

®

 [21] application on its Pocket PC platform to enable synchro-
nization between users’ PCs and Pocket PCs. In particular, ActiveSync
handles Pocket PC synchronization with address books, calendars, and
other personal information management (PIM) software installed on users’
computers. Similarly, the Palm

®

 platform offers HotSync

®

 [20], which
allows similar communication and synchronization between Palm per-
sonal digital assistants (PDAs) and user computers. As another example,
in the cellular handset arena some Siemens and Sony Ericsson handsets
use XTNDConnectPC [28].

In this chapter, we explore the data synchronization process in mobile
devices that have limited power resources, high latency connections, and
limited persistent storage memory. We first discuss why efficient data syn-
chronization

is vital to many distributed applications, in both the wired

AU3833_C09.fm Page 208 Tuesday, August 15, 2006 3:18 PM

Data Synchronization

■

209

and wireless mobile world. We discuss the important problem of conflicts
and some well known strategies to resolve these conflicts. We then survey
a number of commonly used synchronization techniques by examining
their high-level algorithms and compare their characteristics, highlighting
their strengths and weaknesses.

In this context, we divide our data synchronization survey into two
categories. The first category deals with the “atomic” process of two-
device synchronization — that is, the low-level algorithms that two hosts
(say, a mobile Pocket PC and a computer) use to synchronize their data.
The second category in our survey is that of multiple mobile devices
synchronizing with each other. This category includes enterprisewide
mobility solutions that permit offline modes of operation on multiple
devices when they are outside network coverage. These solutions seek
to provide seamless data synchronization when devices reconnect to the
network.

Our discussion includes the various tradeoffs among network latency,
computational complexity, and the amount of memory used to store
synchronization metadata. These tradeoffs can serve as guides to system
designers when they choose one data synchronization algorithm over
another based on the requirements of their application and characteristics
of the underlying network and devices. In our discussion, we consider
distributed data to be a

database

 that is replicated on many hosts and
must be synchronized periodically. Usually, this database is a set of key–
value pairs representing information in a distributed application. The value
in the key–value pair is a

data item

. We use the terms

hosts

,

devices

, and

mobile devices

 interchangeably, depending on the context.

Need for Efficient Data Synchronization

The usability of distributed systems often deteriorates as hosts edit their
databases independently, making the data more and more dissimilar, a
condition referred to as data

inconsistency

 among distributed copies of
the database.

Consistency

 is defined as the (desirable) condition in which
a read operation on a data item on any of the hosts participating in the
distributed system yields the same result at a given time. Moreover, the
result of a read operation should correspond to the value written to the
data item during the last write operation (on that data item) regardless of
the hosts on which the read and write operations are performed. This
type of strict data consistency is difficult to achieve on most networks.

Instead, the conditions are usually relaxed and a certain latency between
application of an edit to a data item and its propagation to other hosts in
the network is tolerated. This tolerance value is an application-dependent

AU3833_C09.fm Page 209 Tuesday, August 15, 2006 3:18 PM

210

■

Mobile Middleware

design parameter, although hard constraints, such as underlying network
delays, set the minimum bounds on when an update will be propagated
to all other hosts.

Data synchronization has been a vital part of almost all distributed
systems. Figure 9.1 shows a typical distributed application algorithm with
respect to replication and synchronization. The important observation is
that data synchronization is a repetitive and frequent process during the
life of the application; hence, each run of the data synchronization protocol
must be highly efficient because it is invoked multiple times on multiple
hosts participating in the distributed application.

Distributed databases and file systems such as Coda [3] must synchro-
nize data on a periodic basis to be useful to users, as we discuss in a
later section. Numerous Internet-based services, such as OSPF [4], link
state updates, PGP key services [5,6], the Internet Domain Name System
(DNS) [7], document versioning and backup systems, and server mirroring;
also, Akamai

®

-type [8] load-balancing applications routinely use data rep-
lication and synchronization in one form or another. Open-source utilities
such as rsync [11] and Unison [12] are used to synchronize files with a
minimum transfer of redundant information. These utilities actually syn-
chronize file data instead of key–value-pair databases and successfully
preserve the structure of the text while synchronizing file edits effi-
ciently. Document and source code versioning systems such as Concurrent

Figure 9.1 Distributed applications repeatedly call data synchronization rou-
tines during their lifetimes.

AU3833_C09.fm Page 210 Tuesday, August 15, 2006 3:18 PM

Data Synchronization

■

211

Versions System (CVS) [30] and Subversion (SVN) [31] use variants of
replication and file synchronization algorithms to keep consistent copies
of edited files.

In the mobile world, many PDAs and cellphones offer data synchro-
nization facilities with users’ computers. These facilities support personal
information management (PIM) tools, such as address books and cal-
endars, that can be made consistent across many mobile devices and
also on Internet-based PIM. For example, Bayou [9] proposed to enable
collaboration among mobile users who intermittently connect to access
distributed calendars, e-mails, documents, databases, etc. Real-time col-
laborative and database applications (e.g., inventory control in ware-
houses that use PDAs and tablets as inventory database front ends) also
require data synchronization on a continual, repetitive, and often real-
time basis.

Mobile devices are especially dependent on data synchronization mid-
dleware to maintain consistency with other user-owned devices such as
laptops, PCs, and Internet-based PIM solutions because the data synchro-
nization middleware that connects them to PCs is often the only commu-
nication conduit to the outside world. In addition, the fact that mobile
devices almost always find the most utility in disconnected situations
makes data synchronization an indispensable part of their functionality.
Many enterprisewide mobile device deployments routinely use some form

of data synchronization to keep mobile devices updated. For example,
mobile extensions of database servers such as Oracle

®

 Lite™ [32] and
Sybase

®

 iAnywhere™ [33] have elaborate mechanisms to resynchronize and
merge mobile client data as they return to connected states.

Conflicts While Synchronizing Data

When two hosts synchronize data, a problematic condition known as a

conflict

 can arise. A conflict occurs when the synchronization algorithm is
unable to make an unambiguous decision about which copy of a synchro-
nizing host’s particular data item is to be used and which copies are to
be discarded (i.e., each host’s database has a different data value corre-
sponding to the same key). An example of this type of situation is illustrated
in Figure 9.2. Initially, the home computer and the office computer are
both synchronized and their databases are identical, but then the users of
both independently modify the data item corresponding to the key “Wed,”
thus creating a conflict. When the two computers synchronize, it will not
be possible to determine which data item to overwrite and which data
item to keep for the key “Wed” (“Walk” or “Weep”).

AU3833_C09.fm Page 211 Tuesday, August 15, 2006 3:18 PM

212

■

Mobile Middleware

Hosts usually make a reference copy of the synchronized database at
the end of synchronization that they can use to differentiate between new
edits and the original values so they can decide which data items have
been modified since the last data synchronization, but this modification
information is not useful in our above example because both hosts have
modified the same data item. Techniques such as storing and comparing
the time of the edits is not universally applicable, because there are no
guarantees on clock synchronization, particularly in heterogeneous mobile
networks.

Conflicts are usually resolved either by human intervention or through
arbitrary rules; for example, a rule could be that the office computer is
always right. In this case, the data item corresponding to the key “Wed”
will become “Weep” if this rule is applied to our example. In simple
settings such as PC–PDA synchronization, the middleware orchestrating
the synchronization (e.g., ActiveSync on Pocket PCs, HotSync on Palm
PDAs) may prompt the human user to resolve the conflict by choosing
one data item over the other.

So far we have discussed conflicts from the perspective of a key–value-
pair database, but analogous situations may occur in text files — for
example, when a character at a particular location in the text is changed
independently on the synchronizing hosts. We briefly revisit the problem
of conflicts in our discussion on SyncML

®

. In the rest of the chapter,
however, we skirt this important issue of conflicts and instead direct the
user toward some excellent references in database literature [10].

Figure 9.2 A conflict occurs when both hosts modify the same data item and
then try to synchronize at a later time.

AU3833_C09.fm Page 212 Tuesday, August 15, 2006 3:18 PM

Data Synchronization

■

213

Characterization of Data-
Synchronization Applications

Based on What Is Exchanged During Synchronization

Mobile and fixed hosts can synchronize databases in two possible ways:

■

They can exchange data items that have changed since the last
synchronization.

■

They can exchange a list of operations performed on the database
since the last synchronization was completed. Each recipient host
can then apply the received list of operations to the reference copy
(stored at the end of the last synchronization) of the database in
order to obtain the sending host’s current database. A comparison
yields the differences and the next synchronization state can be
computed.

Both approaches are used in mobile devices, although the former is
probably more useful when the operations are very complex. The second
approach might be useful when updates are being propagated from a
limited-bandwidth mobile client to a server because it may result in
significant communication savings as compared to sending the data items.
For example, if the data item in question is a large image and some image
processing was performed between synchronizations on the mobile client,
then sending the list of image processing operations instead of sending
the image can significantly reduce the communication.

Based on Application Tolerance to Inconsistency

Data synchronization services a wide variety of applications that have
varying tolerance requirements with regard to consistency. We can classify
data synchronization on the basis of the time between two successive
data synchronizations. This time varies depending on the applications
employing the data synchronization protocols. We show these require-
ments for some representative applications in Figure 9.3. Collaborative
tools and databases usually synchronize in real time and provide a high
degree of consistency. Other systems such as PGP key-servers or the
Internet DNS servers may synchronize among each other every few hours.
Mobile device users synchronize their PIM information with their personal
computers and cellular phones every few days or even weeks. It is
important to ascertain this frequency of synchronization for a distributed
application in the design phase itself so an appropriate data synchroni-
zation algorithm can be adopted.

AU3833_C09.fm Page 213 Tuesday, August 15, 2006 3:18 PM

214

■

Mobile Middleware

Mobile devices impose stricter restrictions on resources such as battery
power, network bandwidth, processing capabilities, and available memory,
and these factors also have to be taken into account when designing an
appropriate synchronization protocol. In general, communication-intensive
data synchronization protocols have a direct bearing on the power con-
sumed by the mobile device because signaling is a power-hungry process.
Although computationally intensive protocols also deplete battery power
by way of running the central processing unit (CPU) for extended periods,
designers first seek to reduce communication complexity because it is
more power hungry in general.

Server Push Versus Client Pull

The popularity of the RIM BlackBerry™ [34] mobile push-based, e-mail
device highlights the notion of server push-based services for mobile
devices. In the server push model, the server periodically initiates and
synchronizes with mobile clients. This model usually results in more con-
sistency because the synchronization step is initiated by the server at the
appropriate times; moreover, the server administrator can guarantee that a
certain update will reach

all

 clients by some specified time. This type of
guarantee is very important in many corporate settings, such as for inventory
management, processing financial data, etc. The obvious downside to this
model, of course, is the additional burden the server assumes (i.e., keeping
track of all clients and their data states in order to determine which client
to synchronize with next as data gets updated on the server).

Push-based synchronization is very useful in the one-way multicast
synchronization model, where a server simply multicasts updates to all
clients at periodic intervals. There are no updates in the reverse direction
(i.e., from the clients to the server). This model may be important in
keeping all clients in the same synchronized state as determined by the

Figure 9.3 These representative applications have varying requirements of time
between two successive data synchronizations.

AU3833_C09.fm Page 214 Tuesday, August 15, 2006 3:18 PM

Data Synchronization

■

215

server; for example, in a mobile network composed of one server and
many clients, the server could multicast an updated version of a program
or database to each client device.

In the client pull model, a client specifically requests synchronization
from a server. A good example is a Palm PDA user pushing the HotSync
button on the PDA that initiates synchronization between the HotSync
application running on the PC and the PDA. This model is more prone
to inconsistencies between the copies stored on various clients because
the decision of when to synchronize is left to the clients. On the positive
side, client-based synchronization architectures are more scalable because
clients only synchronize when they have to.

Host-to-Host Data Synchronization Techniques

In this section, we discuss some common approaches to data synchroni-
zation in a two-host setting. None of these approaches is a one-stop
solution to the data synchronization problem. By exposing some of the
important strengths and weakness of these approaches we hope to make
the reader aware of the tradeoffs involved in each approach when design-
ing the data synchronization component of a system. Agarwal et al. [13]
have elucidated some of the data-synchronization techniques mentioned
here and performed trials to substantiate their findings about the overhead
of these techniques. In this section, we describe five proposed approaches
to host-to-host data synchronization: time stamps, version vectors, copy
sync, CPI sync, and SyncML.

Time Stamps

A “mark-dirty” flag is associated with each key–value pair in a database.
The flag indicates if the data item (value) was edited since the last time
the database was synchronized with the other host. The algorithm works
by examining these flags to find those data items in a host’s database that
have changed since the last time the host synchronized with the other
host. The scheme is computationally fast; a single linear pass through the
database yields all the items that have been modified and must be
transmitted to the other host for synchronization.

An immediate problem with this scheme is that it only works well
when the same two devices synchronize; otherwise, a separate set of flags
(one set per additional host in the network) is required for each host in
the network. Each device, then, has to maintain metadata regarding the
sets of flags, the number of which grows linearly with the number of
devices as well as with the number of records in the database.

AU3833_C09.fm Page 215 Tuesday, August 15, 2006 3:18 PM

216

■

Mobile Middleware

Time stamps also suffer from a serious problem that causes inefficient
bandwidth usage. We illustrate this problem in Figure 9.4. Here we have
hosts A, B, and C that hold databases with items {

a

}, {

x

,

y

,

z

}, and {

c

},
respectively. Hosts A/C synchronize during Sync 1, then hosts A/B and
B/C synchronize during Sync 2. During Sync 2, the items

x

,

 y

, and

z

 that
newly populate databases at hosts A and C are marked as “new” (i.e., the
mark-dirty flag is set with respect to each other). So, when hosts A/C
synchronize again during Sync 4, items

x

,

 y

, and

z

 are exchanged again
even though both hosts already have these data items. The scenario
discussed in this example is common when many mobile devices syn-
chronize with each other in an

ad hoc

 manner.

Time-stamp-based synchronization is popular in mobile devices because
it can theoretically achieve the minimum communication complexity pos-
sible:

 O

(

d

), where

d

 differences exist among the synchronizing databases.
Part of its popularity stems from the the fact that most mobile devices do
not synchronize with many other hosts in today’s architectures. Moreover,
a popular architecture in multiple device synchronization is that of only
the one central server synchronizing individually with each other mobile
client. The problem of Figure 9.4 is avoided in this model, and only one
set of mark-dirty flags has to be maintained on each mobile client (i.e.,
with respect to the central server). A variant of time-stamp synchronization,
called

fastsync

, is implemented for Palm HotSync as well as Pocket PC
ActiveSync, the former supporting one set of mark-dirty flags and the latter
keeping two sets of mark-dirty flags.

Version Vectors

Version vectors can be thought of as a more refined implementation of
time stamps. They are also referred to as

version time stamps

. A version
vector is a array of counters stored on each synchronizing host. There is
one version vector for each data record in the database, with the length
of the vector being equal to the number of synchronizing hosts (

k

) in the
network. For simplicity of discussion, let us assume that the hosts have
IDs 1, 2, 3, …,

k

. Then, each host (

x

) stores a

k

 element version vector
(

v

x

) for each data record (

j

) in the database. To clarify further, we consider
all version vectors associated with a certain fixed record

j

 among the

n

records in the database in the subsequent discussion. Each element
(counter) of the version vector is set to 0 initially. Whenever host

x

 edits
record

j

, it increments the counter-associated vector

v

x

[

x

]

by 1. When a
host synchronizes record

j

 with another host (

y), it obtains vy from host
y and compares its own version vector vx with vy. Then,

AU3833_C09.fm Page 216 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 217

■ If vx[i] ≥ vy[i] for all i = 1, 2, 3, …, k, then the value of j stored on
host x is the more current value, and this is written to the next
synchronized state; vx is left unchanged.

■ If vx[i] ≤ vy[i] for all i = 1, 2, 3, …, k, then the value of j stored on
host y is the more current value, and this value is retrieved from
host y and written to the next synchronized state; vx is set to vy.

Otherwise, a conflict is signaled. An obvious flaw of version vectors is
the amount of metadata necessary for synchronization. Each host has to
store n such k-ary vectors. Another drawback is the recurring cost of
exchanging version vectors before any real data is exchanged.

Figure 9.4 Time-stamps are inefficient. Data items highlighted in bold are
exchanged during a synchronization operation. During Sync 4 hosts A and C
end up exchanging x, y, and z even though these are already available on both
the hosts.

AU3833_C09.fm Page 217 Tuesday, August 15, 2006 3:18 PM

218 ■ Mobile Middleware

Copy Sync

This form of synchronization involves comparing two databases on an
item-by-item basis to determine the edits (additions, deletions, or modi-
fications) on the constituent data items. One of the hosts can volunteer
to compare the two databases and then send back any changes required
on the other host’s database to achieve a synchronized state. The approach
is wasteful in communication bandwidth and suffers from high latency
because the entire database has to be first copied onto one host from
another before comparisons are made; however, certain benefits can justify
copy sync under some circumstances. If we assume that an n-item database
is organized in an indexed random access list, then the computational
complexity is simply O(n). This is also the lower bound on any comparison
algorithm (for sorted data) as each data item has to be at least read to
factor it into the comparison (hence, we need at least n reads).

The algorithm is simple to implement and has the desirable quality of
being asymmetric. By asymmetric, we mean that the bulk of the compu-
tation (the comparison) can be done on the more computationally capable
host. In many mobile devices, computational resources come at a pre-
mium; in fact, some mobile devices run a single thread of execution. It
suits such devices to leave the synchronization routine to, say, a PC if it
is synchronizing with one. If synchronization is to be run over high-speed
links such as a Universal Serial Bus (USB) [14] or Ethernet local area
network (LAN) (e.g., in PC–PDA synchronization) then communication is
not a bottleneck for moderate-size databases. Mobile devices and databases
do not have to keep track of any synchronization metadata, and it is not
necessary to upgrade currently deployed databases to hold additional
synchronization metadata such as the mark-dirty flags of time stamps or
the version vector arrays of version vectors.

Copy sync has significant shortcomings, some of which are particularly
relevant in mobile device networks. Communication bandwidth and
latency are major bottlenecks in mobile networks. Common mobile con-
nection technologies such as General Packet Radio Service (GPRS) [15]
do not yet offer high-bandwidth, low-latency links. In fact, copy sync
is sometimes referred to as “slow sync” in the literature due to the high
communication cost (time) of the algorithm. Although WiFi hotspots are
increasingly available and metropolitan mesh networks [16] are making
significant inroads, the bandwidth offered is shared bandwidth. If many
mobile devices frequently run communication-intensive tasks such as
copy sync algorithms, then the per-device bandwidth would suffer
greatly. Many revenue models for wireless network access charge users
on the basis of the amounts of data downloaded and uploaded; thus,
copy sync is not viable for many users.

AU3833_C09.fm Page 218 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 219

CPISync

Characteristic Polynomial Interpolation Synchronization (CPISync) is a set
synchronization algorithm that was first proposed by Minsky et al. [17]. It
was adopted in the mobile device scenario by implementing it on a Palm
PC–PDA synchronization [18], as well as a Linux™-based PDA-to-PDA
synchronization setting. CPISync achieves the theoretical information lower
bound (this lower bound simply states that the minimum communication
required is at least the size of the difference between the synchronizing
databases) on the communication required to synchronize two remotely
held databases to within a small constant. If hosts A and B have databases
SA = {a1, a2,…, an} and SB = {b1, b2, …, bk}, respectively, that differ in no
more than m differences, then the algorithm is as follows. Hosts A and
B compute their characteristic polynomials PA(z) and PB(z):

They evaluate PA(z) and PB(z) at m sample points {s1, s2,…, sm}. These are
known a priori on both hosts, and none of the sample points is a set
element of either SA or SB. Hosts A and B now have evaluation sets EA

and EB, respectively:

Host A sends EA to host B. Note that the size of the communication is
O(m) bits. Host B can now obtain m evaluations of a rational function:

Host B now interpolates these tuple points to obtain R(z). Note that the
degree of the rational function (i.e., the sum of the degrees of the numerator
and the denominator) cannot exceed m because R(z) = [PA(z)]/[PB(z)], and
sets A and B differ in no more than m elements. The numerator and
denominator of R(z) can be factored separately to obtain sets SA – SB and
SB – SA.

P z z a z a z a

P z z b z b z b

A n

B k

()

()

= −() −() −()
= −() −() −()

1 2

1 2

K

K

E P s P s P s

E P s P s P s

A A A A m

B B B B m

= () () (){ }
= () () (){ }

1 2

1 2

, , ,

, , ,

K

K

R s
P s

P s
s

P s

P s
s

P s

P s
A

B

A

B
m

A m

B m

= ()
()

()
()

()
()

1

1

1
2

2

2

, , , , , ,K

AU3833_C09.fm Page 219 Tuesday, August 15, 2006 3:18 PM

220 ■ Mobile Middleware

Interpolation and factorization are computationally expensive, with
expected time O(m3). The authors of the original CPISync paper described
a simple mechanism to guess m so it is no more than O(d), where d is
the number of differing entries in the set; thus, the communication is O(d)
and the computation is O(d3).

The communication complexity of CPISync is clearly better than copy
sync because it requires no wholesale transfer of the database prior to
synchronization. In addition, it is not necessary to maintain metadata such
as the mark-dirty flags of time stamps; however, the computational require-
ments of CPISync are more intensive compared to copy sync and time
stamps. Recent results [26] have reduced the computational complexity to
a linear level (instead of cubic), although these results rely on multiple
rounds of communication between the synchronizing hosts. In many cases,
a hybrid of some or all of the approaches discussed above yields the best
compromise; for example, the Palm OS mobile platform [20] uses a single
set of mark-dirty flags on their databases, so a PDA synchronizing with
the same host results in a time-stamp-based synchronization. However, if
a user alternates regularly between work and home computers, then the
set of mark-dirty flags is always ignored and a (slow) copy sync is run
to complete the synchronization. Microsoft’s ActiveSync [21] supports two
sets of mark-dirty flags on its Pocket PC platform, but beyond two hosts
the protocol will revert to copy sync. Hybrid protocols can be surprisingly
effective and practical, although they are heuristic solutions that do not
scale well with the network size for more general applications.

Open Mobile Alliance (SyncML®)

We have discussed some of the common approaches to synchronizing
two hosts and have emphasized that each algorithm has its benefits and
weaknesses. A major problem in the real world is that heterogeneous
devices, networks, and applications implement proprietary synchroniza-
tion protocols that seldom cooperate. A large number of (mostly) incom-
patible synchronization protocols for mobile devices is available today;
for example, the HotSync protocol [19] that synchronizes Palm-OS-based
PDAs and smart phones does not integrate with Microsoft’s ActiveSync
on the Windows® mobile Pocket PC and smart phone platforms. Similarly,
platforms such as Symbian™ OS [22] and ARM-based Linux distribution
PIM [23] are isolated from each other in the sense of not being able to
synchronize data seamlessly. This produces a significant cost overhead
when deploying heterogeneous multiple-vendor mobile devices in an
enterprise setting because of the need to install third-party adaptors, or,
worse, end users may have to compromise on their platforms of choice
to accommodate synchronizing to other devices.

AU3833_C09.fm Page 220 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 221

In 2000, many players in the mobile devices industry came together
and devised the SyncML [24] initiative to alleviate these incompatibility
problems. SyncML was recently consolidated into the Open Mobile Alli-
ance (OMA) [25]. All devices that conform to the SyncML standard must
provide an implementation of the standard SyncML interface, thus guar-
anteeing a degree of synchronization interoperability between heteroge-
neous devices. Although the specifics of the underlying implementation
can vary, the common SyncML interface allows devices to synchronize
among each other seamlessly.

A SyncML-compliant protocol is based on a client–server architecture
where one device acts as a client and initiates the synchronization protocol.
The SyncML protocol is formally divided into two parts. The SyncML Rep-
resentation protocol [24] deals with the semantics and representation of
SyncML messages, whereas the SyncML Synchronization protocol [24] defines
the steps undertaken on a client and server when they synchronize data.

A client synchronizes with a server by initiating contact and authenti-
cating itself. The many possible modes of data synchronization in SyncML
are shown in Figure 9.5. Two-way sync is a normal time-stamp-based or
other bandwidth-efficient way to synchronize. The copy sync protocol is
usually initiated under conditions when two-way sync is not feasible —
for example, when the client and server synchronize for the first time or
the synchronization metadata cannot be used for some other reason. A
one-way sync, on the other hand, results in the initiating host getting all
modifications from the request’s recipient. SyncML provides devices with
additional functionality that might not be considered data synchronization
in the traditional sense; for example, “refresh sync” essentially replicates
information from one host to the other. The designers of the protocol
thought it necessary to include such functionality to make the protocol
practical; for example, “refresh sync” simply copies over the data from
the initiating host to the other, overwriting all data on the recipient host.

Figure 9.5 Some of the common flavors of synchronization supported in the
SyncML interface.

AU3833_C09.fm Page 221 Tuesday, August 15, 2006 3:18 PM

222 ■ Mobile Middleware

The synchronizing devices can decide on the particular synchronization
method based on synchronization anchors that are exchanged when a
client contacts the server. A mismatch of these synchronization anchors
(set on the client and the server at the end of the previous synchronization)
indicates that the database has been reset since the last synchronization.
A reset means that the flags associated with the records of the synchro-
nizing database cannot be trusted, and this warrants a slow sync where
all data is replicated from the server to the client (or the other way). In
the case when the anchors match up, only the modifications have to be
transmitted in both directions.

Conflicts in SyncML are usually resolved at the server using pre-
established rules (not part of the formal specification but user imple-
mented), although a provision is made for client-side conflict resolution.
In the latter case, the server only returns notifications of conflicts to the
clients, and it is up to the synchronization engine of the client to actually
resolve the conflicts and apply these resolved conflicts on its copy of the
data. This approach may be useful, for example, when a user of the client
is required to make choices between data items to resolve the conflict.

Conflicts may be classified based on the reason for their occurrence.
Update conflicts, which are by far the most common conflicts, occur
when two devices modify the same data item (i.e., corresponding to
the same key). In light of the fact that SyncML is designed for mobile
clients, it differentiates between soft deletions and hard deletions. Soft
deletions are usually done on the mobile client to conserve storage
space and are not intended to delete the data on the server. Hard
deletes, on the other hand, signal that the data has to be deleted on
the server also. A hard–soft conflict occurs when the mobile client does
a soft delete and the server does a hard delete. SyncML does not provide
any mechanisms to resolve these conflicts, but it does include mecha-
nisms to notify the client when they occur. SyncML gives developers a
universal interface that can truly make interoperable heterogeneous
device synchronization possible. Just how pervasive this standard will
become will depend on whether some of the major vendors are willing
to adopt SyncML as their standard of choice rather than holding on to
their propriety synchronization protocols.

Multiple Device Synchronization
In a multi-host distributed application setting, a single host-to-host data
synchronization is just one of many synchronization operations that must
take place to bring all the hosts to an identical synchronized state. In
many distributed systems, this “identical” state is never achieved because
data synchronization and the introduction of inconsistencies are ongoing

AU3833_C09.fm Page 222 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 223

processes; however, a well-designed distributed system will not allow
more than a tolerable number of inconsistencies between any two hosts
in the system, the tolerance being an application-dependent parameter.

Most corporate mobile solutions seek to provide field personnel with
mobile devices on which they can enter or access enterprise data. The scale
of the deployment can be very large, often spanning hundreds or even
thousands of mobile devices. At this scale, problems such as conflict man-
agement and server implosion take on an entirely new urgency, and solutions
that merely throw more hardware and computational power at the server
return diminishing benefits because of the sheer size of the network and
the number of updates being independently generated in the field.

To illustrate these problems, we consider a standard model for
multiple mobile device synchronization whose variants are used in many
commercial systems, as shown in Figure 9.6. To handle a large number
of mobile clients, a separate synchronization server is set up as a proxy
between the application server and the mobile clients. The synchroni-
zation server collects and aggregates updates received from the various
clients and periodically sends these updates to the application server.
The application server applies the updates and returns a new synchro-
nized database copy to the synchronization server. This state becomes
the next current state of the database and is synchronized with the
clients connecting to the system.

Figure 9.6 A synchronization server acts as an update aggregator and proxy for
the application server.

Synchronization server
Update aggregation,
client scheduling

Application server
(e.g., mail/database/
exchange server)

AU3833_C09.fm Page 223 Tuesday, August 15, 2006 3:18 PM

224 ■ Mobile Middleware

The approach trades real-time updating of client data with scalability;
that is, even though client updates are not applied to the data of the
application server in real time, this approach scales well up to hundreds
and even thousands of clients. The non-real-time limitation in effect keeps
the application server from continually processing client updates and
becoming a scalability bottleneck. The shortcoming of the approach is that
mobile clients do not necessarily get the updates recently committed by
other clients because the available synchronized state stored on the syn-
chronization server that is downloaded to the client might not have been
updated. Good implementations usually let clients keep their own updates
rather than have them roll back (their own recent updates) to the current
synchronized state downloaded from the synchronization server; thus, users
at least do not see the slow synchronization problem overtly.

The Coda File System

The Coda file system developed at Carnegie Mellon University is an
example of a multiple-client distributed file system. A prototype imple-
mentation is available [27] and has been critically reviewed and studied
for the many features it offers. The Coda file system is useful when
users wish to share files or other information in a consistent manner.
A good example of its application would be when many users collab-
orate, share, and work on the same document. The Coda file system
has been ported to mobile devices, and it offers disconnected operation
for mobile clients under less than ideal conditions of server failures
and network partitioning due to partial network disconnections. It has
been demonstrated to work well with the mobile computing model of
intermittent connectivity and repeated synchronization when the mobile
client re-enters the connected world.

The system abstracts out the concept of a file system regardless of the
connectivity status. Under normal circumstances, users will not detect that
they have been disconnected from the file system. The underlying file
system caches user updates in a way that can be synchronized with the
server on reconnection. The Coda file system also caches popular files
(those accessed frequently by the user) when it is connected to the server,
a process known as hoarding. When users are disconnected, these files
can be served to the users if they so desire. Of course, there is no guarantee
that a file read requested by a user will succeed (the file may not exist
in the cache), but by making the cache sufficiently large there is a good
possibility that a user would find the file in the local cache during
disconnected operation. This push-based caching provides a transparent
illusion of connectivity to most casual users. The file system provides

AU3833_C09.fm Page 224 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 225

transparent resynchronization of the file when the user reconnects to the
system. Conflicts are possible due to concurrent updates of the same data
file. As in other systems discussed previously, these can be resolved either
through automatic update rules or by manual user intervention.

When a client is connected to a server, the Coda file system enforces
serial write privileges on files; that is, only one client is allowed to write
to a file, and other clients are only allowed to read the file. This ensures
that no conflicts arise while the clients are connected to the server. Of
course, this serialized write mechanism cannot be implemented on dis-
connected clients, but the file synchronization (automatic or manual) is
designed to handle these situations. The Coda file system also provides
the important functionality of server replication based on an implemen-
tation of version vectors.

Conclusions
Seamless and efficient synchronization across heterogeneous networks is
an important goal for the mobile wireless networked world. A wide variety
of synchronization issues can come up in any mobile device system design.
In this chapter, we have examined some of the possible host-to-host as
well as centralized synchronization approaches and protocols and high-
lighted their strengths and weaknesses. Although the choice of the syn-
chronization approach depends on the application as well as underlying
hardware and connectivity constraints, system designers do have a variety
of options from which to choose.

Time-stamp-based approaches provide fast synchronization but do not
scale well with network size. A more sophisticated version of time stamps,
called version vector synchronization, stores a large amount of metadata,
although it is highly efficient in locating conflicts. Copy sync, although
easy to implement, is communication intensive. CPISync is computationally
intensive and useful only when the number of differences between the
synchronizing hosts is small. Standards such as SyncML guarantee a
standard interface that enables interoperability between the various data
synchronization protocols and algorithms.

Multiple device synchronization remains a key challenge with regard
to scalability and the number of mobile clients it can support. This
challenge has taken on a new urgency with the emergence of mobile and
sensor devices that repeatedly replicate, update, and synchronize data
throughout their lifetime. The Coda file system is a good example of a
multi-device mobile file system that supports disconnected operation,
synchronizing updates, and handling data consistency gracefully.

AU3833_C09.fm Page 225 Tuesday, August 15, 2006 3:18 PM

226 ■ Mobile Middleware

Acknowledgments
The author is grateful to the National Science Foundation, which funded
his research in the area of data synchronization at Boston University, and
Ari Trachtenberg, who introduced him to the subject at the Laboratory of
Networking and Information Systems in the Electrical and Computer
Engineering department at Boston University. He also wishes to thank
David Starobinski for his input.

References
[1] IEEE standards wireless zone, http://standards.ieee.org/wireless/index.html.
[2] Bluetooth®, https://www.bluetooth.org/.
[3] Coda File System, http://www.coda.cs.cmu.edu/.
[4] Moy, R., OSPF Version 2, Request for Comments 1328, Network Working

Group, April, 1998 (http://www.faqs.org/rfcs/rfc2328.html).
[5] International PGP Home Page: http://www.pgpi.org/pgpi/.
[6] SKS: Synchronizing Key Server, http://www.nongnu.org/sks/.
[7] DNS protocol-related documents, http://www.faqs.org/rfcs/dns-rfcs.html.
[8] Akamai®, http://www.akamai.com.
[9] Xerox Palo Alto Research Center (PARC)’s Bayou project, http://www2.parc.

com/csl/projects/bayou/.
[10] Silberschartz, A., Korth, H.F., and Sudarshan, S., Database System Concepts,

3rd ed., McGraw-Hill, New York, 1997.
[11] Tridgell, A., Efficient Algorithms for Sorting and Synchronization, Ph.D.

thesis, The Australian National University, Acton, 2000.
[12] Unison file synchronization, http://www.cis.upenn.edu/~bcpierce/unison/.
[13] Agarwal, S., Starobinski, D., and Trachtenberg, A., On the scalability of data

synchronization protocols for PDAs and mobile devices, IEEE Network,
16(4), 22–28, 2002.

[14] Universal Serial Bus, http://www.usb.org/home.
[15] GSM World, http://www.gsmworld.com/technology/gprs/index.shtml.
[16] Akyildiz, I.F., Wang, X. and Wang, W., Wireless Mesh Networks: A Survey,

http://www.ece.gatech.edu/research/labs/bwn/mesh.pdf&e=9799.
[17] Minsky, Y., Trachtenberg, A., and Zippel, R., Set reconciliation with nearly

optimal communication complexity, in Proc. of the IEEE Int. Symp. on
Information Theory, Washington, D.C., June 24–29, p. 232.

[18] Trachtenberg, A., Starobinski, D., and Agarwal, S., Fast PDA synchronization
using characteristic polynomial interpolation, in Proc. of IEEE INFOCOM
2002, New York, June 23–27, 2002, pp. 1510–1519.

[19] Rhodes, N. and McKeehan, J., Palm Programming: The Developer’s Guide,
O’Reilly, Sebastopol, CA, 1999.

[20] Palm Source™, http://www.palmsource.com/.
[21] Microsoft ActiveSync®, http://www.microsoft.com/windowsmobile/pock-

etpc/.

AU3833_C09.fm Page 226 Tuesday, August 15, 2006 3:18 PM

Data Synchronization ■ 227

[22] Symbian™ OS, http://www.symbian.com/.
[23] Familiar Linux for Pocket PC, http://www.handhelds.org/.
[24] SyncML, http://www.openmobilealliance.org/tech/affiliates/syncml/syncm-

lindex.html.
[25] Open Mobile Alliance, http://www.openmobilealliance.org/.
[26] Minsky, Y. and Trachtenberg, A., Scalable set reconciliation, technical, in

Proc. of the 40th Annual Allerton Conf. on Communication, Control, and
Computing, Monticello, IL, October 3–5, 2002.

[27] Coda File System, http://www.coda.cs.cmu.edu/.
[28] Extended Systems, http://www.extendedsystems.com/.
[29] Terry, D.B., Demers, A.J., Petersen, K., Spreitzer, M.J., Theimer, M.M., and

Welch, B.B., Session guarantees for weakly consistent replicated data, in
Proc. of the Third Int. Conf. on Parallel and Distributed Information Systems,
Austin, TX, September 28–30, 1994, pp. 140–149.

[30] Concurrent Versions System (CVS), http://www.gnu.org/software/cvs/.
[31] Subversion, http://subversion.tigris.org/.
[32] Oracle® Database Lite 10g, http://www.oracle.com/technology/products/

lite/index.html.
[33] Sybase® iAnywhere™, http://www.ianywhere.com/.
[34] RIM BlackBerry™, http://www.blackberry.com/na/index.shtml.

AU3833_C09.fm Page 227 Tuesday, August 15, 2006 3:18 PM

AU3833_C09.fm Page 228 Tuesday, August 15, 2006 3:18 PM

229

Chapter 10

Uncoupling
Coordination:
Tuple-Based Models

for Mobility

Giacomo Cabri, Luca Ferrari, Letizia Leonardi,
Marco Mamei, and Franco Zambonelli

CONTENTS

Introduction... 230
Tuple-Based Coordination.. 231

Tuple-Based Coordination and Mobility... 232
Mobile Computing Core Challenges.. 233
Why Tuple-Based Coordination Models ... 234
A Case Study Application... 235

Middleware Taxonomy... 236
Middleware Location... 238

External Middleware: Impact on Interaction
Mechanisms and Context Awareness .. 238
Internal Middleware: Impact on Interaction
Mechanisms and Context Awareness .. 240

AU3833_C10.fm Page 229 Tuesday, August 15, 2006 10:25 AM

230

■

Mobile Middleware

Communication Extent ... 240
Local Communication: Impact on Interaction
Mechanisms and Context Awareness .. 240
Remote Communication: Impact on Interaction
Mechanisms and Context Awareness .. 241

Middleware Adaptability... 242
Simple Middleware: Impact on Interaction
Mechanisms and Context Awareness .. 242
Programmable Middleware: Impact on Interaction
Mechanisms and Context Awareness .. 243

Current Middleware Infrastructures... 244
A Walk Along the Communication Extent Axis ... 244
A Walk Along the Location Axis ... 247
A Walk Along the Adaptability Axis ... 248
Other Mixed Approaches ... 250

Open Issues and Research Directions .. 250
Overlay Networks and Overlay Data Structures .. 251
Stigmergy and Swarm Intelligence .. 252
Pervasive Spaces and Tuple Spaces.. 252

Conclusions ... 253
Acknowledgments... 253
References ... 253

Introduction

Computing is becoming intrinsically mobile and ubiquitous [4,11]. Com-
puter-based systems are going to be embedded in all of our everyday
objects and environments. These systems will typically be communication
enabled and capable of coordinating with each other within the context
of complex distributed applications to, for example, support our cooper-
ative activities, monitor and control our environments [3], and improve
our interactions with the physical world [19]. Also, because most of the
embeddings will be intrinsically mobile, such as a car or a human,
distributed active components will have to effectively interact with each
other and effectively coordinate their activities in a context-aware way,
despite the network and environmental dynamics induced by mobility.
From now on, we adopt the term

agents

 to indicate the active components
of a distributed application. Identifying proper coordination models and
the associated middleware services to effectively rule and control agents’
activities is a key research issue.

Among several proposals, tuple-based models rooted in the Linda
coordination language [13] appear very suitable for supporting coordination
activities in mobile computing settings. By promoting indirect coordination

AU3833_C10.fm Page 230 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility

■

231

via a sort of shared dataspace, tuple-based coordination uncouples inter-
acting agents and relieves them from the need of knowing each other

a
priori

 and of knowing their respective positions, information that would
be otherwise costly to obtain in dynamic and mobile computing scenarios.
Also, shared dataspace coordination models, such as tuple-based ones,
naturally support context-aware coordination models.

Beginning with the basic suitability of tuple-based coordination to
mobile computing, a number of diverse solutions can be conceived and
have been proposed to actually promote tuple-based coordination in the
form of middleware-level services for mobile computing. The aim of this
chapter is to provide an overview of the range of such possible solutions
and to survey the most relevant proposals for tuple-based coordination
in mobile computing systems. Specific attention is given to the software
engineering implications — that is, to the analysis of the support that the
surveyed models and middleware give to the software architect or pro-
grammer, in term of abstractions, tools, and application programming
interfaces (APIs).

Tuple-Based Coordination

Tuple-based coordination was first introduced in the late 1980s in the
form of the Linda coordination language for concurrent and parallel
programming [13], and it consisted of a limited set of primitives, the

coordination primitives

, to access a

tuple space

. Later, in the 1990s, the
model gained widespread recognition as a general-purpose coordination
paradigm for distributed programming. The atomic units of interaction in
tuple-based coordination are

tuples

. A tuple is a structured set of typed
data items. Coordination activities between application agents (including
synchronization) can take place indirectly via the exchange of tuples
through a shared

tuple space

, a sort of shared dataspace that acts simply
as a tuple container. The coordination primitives provided to agents grant
access to a shared tuple space.

A tuple can be written in the tuple space by an agent performing the

out

 output primitive. As an example,

out("amount"

,

 10

,

 a)

 writes
a tuple with three fields: the string

amount

, the integer

10

, and the
contents of the program variable

a

. Two input primitives (

rd

and

in

),
provided to associatively retrieve data from the tuple space, read or extract,
respectively, a tuple from the tuple space.

A

matching rule

 governs tuple selection to retrieve tuples from a tuple
space in an associative way: input operations take a

template

 as their
argument, and the returned tuple is one

matching

 the template. To match,
the template and the tuple must be of the same length, the field types

AU3833_C10.fm Page 231 Tuesday, August 15, 2006 10:25 AM

232

■

Mobile Middleware

must be the same, and the values of constant fields must be identical.
For example, the operation

 in("amount"

,

 ?b

,

 a)

 looks for a tuple
containing the string

amount

 as its first field, followed by a value of the
same type as the program variable

b

, and the value of the variable

a

.
The notation

?b

 indicates that the matching value is to be bound to
variable

b

 after retrieval. If the above tuple

("amount"

,

 10

,

 a)

 has
been inserted in the tuple space, then performing the previous

in

 oper-
ation activates the matching mechanism that associates the value

10

 to
the program variable

b

. Input operations are

blocking

; that is, they return
only when a matching tuple is found, thus providing a mechanism for
two agents to indirectly synchronize based on the occurrences of the
tuples. When multiple tuples match a template, one is selected nondeter-
ministically.

Other Linda operations include

inp

 and

rdp

, which are the

predica-
tive

,

nonblocking

 versions of

in

 and

rd

 and which return true if a
matching tuple has been found and false otherwise. Another operation is

eval

, which is intended to create an active tuple — a tuple for which
one or more fields do not have a definite value but which must be
computed by function calls. When such a tuple is emitted, a new process
is created for each function call to be computed. Eventually, when all
these processes have performed their computations, the active tuple is
replaced by a regular (passive) tuple, the function calls of which are
replaced by the corresponding computed values. However, the

eval

primitive has never been widely adopted, because process creation and
the lifecycle must always be dealt with (in actually implemented systems)
outside the tuple-based coordination system.

Based on the basic simple model presented above, different models
can be developed for tuples (e.g., based on objects, records, logic pred-
icates) and for pattern-matching mechanisms (e.g., object matching, data
matching, logic unification). The differences in these models are of little
relevance to our discussion in this chapter, where we primarily focus on
architectural and distributed software engineering issues.

Tuple-Based Coordination and Mobility

Let us now review the main challenges that have to be addressed when
developing distributed mobile applications and show how tuple-based
models can effectively deal with these challenges. To ground the discus-
sion, an example mobile computing application is introduced.

AU3833_C10.fm Page 232 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility

■

233

Mobile Computing Core Challenges

The core problems related to mobile computing derive from the fact that
applications will be embedded in complex, open, dynamic, and ever-
changing environments [10]. In particular:

■

Agents are connected to each other via

dynamic wireless net-
works

. Apart from technological issues, what really matters is
that these networks will be ever changing. Components will be
dynamically added or removed from them. Their topology will
change because of node mobility. An agent, executing in such
a network, would perceive an ever-changing environment run-
ning in different places and different contexts. Available com-
munication partners can become unreachable in a matter of a
few seconds and new ones can show up.

■

Besides being dynamic, these networks will be extremely

hetero-
geneous

 and

huge

. Consider a scenario a few years hence in which
a large city such as Boston might have several wireless base stations
in every building — a number of nodes on the order of 10

7

. If
most of the electrical devices in the buildings and those carried
by people are also wirelessly networked, then the total number of
nodes could be as high as 10

10

. If these nodes communicate peer-
to-peer with nearby devices, then one could envision the entire
city as being connected into a mobile

ad hoc

 network approxi-
mately 10

3

 hops in diameter.

■

Because pervasive and mobile computing systems will be every-
where and will have an impact on every moment of our life,
characteristics such as

security

 and

robustness will become even
more important. Hackers could gain entry to our cell/smart phones
and viruses, for example, could prevent our cars from braking.

■ Even worse, these systems are inherently difficult to test and debug.
Emergent unexpected situations can arise only when the system
is actually deployed, and offline simulations can lead to wrong
solutions. Moreover, in a dynamic system where components are
mobile and wirelessly interacting, debugging is extremely difficult
[10]: Who is talking with whom? What happened in the past?

Other than mere technological issues, the above are mostly modeling and
conceptual issues that impact the software engineering principles behind
mobile application development [31].

AU3833_C10.fm Page 233 Tuesday, August 15, 2006 10:25 AM

234 ■ Mobile Middleware

Why Tuple-Based Coordination Models

Keeping in mind the above issues, the reasons why tuple-based coordi-
nation models (although originally conceived for parallel and concurrent
systems) have been found to be suitable for developing open, distributed,
and mobile applications can be summarized as follows [5]:

■ Uncoupling — The use of a tuple space as the coordination
medium uncouples the coordinating components both in space
and time. An agent can perform an out operation independently
of the presence or even the existence of the retrieving agent and
can terminate its execution before such a tuple is actually retrieved.
Moreover, because agents do not have to be in the same place
to interact, the tuple space helps to minimize locality issues. In a
scenario such as mobile computing, where agents can come and
go at any time and can be at any location in a possibly large
network, the uncoupling feature is dramatically important.

■ Associative addressing — The template used to retrieve a tuple
specifies what kind of tuple is requested, rather than which tuple.
This well suits mobile agent scenarios. In a wide and dynamic
environment, a complete and updated knowledge of all execution
environments and of other application agents may be difficult or
even impossible to acquire. As agents would somehow require
pattern-matching mechanisms to deal with uncertainty, dynamicity,
and heterogeneity (as intrinsically exhibited by mobile computing
scenarios), it is worthwhile integrating these mechanisms directly
in the coordination model to simplify agent programming and
reduce application complexity.

■ Context awareness — A tuple space can act as a natural repository
of contextual information that allows agents to access information
about what is happening in the surrounding operational environ-
ment.

■ Security and robustness — A tuple space can be put in charge of
controlling all interactions performed via tuples, independently of
the identity of the involved agents. This fact, together with the
simplicity of the model, increases the degree of robustness of ant
systems based on such coordination models, particularly mobile
computing systems.

■ Separation of concerns — Coordination languages focus on the
issue of coordination only; they are not influenced by charac-
teristics of the host programming language or of the involved
hardware architecture. This leads to a clear coordination model,
simplifies programming, and intrinsically suits open and dynamic
scenarios.

AU3833_C10.fm Page 234 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 235

Summarizing, the Linda coordination model grants the flexibility and the
adaptability required in developing applications in mobile computing
scenarios.

A Case Study Application

At this point, it may be helpful to provide an application case study.
Because it involves a wide range of mobile computing applications, let
us consider a system to support visitors, each assumed to be carrying a
mobile device, to a large museum. The devices carried by the users can
be exploited to help the visitors achieve such goals as retrieving informa-
tion about art pieces, effectively orientating themselves in the museum,
and meeting up with each other (in the case of organized groups). Two
problems that might arise would be (a) gathering and exploiting informa-
tion related to art pieces the visitors want to see; and (2) planning and
coordinating their movements with other, possible unknown visitors (e.g.,
to avoid crowds or queues or to meet together at a desired location).

To this end, we can assume that: (a) the visitors are provided with a
software agent running on some wireless handheld device, such as a
computer or a cellphone, that gives the visitor information on the art
pieces and suggestions on where and when to move; (b) the museum
has an adequate embedded network infrastructure based on tuple-based
coordination models; and (c) both the devices and the handheld infra-
structures have localization mechanisms to determine where they actually
are located in the museum. With regard to the infrastructure embedded
in the museum walls (associated with either each piece of art or each
museum room), the museum must have a wired network of computer
hosts, each capable of communicating with each other and with the mobile
devices located in their proximity via the use of a short-range wireless
link. Within such an infrastructure, a multiplicity of tuple spaces (e.g., one
per museum room, plus any other ones that may be necessary for
administrative reasons) can be made available to agents to interact with
each other and to retrieve museum information.

In spite of the rather simplified description, this kind of system is a
case study that captures in a powerful way features and constraints of
mobile computing system:

■ It represents a very dynamic scenario. The system has to cope
with various museum floor plans and a variable number of visitors
entering and exiting the museum at different times and who quite
possibly will ignore or misunderstand the advice given by their
handheld devices. The uncoupling of tuple-based coordination
models minimizes such issues.

AU3833_C10.fm Page 235 Tuesday, August 15, 2006 10:25 AM

236 ■ Mobile Middleware

■ Inside large museums can be thousands of embedded electronic
devices and people with mobile devices. Multiple systems can be
running concurrently within the museum computer infrastructure
(e.g., lighting and heating systems) and other systems connected
to these other services. The associative mechanism of tuple spaces
helps in managing the appropriate information without imposing
a rigid schema on application agents and on the infrastructure.

■ Agents (in this case, visitors) have the primary goal of discovering
what the museum holds (i.e., to achieve context awareness). Tuple
spaces can be assumed to be a digital representation of a museum
room from which to obtain information about the context.

■ The system should be secure and robust, as malicious or badly
programmed agents could try to penetrate the system. Embedded
hosts can break down, wireless networks can have glitches, and
any kind of unexpected situation could arise. The system can cope
with these anomalies by controlling the requests posted in the
form of tuples for security’s sake and redirecting the requests to
other tuple spaces in a flexible way when parts of the systems are
not available.

■ By managing all interactions via tuple spaces, security and moni-
toring rules can be defined and enforced separately from the logic
of the museum services.

The above scenario and the associated coordination problems are of
a very general nature and are pertinent to such widely varying scenarios
as traffic management and forklift activity in a warehouse, where navigator-
equipped vehicles provide guidance to their operators. Or, consider soft-
ware agents exploring the Web, where mobile software agents coordinate
distributed research on various Web sites.

Middleware Taxonomy
Given the above-mentioned advantages of tuple-based models for mobile
computing scenarios, it is not surprising that several middleware infra-
structures and services relying on tuple-based coordination models have
been recently proposed. Although based on the same general concepts,
these systems tend to focus on different aspects of the aforementioned
problems and consequently adopt very different architectural solutions.
To study and compare such different systems, it is very important to: (1)
focus on a specific comparable subset of the services offered by different
middleware systems, and (2) to produce an effective taxonomy on which
to ground the comparison.

AU3833_C10.fm Page 236 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 237

With regard to the former point, we will focus on those services sup-
porting the coordination of agents from a software engineering perspective.
From such a perspective, we can identify two fundamental building blocks
of every coordination activity that has to be supported: interaction mech-
anisms and context awareness. On the one hand, it is obvious that coor-
dination requires some form of interaction. Agents need to communicate
in some way to decide, plan, and synchronize their actions. On the other
hand, the very nature of coordination requires context awareness. An agent
can meaningfully work together and combine efforts with other agents only
if it is somehow aware of what is around it (i.e., its context). Of course,
these two building blocks are tightly interwoven in that contextual infor-
mation can be communicated only via the available interaction mechanisms.
As already noted, tuple-based models are particularly effective in supporting
both of these activities; in fact, tuple spaces provide both an uncoupled
communication mechanism and a repository for contextual information. Still,
the specifics of different architectural solutions carry on different advantages
and drawbacks.

Thus, with regard to the latter point, our proposal is to classify
middleware infrastructures along three main axes (see Figure 10.1):

■ Middleware location
■ Communication extent
■ Middleware adaptability

Figure 10.1 The middleware 3D taxonomy schema.

AU3833_C10.fm Page 237 Tuesday, August 15, 2006 10:25 AM

238 ■ Mobile Middleware

On this basis, we can analyze how the positioning of a specific proposal
along each of these axes may impact the interaction mechanisms and
context awareness of the agents.

Middleware Location

We can classify various middleware infrastructures by considering the
following question: “Is the middleware something external, to which
agents connect, or is it something internal, such as an agent subsystem
(i.e., API)?” With regard to this question, we have developed two landmark
categories of middleware (landmark in the sense that intermediate–bor-
derline systems can also be conceived):

■ External middleware — The middleware is something like an
external service accessed by the agents; for example, a middleware
server offering a shared data space to which agents can post and
retrieve data would belong to this category.

■ Internal middleware — The middleware is strictly local, and each
agent is provided with its own private instance of the middleware;
for example, a middleware API that wraps and enriches the agent
communication features would belong to this category.

External Middleware: Impact on Interaction
Mechanisms and Context Awareness

The middleware locality strongly influences how and with whom agents
interact and, consequently, how contextual information is exchanged. Let
us focus on the external middleware case by considering the case study
application. In our museum example, we can suppose that the museum
building is provided with a network of middleware servers, installed in
every room and providing suitable services to enable the interactions of
agents. Agents connect to the closest middleware server to interact by,
for example, posting and retrieving messages or subscribing to events
(Figure 10.2a).

The first obvious point we can make is that, by definition, this kind
of middleware requires a deployed infrastructure, which means that this
kind of middleware is not suitable for ad hoc situations where coordinating
the agents (interaction plus context awareness) has to be achieved in
environments that are not instrumented. On the other hand, the availability
of an infrastructure greatly reduces the agent load (thus saving device
batteries), in that agents can demand of the infrastructure many operations;
for example, the pattern-matching operations of the tuples can be per-
formed on the infrastructure without consuming PDA resources.

AU3833_C10.fm Page 238 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 239

Another important consideration is that an external middleware, pos-
sibly accessed by a vast number of agents, can be the source of scalability
and robustness problems, representing a candidate bottleneck and a single
point of failure. If the middleware server in a room breaks down, com-
munication in that room would be disrupted; however, the use of external
middleware (especially when relying on a fixed network infrastructure)
avoids most of the resource constraints of mobile and pervasive devices
and thus is subject to fewer hardware problems (e.g., exhausted batteries
or wireless network glitches). Moreover, from the middleware developer
point of view, an external middleware is inherently simpler than an internal
one. External middleware, being detached from the agents, does not
require managing its own mobility and consequent reconfigurations and
dynamics.

Figure 10.2 (a) Museum with a set of external middleware servers accessed by
agents on a location basis. (b) The users’ agents are networked (e.g., via a mobile
ad hoc network) and they interact directly with each other by means of an internal
middleware.

(a)

(b)

AU3833_C10.fm Page 239 Tuesday, August 15, 2006 10:25 AM

240 ■ Mobile Middleware

Internal Middleware: Impact on Interaction
Mechanisms and Context Awareness

Turning our attention to the internal middleware case, we can suppose
that the users’ PDAs connect in a mobile ad hoc network (MANET) that
allows agents to communicate (see Figure 10.2b). In this scenario, most
of the points made earlier are turned upside down: Internal middleware
is suitable for coordinating the activities of agents in environments that
are not instrumented. It is thus less expensive to implement, because it
does not require installation costs. It is inherently scalable and robust in
that it eliminates bottlenecks and single points of failure. It is inherently
more complex, however, in that the middleware (internal to the agents)
must react to the movements of agents and to consequent reconfigurations.

Communication Extent

We now want to classify various middleware infrastructures by considering
the following question: “Given a set of middleware instances (whether
internal or external), how are they connected?” In this case, we can identify
two types of infrastructures:

■ Local middleware — In this kind of middleware, the various
instances are only locally connected or are not connected at all.
This means that a middleware instance can either communicate
only with other neighboring middleware instances or communicate
only with connected agents.

■ Remote middleware — This kind of middleware enables long-range,
multi-hop communications between its instances.

Local Communication: Impact on Interaction
Mechanisms and Context Awareness

Let us consider again Figure 10.2a, where it is clear that Bob and Alice
can interact by means of the services (e.g., shared space facility) offered
by the middleware server installed in room A. But, how can Bob and Jim
interact? It is clear that, if the middleware allows only local communication
across its instances, Bob and Jim cannot interact with the abstractions
promoted by the middleware (because they access separate, or disjoint,
shared data spaces). If they want to communicate, they must meet in a
specific room and use the middleware in that room to interact. Note that
communicating entities still must meet in the same room even when the
middleware is internal, but it enables a single-hop communication. Con-
sider the internal middleware scenario of Figure 10.2b and communication

AU3833_C10.fm Page 240 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 241

between Alice and Ally. If a barrier between Room A and Room B prevents
transmission of a communication signal, the only way Alice can commu-
nicate with Ally is to exploit the bridge offered by the already established
communication between Bob (with whom Alice can communicate, as she
is in the same room) and Jim (who can communicate with Ally). But, this
will require middleware able to establish multi-hop communication, par-
ticularly three hops (see Figure 10.2b). For simple internal middleware
that can only communicate by a single hop, this is not possible, and the
only way to achieve communication in this case is to have the commu-
nicating parties within the same room.

Of course, the same locality scope applies to context awareness. In
fact, each agent can only know information about what is happening in
its immediate neighborhood, and it is hoped that these will be the most
relevant for its actual execution. Although this strict locality requirement
for the interaction and perception of agents can be a severe limitation, it
is not necessarily bad. The locality scope reduces the problem of infor-
mation overload and allows the system to better scale with increasing size.

In the museum application, for example, having local communication
middleware would mean that agents could receive information related
only to art pieces in the room where they are. Most of the time, this is
not a problem as it is likely that visitors will request information about
art pieces they are actually viewing. Moreover, this enables the system to
scale better, in that an agent is not bothered with unnecessary information
related to irrelevant, faraway items. On the other hand, strict local com-
munications can represent a major obstacle for the motion coordination
task. If, for example, two visitors located on opposite sides of the museum
want to meet somewhere, it will be difficult to coordinate such a meeting.
Because they cannot interact, their only choices are to wander randomly
or to exploit information previously published within their locality scope
by other agents; for example, one of the two visitors moving through the
museum can store the tuple “I will be in Room A at 10 a.m.” in all the
middleware instances it connects with, and the other visitor can use this
information to meet up with that person at 10 a.m.

Remote Communication: Impact on Interaction
Mechanisms and Context Awareness

In this kind of middleware, all the middleware instances can interact with
each other. Figure 10.2a presents the case where, for example, all the
servers are networked and data entering one server is automatically rep-
licated in all the others. This, of course, would permit long-range interac-
tions. In such middleware, the locality scope for agent interactions is
considerably weakened, but this approach increases the system flexibility

AU3833_C10.fm Page 241 Tuesday, August 15, 2006 10:25 AM

242 ■ Mobile Middleware

as an agent can be informed of relevant information happening far away.
On the other hand, it can create scalability problems and information
overload. To this end, further methods to filter and reduce accessible
information should be implemented. In the museum application, for exam-
ple, multi-hop communication would enable visitors to access information
about every art piece in the museum from wherever they are. Moreover,
it would allow motion coordination even between faraway agents, which
would be able to exchange messages, regardless of their actual position,
to decide a common motion strategy. The problem with this approach
relates to information overload and overconsumption of network band-
width, so visitors must be able to filter only relevant information and high-
level constraints must be enforced to limit bandwidth usage.

Middleware Adaptability

We can classify various middleware infrastructures by considering the
following question: “Is the middleware capable of supporting the com-
putational activities of agents by means of programmable behaviors?” Once
again, we propose two landmark classifications of middleware:

■ Simple middleware — In this case, the middleware is not able to
support any computational activity; all the computations are left
to the agents. This kind of middleware provides a predefined set
of capabilities implemented in a fixed way and does not allow the
middleware itself or an agent to change or customize the middle-
ware features.

■ Programmable middleware — This type of middleware is a system
that is able to dynamically download, store, and execute foreign
code. Agents can thus program the middleware, not only by
reshaping its predefined set of features but also by implanting new
programs and services. These new implanted services can be
associated with some triggering conditions to let the middleware
execute those procedures whenever the proper conditions are met.

Simple Middleware: Impact on Interaction
Mechanisms and Context Awareness

Simple middleware cannot adapt (or be adapted) to changing situations
and provides agents only with a fixed set of unchangeable tools. Typically,
simple middleware enables direct communication between agents, such
that agents can exchange string-like messages or method invocations. In
our museum example, it might be desirable to adapt visitor information

AU3833_C10.fm Page 242 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 243

to the PDA displays and user settings; however, simple middleware is not
flexible enough to adapt services to the different types of visitor PDAs.
Such an operation could be done only in a static way, as the middleware
is only able to manage a predefined set of device profiles.

Moreover, the fact that the middleware supports only string-based
communication or method invocation can be a constraint in some appli-
cations; for example, representing contextual information by means of
plain strings might not be expressive enough and can force agents to
execute complex algorithms to understand the information and decide
what to do. In our museum example, although knowledge of the coor-
dinates of all the agents in the museum would be complete contextual
information for motion coordination tasks, it would still be difficult for an
agent to decide what to do (i.e., where to go) on the basis of such rough
information. Despite these drawbacks, simple middleware is quite easy
to implement and can be successfully applied in those scenarios that do
not require complex features. Moreover, the simplicity of the middleware
is likely to lead to generally better performance.

Programmable Middleware: Impact on Interaction
Mechanisms and Context Awareness

Programmable middleware, which is able to store and execute foreign
code, can perform any kind of adaptation. Not only can its mechanisms
be adapted to changing situations (e.g., the middleware could be pro-
grammed to automatically compress specified pieces of data, depending
on the available bandwidth), but (taking the approach to the extreme)
virus-like communication based on mobile code can also be enacted.
Here, the information is exchanged by mobile code; thus, a message
would be able to autonomously specify its routing, automatically adapt
and change its own content, and execute any kind of required action. Of
course, the flexibility of this kind of middleware comes at the expense
of security issues, which naturally arise when possibly malicious code is
allowed to run in the middleware.

Programmable middleware offers great flexibility. Agents can program
the middleware to let it filter and aggregate relevant contextual information
[9], and context information sources can describe their information not
only by simple messages but also by complex programs. These programs
can contain the algorithms on how to parse or interpret the contextual
information or the routing mechanism, thus making possible information
fusion and aggregation [16].

In our museum application, agents could flexibly program the middle-
ware to receive information suitable for their display capabilities. They
could embed programs in the middleware to let it react to special events

AU3833_C10.fm Page 243 Tuesday, August 15, 2006 10:25 AM

244 ■ Mobile Middleware

in ways possibly not foreseen when the middleware was first deployed;
for example, the middleware could be programmed to block communi-
cation between a group of students’ PDAs when their teacher has posted
a question. Finally, with regard to the motion coordination problem, we
can imagine an agent being able to send via the middleware something
like a program (e.g., a routing algorithm) that allows other agents to reach
a specific destination by executing the received algorithm.

Current Middleware Infrastructures
In this section, we are going to survey various middleware infrastructures
according to the classification schema provided earlier. Because the num-
ber of proposed models and types of middleware is overwhelming and
is still growing very rapidly, we have tried here to provide a classification
system based on an exploration of the introduced middleware range. For
each type of middleware, some relevant implementations are presented.
In Figure 10.3, we depict the middleware properly considered to be located
in the taxonomy range. We present the models and types of middleware
populating this space by means of an imaginary walk along each one of
the three axes. If a proposal represents several dimensions, its placement
in the taxonomy schema is determined by the axis of the most relevant
dimension.

A Walk Along the Communication Extent Axis

For the communication extent axis, we can see that the taxonomy space
is divided into two regions (see Figure 10.4). In the rightmost region, local
communication middleware defines boundaries for agent communication
and context awareness. This can turn out to be a problem, if an agent
has to acquire a global picture of the application state, but it can also
implicitly alleviate the problem of information overload and bandwidth
overexploitation. In the leftmost region, remote communication middle-
ware does not impose boundaries in agent communication and thus
increases the flexibility of the system; however, if not properly controlled,
this type of system can lead to information overloading and exhaustion
of network bandwidth.

In particular, we can consider those approaches that are nearer to the
origin of the axis — those that are local, external, and simple (star 1 in
Figure 10.3). Here we would find the JavaSpaces™ [12] proposal from
Sun Microsystems, which includes the specification of a framework for
distributed network services that is implemented using the Java language.

AU3833_C10.fm Page 244 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 245

The JavaSpaces specification defines a tuple space where special tuples,
instances of the Entry class, can be stored and retrieved through the Java
serialization mechanism. JavaSpaces can be accessed directly addressing
the tuple space instance and exploiting its interface services, including a
simple pattern-matching mechanism. Although simple, JavaSpaces pro-
vides a few interesting features, such as the already mentioned tuple
pattern-matching mechanism, being able to define a “leasing time” on a
tuple (i.e., a time to live), support for tuple inserting notification, and the
capability to extend the base tuple class with user-defined data and
services. Interesting implementations of the JavaSpaces specification
include GigaSpaces [14], which also enables access to the tuple space by
means of Simple Object Access Protocol (SOAP), and AutevoSpaces [15],
which relies on a distributed tuple space implementation.

TSpaces™ [30] is the IBM answer to JavaSpaces and provides a Java
implementation of a tuple space enhanced with nonblocking tuple access
services, rendezvous-specific services, indexing, and support for tuple
activity notification. Similar to the previously discussed tuple spaces,
TSpaces can be directly addressed in order to exploit the provided services,
even if several TSpaces can be aggregated in order to build a single space
of spaces.

Figure 10.3 Surveyed middleware in the taxonomy schema.

AU3833_C10.fm Page 245 Tuesday, August 15, 2006 10:25 AM

246 ■ Mobile Middleware

Another interesting approach is Linda [29], which provides a Java
implementation of a tuple space with a programmable matching engine.
The latter can provide specialized matching logics, such as, for example,
the search for a minimum value in the tuple space. Nevertheless, the
matching engine cannot be dynamically programmed, which means the
matching features must be known a priori. EventHeap [17] allows tuples
(called events) to be made of fields whose values are not known a priori
(post fields) or are known but are not relevant (virtual fields); thus, the
exact behavior of the tuple space will depend on the value assigned later
to those fields in the tuples. EventHeap has been implemented on top of
TSpaces, and has been rewritten in Java starting from scratch.

Moving along the communication axis of the taxonomy, we find the
approaches that are catalogued as remote, external, and simple (star 2 in
Figure 10.3). These systems can interact with each other, which means
that different instances can exchange data and information. Often, this is
achieved through a peer-to-peer network, where different hosts run an
instance of the middleware and such instances connect to other instances
running on other hosts. An interesting approach in this direction is
represented by SwarmLinda [6], a Java implementation that exploits eXten-
sible Markup Language (XML) documents to describe tuples. SwarmLinda
is based on the concepts of swarm intelligence and multi-agent systems
modeling the tuple space as a set of nodes and provides services (e.g.,
inserting, retrieving) performed by ants that travel across the nodes and

Figure 10.4 Different zones along the communication extent axis.

AU3833_C10.fm Page 246 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 247

search for one or more tuples. The interesting feature of SwarmLinda is
its tuple aggregation based on pattern criteria, so similar tuples will be
close together and kept (possibly) in the same node space. This implies
that, although the entire system can be seen as a composition of distributed
tuple spaces, it is really a single tuple space with clients connected to
different instances but who perceive the system as being unique.

Another interesting approach, quite similar to SwarmLinda, is Anthill
[1], a middleware that relies on the Java implementation of JXTA™ [18]
and provides a self-organizing network of interconnected units (called
nests) visited by ants, with agents assigned to one or more tasks (e.g.,
tuple inserting, tuple retrieving). It is important to note that ants cannot
communicate together directly but must leave information that can be
exploited by other ants; this kind of indirect communication is called
stigmergy.

A Walk Along the Location Axis

Focusing our attention on the location axis, we can find two other regions
(see Figure 10.5). The bottom one is where external middleware, which
requires underlying common infrastructures, resides. These infrastructures
can have problems in a MANET scenario. Moreover, these infrastructures
can induce scalability and robustness problems because the middleware
can, in principle, be accessed by a large number of agents, thus producing

Figure 10.5 Different zones along the middleware location axis.

AU3833_C10.fm Page 247 Tuesday, August 15, 2006 10:25 AM

248 ■ Mobile Middleware

bottlenecks or single points of failure. The top region, characterized by
internal middleware, can be painlessly applied in a MANET scenario,
because such models and middleware do not require a common infra-
structure accessible by different agents. Also, internal middleware infra-
structures tend to scale with the size of the system, as they are replicated
in every agent; for the same reason they are robust they tend not to cause
single points of failure.

Linda in a Mobile Environment (LIME) [24] is an internal middleware
that is characterized also as simple and local (star 3 in Figure 10.3). The
key idea of LIME is that each mobile entity, either a software agent or
a physical device, is associated with a personal tuple space, accessed
through an interface tuple space (ITS). When mobile entities meet
together, their ITSs are transparently merged to allow coordination. In
other words, each mobile entity performs a tuple operation over its
personal tuple space, which is updated with other personal tuple space
information when possible. It is important to note that LIME allows the
definition of private tuple spaces, which will not be exchanged with
other mobile entities; moreover, it supports reactivity — that is, the
capability of performing a particular operation when a specific tuple is
found in the tuple space.

EgoSpace [28] is an internal, remote, and simple middleware (star 4 in
Figure 10.3) that connects each entity belonging to the network and
running a middleware instance. In this way, a distributed and collaborative
architecture can be built and information (i.e., tuples) can be shared
among the instances. An important feature of EgoSpace is the capability
of expressing the interest level for information belonging to specific
geographical areas; thus, it is possible to define boundaries for searching
for and retrieving tuples, in addition to saving bandwidth.

A Walk Along the Adaptability Axis

The final dimension we follow is the one defining the middleware adapt-
ability (see Figure 10.6). Here, we can define a leftmost region character-
ized by simple (i.e., not programmable) middleware infrastructures that
are easier to use because they have only a fixed set of capabilities. The
drawback of this simplicity is that they are best suited only to relatively
static scenarios, because their fixed set of capabilities cannot be customized
to varying dynamics and unexpected situations. In the rightmost region,
however, programmable middleware infrastructures are extremely flexible
and well suited to dynamic application scenarios. The drawback of all
this flexibility is that programmable middleware tends to be more complex
to use and can introduce security concerns by offering the possibility of
installing a foreign, possibly malicious, code.

AU3833_C10.fm Page 248 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 249

Focusing on this latter type of middleware, we can consider those
models that are local, programmable, and external (star 5 in Figure 10.3).
An interesting approach is Mobile Agent Reactive Spaces (MARS) [5], which
extends JavaSpaces™. MARS defines a set of independent spaces, each
one tied to a host (i.e., a local execution environment) that agents can
access through the MARS interface to perform tuple operations. Each
MARS instance can support reactivity, which is the capability of performing
operations when a tuple operation (e.g., inserting, reading, extracting) is
performed. To do this, MARS exploits a metatuple space (metaspace) that
stores as tuples reactions to be performed. Each time a tuple operation
is performed, the metaspace is searched for a reaction tuple and, if the
latter is found, the reaction is executed.

Now it is time to take a look at middleware that is programmable and
external but remote, thus allowing their instances to communicate (star 6
in Figure 10.3). A representative example is the Tuple Centres Spread
over Networks (TuCSoN) system [22], which focuses on the coordination
of mobile agents. TuCSoN defines the concept of a tuple center, an instance
running on an Internet host that can be connected to other tuple centers.
Tuple centers are uniquely named across the Internet, so agents can
directly interact with any of them that are network aware or can interact
with the local tuple space that will interact transparently with the others,
if agents are not network aware. It is important to note that a tuple center

Figure 10.6 Different zones along the adaptability axis.

AU3833_C10.fm Page 249 Tuesday, August 15, 2006 10:25 AM

250 ■ Mobile Middleware

is not simply a tuple space, as it can support specification tuples that
define the reaction logic for communicative actions in the tuple space. A
different approach is that followed by Limbo [8], which defines a set of
tuple spaces interacting each other but where the programmable feature
is reached by subtyping an existing tuple space. In other words, when a
client wants to specify the behavior of the tuple space, it has to place a
few tuples describing that behavior in the tuple space and then place a
special “create tuple space” tuple that will be handled by the tuple space
itself and will cross into a new tuple space with the specified behavior.

Other Mixed Approaches
For yet another middleware location, we can survey programmable,
internal, and local middleware (star 7 in Figure 10.3). An interesting
project, in this field, is represented by XMIDDLE [21], which proposes
tuple spaces based on XML trees, where each mobile entity carries on its
own tree, which is merged with other trees when agents meet together.
Thanks to its exploitation of the XML language, XMiddle can share tailored
portion of data, depending on the differences between the spaces that
are synchronizing. Most important, the use of XML allows XMiddle to
handle structured data, thus it is able to associate a piece of information
with the exchanged data, allowing the implementation of different syn-
chronization and reconciliation protocols.

Another interesting approach is PeerWare [7], where again each node
runs a middleware instance handling its local data and merging the data
each time it joins other peers. It is important to note that this approach
explicitly recognizes the local space and the global space (the one made
by all the local spaces available online), defining different primitives for
both the spaces. Furthermore, a special set of primitives is available for
both the spaces, in order to define the programmability of the space.

The last region of our middleware taxonomy is programmable, inter-
nal, and remote middleware; here we can find the TOTA [19] approach.
The key idea behind TOTA is that a tuple must be propagated in the
surrounding environment following a specific rule; in other words, the
information is composed by the tuple itself and the rules to be applied
on the tuple. When a tuple is outputted, it is distributed among each node
(running the TOTA middleware), meaning that the tuple can be copied
as it is or it can be modified in order to reflect changes in the environment.

Open Issues and Research Directions
A number of apparently very diverse research areas (e.g., peer-to-peer
overlay networks, swarm intelligent systems, pervasive and ubiquitous com-
puting systems) share some common issues with tuple-based coordination

AU3833_C10.fm Page 250 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 251

models and middleware. Still, the relations and synergies between these
areas are mostly unexplored, thus representing fertile ground for further
investigation.

Overlay Networks and Overlay Data Structures

Overlay networks can be defined as routing distributed data structures
providing agents with a suitable application-specific view of the network
(i.e., they allow agents to perceive a specific overlay topology of the
network) [25,26]. These structures are typically created by deploying
across the network suitable routing information and are at the basis of
a number of mobile computing scenarios. In many applications, in fact,
the utility of a network of mobile computing devices derives primarily
from the data and information it holds. The identity of the individual
nodes storing the data tends to be less relevant. Consider, for example,
sensor network applications or file-sharing applications between mobile
devices. Suitable interaction models and communication abstractions
would have to be flexible and tailored to the application, not tied to
the identities of the individual components. In this context, overlay
networks can offer several application-specific mechanisms to route
information in a dynamic network:

■ Location-based routing, where an agent takes advantage of location
information to access resources within suitable locality constraints
(e.g., “find all the printers on my floor” or “find the closest gas
station”)

■ Content-based routing, where data is searched and accessed on
the basis of its content rather than on the basis of the network
addresses or location of the nodes

An example of the latter case, in a mobile sensor network scenario [26],
would be an agent interested in the occurrence of the data named “truck
sightings”; the network must provide the means to effectively access such
data wherever it might be.

Tuple-based models are a particularly fertile ground to investigate to
develop much more advanced kinds of overlay networks. For example,
a set of tuple spaces networked with each other can naturally lead to a
semantically enriched overlay network, from which to retrieve data in a
more meaningful way than in current approaches. Moreover, programma-
ble tuple spaces such as MARS [5] and TOTA [19] can naturally support
the reconfiguration, updating, and maintenance of such overlay networks.

Overlay data structures are not focused only on the network topology;
instead, they can generalize overlay networks by encoding and providing

AU3833_C10.fm Page 251 Tuesday, August 15, 2006 10:25 AM

252 ■ Mobile Middleware

agents with several pictures, possibly locally confined, of specific aspects
of the operational environments of the agents. Agents can access overlay
data structures to achieve awareness and possibly modify specific contex-
tual aspects. The strength of these overlay data structures is that they can
be accessed piecewise as the application agents visit different places of
the distributed environment. This allows the agents to access the appro-
priate information at the correct location. Again, tuple spaces are a perfect
abstraction on which to build such overlays.

Stigmergy and Swarm Intelligence

Overlay data structures realized on top of tuple-based models can naturally
accommodate stigmergic interaction patterns. These patterns are at the
core of swarm intelligent systems [2], which are systems where a large
number of simple agents coordinate (often mimicking natural and biolog-
ical systems) in an indirect way, via sensing digital pheromones in a virtual
environment, to achieve — in an adaptive and self-organizing way —
tasks that far exceed their capabilities as single individuals [23].

Tuple-based models are naturally suited to supporting these interaction
patterns, in that tuple spaces can be used to store the pheromones at the
basis of stigmergy interactions. Moreover, active or, better, reactive tuple
spaces can naturally provide functionalities to allow pheromones (imple-
mented by means of tuples) to change as needed (e.g., to diffuse across
the network, to be aggregated and combined, to evaporate if not used
and reinforced). It is easy to see that such innovative scenarios give rise
to endless directions for research regarding tuple-based coordination
models. How can tuple-based models be employed to control and govern
self-organizing stigmergic coordination activities? How can tuple spaces
fill the semantic gap between heterogeneous agents that coordinate by
means of tuples and “ant-like” agents that simply coordinate by reacting
upon pheromone sensing? What applications can be enabled by such rich
coordination models? We do not have any answers to these questions yet.

Pervasive Spaces and Tuple Spaces

Recent research in the area of pervasive and ubiquitous computing suggest
that, to enable spontaneous interactions among a set of computer-based
devices embedded in an environment (e.g., smart rooms, smart furniture,
smart objects) and also to support advanced interaction models between
users and the surrounding (computer-enriched) environment, the environ-
ment itself should be rendered in some sort of digital abstraction. These
considerations have led to several proposals for middleware infrastructure
based on the concept of active spaces [27]. Active spaces are a sort of

AU3833_C10.fm Page 252 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 253

digital representation of a physical environment, where each resource in
the environment (a user, a computer, as well as any computer-based device
and any computer-based object) has a digital representation and is provided
with mechanisms to interact with the other resources. Thus, active spaces
act as a type of shared data spaces, where high-level interaction patterns
can be promoted and from which high-level contextual information can
be obtained. Remaining to be investigated are how and to what extent
tuple-based coordination models and active-spaces-based approaches can
be made to coexist and converge into a single coordination model that
supports messaging, synchronization, and the exchange of raw data and
of semantic high-level information. We must still investigate how and to
which extent emerging pervasive computing technologies can be used to
conceive new architectural solutions for tuple-based middleware models.
For example, one could think of exploiting the stable memory of radio-
frequency identification (RFID) tags to deploy, in a massively distributed
way, tuples and tuple spaces in any physical environment [20].

Conclusions
In this chapter we have discussed how tuple-based models and middle-
ware can indeed offer valuable tools to support the coordination and
context awareness of uncoupled agents in mobile computing scenarios.
We hope that the taxonomy introduced here and the critical survey of
existing systems have helped readers to reach a better understanding of
the software engineering issues involved and that they steer developers
toward the adoption of specific tuple-based middleware systems suitable
to their purposes. Despite the suitability of tuple-based coordination
models for mobile computing, developers and researchers should be aware
that a number of fascinating research issues are yet worth investigating.

Acknowledgments
This work was supported by the Italian MIUR and CNR within the project
“IS-MANET, Infrastructures for Mobile Ad Hoc Networks.”

References
[1] Babaoglu, O., Meling, H., and Montresor, A., Anthill: a framework for the

design and the analysis of peer-to-peer systems, in Proc. of the 4th European
Research Seminar on Advances in Distributed Systems (ERSADS ’01), Berti-
noro, Italy, May 14–16, 2001.

AU3833_C10.fm Page 253 Tuesday, August 15, 2006 10:25 AM

254 ■ Mobile Middleware

[2] Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm Intelligence, Oxford
University Press, London, 1999.

[3] Borcea, C. et al., Cooperative computing for distributed embedded systems,
in Proc. of the 22nd Int. Conf. on Distributed Computing Systems (ICDC’02),
Vienna, Austria, July, 2002.

[4] Cabri, G., Leonardi, L., Mamei, M., and Zambonelli, F., Location-dependent
services for mobile users, IEEE Trans. Systems, Man, Cybernetics, Part A:
Systems Humans, 33(6), 667–681, 2003.

[5] Cabri, G., Leonardi, L., and Zambonelli, F., MARS: a programmable coordina-
tion architecture for mobile agents, IEEE Internet Comput., 4(4), 26–35, 2000.

[6] Charles, A., Menezes, R., and Tolksdorf, R., On the implementation of
SwarmLinda, in Proc. of the 42nd Annual ACM Southeastern Conf., Hunts-
ville, AL, April 2–3, 2004.

[7] Cugola, G. and Picco, G.P., PeerWare: Core Middleware Support for Peer-
to-Peer and Mobile Systems, Technical Report, http://peerware.source-
forge.net/.

[8] Davies, N., Wade, S., Friday, A., and Blair, G., Limbo: a tuple space based
platform for adaptive mobile applications, in Proc. of the Int. Conf. on Open
Distributed Processing/Distributed Platforms (ICODP/ICDP ’97), Toronto,
Canada, May 27–30, 1997.

[9] Dey, A. and Abowd, G., The context toolkit: aiding the development of
context-aware applications, in Proc. of the Conf. on Human Factors in
Computing Systems (CHI ’99), ACM Press, New York, 1999, pp. 434–441.

[10] Edwards, K. and Grinter, R., At home with ubiquitous computing: seven
challenges, in Proc. of the 2001 ACM Handheld and Ubiquitous Computing
Conf. (UbiComp), Atlanta, GA, October, 2001.

[11] Estrin, D., Culler, D., Pister, K., and Sukjatme, G., Connecting the physical
world with pervasive networks, IEEE Pervasive Comput., 1(1), 59–69, 2002.

[12] Freeman, E., Hupfer, S., and Arnold, K., JavaSpaces Principles, Patterns,
and Practice, Addison–Wesley, Boston, MA, 1999.

[13] Gelernter, D. and Carriero, N., Coordination languages and their significance,
Comm. ACM, 35(2), 96–107, 1992.

[14] GigaSpaces Technologies, Ltd., http://www.gigaspaces.com/index.html.
[15] Intamission, Ltd., AutevoSpaces Product Overview, http://www.intramis-

sion.com/downloads/datasheets/AutevoSpaces-Overview.pdf.
[16] Intanagonwiwat, C., Govindan, R., and Estrin, D., Directed diffusion: a

scalable and robust communication paradigm for sensor networks, in Proc.
of the Sixth ACM MOBICOM Conf., Boston, MA, August, 2000.

[17] Johanson, B. and Fox, A., The event heap: a coordination infrastructure for
interactive workspaces, in Proc. of the 4th IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA 2002), Callicoon, NY, June 21–22,
2002.

[18] The JXTA Project, http://www.jxta.org.
[19] Mamei, M. and Zambonelli, F., Programming pervasive and mobile com-

puting applications with the TOTA middleware, in Proc. of the 2nd IEEE
Int. Conf. on Pervasive Computing and Communication (PerCom 2004),
Orlando, FL, March 14–17, 2004.

AU3833_C10.fm Page 254 Tuesday, August 15, 2006 10:25 AM

Uncoupling Coordination: Tuple-Based Models for Mobility ■ 255

[20] Mamei, M. and Zambonelli, F., Spreading pheromones in everyday envi-
ronment through RFID technology, in Proc. of the 2nd IEEE Symp. on Swarm
Intelligence, Pasadena, CA, June, 2005.

[21] Mascolo, C., Capra, L., and Emmerich, W., An XML-based middleware for
peer-to-peer computing, in Proc. of the 1st IEEE Int. Conf. on Peer-to-Peer
Computing, Linkoping, Sweden, August 25–27, 2001.

[22] Omicini, A. and Zambonelli, F., Coordination for Internet application devel-
opment, J. Autonomous Agents Multi-Agent Syst., 2(3), 251–269, 1999.

[23] Parunak, V., Brueckner, S., and J. Sauter, J., Digital pheromones for coor-
dination of unmanned vehicles, in Proc. of the Workshop on Environments
for Multi-Agent Systems (E4MAS), New York, July 19, 2004.

[24] Picco, G.P., Murphy, A.L., and Roman, G.C., LIME: a middleware for logical
and physical mobility, in Proc. of the 21st Int. Conf. on Distributed Com-
puting Systems (ICDCS-21), Phoenix, AZ, April 2001.

[25] Rao, A., Papadimitriou, C., Ratnasamy, S., Shenker, S., and Stoica, I., Geo-
graphic routing without location information, in Proc. of the Ninth ACM
MOBICOM Conf., San Diego, CA, September 14–19, 2003.

[26] Ratsanamy, S. et al., GHT: a geographic hash table for data-centric storage,
in Proc. of the 2002 Int. Workshop on Wireless Sensor Networks and Appli-
cations, Atlanta, GA, September 28, 2002.

[27] Roman, M. et al., Gaia: a middleware infrastructure for active spaces, IEEE
Pervasive Comput., 1(4), 74–83, 2002.

[28] Roman, G.C., Julien, C., and Huang, Q., Network abstractions for context-
aware mobile computing, in Proc. of the Int. Conf. on Software Engineering
(ICSE 2002), Orlando, FL, May 19–25, 2002.

 [29] Wells, G.C., New and improved: Linda in Java, in Proc. of the Third Int.
Conf. on Principles and Practice of Programming Java (PPPJ), Las Vegas,
NV, June 16–18, 2004.

[30] Wyckoff, P., McLaughry, S.W., Lehman, T.J., and Ford, D.A., T spaces, IBM
Syst. J., 37(3), 454–474, 1998.

[31] Zambonelli, F., Gleizes, M.P., Mamei, M., and Tolksdorf, R., Spray computers:
explorations in self organization, J. Pervasive Mobile Comput., 1(1), 1–20,
2005.

AU3833_C10.fm Page 255 Tuesday, August 15, 2006 10:25 AM

AU3833_C10.fm Page 256 Tuesday, August 15, 2006 10:25 AM

257

Chapter 11

Content-Based
Publish–Subscribe in

a Mobile Environment

Gianpaolo Cugola, Amy L. Murphy,
and Gian Pietro Picco

CONTENTS

Introduction... 258
Publish–Subscribe: An Overview... 259
Mobility and Publish–Subscribe: The Issues .. 261
Dealing with Mobile Clients .. 264
Dealing with Mobile Brokers: An Integrated Approach 265

Repairing the Overlay... 266
Mobile Networks ... 267
Fixed Networks ... 268

Reconciling Routing Information ... 270
Recovering Lost Messages .. 272

Push.. 273
Pull ... 274

REDS: Mobile Publish–Subscribe in Practice.. 275
Related Approaches.. 278

Reconfigurable and Fault-Tolerant Publish–Subscribe 278

AU3833_C11.fm Page 257 Wednesday, August 16, 2006 11:31 AM

258

■

Mobile Middleware

Publish–Subscribe on MANETs .. 279
Location- and Context-Aware Publish–Subscribe 280

Conclusions ... 282
References ... 282

Introduction

Modern distributed computing demands not only scalability, as witnessed
by the Internet, but also an unprecedented degree of adaptability to
dynamic conditions. Mobile computing is evidence of this trend. The
mobility of network nodes undermines many of the traditional assumptions
of distributed systems: The topology becomes fluid as hosts move and
yet retain the ability to communicate wirelessly; communication occurs
over a shared medium that is not only unreliable but also largely unpre-
dictable, as it strongly depends on the characteristics of the local envi-
ronment; and hosts and therefore applications frequently experience
disconnection, which is no longer just a network accident but is often
induced deliberately for long periods of time to save power. Other modern
distributed scenarios raise similar issues in terms of dynamicity; peer-to-
peer networks and sensor networks come to mind.

Coping with these demands is a challenging task. In recent years, the

publish–subscribe

paradigm has emerged as a promising and effective way
to tackle many of these issues. The implicit and asynchronous communi-
cation paradigm that characterizes publish–subscribe supports a high
degree of decoupling among the components of a distributed application.
In principle, it is possible to add or remove one component without
affecting the others — only the dispatcher, the element in charge of
collecting subscriptions and routing messages, has to be aware of the
change. Clearly, this form of decoupling would be desirable in a scenario
where the set of available components undergoes continuous change, as
in the mobile one. Nevertheless, much of the potential of the publish–sub-
scribe

model

 still remains to be unleashed by publish–subscribe

systems

.
Indeed, many of the available distributed publish–subscribe middleware
exploit a dispatching network arranged in a tree overlay for increased
scalability, but their designs usually do not tolerate any form of topological
reconfiguration. Paradoxically, therefore, these systems cannot be exploited
precisely in those application scenarios where decoupling would be most
beneficial.

In this chapter, we discuss challenges of and solutions for content-
based publish–subscribe in a mobile scenario. Although we focus on our
own research in the field [1,13–16,18–20,27,33,36], we also provide the
reader with a discussion of related and alternative approaches, thus
covering the entire spectrum of the state of the art.

AU3833_C11.fm Page 258 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment

■

259

Publish–Subscribe: An Overview

Distributed applications exploiting publish–subscribe middleware are orga-
nized as a collection of autonomous components (

clients

) which interact
by

publishing

 messages and by

subscribing

 to the classes of messages
they are interested in. The core component of the middleware, the

dispatcher

, is responsible for collecting subscriptions and forwarding mes-
sages from publishers to subscribers. This scheme results in a high degree
of decoupling among the communicating parties. These ideas have been
recently popularized by a wealth of systems, each interpreting the publish–
subscribe paradigm in a different way. (For more detailed comparisons,
see Carzaniga et al. [8], Cugola et al. [17], Eugster et al. [22], and Rosenblum
and Wolf [40].)

A first point of differentiation is the expressiveness of the subscription
language, drawing a line between

subject-based

 and

content-based

 sys-
tems. In the first case, subscriptions contain only the name of a class of
messages — usually called

subject

,

channel

, or

topic

 — chosen among a
set of predefined classes. In content-based systems, the selection of a
message is determined entirely by the client, which uses expressions (often
called

filters

) that allow sophisticated matching on the message content.
The second point of differentiation is the architecture of the dispatcher,

which can be either centralized or distributed. In this chapter, we focus
on the latter type. In this middleware, a set of

brokers

 (see Figure 11.1)
is interconnected in an overlay network; they cooperatively route sub-
scriptions and messages sent by clients connected to them, thus increasing
the scalability of the system. In this context, the main design decisions
concern the topology of interconnection and the routing strategy. Although
the first approaches based on a graph topology are beginning to appear
[1,15], most of the available systems are based on a tree topology, as this
simplifies routing (e.g., by avoiding the possibility of routing loops) and
provides a high degree of scalability.

Several tree-based routing strategies can be found in the literature
[5,8,17], with the most basic ones shown and compared in Figure 11.1.
The simplest approach is

message forwarding

, in which a published
message is forwarded by a broker to all the others along the dispatching
tree. Subscriptions are never propagated beyond the broker receiving
them. This broker stores these subscriptions in a

subscription table

 that
is used to determine which clients, if any, should receive incoming
messages.

Message forwarding may generate high overhead because messages
are sent to all brokers regardless of the interests of the clients attached
to them. An alternative strategy, called

subscription forwarding

, limits this
overhead by spreading knowledge about subscriptions throughout the

AU3833_C11.fm Page 259 Wednesday, August 16, 2006 11:31 AM

260

■

Mobile Middleware

system. When a broker receives a subscription from one of its clients, not
only does it store the associated filter in its subscription table as in message
forwarding, but it also forwards it to all the neighboring brokers. During
this propagation, each dispatcher behaves as a subscriber with respect to
its neighbors; consequently, each of them records the filter associated
with the subscription in its own subscription table and forwards it again
to all its neighboring dispatchers except the one that sent it. This process
effectively sets up routes for messages through the reverse path followed
by subscriptions. (Note that this scheme is optimized to avoid forwarding
the same message filter in the same direction; moreover, some systems
perform even more aggressive optimizations by exploiting “coverage”
relations among filters [8,9,26,45].)

Finally,

hierarchical forwarding

 strikes a balance between the two
aforementioned strategies by assuming a rooted tree topology. Subscrip-
tions are forwarded toward the root to establish the routes that published
messages will follow downstream toward subscribers. Messages, in fact,
are always propagated upstream up to the root and flow downstream
along the tree only if a matching subscription has been received from the
corresponding subtree.

Figure 11.1 provides a graphical representation of the three strategies.
Brokers S

1

 and S

2

 subscribed (through their clients; not shown in the
figure) to the same black filter, and S

3

, S

4

, and S

5

 subscribed to gray. The
small arrows represent the content of the subscription tables for the

Figure 11.1 Publish–subscribe routing strategies.

S2

S4

S3

AU3833_C11.fm Page 260 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment

■

261

corresponding filters. Broker P published a message matching the black
filter but not the gray one. The path followed by this message is indicated
by the large arrows. In hierarchical forwarding, broker R is the root of
the dispatching tree.

Mobility and Publish–Subscribe: The Issues

The overview in the previous section showed how several approaches
enable distributed content-based publish–subscribe; however, most of
the research effort has focused either on how to provide efficient pattern
matching and message forwarding or on efficient routing strategies for
pushing scalability. Research essentially aims at improving the

perfor-
mance

 of content-based publish–subscribe in large-scale settings,
implicitly assuming a static dispatching infrastructure. This is unfortunate
because, as mentioned in the introduction, the characteristics of the
publish–subscribe model and, more specifically, the high degree of
decoupling it enables make it amenable to highly dynamic scenarios
such as those defined by mobility. Nevertheless, this scenario is possible
only if the systems embodying the model are expressly designed to
take into account the assumptions and challenges posed by the target
dynamic scenario.

Mobility poses several challenges to the design of publish–subscribe
middleware. The most evident is that the topology of the system, usually
assumed static by existing systems, now becomes dynamic and undergoes
continuous reconfiguration as the mobile nodes move. Depending on the
mobility scenario, these factors may have different impacts.

In many cases, mobility is relegated to the periphery of the system;
for example, this is true for the

nomadic

 scenarios many of us experience
while traveling or even when moving from office to home. The user
detaches from one network (e.g., office) and reconnects to a different
one (e.g., home or a hotel room). The entry point to the network has
changed, yet, thanks to dedicated protocols (e.g., Dynamic Host Config-
uration protocol [DHCP] and virtual private networks [VPNs]), the user
retains access to the basic networking services. Similar considerations hold
for those scenarios where users change their network entry points while
in movement and protocols such as Mobile IP [34] transparently maintain
connectivity at the network level. Notably, in the first case wireless
communication is a nice but unnecessary feature, whereas in the second
one it becomes key to enabling unconstrained and continuous movement.
In both these scenarios, however, only the end nodes are mobile; the
networking infrastructure, which handles routing and other functions, is
assumed to be stable.

AU3833_C11.fm Page 261 Wednesday, August 16, 2006 11:31 AM

262

■

Mobile Middleware

The same concepts can be applied to the typical architecture of a
publish–subscribe system by observing that clients play the role of end
nodes, as they do not provide network functionality, and brokers assume
the roles of routers and switches. The impact of mobility on publish–sub-
scribe is similar to its impact on networking — namely, modifications that
shield clients from the complexity of dealing with mobility while leaving
the behavior of the infrastructure largely unaffected. Interestingly, the same
applies when the system exhibits logical mobility of code or agents [28]
(e.g., because the publish–subscribe clients are mobile agents, which
detach and reattach to the closest broker during migration).

At the other extreme,

mobile ad hoc networks

 (MANETs) [35,44] define
the most radical mobility scenario, where no assumption is made about
the dynamic topology of the system and the networking infrastructure
itself is assumed to be mobile. The impact of mobility in this case is
disruptive and no longer limited to the clients dwelling at the fringes of
the system, as the intermediate nodes in charge of routing and other
network functions are now assumed to be mobile. Moreover, most
application scenarios for MANETs actually blur the distinction between
end nodes and intermediate nodes by assuming that

all

 the network
nodes implement the functionality required to enable routing. As a
consequence, networking protocols must be reconsidered from the
ground up to accommodate the new deployment assumptions, as wit-
nessed by the appearance of entirely new routing protocols (e.g., those
described by Perkins [35]).

Again, publish–subscribe systems face similar problems in that they
demand significant and radical changes in the behavior of the dispatching
infrastructure. For example, subscription information can no longer be
associated permanently with the link from which it came, because the
subscriber can move and become connected through a route involving a
different set of links. Moreover, as in networking scenarios, the distinction
between infrastructure and application nodes becomes blurred, effectively
introducing a different application model where all client hosts are also
brokers [30].

Interestingly, analogous considerations hold for scenarios where the
communication topology is dynamic but not caused by mobility and
wireless communication. For example, in peer-to-peer (P2P) networks,
the hosts and physical communication links are fixed, but the

logical

topology of the overlay network along which file searches are disseminated
undergoes continuous change as peers join and leave. Exploiting a pub-
lish–subscribe system in this scenario raises challenges similar to those
discussed thus far in that the architecture of the P2P network (e.g., based
on a hierarchical supernode infrastructure or totally decentralized) deter-
mines the level of dynamicity required in the dispatching infrastructure.

AU3833_C11.fm Page 262 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment

■

263

Other challenges are peculiar to mobility, such as those related to the
physical communication media. Wireless communication removes the
need for cables and therefore is a key enabler of mobility; however, the
price paid for this freedom is lower performance and reduced reliability,
which must often be taken into account at the higher application layers.
For example, unicast communication is the fundamental building block
for many distributed applications in fixed environments, where it enjoys
an efficient network implementation. In mobile scenarios, multi-hop uni-
cast can be expensive, as it often requires several local broadcasts (and
corresponding replies) to find a suitable route [35]; therefore, it should
be used sparingly in the development of middleware for these scenarios.

Similarly, the communication links of a conventional distributed system
are often thought of as being fairly reliable. For example, the fault model
assumed by many systems and protocols — notably, the Transmission
Control protocol (TCP) — is one where communication failures are rare
and transient; that is, the communication target is assumed to become
reachable again. In mobile scenarios, disconnections are frequent, not
only because the communication medium is more sensitive (e.g., to
fluctuations in the propagation of radiowaves induced by the environment)
but also because disconnection is no longer an accident; rather, it is often
deliberately induced by the user or application to, for example, save
battery power. (Although power management is another relevant issue in
mobility that affects not only the host but also network communication,
we do not have the opportunity in this chapter to touch upon these issues
further.) Failures are not guaranteed to be transient; for example, cars
moving on a highway in opposite directions may never meet again.

Reliability is usually taken into account at the network level; however,
in the field of mobility, it is often useful to reduce the size of the network
stack by blurring the distinctions among levels for the sake of reducing
the system footprint and enabling optimizations (e.g., reduce the use of
unicast). In the specific case of publish–subscribe, another challenge to
reliability comes directly from the application level, where the messages
being routed on the overlay network may get lost along stale routes due
to the topological reconfiguration induced by mobility. The net result of
these considerations is that the design of publish–subscribe middleware
must often deal directly with reliability.

Finally, in addition to posing challenges to the implementation of the
core communication layer, mobility makes it necessary to take a new
approach to the development of distributed applications — namely, one
that is

context aware

. By definition, mobile hosts change their location in
the physical space and in doing so experience a different

context

 in terms
of the physical (e.g., temperature, light, reachable hosts) or logical (e.g.,
application services) constituents of the environment. Devising programming

AU3833_C11.fm Page 263 Wednesday, August 16, 2006 11:31 AM

264

■

Mobile Middleware

abstractions to properly capture, disseminate, and exploit context is an open
research problem. Publish–subscribe and in particular content-based systems
appear to provide a sound foundation for many approaches, thanks to their
decoupling and reactive paradigm of interaction. The rest of this chapter
analyzes many of these issues in more detail.

Dealing with Mobile Clients

The first and simplest form of mobility that should be supported by
publish–subscribe middleware tailored to mobile scenarios is that of
clients, by offering them the possibility to disconnect from the dispatching
infrastructure and reconnect from a different place at a later time. This
facility is fundamental to effectively supporting scenarios of mobility, such
as nomadic computing, that involve only the “leaves” of the system (i.e.,
the clients). In these situations, the publish–subscribe middleware must
offer appropriate mechanisms to make mobility transparent to the other
components by reconfiguring routing and storing messages addressed to
the moving clients until they reconnect.

In the presence of a centralized dispatcher, supporting mobile clients
is just a matter of buffering messages addressed to disconnected clients
until they reconnect. The problem becomes much more complex in the
presence of a distributed dispatcher. In this case, a client must be allowed
to disconnect from the broker currently acting as its entry point to the
dispatching network and to later reconnect to a broker potentially different
from the previous one, which is usually chosen as the closest one to the
new location of the client. To support this form of mobility, not only must
the publish–subscribe middleware buffer messages addressed to the client
while it is disconnected, but it must also be able to change the brokers’
subscription tables when the client reconnects. This requires a distributed
protocol that coordinates the brokers involved and avoids losing (or
duplicating) the messages sent while the reconnection process is running.

JEDI [17] was the first distributed publish–subscribe middleware to offer
this form of mobility. It adopts a hierarchical forwarding routing strategy
and expects clients to proactively inform the middleware when moving
away from or arriving at a broker. Figure 11.2 illustrates the procedure that
takes place when client C detaches from broker B

1

, moves, and reattaches
to B

2

. Upon disconnection, B

1

 begins buffering the messages addressed to
C. When C reconnects at B

2

, the latter initiates and coordinates the dis-
tributed protocol to rearrange the routing information and retrieve the
messages buffered at B

1

. This protocol consists of the following steps: First,
B

2

 repropagates the subscriptions held by C to set up the new routes that
will steer messages toward the new location of C. Any message received

AU3833_C11.fm Page 264 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment

■

265

as a consequence of these subscriptions is buffered at B

2

 until the recon-
nection process ends. After the new routes are in place, B

2

 asks B

1

 to stop
buffering messages, to remove C’s subscriptions, and to forward

 the
buffered messages. These messages, together with those buffered at B

2

,
represent the entire set of messages circulated in the system during the
migration of C. Some duplicates may be present in this set because the
old routes and the new ones coexisted for a short time, as shown in
Figure 11.2b; however, these duplicates are easily detected and discarded
at B

2

. The filtered set of messages is finally sent to C, ending the
reconnection process.

Similar distributed protocols, albeit in the context of a subscription-for-
warding routing strategy, are adopted by the extended version of Siena in
Caporuscio et al. [7], Elvin in Sutton et al. [43], REBECA in Fiege et al. [24],
and the system described in Podner and Lovrek [39].

Dealing with Mobile Brokers:
An Integrated Approach

As mentioned earlier, dealing with mobility scenarios that make no assump-
tions about the stability of the infrastructure requires an entirely different
approach from the one discussed in the previous section. The topological
reconfiguration induced by mobility disrupts the very dispatching infra-
structure, so new solutions are required to preserve its operation and yet
support its dynamicity.

Figure 11.2 Dealing with client mobility in Jedi: the situation before, during,
and after migration of client

C

.

AU3833_C11.fm Page 265 Wednesday, August 16, 2006 11:31 AM

266

■

Mobile Middleware

The reconfiguration problem we address in this section can be defined
informally as

to adapt the dispatching infrastructure of a distributed
publish–subscribe system to changes in the topology of the underlying
physical network and to do so without interrupting the normal system
operation

. In the following, we focus on content-based systems that
adopt a subscription-forwarding strategy and an unrooted tree overlay,
as these are assumed by the majority of existing systems. For these
systems, the reconfiguration problem stated previously can be broken
down into three subproblems, namely:

■

Repairing the overlay dispatching network to retain connectivity
among brokers without creating loops

■

Reconciling the subscription information held by each broker to
keep it consistent with the topological changes without interfering
with the normal processing of subscriptions and unsubscriptions

■

Recovering messages lost during reconfiguration

In this section, we present solutions to these problems, based on our own
research on the topic [13,14,18,20,27,33,36]. To reduce the complexity,
each problem is addressed separately by leveraging the fact that the three
problems are orthogonal. When the techniques we describe here to solve
each problem are combined in a single coherent system (e.g., the REDS
system we describe later), they provide an integrated solution to the overall
problem of dealing with mobile brokers.

Repairing the Overlay

Given that the overlay network we consider is a tree, we have two
options to consider for repairing: to allow cycles to form and remove
them later or to disallow the formation of cycles.

We choose the second approach because it is most appropriate when
considering updates to the subscription tables, as seen in the next section.
We also consider two different types of failures: link and broker. From a
theoretical perspective, link failure creates two trees with exactly the same
nodes as before the link break. Repair, therefore, involves adding a link
with endpoints in each of the two trees. Failure of a node with

n

 neighbors
results in

n

 partitions, which require the addition of (

n

 – 1) new links.
The main challenge to address in repairing the overlay network is

selecting these links to repair the tree. We have developed two approaches,
the first specifically for mobile

ad hoc

 networks and the second for
dynamic networks in which connectivity exists between each pair of
brokers (e.g., P2P networks). In the following, we consider these two
scenarios, separately.

AU3833_C11.fm Page 266 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment

■

267

Mobile Networks

Our work to build and maintain an overlay network in a mobile environ-
ment is based on prior study of multicast in MANETs. In particular, we
started from the Mobile

Ad Hoc

 On-Demand Distance Vector (MAODV)
protocol [41], because it focuses on building and maintaining a single tree
containing the mobile nodes participating in a multicast group.

In MAODV, one node is identified as the leader, and all nodes know
their distance from it in the tree. When a link breaks (or a node fails,
causing several links to break), the nodes farthest from the leader initiate
the reconnection process, searching for a link that will reconnect their
subtree to the subtree of the parent through a node with a depth less
than or equal to their own. This constraint guarantees that insertion of a
link will not create a cycle. For example, in Figure 11.3, if the link fails
between A and B, B will search for a new link between its subtree and
the subtree of its parent A. D satisfies the depth constraint; consequently,
the link (B,D) is added and the depths of all nodes are updated.

Identification of potential links is accomplished by broadcasting a route
request (RREQ) message a small number of hops from B. Any node with
a depth less than or equal to the depth of B responds with a route reply
(RREP) message that follows the reverse path of the RREQ, identifying the
path reconnecting the two trees. In MAODV, nodes not participating in
the multicast group may also serve as routers in the multicast tree. Our
approach [33] assumes that all nodes act as brokers in the publish–subscribe
network; a similar assumption was made in Huang and Garcia-Molina [30].
With this assumption, we have designed more efficient mechanisms for
reconnecting the tree, specifically changing the propagation rules of the
RREQ message and altering the selection criteria for the new link.

Figure 11.3 Overlay network in a mobile environment where B moves out of
contact with A and into contact with D and G. All brokers are labeled with their
numerical depth from leader C.

AU3833_C11.fm Page 267 Wednesday, August 16, 2006 11:31 AM

268

■

Mobile Middleware

In our approach, members of the tree are allowed to propagate the
RREQ message, an act disallowed in MAODV to prevent the formation of
loops. This forwarding of the RREQ extends the limits of the search for
a broker with suitable depth and the identification of a path between it
and the requesting broker. To prevent the introduction of loops, we
prohibit the RREQ from being propagated across a non-tree link more
than once; in other words, the RREQ cannot propagate from B to G (a
non-tree link) and then to H (a second non-tree link). This disallows the
addition of links (B,G) and (G,H), a situation that forms cycles in the
overlay tree; however, G may forward the RREQ from B to F along the
overlay tree, a situation explicitly prohibited in MAODV. In this case, F
meets the depth criteria and responds to the RREQ message, indicating
the possible addition of the link between B and G, an option for restoring
the tree that MAODV does not identify.

Our second extension to MAODV is the selection criteria for the new
link. In Figure 11.3, both D and F reply to the RREQ message with options
for repairing the tree, and B must choose one. The main selection criteria
in MAODV is the length of the path to the tree, which in MAODV may
include several nodes that are actually not part of the multicast group. In
our approach, where all nodes act as brokers, the distance to the tree is
always one hop; therefore, we adopt a selection criteria that minimizes
the effect of the reconfiguration on the subscription tables. Specifically,
the reply with the shortest path between the endpoint of the old link on
the tree (A) and the new endpoint (D or G) is selected. In the example,
D’s reply is selected because the path length from A to D is shorter than
from A to G. A more detailed description of this approach, together with
experimental results collected from our implementation, can be found in
Mottola et al. [33].

Fixed Networks

As an alternative to networks where connectivity is determined by broker
proximity, we have also devised a protocol [27] for a fixed network
scenario, as found in P2P networks. In this scenario, dynamicity comes
from the addition and removal of brokers, not links, and the presence of
a fixed network enables the addition of a link between any pair of
connected brokers. Our solution is again inspired by MAODV but adapted
to the aforementioned scenario requirements. Furthermore, because we
have greater control over connectivity, we also enforce a maximum degree
on each broker, thus limiting its message forwarding burden.

In our approach, we exploit three types of repair procedures: local,
global, and root-specific. In a local recovery, only brokers close to the
recovering one are involved. Global recovery reaches brokers anywhere in

AU3833_C11.fm Page 268 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 269

the tree. Root-specific protocols come into play only when the root (i.e., the
leader in MAODV terminology) broker fails. Local recovery exploits the fact
that all brokers know the identities of their siblings as well as the identities
of some of their direct ancestors (brokers on the path between itself and
the root). When a broker fails, the tree can be reconnected by linking its
former children to each other and at least one of these children to an
ancestor. We have developed protocols that balance the broker degree,
preventing all brokers from connecting to the same ancestor (creating a star
network with high broker degree) and similarly preventing all but one child
from connecting to one another (creating a line with low broker degree).
The local recovery procedure also allows a broker to refuse a request if the
addition of the broker as a child will increase its degree beyond a predefined
limit. In this case, the request to find a parent is forwarded downstream
from the refusing broker in hopes of finding a broker that has not yet reached
its maximum degree. This technique is surprisingly effective, exploiting the
trend that brokers farthest from the root have lower degrees.

Global recovery comes into play when local recovery fails because
broker degree requirements cannot be met or because a new parent
cannot be identified among the siblings and the ancestors, a case that
arises when a cluster of brokers fails. In these situations, the broker seeks
a new parent from a cache that it maintains of other brokers in the tree.
This cache is populated, for example, by recording the source of messages
propagated over the tree. To find a new parent, a broker is selected from
the cache and is sent a request to allow the requesting broker to become
a child. To avoid loops, we adopt an algorithm based on the notion of
tree depth, similar to MAODV. If the broker has a lower depth than the
requesting broker, it can accept to become the new parent; otherwise, it
can forward the request upstream to find a broker with lower depth,
forward it downstream to find a broker with lower broker degree, or
simply reject the request.

It may still happen that a broker cannot identify a new broker to serve
as its parent. In this case, it declares itself to be a new root, creating its
own tree. Because our goal is to maintain a single overlay tree, we need
a mechanism to merge trees when they discover each another. For this,
we assign an identifier to each tree. After a broker has declared itself to
be a root, it periodically contacts brokers in its global cache. If a broker
is found with a different tree identity, the two trees are merged.

This notion of merging trees can also be exploited in the case of root
failure. When the root fails, all its former children declare themselves to
be roots of their subtrees. They then exploit their global cache to identify
the other subtrees and re-merge the tree; unfortunately, this may take a
long time, during which message routing on the tree is disrupted. We
therefore defined a protocol specific to root failure, essentially electing a

AU3833_C11.fm Page 269 Wednesday, August 16, 2006 11:31 AM

270 ■ Mobile Middleware

new root among the former children of the old root and allowing the
remaining children to connect to this new root or to one another. By
combining local, global, and root-specific protocols we can keep a tree
connected despite brokers frequently being added and removed. A full
evaluation of the effectiveness of these techniques is available in Frey and
Murphy [27].

Reconciling Routing Information

After ensuring maintenance of the overlay tree, the next step is maintaining
the subscription tables to allow messages to continue to reach the sub-
scribers. Here we consider protocols that address link loss rather than
broker loss, because the latter case can be addressed as a combination
of several link repair actions.

When a link fails between a pair of brokers the overlay management
protocols described in the previous section take on the responsibility of
finding the replacement link. When this link has been found, the subscrip-
tion tables must be updated so all messages that traversed the now-broken
link are sent across the new link to reach the subscribers on the other
subtree. We have developed a series of protocols to accomplish this, each
with different requirements from the overlay management protocols and
with different assumptions about the environment [18,20,36].

The first solution, which we refer to as a strawman protocol, is the
only proposal previously suggested in the literature [8]. This approach
utilizes only the usual publish–subscribe subscription and unsubscription
messages. When a link disappears, a broker behaves as if it received
unsubscription messages from the former neighbor, updating its subscrip-
tion table and propagating the unsubscription message if necessary. This
has the effect of stopping message forwarding across the broken link.
When the new link is added, its endpoints send subscriptions to one
another for all entries in their subscription table, allowing messages to
flow across the new link.

While this approach successfully reconfigures the subscription tables,
it may cause unnecessary overhead; for example, consider the scenario
in Figure 11.4 in which only one broker in a subtree is a subscriber. When
the link breaks between A and B, the unsubscription process removes all
entries in the subscription tables of the brokers in B’s subtree. When the
subscription process begins across the new link (C,D), it reinserts most
of these entries exactly as before, creating unnecessary overhead to remove
many subscriptions that are immediately reinserted. To overcome this, we
experimented with delaying the unsubscription process until the subscrip-
tion process is complete. This reversal technique, that we refer to as

AU3833_C11.fm Page 270 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 271

deferred unsubscription, is effective in reducing the overhead of recon-
figuration, up to 50 percent over the strawman protocol in simulation
studies characterized by a large number of reconfigurations. In the simple
example above, it prevents the removal and replacement of all subscrip-
tions on B’s subtree. Details about two different mechanisms for deferring
subscriptions can be found in Picco et al. [36] and Cugola et al. [20].

Analysis of the publish–subscribe behavior reveals that reconfiguration
is restricted to the brokers on the path between the endpoints of the old
and new links, termed the reconfiguration path [18]. The subscription
tables of all other brokers remain unchanged. In Figure 11.4, the recon-
figuration path is composed of the brokers from A to C, across the new
link from C to D, and from D to B. To exploit this property, we designed
a protocol [18] that begins at one endpoint of the old link and moves
along the reconfiguration path, updating the subscription tables as it
progresses. One drawback of this protocol is the requirement that the
path must remain intact during the entire reconfiguration. If a second link
fails on the reconfiguration path, the reconfiguration messages stop prop-
agating and the system is left with inconsistent subscription tables. A
second drawback is the need to know the identity of the brokers on the
reconfiguration path, an additional requirement for the overlay manage-
ment protocol. Finally, this protocol is complex when considering the
details to address the subscriptions and unsubscriptions that occur during
the reconfiguration. On the other hand, this protocol can achieve overhead
reductions up to 78 percent over the strawman protocol in scenarios where
reconfigurations do not overlap.

Figure 11.4 A dispatching tree before, during, and after a reconfiguration per-
formed using Strawman. The shaded broker is a subscriber. Arrows indicate the
propagation direction for messages.

AU3833_C11.fm Page 271 Wednesday, August 16, 2006 11:31 AM

272 ■ Mobile Middleware

To bridge between the resilient Deferred Unsubscription protocol and
the efficient Reconfiguration Path protocol, we have designed a new
protocol that exchanges information among the brokers on the old and
new links which we refer to as the Informed Link Activation protocol [47].
Specifically, the endpoints on the old link send the contents of their
subscription tables to the endpoints of the new links. By combining these
with their own subscription tables, the endpoints of the new link calculate
which subscriptions to send across the new link. Again, this is complicated
by the insertion and removal of subscriptions during reconfiguration, but
the protocol is not as complex as the Reconfiguration Path protocol. With
these approaches that share information between the old and new link,
we have shown that few brokers outside the reconfiguration path are
affected by reconfiguration, thus resulting in an overhead reduction of up
to 76 percent, similar to results for the reconfiguration path approach but
in the presence of concurrent reconfigurations.

Each of these protocols operates with varying expectations from the
overlay management protocol and tolerance for changes during tree repair.
This leads to a number of tradeoffs that must be considered when selecting
the protocol for a given system. For example, although the reconfiguration
path approach has clear advantages with respect to reduction of overhead,
it adds the burden to the overlay management protocol to identify all
nodes on the path and requires the environment to keep the path stable
during reconfiguration. The Deferred Unsubscription protocol makes no
assumptions about either stability or knowledge passed from the overlay
management protocol; however, its overhead reduction is not as signifi-
cant. The Informed Link Activation protocol falls in between the recon-
figuration path and Deferred Unsubscription protocols both in terms of
overhead reduction and required knowledge. Notably, the endpoints of
the old link must be informed of the identities of the endpoints of the
new link in order to send information to aid reconfiguration. In summary,
our suite of protocols provides many options to the system designer, who
can select the most appropriate protocol based on the characteristics of
the deployment environment.

Recovering Lost Messages
The last problem hampering content-based publish–subscribe on a
dynamic topology is recovering lost messages. Even in the presence of
reliable links, messages can be lost due to the reconfiguration of the
dispatching network, as routing tables are changed while a message is in
transit and therefore may cause its forwarding along stale routes. In this
section, we describe a solution based on epidemic algorithms that does
not make any assumptions about the cause of message loss and therefore
enjoys general applicability.

AU3833_C11.fm Page 272 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 273

The idea behind epidemic (or gossip) algorithms [6,21] is for each
process to communicate periodically its partial knowledge about the
system state to a random subset of other processes, thus contributing
toward building a shared view of the global state. The interaction between
hosts can exploit a push or pull style. In a push style, each process gossips
periodically to disseminate its view of the system. In a pull style, each
process requests the transmission of information from other processes.
Usually, a push approach exploits gossip messages containing a positive
digest, and a pull approach exploits a negative digest (i.e., containing the
portion of the state known to be missing). Regardless of the scheme
adopted, the probabilistic and decentralized nature of epidemic algorithms
brings many desirable properties: a constant, equally distributed load on
the processes in the system which improves scalability; resilience to
changes in the system configuration, including topological ones; a simple
implementation; and low computational overhead.

In our case, the state to be reconciled is the set of messages that have
appeared in the system; nevertheless, the nature of content-based publish–
subscribe systems adds to the complexity of the problem. Unlike subject-
based publish–subscribe and IP multicast, not only are messages not bound
to a subject or group determining their routing but they may also match
multiple subscriptions instead of a single group. Together, these features
greatly complicate the task of identifying the subset of brokers that may
hold a missing message.

The solutions we describe share a common structure. Each broker
periodically starts a new gossip round, during which it contacts other
brokers potentially holding a copy of the lost messages. The broker playing
this gossiper role builds a gossip message and sends it along the dispatch-
ing tree. The content of the gossip message and its routing by the other
brokers along the tree vary according to the solutions we describe next.
We assume that each broker caches the messages received and that a
unicast mechanism is available for sending missing messages (e.g., using
the reverse path of gossip messages along the tree or through an out-of-
band transport protocol).

Push

Our first solution uses proactive gossip push with positive digests. At each
gossip round, the gossiper chooses randomly a filter p from its subscription
table, constructs a digest of the identifiers (the pair given by the source
identifier and a monotonically increasing sequence number associated
with the source is sufficient) of all the cached messages matching p, builds
a gossip message containing the digest, and labels it with p. The gossip
message is then propagated along the dispatching tree as if it were a

AU3833_C11.fm Page 273 Wednesday, August 16, 2006 11:31 AM

274 ■ Mobile Middleware

normal message matching p. The only difference is that, to limit overhead,
the gossip message is forwarded only to a random subset of the neighbors
subscribed to p. To increase the chance of eventually finding all the
brokers interested in the cached messages (thus speeding up conver-
gence), p is selected from the entire subscription table instead of just the
local subscriptions.

When a broker receives a gossip message labeled with p, it checks if
it is subscribed to this filter and if all the identifiers contained in the digest
correspond to previously received messages. The identifiers of the missed
messages are included in a request message sent to the gossiper, which
replies by sending a copy of the messages. Both messages are exchanged
through the unicast channel mentioned above.

Pull

A pull approach implies the ability to detect lost messages. In subject-
based systems, this is easily achieved by using a sequence number per
source and per subject. In content-based systems this task is complicated
by the absence of a notion of subject and by the fact that each broker
receives only those messages whose content matches the filters it is
subscribed to. As detailed in Costa et al. [14], this problem can be solved
by tagging each message with (1) the identifier of its source, (2) informa-
tion about all the filters matched by the message, and (3) a sequence
number for each filter that is incremented at the source each time a
message is published for that filter. This information is bound to each
message at its source — an opportunity that arises due to subscription
forwarding, where subscriptions are known to all brokers. Event loss is
detected when a broker receives a message matching a filter p for which
the sequence number, associated with p in the message identifier, is greater
than the one expected for p from that message source.

Based on this detection technique, we have defined two approaches
exploiting different routing strategies: one steers gossip messages toward
the subscribers and the other steers them toward the publisher:

■ Subscriber-based pull — Upon detecting a lost message, a broker
inserts the corresponding information (i.e., source, matched filter,
and sequence number associated with the filter and source) in a
buffer (i.e., Lost). When the next gossip round begins, the broker
(now a gossiper) picks a filter p from among those associated with
local subscriptions, selects the messages in Lost matching p, and
inserts the corresponding information in a digest attached to a new
gossip message. (Unlike push, subscriptions are not drawn from
the entire subscription table, as the goal here is to retrieve messages

AU3833_C11.fm Page 274 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 275

relevant to the gossiper rather than disseminating information about
received messages.) Finally, the gossip message is labeled with p
and routed as in the push solution. A broker receiving the gossip
message checks its cache against the requested messages and, if
any are found, sends them back to the gossiper. Note how the
replying broker need not be subscribed to p. In fact, the broker
could have received the gossip message because it sits on a route
toward a subscriber for p and could have received (and cached)
some of the messages missed by the gossiper because they also
match a filter (p′ ≠ p) the broker is subscribed to.

■ Publisher-based pull — This scheme requires that published mes-
sages are cached not only by the brokers that received them but
also by the source and that the address of each broker encountered
on the route toward a subscriber is appended to the published
message. Processing occurs similarly to the previous scheme, but
gossip messages are routed toward publishers instead of subscribers.

These solutions are described in greater detail as well as formalized
in Costa et al. [14]. Moreover, in Costa et al. [13] we evaluated their
performance through simulation. The results confirmed that the approach
is effective and provided insights about how to tune the parameters (most
notably, the interval between two gossip rounds and the size of the
message cache) to achieve the desired level of reliability. Interestingly,
we discovered that neither of the pull solutions alone guarantees a
satisfactory performance. Instead, the combination of the two, performed
by randomly choosing subscriber- or publisher-based pull according to a
given probability, performs similarly to push, albeit with lower overhead
in the case of infrequent reconfiguration.

REDS: Mobile Publish–Subscribe in Practice
Developed at Politecnico di Milano, REDS (Reconfigurable Dispatching
System) [19] puts the mechanisms and algorithms described in the previous
sections into practice. REDS is publicly available at http://zeus.elet.
polimi.it/reds as open source under the Lesser General Public License
(LGPL) and is implemented entirely in Java. Its distinctive and innovative
feature is its reconfigurability, a property made available on two different
planes. The first concerns the configuration of the middleware architecture
and allows the selection of different mechanisms (e.g., the format of
messages and filters or the routing strategy) for different deployment
scenarios. The second concerns the dynamic reconfiguration of the topol-
ogy of the REDS distributed dispatcher and addresses the problems of

AU3833_C11.fm Page 275 Wednesday, August 16, 2006 11:31 AM

276 ■ Mobile Middleware

maintaining the overlay network of REDS brokers in the face of topological
changes, efficiently restoring stale subscription information and recovering
messages lost during the reconfiguration.

To achieve these goals, REDS is conceived of as a framework (in the
object-oriented sense) of Java classes that allows programmers to easily build
a publish–subscribe middleware explicitly tailored to their application domain.
In particular, REDS defines the architecture of a generic broker organized as
a set of components implementing well-defined interfaces that represent
several aspects of a publish–subscribe system. For example, with regard to
messages and filters, REDS defines two interfaces encompassing the minimal
set of methods required by a publish–subscribe broker to operate. By imple-
menting these interfaces, developers are free to define their own message
formats and, more importantly, their own filters, without having to change
the rest of the system. Here, however, we are interested in the components
used to build the brokers constituting the REDS distributed dispatcher. As
shown in Figure 11.5, each REDS broker is organized as a set of components
grouped into two layers, the transport and the routing layers:

■ Transport — The transport layer encapsulates the mechanisms used
to transport messages, (un)subscriptions, and any other kind of
broker-specific control messages through the network. In perform-
ing this task, it hides the wire protocol adopted to move data
around and the mechanisms used to address and access brokers
and clients and to setup the dispatching network in case the
dispatcher is distributed. It includes an instance of the Transport
component and a set of Neighbors. The Transport component
is in charge of receiving incoming requests from neighboring
brokers or clients (e.g., connection requests, subscriptions), inter-
preting them, and calling the appropriate methods on the Core
component that, as we describe later, is the pivot of the whole
architecture. Similarly, Neighbor instances are used internally by
the components of the routing layer as proxies to interact with the

Figure 11.5 The architecture of a REDS broker.

AU3833_C11.fm Page 276 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 277

broker’s neighbors, thus hiding the details concerned with access-
ing the underlying network layer. The current version of REDS
provides two different implementations for the transport layer and
consequently for the two components Transport and Neighbor:
one using TCP links to connect each broker with its neighbors and
one based on User Datagram protocol (UDP) datagrams.

■ Routing — The routing layer includes three components (Core,
Router, and ConnectionManager) which share two data struc-
tures: SubscriptionTable and NeighborSet. The Subscrip-
tionTable plays a critical role in recording the subscriptions
received by the broker’s neighbors. By encapsulating the algorithm
used to efficiently match messages against a set of filters, its imple-
mentation has a great impact on the performance of the broker. The
NeighborSet is a convenience data structure provided as a way
to simplify the task of accessing, from within the routing components,
information concerned with the broker’s neighbors represented by
Neighbor instances.

As its name suggests, the Core is the central element of a REDS
broker. It holds the two aforementioned data structures and mediates
communication among the other components, which therefore do not
have direct visibility to each other. This design choice yields two benefits:
It increases the decoupling among components, which need to be aware
only of the existence of the Core, and it provides a central place through
which all communication is funneled, therefore opening opportunities
for transparently intercepting and modifying messages before redirecting
them to the intended components. As an example, we are currently
exploiting this possibility in the implementation of the epidemic algo-
rithm described earlier.

The Router is in charge of implementing the specific routing strategy.
Its methods are invoked by the Transport, through the Core, to notify
it that a subscription, unsubscription, or message has been received from
one of the broker’s neighbors and must be routed according to the strategy
it encapsulates.

The ConnectionManager is the key component of our architecture
that provides support for publish–subscribe on a dynamic topology. It is
in charge of (1) maintaining the overlay dispatching network connected
and (2) efficiently rearranging the brokers’ subscription tables when the
topology of the network changes. It operates in a reactive way, being
notified by the Transport (through the Core) when a new client or
broker requests to connect or disconnect and, most importantly, when
the transport cannot reach a neighbor that was formerly connected. The
protocols described earlier are currently implemented in REDS as special-
izations of this component.

AU3833_C11.fm Page 277 Wednesday, August 16, 2006 11:31 AM

278 ■ Mobile Middleware

Related Approaches

In this section, we discuss other approaches to publish–subscribe in mobile
scenarios by focusing on the few other publish–subscribe middleware
systems capable of tolerating reconfigurations of the dispatching network
and faulty links, as well as on middleware that provides solutions specific
to content-based publish–subscribe on MANETs. Finally, we touch on how
location — a fundamental aspect in mobile scenarios — can be introduced
into the publish–subscribe communication model.

Reconfigurable and Fault-Tolerant
Publish–Subscribe

The ability to deal with dynamic reconfiguration of the dispatching net-
work topology is not common in content-based publish–subscribe mid-
dleware. The most relevant exception is Hermes [37,38], a scalable and
reconfigurable publish–subscribe middleware that uses peer-to-peer tech-
niques to build and maintain its overlay routing network. Hermes provides
a slightly limited form of content-based routing, termed type- and attribute-
based routing [23]. Type-based routing is comparable to subject-based
routing but preserves inheritance among message types. On top of this
routing mechanism, Hermes adds content-based filtering on message
attributes. Each message type is associated with a rendezvous point, which
takes on the same role as the core node in core-based tree multicast [2].
The Hermes P2P substrate associates a specific Hermes broker to any
rendezvous point and helps in building the dispatching tree associated
with the associated message type. The self-organization and stabilization
features of this P2P substrate allow Hermes to handle dynamic addition,
removal, and failure of brokers; however, Hermes does not address the
problem of recovering messages lost during reconfiguration.

This latter problem has been addressed by the developers of JORAM [3]
and Gryphon [5], which focus on fault tolerance and reliability by allowing
a set of brokers to operate as a redundant cluster, but not specifically for
mobility. A new feature in JORAM 4.2 allows a set of brokers to be
grouped together and operate as a single, redundant cluster to transpar-
ently handle network handover and broker fail-over. The JORAM brokers
that are part of the same cluster communicate and coordinate by using
JGroups [4], a toolkit for reliable multicast communication developed at
Cornell University. Similarly, an approach based on a redundant network
of brokers to deal with link failures and broker crashes has been recently
proposed for the Gryphon [46] system.

AU3833_C11.fm Page 278 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 279

Publish–Subscribe on MANETs

Earlier we described a comprehensive set of approaches to dynamically
reconfigure a tree of brokers and clients to efficiently support publish–sub-
scribe interactions in different mobile scenarios exhibiting various degrees
of mobility. In these approaches, however, message dispatching still relies
on a tree-shaped overlay graph. In a MANET environment, and especially
if hosts move frequently, the overhead of maintaining the broker tree may
overcome the advantages offered by this topology. Very little literature
has addressed this problem, however.

In Huang and Garcia-Molina [29], the spectrum of approaches (from
centralized to distributed) to publish–subscribe is described, and some
possible extensions to mobile environments and particularly MANETs are
briefly analyzed. The paper does not provide any complete solutions to
the problem but does offer a good starting point by eliciting the problems
involved. Similarly, the preliminary work described in Skjelsvik et al. [42]
analyzes the issues involved in designing a publish–subscribe middleware
for MANETs, focusing specifically on the routing problem.

The work in Huang and Garcia-Molina [30] describes a distributed
protocol to build optimized publish–subscribe trees in wireless networks.
The authors make rather constraining assumptions; for example, they
expect to have knowledge about the placement of publishers (which must
become the root of the dispatching tree) and about the statistical distri-
bution of messages with respect to subscriptions (to satisfy the optimality
requirements of routing). Moreover, they consider only quasi-static sce-
narios where nodes move only occasionally and then settle down for a
period on the order of minutes. Chen and Schwan [12] describe an alternate
mechanism to reconfigure an overlay dispatching network depending on
the changes in the physical topology of the MANET and on the current
brokers’ load; however, each broker must be provided with a global view
of the network topology, the mechanism does not handle partitions, and
the approach requires an underlying unicast protocol.

The problem of providing content-based publish–subscribe for highly
mobile scenarios without relying on a tree overlay has recently been
tackled by our research group. In Costa and Picco [15], the authors describe
a semi-probabilistic routing algorithm that relies on an overlay network
of brokers organized in an undirected connected graph. This topology is
easier to maintain than a tree and it is intrinsically more tolerant to
reconfigurations and faults, as it provides multiple routes between any
two brokers. Routing is partially deterministic and partially probabilistic.
Subscriptions are forwarded as in subscription forwarding, but only up to
a given distance (i.e., number of hops) from the subscriber, thus providing
accurate routing information within a certain horizon from the subscriber.

AU3833_C11.fm Page 279 Wednesday, August 16, 2006 11:31 AM

280 ■ Mobile Middleware

Along its route, a message is routed using this deterministic information,
if available. If there is no such information to determine the next hop,
the decision is made probabilistically by forwarding the message along a
randomly selected subset of the available links. The simulations in Costa
and Picco [15] confirm that proper tuning of the span of the subscription
horizon and of the fraction of randomly selected links yields very good
performance (in terms of event delivery and overhead), even in highly
dynamic scenarios. In particular, the semi-probabilistic approach performs
better than a purely probabilistic (or deterministic) approach.

Baldoni et al. [1] have suggested letting each broker autonomously
decide about forwarding messages, based on its estimated distance from
the closest subscriber, and performing forwarding by using the broadcast
facility provided by wireless network cards. This allows other neighboring
brokers to decide if they must forward the message or if they should cancel
forwarding. In particular, in a MANET with quickly moving mobile nodes
the distance between two such nodes can be estimated by measuring the
time since they were most recently in communication range. Routing works
as follows: Each broker listens for messages broadcast by neighboring
brokers. When a broker receives such a message, it stores it and delays
forwarding for a time interval proportional to the estimation it has made
of its distance from the closest subscriber. During this time interval, for-
warding is canceled if a message with the same identifier is forwarded by
some neighboring broker (to avoid unnecessarily flooding the network).
When the delay expires and if forwarding has not been canceled, the
message is broadcast to the neighboring brokers, which reason similarly.
The simulations in Baldoni et al. [1] confirmed that this is an efficient
technique. It exploits the broadcast nature of wireless communication to
send multiple copies of the same message via a single transmission; it
avoids the burden of link breakage detection, and it provides an intrinsic
resilience to the topological changes caused by the mobility of the nodes.

Location- and Context-Aware Publish–Subscribe
The very notion of mobility is tightly coupled with the notion of location.
Indeed, in mobile scenarios, the ability to send messages only toward
specific locations or that of subscribing to messages published by com-
ponents located in specific areas could be beneficial to implementing
interactions that take into account mobility. Unfortunately, commonly
available publish–subscribe middleware does not offer location-based
services as part of the API and only few systems address the problem.

In Cugola and Munoz de Cote [16], the authors provide a categorization
of possible location-based publish–subscribe services and describe an
algorithm to introduce them efficiently in a distributed publish–subscribe

AU3833_C11.fm Page 280 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 281

middleware system, using a subscription-forwarding routing strategy. In
this scheme, each broker is provided with a location table used to route
location-aware messages and subscriptions. Information about the actual
location of publishers and subscribers is forwarded along the network of
brokers to populate each broker’s location table. This information is used
both at subscription and publish time. If a component subscribes to
messages coming from a specific area A, location tables are used to limit
forwarding of the subscription only toward A. Similarly, if a component
publishes a message toward area A, location tables are used (together with
conventional subscription tables) to route the message only toward sub-
scribers located in area A, if any. A similar approach is reported in Fiege
et al. [24], where the authors describe an extension to the REBECA [26]
middleware to implement location-based subscriptions. The main difference
between this approach and the previous one is that the scheme proposed
by Fiege et al. [24] does not take advantage of information about the actual
location of clients to limit forwarding of location-based subscriptions. As
a consequence, location-based subscriptions flood the entire network of
the brokers in REBECA, potentially reaching areas that are not relevant. A
different approach is pursued in Fiege et al. [25], where a general notion
of scope is introduced to structure message availability and notification by
restricting the visibility of published messages to a subset of subscribers
in the system — those in the requested scope. In principle, scope can be
defined using location or other forms of contextual information, thus
obtaining a form of context awareness similar to those described above.

Scalable Timed Events and Mobility (STEAM) [32] is a publish–subscribe
middleware designed for deployment over MANETs. STEAM targets appli-
cation scenarios that include a large number of application components
that communicate using wireless technology in an ad hoc scenario. In
STEAM, messages are valid in a certain geographical area surrounding the
publisher. In other words, STEAM provides a special form of location-based
publishing service in which location is expressed relative to the publisher.
The STEAM implementation is specifically tailored to MANETs and takes
advantage of a proximity-based group communication service [31] that uses
the number of hops traveled by messages at the Media Access Control
(MAC) networking layer to approximate distance.

The work in Chen et al. [11] tackles the different, but related, problem of
efficiently filtering a stream of messages representing the current location of
clients against a set of spatial predicates. The goal is to determine the set of
clients that could be interested in receiving some messages based on their
position. The authors propose a middleware system based on a centralized
spatial matching engine, which collects subscriptions and delivers them to
clients. Clients are in charge of matching those subscriptions against their
current position. The results of this process are given back to the engine.

AU3833_C11.fm Page 281 Wednesday, August 16, 2006 11:31 AM

282 ■ Mobile Middleware

Finally, Solar takes a complementary approach [10]. Solar is a distrib-
uted publish–subscribe system explicitly developed to disseminate location
and contextual information to a set of distributed components. The empha-
sis, therefore, is not on constraining the propagation of messages and
subscriptions based on location; instead, it is on using the publish–sub-
scribe infrastructure to efficiently disseminate contextual data (e.g., gath-
ered by sensors) that can be processed and used by the distributed
application. Solar abstracts context information as messages and allows
components to subscribe to the kind of information to be notified of when
their context changes. Moreover, components may use Solar services to
aggregate low-level context information into more expressive and easier
to manage high-level ones.

Conclusions
The publish–subscribe model holds the potential to become of fundamen-
tal importance in mobile computing, but only if the technology supporting
it embodies the mechanisms and algorithms necessary to cope with the
dynamicity of this environment. In this chapter, we presented the chal-
lenges posed by the mobile environment, described our own solutions
for bringing dynamicity in content-based publish–subscribe technology,
and surveyed alternative state-of-the art proposals in the field.

References
[1] Baldoni, R., Beraldi, R., Cugola, G., Migliavacca, M., and Querzoni, L.,

Content-based routing in highly dynamic mobile networks, Int. J. Pervasive
Computers Comput. (JPCC), 1(4), 2006.

[2] Ballardie, T., Francis, P., and Crowcroft, J., Core based trees, in Proc. ACM
SIGCOMM’93, San Francisco, CA, August, 1993.

[3] Balter, R., JORAM: The Open Source Enterprise Service Bus, Technical Report,
ScalAgent Distributed Technologies, Cedex, France, 2004 (www.scalagent.
com/pages/en/datasheet/040322-joram-whitepaper-en.pdf).

[4] Ban, B., Design and Implementation of a Reliable Group Communication
Toolkit for Java, Technical Report, Cornell University, Ithaca, NY, 1998
(www.cs.cornell.edu/home/bba/).

[5] Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., and
Sturman, D.C., An efficient multicast protocol for content-based publish–sub-
scribe systems, in Proc. IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’99), Austin, TX, May, 1999.

[6] Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and Minsky,
Y., Bimodal multicast, ACM Trans. Comput. Syst., 17(2), 41–88, 1999.

AU3833_C11.fm Page 282 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 283

[7] Caporuscio, M., Carzaniga, A., and Wolf, A.L., Design and evaluation of a
support service for mobile, wireless publish/subscribe applications, IEEE
Trans. Software Eng., 29(12), 1059–1071, 2003.

[8] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L., Design and evaluation of
a wide-area event notification service, ACM Trans. Comput. Syst., 19(3),
332–383, 2001.

[9] Chand, R., and Felber, P.A., A scalable protocol for content-based routing
in overlay networks, in Proc. of the 2nd IEEE Int. Symp. on Network Com-
puting and Applications, Cambridge, MA, April, 2003, p. 123.

[10] Chen, G. and Kotz, D., Solar: an open platform for context-aware mobile
applications, in Proc. of the 1st Int. Conf. on Pervasive Computing, Zurich,
Switzerland, June, 2002, pp. 41–47.

[11] Chen, X., Chen, Y., and Rao, F., An efficient spatial publish/subscribe system
for intelligent location-based services, in Proc. of Int. Workshop on Distrib-
uted Event-Based Systems (DEBS’03), San Diego, CA, June, 2003.

[12] Chen, Y. and Schwan, K., Opportunistic overlays: efficient content delivery
in mobile ad hoc networks, in Proc. of the 6th ACM/IFIP/USENIX Int.
Middleware Conf., Vol. 3790, Lecture Notes in Computer Science, Springer,
Berlin, 2005, pp. 354–374.

[13] Costa, P., Migliavacca, M., Picco, G.P., and Cugola, G., Epidemic algorithms
for reliable content-based publish–subscribe: an evaluation, in Proc. of the
24th Int. Conf. on Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
March, 2004, pp. 552–561.

[14] Costa, P., Migliavacca, M., Picco, G.P., and Cugola, G., Introducing reliability
in content-based publish–subscribe through epidemic algorithms, in Proc.
of Int. Workshop on Distributed Event-Based Systems (DEBS’03), San Diego,
CA, June, 2003.

[15] Costa, P. and Picco, G.P., Semi-probabilistic content-based publish–sub-
scribe, in Proc. of the 25th Int. Conf. on Distributed Computing Systems
(ICDCS’05), Columbus, OH, June, 2005.

[16] Cugola, G. and Munoz de Cote, J.E., On introducing location awareness in
publish–subscribe middleware, in Proc. of Int. Workshop on Distributed
Event-Based Systems (DEBS’05), Columbus, OH, June, 2005.

[17] Cugola, G., Di Nitto, E., and Fuggetta, A., The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS, IEEE Trans.
Software Eng., 27(9), 827–850, 2001.

[18] Cugola, G., Frey, D., Murphy, A.L., and Picco, G.P., Minimizing the recon-
figuration overhead in content-based publish–subscribe, in Proc. of the 19th
ACM Symp. on Applied Computing (SAC’04), Nicosia, Cyprus, March, 2004,
pp. 1134–1140.

[19] Cugola, G. and Picco, G.P., REDS: A Reconfigurable Dispatching System,
Technical Report, Politecnico di Milano, Italy, 2005 (www.elet.polimi.
it/upload/picco).

[20] Cugola, G., Picco, G.P., and Murphy, A.L., Towards dynamic reconfiguration
of distributed publish–subscribe systems, in Proc. of the 3rd Int. Workshop
on Software Engineering and Middleware (SEM), Vol. 2596, Lecture Notes
in Computer Science, Springer, Berlin, 2002, pp. 187–202.

AU3833_C11.fm Page 283 Wednesday, August 16, 2006 11:31 AM

284 ■ Mobile Middleware

[21] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J. et al., Epidemic
algorithms for replicated database maintenance, Operating Syst. Rev., 22(1),
8–32, 1988.

[22] Eugster, P., Felber, P., Guerraoui, R., and Kermarrec, A.-M., The many faces
of publish/subscribe, ACM Comput. Surv., 2(35), 114–131, 2003.

[23] Eugster, P.T., Guerraoui, R., and Damm, C.H., On objects and events, in
Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2001), Tampa Bay, FL, October, 2001, pp.
254–269.

[24] Fiege, L., Gartner, F.C., Kasten, O., and Zeidler, A., Supporting mobility in
content-based publish/subscribe middleware, in Proc. of the 4th ACM/IFIP/
USENIX Int. Middleware Conf., Rio de Janeiro, Brazil, June, 2003.

[25] Fiege, L., Mezini, M., Muhl, G., and Buchmann, A.P., Engineering event-
based systems with scopes, in Proc. of the 16th European Conf. on Object-
Oriented Programming (ECOOP02), Vol. 2374, Lecture Notes in Computer
Science, Springer, Berlin, 2002, pp. 309–333.

[26] Fiege, L., Muhl, G., and Gartner, F.C., Modular event-based systems, Knowl-
edge Eng. Rev., 17(4), 359–388, 2002.

[27] Frey, D. and Murphy, A.L., Maintaining Publish–Subscribe Overlay Tree in
Large Scale Dynamic Networks, Technical Report, Politecnico di Milano,
Italy, 2005 (www.elet.polimi.it/upload/frey).

[28] Fuggetta, A., Picco, G.P., and Vigna, G., Understanding code mobility, IEEE
Trans. Software Eng., 24(5), 342–361, 1998.

[29] Huang, Y. and Garcia-Molina, H., Publish/subscribe in a mobile environ-
ment, in Proc. of the 2nd ACM Int. Workshop on Data Engineering for
Wireless and Mobile Access (MobiDe’01), Santa Barbara, CA, May, 2001, pp.
27–34.

[30] Huang, Y. and Garcia-Molina, H., Publish/subscribe tree construction in
wireless ad hoc networks, in Proc. ACM Int. Conf. on Mobile Data Man-
agement (MDM’03), Melbourne, Australia, January, 2003, pp. 122–140.

[31] Killijian, M., Cunningham, R., Meier, R., Mazare, L., and Cahill, V., Towards
group communication for mobile participants, in Proc. of ACM Workshop
on Principles of Mobile Computing (POMC’2001), Newport, RI, August, 2001,
pp. 75–82.

[32] Meier, R. and Cahill, V., STEAM: event-based middleware for wireless ad
hoc networks, in Proc. of Int. Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, July, 2002.

[33] Mottola, L., Cugola, G., and Picco, G.P., A Self-Repairing Tree Overlay
Enabling Content-Based Routing on Mobile Ad Hoc Networks, Technical
Report, Politecnico di Milano, Italy, 2005 (www.elet.polimi.it/upload/picco).

[34] Perkins, C.E., IP Mobility Support, Request for Comments 2002, Internet
Engineering Task Force (IETF), 1996 (http://www.ietf.org/rfc/rfc2002.txt).

[35] Perkins, C.E., Ed., Ad Hoc Networking, Addison-Wesley, Boston, MA, 2000.
[36] Picco, G.P., Cugola, G., and Murphy, A.L., Efficient content-based event

dispatching in presence of topological reconfiguration, in Proc. IEEE Conf.
on Distributed Computing Systems (ICDCS’03), Providence, RI, May, 2003,
pp. 234–243.

AU3833_C11.fm Page 284 Wednesday, August 16, 2006 11:31 AM

Content-Based Publish–Subscribe in a Mobile Environment ■ 285

[37] Pietzuch, P.R. and Bacon, J.M., Hermes: a distributed event-based middle-
ware architecture, in Proc. of Int. Workshop on Distributed Event-Based
Systems (DEBS’02), Vienna, Austria, July, 2002.

[38] Pietzuch, P.R. and Bacon, J.M., Peer-to-peer overlay broker networks in an
event-based middleware, in Proc. of the 2nd Int. Workshop on Distributed
Event-Based Systems (DEBS’03), June 2003.

[39] Podnar, I. and Lovrek, I., Supporting mobility with persistent notifications
in publish–subscribe systems, in Proc. of Int. Workshop on Distributed Event-
Based Systems (DEBS’04), Edinburgh, Scotland, May, 2004.

[40] Rosenblum, D.S. and Wolf, A.L., A design framework for Internet-scale event
observation and notification, in Proc. of the 6th European Software Engi-
neering Conf. held jointly with the 5th Symp. on the Foundations of Software
Engineering (ESEC/FSE97), Zurich, Switzerland, September, 1997.

[41] Royer, E.M. and Perkins, C.E., Multicast operation of the ad hoc on-demand
distance vector routing protocol, in Proc. of the 5th ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MOBICOM’99), Seattle, WA, August,
1999, pp. 207–218.

[42] Skjelsvik, K.S., Goebel, V., and Plagemann, T., Distributed event notification
for mobile ad hoc networks, IEEE Distributed Syst. Online, 5(8), 2004.

[43] Sutton, P., Arkins, R., and Segall, B., Supporting disconnectedness: trans-
parent information delivery for mobile and invisible computing, in Proc. of
the IEEE Int. Symp. on Cluster Computing and the Grid (CCGRID’01), Bris-
bane, Australia, May, 2001.

[44] Toh, C.-K., Ad Hoc Mobile Wireless Networks, Prentice Hall, Upper Saddle
River, NJ, 2002.

[45] Triantafillou, P. and Economides, A., Subscription summarization: a new
paradigm for efficient publish/subscribe systems, in Proc. of the 24th Int.
Conf. on Distributed Computing Systems (ICDCS’04), Tokyo, Japan, March,
2004.

[46] Zhao, Y., Sturman, D., and Bhola, S., Subscription propagation in highly
available publish/subscribe middleware, in Proc. of the 5th ACM/IFIP/
USENIX Int. Middleware Conf., Toronto, Canada, October, 2004, pp.
274–293.

[47] Cugola, G., Frey, D., Murphy, A.L., and Picco, G.P., Content-Based Routing
for Publish-Subscribe on a Dynamic Topology: Concepts, Protocols, and
Evaluation, Technical Report, 2006, www.elet.polimi.it/upload/picco.

AU3833_C11.fm Page 285 Wednesday, August 16, 2006 11:31 AM

AU3833_C11.fm Page 286 Wednesday, August 16, 2006 11:31 AM

287

Chapter 12

Code Mobility and

Mobile Agents

Andrzej Bieszczad and Tony White

CONTENTS

Introduction... 287
Code Mobility Principles .. 288
Taxonomy of Code Mobility.. 289
Enabling Technologies ... 289
Mobile Code Paradigms ... 292
Advantages of Mobile Code .. 295
Mobile Code Issues .. 298
Mobile Code Frameworks.. 302
Standards ... 309
Concluding Remarks... 310
References ... 310

Introduction

In this chapter, we discuss the fundamentals of distributed systems based
on mobile code. We begin by providing a brief historical perspective and
a discussion of theoretical principles which will help the reader to under-
stand the fundamentals of code mobility as well as its place in the toolbox

AU3833_C12.fm Page 287 Tuesday, August 15, 2006 11:44 AM

288

■

Mobile Middleware

of a software engineer. We continue with descriptions of several enabling
technologies. Mobile agents constitute one of several mobile code para-
digms that we present next. Then, we consider the numerous advantages
that have been attributed to mobile code. Understanding the issues is a
requirement of efficient use of any technology, so we scrutinize a number
of them here, including the most controversial one: security. The chapter
concludes with a discussion of mechanisms for building mobile code
frameworks and a brief note on relevant standardization activities. We
include references to selected publications that we used extensively to
prepare the chapter. The reader should be aware that we have left out
several aspects of mobile code (e.g., applications, patterns, more substance
on standards) due to space limitations.

Code Mobility Principles

In the age of the Internet it is difficult to find a single piece of software
that does not have to deal (at least to some degree) with the distributed
nature of information and computing systems. The prevalence of distrib-
uted systems has yielded numerous technologies that are used to harness
their complexity. A relatively recent addition to the software engineering
toolbox,

mobile code

, has generated a lot of excitement in many research
circles. In essence, code mobility is an evolution of established distributed
systems in which data is transported to and from stationary computational
units toward systems in which it is code that moves while the data may
(it does not have to) stay in place.

The genesis of mobile code can be traced back to process migration
techniques in distributed operating systems. As underlying computing
systems were evolving from a single processing unit to multiple units
distributed in space, traditional static approaches to code generation that
bound execution entities to known locations began to break. To balance
the load, operating systems had to relocate processes between participating
executing environments. One way to do so assumes that both computing
platforms (the source and the destination) are homogeneous. In this case,
the process on the source machine can be encapsulated together with its
state in a transport unit and shipped to the destination machine, where
it is unwrapped and restarted as if it has just resumed operation locally
from a suspended state. In general, the three types of code migration are:

■

Transparent involuntary migration

 — A distributed operating sys-
tem relocates a process as necessary to attain certain global goals.

■

On-demand migration

 — Code is relocated to provide certain
functionality in the target location.

■

Autonomous migration

 — Code logic determines migration patterns.

AU3833_C12.fm Page 288 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents

■

289

Unfortunately, the association of code mobility with viruses plaguing
computer systems has caused a black cloud to hang over this technology.

Taxonomy of Code Mobility

Relocating computational logic between two execution environments can
be achieved in several distinct ways. Let us begin with

logical mobility

.
Imagine that we have two execution environments that have code of a
certain computational unit available from their respective local code repos-
itories. Furthermore, suppose that a protocol is in place that allows for
the transfer of execution states between execution environments. In such
a case, the state of an executing unit on the source machine can be
transported to the destination machine, where a replica of the code running
on the first machine is loaded from a local repository and started with
the transferred state as the initial state of the execution. The whole process
can also be viewed as process cloning.

In the remainder of this chapter, we deal primarily with

physical
mobility

, mobility that involves the physical relocation of program code;
that is, the executable code that constitutes a computational unit active
at one point in time in one execution environment is physically transported
to another location and restarted in the new execution environment. If
transported code is accompanied by the state at which the process was
suspended at the source location and restarted in exactly the same state
in the new environment, we say that it has

strong mobility

. Strong mobility
requires homogeneous execution environments or a very sophisticated
adaptation layer that allows for state recreation in the destination. If process
code is transported without any memory of its former execution, then we
refer to it as having

weak mobility

. In this case, the code is started in a
new execution environment as if it was loaded from a local repository.

The behavior of a newly started process may depend on contacting
some rendezvous point and finding out directives for the task at hand.
This behavior can be set by default or, more commonly, by some managing
entity that brought on transport of the code in the first place. In another
approach, the managing entity may contact the newly started process just
after its activation and provide details for further computation.

Enabling Technologies

The subject of the transport — mobile code — is simply a form of
computer program, a computational unit. To be transferred into a process,
a program requires a computer; in other words, it must have an execution
environment. In the course of execution, a computational unit acquires

AU3833_C12.fm Page 289 Tuesday, August 15, 2006 11:44 AM

290

■

Mobile Middleware

access to a variety of resources that are subject to management policies
that apply to the entire or part of the distributed data space.

A computer and an operating system are fundamental parts of an

execution environment

. They provide mechanisms that transfer a given
computational unit into an active process. Distributed operating systems
extend a notion of an execution environment to a network of computers.
If management of multiple processes running in such a distributed envi-
ronment is not the goal, then migration functionality does not have to be
an integral part of the operating system. Nevertheless, a layer supporting
code migration must be in place in any event if the system is to support
any kind of code mobility. The closer that layer is to the operating system,
the better code migration efficiency, security, and transparency that can
be achieved; however, such improvement usually comes at the expense
of flexibility.

An execution environment supporting migration requires several mech-
anisms to stop a process, acquire a version of its code that is suitable for
transport (possibly its state), unbind any references to resources accessed
by the process, package the code and the state in an envelope appropriate
for transport, establish a communication link with the destination execu-
tion environment, and physically relocate the envelope to the destination.
The role of the execution environment on the receiving end is comple-
mentary. It has to expose a communication port for establishing connec-
tivity, then receive an envelope from the source, conduct thorough security
checks, unpack the envelope, and retrieve a computational unit with
(possibly) its preserved state, resolve resource references (as discussed in
the following section), and recreate an active process from all available
components. Some of the details in this scheme depend on a type of
transfer — for example, presence of process state.

Execution environments come in a variety of sizes and shapes. For a
process migrating as part of a load-balancing scheme, a sole distributed
operating system suffices. In other cases, additional facilities at various
levels of abstraction are required. The facilities might be incorporated into
an operating system, be part of an operational platform (e.g., Java Virtual
Machine), or be run as applications (e.g., Web browsers that execute
applets).

A

computational unit

 is a concept representing a unit of executable
computer code. A computational unit can be initiated as an active process
running in some execution environment. It is a static entity that is con-
venient for packaging and transfer. A computational unit is transformed
into a running process in the course of process instantiation. A process
can be transformed back into a computational unit — for example, when
the unit is to be migrated.

AU3833_C12.fm Page 290 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents

■

291

A computational unit may take many forms. A program written in a
high-level language may be considered a computational unit.

Source code

can be transported between computers, recompiled locally, and run as a
process. Transporting code in its source format offers many advantages.
Portability is guaranteed as long as a compiler for the encoding language
is locally available in the destination. A local linker and loader provide
code arrangement and binding of necessary resources, so the migration
platform is relatively easy to implement. On the other hand, the availability
of local resources necessary for compilation, linking, and execution is a
problem.

Interpreted code

 can alleviate these problems while preserving many
advantages of code written in a high-level compiled language. It does not
require recompilation, relinking, and reloading in the destination, because
these operations are not necessary in code interpretation. The price for
the improvement is a need for an interpreter — an additional computa-
tional layer — that reads commands of the received code and undertakes
actions that they stipulate. The process of interpretation is

de facto

 an
execution cycle for statements of interpreted code; however, resolving
resource references is more difficult, because the interpreter has to perform
that task on behalf of arriving code.

A common complaint against the use of interpreted languages that
most designers agree upon is their relatively low efficiency.

Intermediate
code

 is a compromise between interpreted and machine code. Intermediate
code is generated as output from a compiler, so it can take advantage of
all optimization techniques exploited in modern compilers. On the other
hand, the code is still executed by a necessary interpreter — called a

virtual machine

 — that separates the program from the hosting machine.
Due to the relative simplicity of constructs used in intermediate code,
virtual machines provide much greater efficiency in code execution. Some
code may actually execute in a native machine code, as just-in-time
compilation technology might be used. At the same time, intermediate
code tends to be more compact than its source version. All of this does
not invalidate the advantages attributed to interpreted code with the
controlled execution environment that provides the basis for comprehen-
sive security management.

No other form of code can surpass

native machine code

 with regard
to execution efficiency. Unfortunately, a number of serious issues make
native code a bad candidate for mobility. Machine code is extremely
difficult to analyze, so it often poses an intolerable, undetectable security
threat. The domain for code mobility has to be homogeneous. The size
of computational units of machine code might also be an issue, because
if special care is not taken native code tends to be extensive.

AU3833_C12.fm Page 291 Tuesday, August 15, 2006 11:44 AM

292

■

Mobile Middleware

The process of tying a computational unit to a resource is called

binding

. Binding can be static or dynamic. In

static binding

, a resource
is allocated during program instantiation. If a resource is acquired as a
result of code execution, we have a

dynamic binding

.
From a perspective of code mobility, resources can be transferable

or nontransferable. A

transferable resource

 is a resource that can be
relocated to another execution environment together with the migrating
code. A

nontransferable resource

 cannot be moved to another location.
In some cases, migrating resources may be possible (making them
transferable), but the migration might be undesirable (for example, due
to their size), so the resources can be tagged appropriately to prevent
their transport.

Numerous types of resources are available in execution environments;
for example, a resource can be disk space, a space in memory, a printer,
a file handle, an object, etc. A binding process allocates a resource to a
computational unit, which obtains a resource identifier. The

identifier

 is
a handle allowing the process to access a resource. The

value

 of a resource
depends on its type. The value may be an address in memory, a number,
a string, a socket number, a file descriptor, and so on. Some values
allocated to a process are static, while others can change to reflect the
dynamics of computation.

As we said earlier, in strong mobility the process state moves with the
mobile code.

State

 is a collection of resources with their values. Not all
of them are handled in the same way by the migration mechanism; for
example, some resources have transient values that do not have to be
replicated in the new location.

Mobile Code Paradigms

Having a cellular telephone in a pocket, pouch, or purse has become as
pervasive as wearing a watch on one’s wrist. In fact, the two technologies
are beginning to converge, as both are considered indispensable in our
busy lives. As evidenced in other chapters of this book, many modern
mobile telephones employ technologies that have transferred them into
powerful computing devices — in the jargon used in this chapter, exe-
cution environments for computational units. We will use mobile tele-
phones and mobile networking infrastructure to illustrate the mobile code
paradigms.

Traditional distributed systems utilize a

client–server paradigm

 to trans-
fer data in the course of a computation process. Although the two
communicating entities have well-defined roles in the paradigm, such a
client–server relationship can be established dynamically in response to

AU3833_C12.fm Page 292 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents

■

293

a need to exchange data. Running processes can even be servers and
clients at the same time, serving data to others on the one hand and
obtaining data from others on the other.

The essence of a client–server paradigm is that one process, a client,
requires something that it cannot do or get on its own, so it asks another
process usually (but not necessarily) running in another execution envi-
ronment — the server — for help. The server can help because it has
access to certain logic or certain data that the client does not.

Let us consider a scenario in which you, a mobile telephone user, try
to use your device to buy a good bottle of wine for your spouse’s birthday.
You have a telephone that exploits cutting-edge technologies, so you can
connect to the Internet. You access a Web site that specializes in matching
customer preferences with offers from numerous wine vendors. Your
telephone, acting as a client, connects to the server, which conducts an
interview with the goal of obtaining specifics of the search (it can be as
simple as a Hypertext Markup Language [HTML] form to fill out or a more
complex conversational interaction). After you provide the detailed nuances
of your spouse’s tasting buds and preferred

Appellation d’Origin Controlee

,
the server’s logic performs its magic and you are presented with the best
offers matching your request. You select some wines with a bouquet that
should please your spouse and originate an order. Many client–server
interactions among your telephone, the server, and other parties (servers
of wine vendors, payment institutions, and shipping companies, to name
a few) will be required to complete the purchase.

It is important to notice in this context that, after the service has been
performed, the client has the data that it asked for, but not the logic and
not all available data. To purchase another bottle for your parents’ silver
anniversary, you have to send a corresponding request to the server again.
If you decide to go to a store to purchase the wine, you will not know
what logic the server used to match wine with your spouse’s taste when
you were buying online. That very logic is what makes money for the
broker, so it wants to protect it! The service is useless, however, if you
have access to a vendor’s catalog and not the server. Sending descriptions
of all wines available in the store to the server that knows how to select
one would be extremely tedious. If there is some time limit on the purchase
— for example, you are attending an auction — such a solution is just
impossible. And, what do you do if your wireless connection to the
network is dead because you are out of range?

As you can see, although the client–server paradigm is extremely useful
— and therefore virtually ubiquitous in our networked world — it does
have certain important limitations. In the context of our scenarios, the
client–server paradigm may be both inefficient and unreliable, because
the task at hand is attained through a series of requests and responses

AU3833_C12.fm Page 293 Tuesday, August 15, 2006 11:44 AM

294

■

Mobile Middleware

that must travel back and forth between the client and the server. The
server may not be reachable, the latency may be intolerable, or the amount
of data to transport could be excessive.

The way to overcome the problems that may plague the client–server
model under some circumstances is to use a different computational model
instead. Imagine, for example, that the business model of another provider
of Web services is different from the one we discussed in the preceding
section. In this new model, it is selling a wine-recommendation program
that makes money. Such a program can be downloaded to your mobile
phone, so you can run it whenever you are trying desperately to figure
out the difference between a

vin de pays

 and a

vin de table

. The new
model, which we call

code on demand

, overcomes problems with trans-
porting large databases and with network latency.

Another way to overcome the problems is to apply the so-called

remote code evaluation

 paradigm instead. In this model, a program
containing some logic is also transported, but this time in the opposite
direction. For example, after trying numerous available online wine-
advisory services, you conclude that none of them can even come close
to your mastery of

terroir

 and

cepages

. As a technically savvy individual,
you may write a program for performing a very specialized

vin

 query.
You can install the program on your mobile phone, but you need a
database to act upon. You have two choices. You can restrict the use of
the program to cases when you are at a store, because you or a personal
area network (PAN) agent can act as an intermediary between your
program and the store database. Alternatively, you can send the program
to the execution environment hosting an online wine database and
request that the program be run locally where access to the database is
not a problem. Your smart program travels to the remote location and
— after instantiation as a process — it performs the search and returns
a selection of wines from the remote database. The program can annihilate
itself, it can be deleted manually after its task is carried out, or it may
stay resident, either permanently or at least for a while in a cache so
you may perform similar queries if you need to buy wine again in the
near or distant future.

There has always been some confusion about the relation of mobile
code to

mobile agents

. Many just equate both — quite incorrectly, we
have to say. Code is just one characteristic of a mobile agent, and it is
not the one that determines

agenthood

. Although not explicit in the name,
implicitly, intelligence is an attribute of a mobile agent; therefore, mobile
agents tend to be considered close cousins of

intelligent agents

. The
following is

a

 rather than

the

 definition of an intelligent agent. We believe
that most researchers in the area will agree that a software agent is a
software entity that includes at least the following characteristics:

AU3833_C12.fm Page 294 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents

■

295

■

It acts on behalf of others.

■

It performs a task delegated by another entity (be it human or
machine) autonomously, without further supervision from the del-
egating authority.

■

It is proactive, so it attempts to achieve the objective, the goal, set
by the delegating entity without further prompts.

■

It is reactive, so it is capable of responding to changes in the
environment by modifying its behavior.

Additionally, an intelligent agent may exhibit a certain degree of capability to:

■

Learn, so it improves its capabilities for the future

■

Cooperate, so it exhibits social behavior in order to improve its
chance to accomplish the goal

■

Move, so it can relocate to a different execution environment if
carrying out the task at hand requires it to do so

The roots of intelligent agents lie in

artificial intelligence

 (AI) and in

distributed systems

. In a nutshell, AI is concerned with discovering meth-
odologies and technologies that address so-called

hard problems

 — that
is, problems that are too difficult to resolve using traditional, analytical
means or whose solution would require a prohibitive length of time to
obtain or to execute. AI does not strive to always provide an exact solution
to a given problem. A solution that is good enough suffices. How do we
make that judgment? We need an evaluation function that provides a
measure of

goodness

. With such a function at hand, we can apply the
technique until the function yields a value that is within an acceptable
margin of error. Heuristics such as this have helped to solve many
otherwise NP-complete (i.e., tractable, albeit nonscalable) problems.

Distributed AI

 (DAI) deals with systems built out of a number of agents
that interact following a variety of patterns. Communication with other
agents is a fundamental capability of an intelligent agent, because collab-
oration is a critical component of agent-based computation. The ability
to tackle problems with the entire system through comprehensive and
coherent communication constitutes what is called

weak intelligence

. In
contrast,

strong intelligence

 refers to methodologies, techniques, algo-
rithms, and mechanisms derived from artificial intelligence.

Advantages of Mobile Code

Numerous advantages have been attributed to the use of mobile code.
One thing must be very clear here, however. Many problems that can be
solved with mobile code can also be treated by other means, but very

AU3833_C12.fm Page 295 Tuesday, August 15, 2006 11:44 AM

296

■

Mobile Middleware

often a mobile-code-based implementation brings something unique and
desirable. To withstand the test of time, systems have to adapt to the
changing environment in which they operate.

Adaptation

 implies recon-
figuration triggered and guided by the changes. If we tried to define what
the characteristics of adaptability are, we would certainly include flexibility,
scalability, and customizability among the major ones. Modularity and
mobility are fundamental characteristics of mobile code to provide system
adaptability. We need to note that mobile code is not adaptive

per se

;
instead, it can be used to design adaptive systems in which modules are
installed or replaced in response to contextual transformations.

We already analyzed how critical mobile code is in reorganizing systems
to optimize their use of resources. Although

load balancing

 in distributed
operating systems has many constraints, such as location and homogeneity,
distributed systems that employ mobile code platforms overcome many
of them. Mobile code can be sent to any geographical location as long
as the location has an execution environment for accepting and running
it. Because a mobile platform usually separates the code from the hard-
ware, heterogeneous resources can be pulled together into a uniform
computing environment.

Data proximity is very important in environments with high network
latency and voluminous databases. Imagine that we need to control a
Martian explorer in some unknown environment. A control signal sent
from Earth will get to Mars in eight or so minutes, and anything that the
robot senses will be seen by Earth observers in the same amount of time.
Therefore, if a reaction to an event were to come from the Earth control
center, it would have a 16-minute round-trip delay; remote real-time
control is impossible. Instead, a controller specialized for the new envi-
ronment can be sent to the robot and executed locally.

In another scenario, imagine that we need to search a very large
database (recall our earlier wine purchasing examples). If our connection
to the database is composed of only super-fast link segments, then we
can transport data back and forth for a remote analysis. Of course, we
may have a security issue, but that can be addressed by a secure con-
nection; however, if we cannot get any guarantees on the quality of service
(QoS) provided by the connection — a common occurrence on the
Internet — then transporting large volumes of data is impractical. Mobile
code provides an alternative, because code can be sent to the database
to analyze the data locally. Usually, only a small amount of the results of
that analysis must be sent back over the network.

The most common and undisputable characteristic of current-day com-
puter systems is their complexity; consequently, in spite of improving
software engineering methodologies, it is difficult to predict all possible
problems and remove all potential issues. In fact, fault management is

AU3833_C12.fm Page 296 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 297

now a standard part of system development — a fact that acknowledges
that errors are inevitable. As we mentioned earlier, systems must be able
to adapt to emerging novelties in the environment, but this adaptation
has to be accompanied by a capability to deal with arising problems. The
objective, then, is to build fault tolerance into systems that allows them
to deal graciously with inevitable faults.

There are many sources of faults in computer systems: software bugs,
hardware malfunctions, human errors, and collaboration problems that
may be the consequences of communication link failures, interface prob-
lems, third-party problems that propagate into the system, etc. Each type
of error requires a specific approach to fix or prevent it, so it is difficult
to generalize remedies. Nevertheless, in the following we attempt to
suggest some uses of mobile code in this context.

Modularity that allows the designers to deal with complexities is not
unique to mobile code, but code mobility provides another dimension in
the struggle with system problems; for example, faulty modules can usually
be exchanged without bringing down the whole system. Mobile compu-
tational units can be moved to another location if their current hosting
environment is error prone. Code cloning and parallel execution in mul-
tiple execution environments improve chances for critical parts of the
system being executed under any condition. If one copy fails, the others
may carry out the task at hand.

Self-management functionality is one of the requirements of modern
computer systems. Employing elements of artificial intelligence together
with code mobility may bring immune-system-like functionality; for exam-
ple, self-repair based on mobile code is a step in the direction of designing
robust, dependable systems that provide the necessary confidence — the
lack of which many application areas just cannot afford.

A client–server model requires the presence of a connection between
the communicating endpoints. Without a connection, neither data nor
control signals can be exchanged. Still, in spite of incredible technological
advances, communication links are not resistant to failures, nor can they
survive dramatic changes in the underlying infrastructure; for example,
moving a device to another location very often results in a lost connection.
In addition, in spite of huge investments made by telecommunications
service providers, the networking infrastructure is still not ubiquitous, so
from time to time we end up in a dead zone with no services. Mobile
code provides a system designer with a tool for building solutions to the
client–server dilemma in such environments. Software can be designed in
such a way that computation can be continued with intermittent connec-
tivity. When communication is possible, either the server or the client can
accept code for performing certain tasks that can be carried out without
constant exchanges of data, as is the case in a regular client–server model.

AU3833_C12.fm Page 297 Tuesday, August 15, 2006 11:44 AM

298 ■ Mobile Middleware

To be reliable, a system has to be built out of nonorthogonal compo-
nents. There must be multiple ways to carry out each task. Full redundancy
is commonly used to ensure that a backup exists for every function of
the system. Modularity and mobility allow for fine granularity to be built
into redundancy; for example, a system may be engineered in such a way
that each task has (at least) a dual nature. Instead of one process fulfilling
the needs, two (or more!) processes are running in parallel. Ideally, they
perform the same computation, if possible; however, even a simple
watchdog can be used to ensure that the job is done. If a watched process
dies or stalls, the watchdog can restart the process in the same location
if possible. If that is not possible, the task can be completed at another
location. Due to code mobility, a replacement can be uploaded to an
alternate execution environment and started there.

One can also imagine a system in which every request is routed to a
proxy that sends mobile code units implementing the feature to numerous
locations. All installed units may be run in parallel or a single one may
be elected to execute while all the others are waiting in standby and
watchdog modes. If the executing process fails, one of its stand-by
shadows is activated.

Mobile Code Issues
Like every technology that brings abundant benefits, mobile code has its
own share of issues. Even in its simplest form, from an execution envi-
ronment perspective (i.e., native machine code), mobile code requires the
presence of numerous mechanisms. Unbinding, rebinding, code transport,
verification, and security all require a systemwide infrastructure. The
additional layer of complexity not only poses implementation hurdles but
also affects its functionality that is not related to mobile code. The overhead
may be considerable in mobile code systems that use high-level languages
as the basis for mobility; for example, a language interpreter (e.g., for
Tool Control Language, or Tcl) or an intermediate code virtual machine
(e.g., for Java, C#) is required.

One obvious consequence of the overhead required for code mobility
is code execution efficiency. Earlier in this chapter, we discussed the
convenience of using interpreted languages versus languages that produce
intermediate code. Neither technology can beat execution of native
machine code. Interpreting involves two levels of code execution: One is
the hardware, and another is the virtual machine or interpreter. As we
also discussed, compiler optimization is much more difficult for interpreted
code, although a lot of progress has been made in this area. Although a
compiler optimizes machine code offline, any optimization of interpreted

AU3833_C12.fm Page 298 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 299

code has to be done dynamically online, or partially offline and online
in the case of intermediate code.

In addition, code transport introduces a certain latency, as the code
must be packaged, transmitted, and then securely unpacked. The under-
lying networking infrastructure may aggravate the latency problem. For
example, transmission on a slow dial-up link will take more time than
transmission over a fast fiber connection. The problem is that the transport
mechanism cannot make any assumptions, because multiple segments
might be involved in one connection. It is impossible for the application
or transport layer to find out what technology is used on each of the
segments.

Mobile code requires special care from its designers. In some cases,
mobile code must be constructed in a way that ensures its serialization
— that is, its resilience to transmission over communication links. In strong
mobility, the process state has to be transferred along with the code;
however, some of the elements of the state might be transient (temporary).
A software designer has to deal with such a problem; for example, by
using language facilities in Java, one can exclude certain data members
of an object from being serialized. Object orientation and linked references
introduce another problem: chains of state elements. The links may
constitute multi-level hierarchies, so a decision must be made whether a
deep or a shallow snapshot image of the process state should be taken.

The efficiency issues that we discussed in the previous section consti-
tute another challenge to a software designer. They force program archi-
tects to contemplate the non-algorithmic aspects of system design; for
example, designers have to incorporate considerations of transport latency
into the algorithm so the behavior of the program is not affected by
transmission delays. They also must take into account that mobile code
will be executing in an environment with a variety of capabilities and
inconsistent access to resources.

Without any doubt, security is the most challenging issue for systems
incorporating mobile code. It is also one of the most controversial issues
in mobile code research circles. This should not be a surprise to all who
have heard about worms and viruses exposing computer system users to
multimillion dollar losses. Hackers employ mobile code to do their mis-
chief, so it is no wonder that the very concept of mobile code generates
bad feelings. The many security threats in distributed systems might be
classified in three wide categories: threats related to disclosure of infor-
mation, threats that can affect the information, and threats that disable
system functionality.

Knowledge means power, so attempting to obtain information from
any possible source is a common practice of many endeavors. Physical
enclosure, commonly used to protect information in the predigital world,

AU3833_C12.fm Page 299 Tuesday, August 15, 2006 11:44 AM

300 ■ Mobile Middleware

is no longer an option. Data is stored in interconnected networks, so it
is exposed to attempted unauthorized exploration and exploitation. Data
in transit poses another risk. Complete databases rarely have to be relo-
cated, but serving data chunks is a fundamental part of the functionality
of almost every system. Each time a piece of data is put in a transport
medium, the threat of eavesdropping becomes reality. Both passive and
active intruding techniques can be applied; for example, beaming data
from an unprotected wireless station might lead to a passive attack if
somebody else accidentally or intentionally intercepts the transmission.
Breaching the security of a firewall on a wireless router is an example of
an active intrusion technique.

An attempt to alter stored information is a much more serious threat
than just eavesdropping. While eavesdropping can be passive, an attempt
to change data requires the proactive behavior of an intruder and might
be fatal to the users of the modified data. Every execution platform and
the entire network can be compromised and affected.

Even systems that secure their resources appropriately so they can be
neither disclosed nor maliciously modified are still at risk. Intruders
applying denial-of-service attacks may overwhelm a system with too many
tasks to handle. A classic example is an attempt to establish a large number
of Transmission Control Protocol (TCP) connections at the same time that
may virtually disable the networking capability of a server. In the context
of mobile code, migrating large volumes of code to one location with the
purpose of choking it can achieve a similar effect. Dumping too many
migration requests on a network may also be fatal, because of the danger
of network congestion.

Numerous vulnerabilities of mobile code systems can be identified.
The addition of a networking dimension to the computing infrastructure
exposes it in numerous ways. It is not only mobile code that can harm,
although it has been the most notorious way of inflicting damage. Any
malicious party can use the network to tamper with any resource con-
nected to that network.

Mobile code in the form of a worm or a virus has already proven its
destructive power. Intrusion by code executed locally is easier, because
one of the barriers — the network — is not present. Systems can be
compromised in a variety of ways, from sending joyful messages (the first
self-replicating virus was created to display Merry Christmas!) to wiping
out complete functionality. The excessive use of resources by a single
agent or an uncontrollable influx of migrating agents can be the roots of
denial-of-service attacks against a host without exploring its functionality.
Mobile code is also vulnerable to attacks from hosting execution environ-
ments in numerous ways. Data that it carries may be compromised, its
code may be altered, its migration pattern might be modified, its algorithms

AU3833_C12.fm Page 300 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 301

might be reverse engineered, and the code could be cloned for unautho-
rized reuse in replay attacks.

Mobile code platforms may host mobile code coming in from many
sources and acting on behalf of numerous entities. Malicious mobile code
may not only try to compromise the hosting platform but also target other
users of the platform. Both local applications and other visiting mobile
code may be targets of attacks. Administrators of computing resources
usually provide comprehensive protection to hosts; therefore, intruders
may target mobile code platforms that run as applications on hosts,
because they may perceive them as less sturdy. Malicious mobile agents
may target middleware rather than the host that it is running on, because
they have relatively direct access to it. Remote intruders may also attempt
to harm a platform if the security for the platform is not as strong as the
one protecting the entire host.

If a compromised platform stops working, then the problem becomes
visible and can be fixed. Hidden alterations may be more damaging in
the long run, because they may expose other vulnerabilities in some subtle
ways. Detecting such intrusions may be difficult, because the mobile code
framework may still be working; for example, the infected platform may
be reconfigured to redirect code of a search agent to the intruder’s site.

Neither mobility nor remote communication would be possible without
a networking infrastructure, so it is one of the critical resources that must
be protected. Misuse of mobile code or its erroneous behavior can be
dangerous or even fatal to the network. Uncontrollable increase in traffic
is the root cause of network congestion. Flooding the network with a lot
of migration requests and transporting large amounts of code jeopardize
the fundamental functionality of the network in the same way as excessive
amounts of data.

Intruders can use numerous types of security attacks against a mobile
code system. We already mentioned many of them. The following is a
more structured list:

■ Masquerading (pretending to be someone else)
■ Denial of service (e.g., flooding a platform or flooding the network)
■ Unauthorized access
■ Repudiation (denying past acts)
■ Eavesdropping (data or code) (e.g., reverse engineering)
■ Alteration (data or code)
■ Unauthorized cloning (data or code for replay attacks)

A mobile code framework has to incorporate an apparatus that addresses
the vulnerabilities that we just discussed and that prevents all forms of
attacks. The security mechanism must have the capacity to protect:

AU3833_C12.fm Page 301 Tuesday, August 15, 2006 11:44 AM

302 ■ Mobile Middleware

■ Middleware
■ Hosts
■ Data
■ Code
■ The network

We describe a number of mechanisms in our further discussion of security
that focuses on mobile code platforms.

Mobile Code Frameworks
The mechanisms necessary to support code migration fall into three
categories: migration, collaboration, and security. Migration mechanisms
deal with the relocation of mobile code between execution environments.
Relocation is a multistage process, not just the physical transport of code
between two execution environments. Before initiating any action in
response to an external request (e.g., from an agent), the framework has
to verify that the new execution environment is compatible with it. That
may require verifying execution capabilities, resource availability, and
platform version, as well as security capability checks (discussed further
on). If a targeted environment does not guarantee that the code will be
able to run successfully after relocation, then the party requesting the
migration must be consulted.

Before any code can be transferred, the decision has to be made about
all resources bound to the running process. Earlier in this chapter, we
discussed the types of relationships between resources and running pro-
cesses. That relationship determines what action must be taken upon code
migration. Some of the resources will have to be moved or copied; others
will be accessed remotely or recreated in the new environment.

After taking care of the resources, the framework is ready for code
migration, which requires engaging the underlying networking infrastruc-
ture. Network transport provides both reliable and unreliable services. In
reliable services, a successful transport is assured. If the framework employs
unreliable services (in which case flexibility is an advantage), then the
framework itself must ensure that the transport of code and data is suc-
cessful. Of course, we need to keep in mind code and data vulnerabilities,
as security is of paramount importance. Again, we postpone that discussion
for a little longer.

Upon accepting a computational unit in a new environment, the
platform at the new location must instantiate it in an execution environ-
ment and rebind all resources. If all of that is successful, the new migrated
code is activated.

AU3833_C12.fm Page 302 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 303

Collaboration mechanisms support collaboration between computa-
tional units. They may be local or remote and direct or indirect. Local
communication is contained within a single execution environment; that
is, the communicated information does not leave the execution environ-
ment. Of course, any process that is local may gain access to local
information given appropriate admission rights. In remote communication,
a sender and a receiver are running in two execution environments, so
a message is transmitted outside of the underlying local platform. A
network infrastructure must be in place to support remote communication.
A mobile code platform may leave communication totally up to the agents;
however, as we discussed earlier, that exposes the platform to a number
of security attacks. Therefore, platforms should provide communication
mechanisms that both simplify the use of the networking infrastructure
and provide security. In direct communication, agents establish a com-
munication link that they use to exchange data. A mobile code platform
may assist active agents in establishing such a link, but they do not assist
the agents in transporting data.

Link and session management is the responsibility of a communicating
agent. Message queuing, error detection and recovery, synchronization of
multi-party conferences, etc., put a lot of pressure on agent code, so
platforms commonly provide indirect means of communication. In indirect
communication, a mobile code platform is an intermediary between two
or more communicating agents. Two communication schemes can be put
in place. The first one is e-mail-like message forwarding. The second
scheme is based on shared spaces, or (to use a term from AI) blackboard
systems.

A message-forwarding system usually mandates the use of envelopes
for delivering messages. An envelope template includes provisions for
delivery and return addresses along with possibly numerous parameters
that spell out details of the request. For example, a sender may ask that
a message be formatted in a special way, encrypted, sent through a specific
transportation means, acknowledged, etc.

A shared space, or blackboard, is a shared memory area that can be
written to and read from by many parties. The simplest possibility is just
a data structure that contains message slots with general access rights. To
gain a better understanding, let us analyze an analogy. If a team tries to
solve a problem, it often resorts to a brainstorming session during which
everybody presents opinions on a blackboard (or, more commonly today,
a whiteboard), so every member of the team can see and analyze them.
Numerous teams might be assembled to tackle different aspects of a
problem or to deal with completely different problems. They would not
use just one whiteboard, but many. Similarly, inter-agent communication
over a single shared space with a flat organization would not be very

AU3833_C12.fm Page 303 Tuesday, August 15, 2006 11:44 AM

304 ■ Mobile Middleware

efficient. A blackboard system may provide a more sophisticated means
to communicate through the capability to create communities of interest.
Agents can collaborate in many communities, but because they have a
choice they are not overwhelmed with information that can now be
delivered only to a targeted audience. The possibilities are limitless if the
scheme allows for creating hierarchies.

Imagine staring at a whiteboard for hours while no new information
is being written on it. It is much more efficient to check the board out
only if somebody tells you that its content has changed. A blackboard
system may provide analogous notification services. The notification
scheme may allow for complex triggers that are based on communities
of interest, sources of information, times of posting, etc.

If a mobile code platform allows for direct communication between
executing agents, then it may be desirable to restrict who can talk to
whom. This can be achieved in a variety of ways. In direct communication,
an agent may take care of the issue completely. If connections are
established with assistance from a platform, then an agent may ask the
platform to restrict connectivity by others through names or passwords.
In yet another scheme, only agents that enter a certain cone of silence are
able to communicate with each other.

In indirect communication, if a message delivery system using enve-
lopes provides an adequate level of security (as we discuss later on in
this chapter), then the information contained in the payload of the enve-
lope is secure. The sender of the message selects parties that should be
given access rights to given data and the delivery system ensures that
only those parties receive the data.

On the other hand, blackboard systems present a greater security risk,
because their very functionality is based on shared access. Some parts of a
blackboard may be public, and any party can read from them. Usually access
control lists (ACLs) are used to verify rights to obtain certain data; parties
trying to read the data have to present appropriate credentials. In a sense,
a common-interest space protected by an ACL constitutes a cone of silence,
because agents can communicate only if they enter the protected zone.

Security is a dominant issue in any system and software development
in general, not only in relation to mobile code. The designer of a mobile
code platform can use or at least borrow from plenty of security tech-
niques, mechanisms, schemes, and methodologies. Mobile code security
can be designed around language-based, language-independent, or oper-
ating system (OS)-based mechanisms; for example, a designer of a system
implemented in Java can utilize the security sandbox that the Java Virtual
Machine provides. The operating system may allow for interception of
system calls, so such calls are monitored and potentially rejected if the

AU3833_C12.fm Page 304 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 305

system believes that they constitute a security breach. Unfortunately, most
security provisions have to be designed by hand.

Intrusion detection systems protect platforms from intruders. They use
numerous technique to detect an invasion. Digital signatures provide a
mechanism for ensuring data integrity. To generate a digital signature, the
source platform that is sending mobile code hashes the code and encrypts
the result of the hashing using a private key. By using the source’s public
key to decrypt the signature, computing the hash, and comparing the two,
the target platform verifies that the code was not tampered with.

Certification is a common way of verifying identities. Mobile code may
carry a certificate that identifies its source by encrypting the source’s public
key. Mobile code arriving at a platform must present a certificate. To
recover the source’s public key, the target platform decrypts the certificate
using a public key of the certification authority that published the certif-
icate. The decrypted key can be used to verify the code signature as
explained in the previous section. The target platform may determine a
set of capabilities for the mobile code based on its source identity.

A mobile code platform may subject incoming mobile code to static
code analysis. It is a procedure that examines code in an attempt to detect
patterns that may cause problems. Such analysis can be applied to source
or compiled code. A mobile code platform may implement a code admis-
sion policy based on code signatures, certificates, and results of code
analysis. A platform may admit mobile code (that is instantiated as a
running program) only if it comes from a trusted source and has appro-
priate credentials, and no problem is detected during the analysis.

In contrast to its static counterpart, dynamic code analysis is the process
of examining code that has already been instantiated as a running process.
Before any code instruction is executed, it is analyzed for potential security
breaches. The platform may restrict code from executing actions that it
believes are not safe. An analysis may be integrated with a capability
control based, for example, on the source of the code.

A security zone, or a sandbox, is a mechanism for containing a com-
putational unit in a restricted execution space. It is a basis for two levels
of protection. First, a sandbox separates the code from other processes,
both local and visiting. If the code causes a problem, then the problem is
contained to one zone. Furthermore, a security zone facilitates controlled
access to certain resources. The restrictions can be based on the identity
of the source of the code.

Observing the state of an executing process may yield some warnings
on its potentially destructive behavior; for example, a data structure may
grow dynamically to a level that is dangerous to the functionality of the
hosting system. An agent that adds a number of connections that goes

AU3833_C12.fm Page 305 Tuesday, August 15, 2006 11:44 AM

306 ■ Mobile Middleware

beyond some reasonable limit is another example of a symptom of
potential trouble.

One or more mobile code platforms may implement a trust-building
scheme. Each mobile agent may be assigned an attribute that is a measure
of trust and is part of the agent’s credentials. Trust can be based on the
past behavior of an agent or an agent owner. Trust can also be imported
or exported if a propagation scheme is in place. A measure of trust may
be the basis for a capability set allocated to a particular agent. A host
might be less restrictive to agents with good trust credentials.

Some mobile code may carry with it the migration path that led to the
current location. An analysis of such information may be useful in deter-
mining the probability of that agent being compromised and therefore
dangerous; for example, an agent may have visited places that are known
sources of security problems. This information may be a basis for lowering
credentials of the agent.

Some researchers have proposed incorporating formal methods in
verification of mobile code. Incoming code is accompanied by one or
more proofs that can be executed on the destination host before the agent
is allowed to execute. The proofs that are based on the logic of the
original agent verify that the code still implements the same logic and
therefore has not been modified during transport. Unfortunately, gener-
ating proofs automatically is difficult, and doing it by hand is very tedious
and error prone.

Hardware-based security provisions are usually superior, because it is
difficult to tamper with them; for example, the presence of a secure
smartcard may be necessary for accessing certain system calls on a host.
Inserting a card into the system may enable execution of associated mobile
agents. Such a mechanism may be applied at a bank automated teller
machine (ATM). The system may verify the authenticity, take a picture,
record a video, etc., and then enable some customized operation imple-
mented by the customer’s agents.

Code can be considered data, so techniques similar to the ones used
to protect data can be also used to protect code. Encryption techniques
can be used to prevent third parties from stealing code in transit. Code
is treated as data, so all data protection mechanisms are applicable in this
context. Obfuscation makes code unintelligible to an eavesdropper. The
process is performed on code to prevent reverse engineering. The code
still has to be valid, because it must execute in the target environment;
therefore, reverse engineering might be difficult but — unfortunately —
still possible.

A new area of research is encrypted functions. Researchers have
proposed techniques that involve transitions in functional space. A function
implemented by mobile code can be encrypted beyond recognition to

AU3833_C12.fm Page 306 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 307

yield another function, which is sent and executed in a foreign environ-
ment. The result of the execution is an encrypted desired outcome that
can be decrypted using a key belonging to the owner of the agent. The
result can be sent to a trusted host (e.g., home) for decryption.

Another area of novel research is dynamically generated code. Instead
of carrying all required code or fetching missing pieces from remote
locations, mobile code can generate more chunks of code after being
installed in the target environment. Because the code is generated on the
spot, it is not exposed during transport. Reverse engineering may also be
difficult if the host is malicious. As we discussed earlier, tamper-resistant
hardware may protect a mobile code platform. It may also protect agents,
because they will execute only in environments that are physically enabled
by associated hardware (e.g., a smart card).

Some hosts may be interested in paths traveled by mobile code. As
we saw earlier, this information may be part of a protection scheme.
Analyzing trails might also be malicious; for example, a host may imple-
ment a targeted attack scheme that is driven by the past history of an
incoming agent. Therefore, it might be necessary to obscure a traveled
trail. In the simplest case, an agent may just forget all visited places. If a
trail is necessary for some reason, then the data may be encrypted rather
than carried in the open. Tracing migration paths can also be used to
protect agents from wandering into undesired areas or, in more general
terms, performing unexpected transitions. An agent may report visited
locations to some verifier (e.g., its home platform) that may trigger a
corrective action if necessary.

An external verifier may also be used for ensuring that a mobile agent
executes only its original algorithm. An agent may report milestones during
an execution, so the verifier can observe its behavior. The behavior is
checked to detect any abnormalities; for example, if it cannot match (with
some degree of accuracy) one of its normal behavioral patterns, then the
agent might be declared invalid and a corrective action may be undertaken.

The normalcy of agent behavior can also be verified in another way.
Instead of instructing one agent to perform a given task, two or more
agents are dispatched for the same job. A verification scheme can be put
in place that verifies that the execution outcomes of each of them are
compatible. That can be achieved by implementing (as explained earlier)
an external verifier (e.g., home platform), or the scheme may involve
inter-agent communication and distributed verifications of behaviors.

To protect itself from accusations of any wrongdoing during a visit to
a certain location, an agent may record its activity. This can be done
locally in a data structure that the agent will carry or remotely by sending
reports to an external observer (e.g., home platform). Each critical action
to be undertaken by the agent must be digitally signed by the platform

AU3833_C12.fm Page 307 Tuesday, August 15, 2006 11:44 AM

308 ■ Mobile Middleware

using the private key of the platform. An agent may refuse to execute
anything that is not permitted by the hosting platform. With digital sig-
natures on record, the platform cannot later claim illegality of any of the
agent’s actions.

Some mobile code may use or generate secret data that must be
concealed. One way of dealing with the problem is to leave secrets in a
secure place and retrieve them over secure connections only when they
are needed. If secret data is generated dynamically, it can be sent home
over a secure connection and the local copies discarded. Some data is
not secret but cannot change. In this case, message integration checks can
be applied; a hash function is applied to the data, and the result is signed
using a private key of the sender. If the value decrypted with a matching
public key does not match the recomputed hash value at the receiver,
then the data has been compromised.

A common cause of flooding of networks is accidental or mischievous
replication of data or code and dumping it on a network as quickly as
possible. Wandering mobile code junk, mobile code that was injected into
the network and never terminated by carelessness or design, is another
problem. The networking infrastructure is usually well protected against
potential attacks, but mobile code platforms may contribute to network
security in several ways that we discuss next. The first method limits agent
lifespan to prevent flooding with eternal generations of agents. Incorpo-
rating a time-to-live parameter within a migrating computational unit
enables the control of multi-hop migration patterns. The value can be
protected from tampering by encryption with a secret key shared by all
platforms. When an agent is created (or rejuvenated), the time-to-live
value is set to a certain threshold. At each stop, the value is decrypted,
decreased, and checked against zero. If the number is zero, then the
number of hops has exceeded the allowance and the agent is destroyed;
otherwise, the decreased value is encrypted again and attached to the
agent. Earlier, we discussed a mobile code admission policy. An analogous
policy can be used to control agent migration from a platform. An agent’s
credentials can be used to make a decision on granting permission to leave.

Another security provision can be based on regulation of a host-leaving
rate. Agents would have to queue their requests to migrate, and serving
of the queue could be spaced in time, prioritized, or based on a volume
of permits per time unit. Agent credentials can also be used in policies
that regulate agent replication. Agents may not be allowed to replicate at
all. Less restrictively, the number of replications can be controlled. That
can be achieved by a mechanism constrained to a single platform that
counts replication requests and matches the number with the maximum
allowance of that platform. Another mechanism can be implemented
systemwide with an agent carrying a number of replications. That number

AU3833_C12.fm Page 308 Tuesday, August 15, 2006 11:44 AM

Code Mobility and Mobile Agents ■ 309

is handled on multiple platforms in the same way as the time-to-live
mechanism described earlier. If the number of replications on any platform
exceeds the threshold, the agent is not allowed to replicate anymore.

Implementing security mechanisms is rarely an easy task. Many details
can very often escape attention and then haunt system administrators. Some
problems cannot be addressed at all, because many security attacks explore
system bugs that are not known before the attack actually takes place.
Very often, fixing a bug occurs after damage has already been done. In
systems that utilize authentication facilities, there is an inherent issue of a
level of trust that can be put into certification authorities. Yet another issue
relates to the scope of the authority. It is difficult to build one centralized
control scheme, and distributing security management is not easy. To
understand why, consider the use of a shared key to encrypt the time to
live or an allowance to replicate numbers. How can one distribute secret
keys without assurance that they are not compromised? This discussion
represents just the tip of the iceberg. We are just warning potential designers
and, it is hoped, making them more sensitive to the security issues.

Standards
Standardization efforts to set rules for interoperability between platforms
for intelligent and for mobile agents were very vigorous at the peak of
interest in the area but these efforts have lost their impetus in recent
years; nevertheless, a lot of thought went into the documents that were
accepted as standards. The Object Management Group (OMG) supported
work on standardization of mobile code platforms known as the Mobile
Agent System Interoperability Facility (MASIF). MASIF addresses issues of
interoperability between heterogeneous mobile code platforms. It stan-
dardizes agent management, agent transfer between homogeneous (or
very similar) platforms, agent and system naming conventions, system
types, agent location syntax, and agent tracking.

The second standard was developed by the Foundation for Intelligent
Physical Agents (FIPA). In 2005, FIPA’s members voted to join the Institute
of Electrical and Electronics Engineers (IEEE) Computer Society to become
its eleventh standardization committee: the FIPA Standards Committee. FIPA
does not deal with mobile code, but as we explained earlier in this chapter,
mobile agents usually include some intelligence to perform their mission.
The core of the standard is agent collaboration through exchanging mes-
sages; therefore, the standard addresses weak rather than strong intelligence.
It may be a disappointment to some, but neither FIPA nor MASIF addresses
any AI-based mechanisms that would deliver intelligence. Neither standard
offers any solution recipes for designers seeking guidance in such matters.

AU3833_C12.fm Page 309 Tuesday, August 15, 2006 11:44 AM

310 ■ Mobile Middleware

The phrase intelligent agents, which has become the name of the field, is
therefore misleading for those who do not understand the dif ference
between weak and strong intelligence.

The FIPA standard provides specifications for intelligent communication
between entities that will be able to implement some strong AI methods,
thus allowing them to use that framework in some way to improve the
chances for achieving a task at hand. Which AI methods and how the
agents should use them are not subject matters of the FIPA standard. The
large body of standardization documents released by FIPA dwarfs the
MASIF standard. The standard covers numerous areas related to agent
communication and attempts to address other aspects of agent-based
computing.

Concluding Remarks
In this chapter, we explored models of computation based on mobile
code. After scrutinizing characteristics of mobile code, we showed that it
might be a tempting computing paradigm for software engineers including
those working on middleware for mobility. We introduced several types
of mobile code, including mobile agents. We discussed the issues that
have so far prevented widespread use of mobile code. We explained that
security concerns are the biggest obstacle in the progress of technologies
utilizing mobile code. We suggested numerous methodologies and tech-
niques that can be employed to ensure required levels of system, data,
and code protection. We concluded with an overview of standards that
apply to mobile and intelligent agents.

References
[1] Picco, G.P., Mobile agents: introduction, J. Microproc. Microsyst., 25(2),

65–74, 2001.
[2] Fuggetta, A., Picco, G.P., and Vigna, G., Understanding code mobility, IEEE

Trans. Software Eng., 24(5), 352–361, 1998.
[3] Loureiro, S., Molva, R., and Roudier, Y., Mobile code security, in Proc. of

ISYPAR 2000 (4ème Ecole d’Informatique des Systèmes Parallèles et Répartis),
Toulouse, France, February 1–3, 2000.

[4] Jansen, W. and Karygiannis, T., Mobile Agent Security, NIST Special Publ.
No. 800-19, National Institute of Standards and Technology, Gaithersburg,
MD, 1999.

[5] MASIF Standard, http://www.omg.org/cgi-bin/doc?orbos/97-10-05.
[6] FIPA Standards, http://www.fipa.org/.

AU3833_C12.fm Page 310 Tuesday, August 15, 2006 11:44 AM

311

Chapter 13

Proxy-Based Adaptation

for Mobile Computing

Markus Endler, Hana Rubinsztejn,
Ricardo Rocha, and Vagner Sacramento

CONTENTS

Introduction... 312
Architecture-Based Classification ... 314

Level... 314
Placement and Distribution.. 314
Single-/Multi-Protocol ... 315
Communication ... 315
Extensibility/Programmability... 316

Common Proxy Tasks .. 316
Protocol Translation and Optimization ... 316
Content Adaptation ... 318

Distillation and Refinement .. 318
Summarization ... 319
Intelligent Filtering .. 320
Transcoding.. 320

Caching and Consistency Management... 321
Session Management... 323
Handover Management .. 324
Discovery and Autoconfiguration .. 325

AU3833_C13.fm Page 311 Tuesday, August 15, 2006 12:18 PM

312

■

Mobile Middleware

Security .. 326
Other Tasks ... 327

Proxy Frameworks.. 328
Adapter Development... 328
Adapter Selection .. 329
Context Monitoring ... 330
Adapter Loading and Execution .. 330

Conclusion... 331
References ... 334

Introduction

The use of proxies is commonplace in today’s networks, where they are
used for a huge variety of network services. A proxy is an intermediary
placed in the path between a server and its clients. Proxies are used for
saving network bandwidth, reducing access latency, and coping with
network and device heterogeneity. In the specific case of mobile com-
puting and wireless communication, proxies are mainly used to overcome
the three major problems of these networks: throughput and latency
differences between the wired and the wireless links, host mobility, and
limited resources of the mobile hosts (MHs). Although proxies may be
used also for implementing specific services in mobile

ad hoc

 networks,
usually they are used in infrastructured mobile networks, because their
functions commonly place high demands on both processing and memory.
Thus, in this chapter, we primarily discuss proxy-based architectures for
infrastructured mobile networks.

In most cases, proxies act as protocol translators, caches, and content
adapters for clients with network or device constraints and are placed on,
or close to, the border between the wired and the wireless networks,
such as at the wireless

access points

 (APs), also referred to as

base stations

or

mobility support stations

. In addition to these canonical functions,
however, proxies can perform a wide range of other complex tasks on
behalf of the mobile clients, such as handover, session or consistency
management, personalization, authentication, checkpointing, and ser-
vice/resource discovery, among others. The major advantages of using a
proxy-based architecture for serving mobile clients, when compared to
an end-to-end approach, include the following:

■

All mobility- and wireless-dependent transformations (translation,
transcoding) can be assigned to the proxy and need not be handled
by the servers, allowing legacy services to be easily adopted for
mobile access.

AU3833_C13.fm Page 312 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing

■

313

■

Any processing required for protocol and content transformations
is distributed to other nodes and only where they are required,
avoiding an overload at the servers.

■

Placing a proxy at (or close to) a node with a wireless interface
enables more agile and accurate monitoring of the wireless link
quality, detection of MH disconnections, and better selection of
the required adaptation.

■

Transformations at any communication layer can be implemented
and are more easily adapted or customized according to the specific
capabilities of the wireless links.

As expected, there is a huge amount of work on proxy-based middle-
ware for mobile and wireless computing, each effort solving the problems
specific to some sort of service or application, such as Web access,
multimedia streaming, and database access. Many authors use the terms

gateway

,

intermediary

, and

agent

 instead of

proxy

. Although there might
be some subtle differences in their meanings, we will use these terms
interchangeably and adopt the general definition of a proxy as being

an
entity that intercepts communication or performs some service on behalf
of some mobile client

.
In spite of the huge diversity of proxy-centered architectures and

proposals, we have identified two orthogonal forms of classifying and
comparing all proxy-based approaches. The first dimension takes into
account some general characteristics of the proxy-based architecture, and
the second dimension focuses on the tasks (i.e., functionalities) assigned
to the proxies. These two classifications are further detailed later in this
chapter.

Obviously, other possible criteria could be used to classify proxy-
based approaches. Dikaiakos [13] has written a very interesting survey
about proxy-based infrastructures specifically for the Web. He proposes
a classification of proxy approaches in three dimensions:

system archi-
tecture

,

functionality

, and

interactions

. Regarding system architecture,
he distinguishes between centralized and distributed architectures,
options for proxy placement, and proxy configurability and program-
mability. Concerning functionality, he proposes six broad categories,
which are consistent with our task categorization. Finally, with regard
to interactions, Dikaiakos considers whether the proxy supports syn-
chronous or asynchronous communication. In addition, the article also
compares eight proxy-based architectures and frameworks for the Web
in deep detail; hence, we recommend it as complementary reading to
the interested reader.

AU3833_C13.fm Page 313 Tuesday, August 15, 2006 12:18 PM

314

■

Mobile Middleware

Architecture-Based Classification

In this section, we discuss a classification of proxy-based approaches that
emphasizes general features of the software architecture and which is
largely independent of the specific task assigned to the proxies. In par-
ticular, we have found that proxy-based architectures can be classified
according to aspects such as

level

,

placement

,

single-/multi-protocol

, and

communication

 and

extensibility

.

Level

Because proxies may be used for handling adaptation or customization
at various software levels, we believe that this is a suitable classification
criterion. In this respect, proxies can be used at three generic levels:

■

Communication level

 — At this level, proxies are in charge of
handling all sorts of issues related to the communication protocols
and abstractions. The main goal is to take device mobility and the
use of wireless links transparent to the higher software layers. Typical
adaptations at this level are wired–wireless protocol translation or
optimization, buffering, handover management, etc. Examples are
several proposals for Transmission Control Protocol (TCP) extensions
for wireless networks [15] and wireless CORBA, an extension to the
Common Object Request Broker Architecture (CORBA™) [5].

■

Middleware level

 — At the middleware level, proxies perform
general tasks neither tailored to a specific type of application nor
related to a specific communication protocol. Examples are some
forms of content adaptation [19,34], consistency management of
cached data [2,25], service or resource discovery [9], and security
and authentication functions, among others.

■

Application level

 — Some proxy-based architectures are focused on
a specific type of application, such as Web browsing [4,21,29],
database access [2], and peer-to-peer (P2P) data sharing [44]. In this
case, proxies execute tasks tailored to specific requirements and
functions of an application class. For example, to compare caching
in Web and database applications, the former handles heterogeneous
objects and essentially aims at reducing response time, whereas the
latter usually handles homogeneous data but requires management
of cache consistency.

Placement and Distribution

Concerning the placement of proxies, we adopt the well-known classifi-
cation suggested by Pitoura and Samaras [38] for proxy-based architectures,

AU3833_C13.fm Page 314 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing

■

315

which defines the following main structures: a proxy executing only at a
stationary node of the network (

server-side

); a proxy only at the mobile
node (

client-side

); a pair of proxies, one executing at a stationary host and
the other at the mobile host (also referred to as the

interceptor model

);
and a proxy that can move between a stationary node and the mobile
device (

migratory proxy

 or

migratory agent

). Although most systems use
either a server-side proxy or a proxy pair, examples of pure client-side
proxies include those in the Coda file system [26]. As has been discussed
elsewhere [38], server-side proxies are suitable for any kind of device, but
client-side proxies normally require devices with more computing resources
(i.e., thick clients). Migratory proxies have been suggested and imple-
mented by several research groups as a means of transferring computing
tasks from the MH to the network and of following the MH while it moves
between networks [43]. Another aspect concerns the distribution of the
proxy-specific adaptation and management functionality in the architecture:
It may be

centralized

 if all functionality is bundled into each proxy [21,25]
or

decentralized

 if it consists of several cooperating proxies, where each
is responsible for some subset of the functions [3,34].

Single-/Multi-Protocol

Proxy architectures fall into two groups with respect to the number of
communication protocols they support. Most systems handle a single
protocol, such as TCP or the Hypertext Transfer Protocol (HTTP), and
support specific adaptations of these protocols aiming to bridge the
wired–wireless gap. Other proxy-based architectures, however, also adopt
a multi-protocol approach, in which the proxy supports wired–wireless
translation using several protocols (e.g., UDP, SMTP, SMS, WSP) and is
able to dynamically switch between these protocols for delivering the data
to the user independently of which wireless or cellular network the user
is currently connected with. Examples of the latter group are iMobileEE
[10], TACC [19], and eRACE [12].

Communication

This aspect characterizes proxy-based architectures with respect to the way
a proxy communicates with the client, the server, and other proxies. Essen-
tially, a proxy can communicate with both endpoints, the server and the
client, in two modes: In the synchronous mode, the proxy performs the
adaptation task and replies to the client in response to an explicit client
request. In the asynchronous mode, the proxy does long-term work on
behalf of the user (e.g., based on the user’s preferences) and sends asyn-
chronous notifications to the client. This asynchronous mode is common

AU3833_C13.fm Page 315 Tuesday, August 15, 2006 12:18 PM

316

■

Mobile Middleware

when proxies play the role of user agents, searching, collecting, and
aggregating information on behalf of a user. Examples of architectures
supporting both communication modes are the Wireless Application Pro-
tocol (WAP) [17], Web Intermediaries (WBI) [3], and MoCA’s ProxyFrame-
work [40,41]. Some architectures also support communication among
proxies, usually for the purposes of session and handover management,
checkpointing, and multicasting, among others. In this respect, commu-
nication can be direct or indirect. In the first mode, a proxy knows —
perhaps through its client — which other proxy it needs to interact with
[8,35]. In the second mode, the server (or another proxy) serves as a
router of the messages exchanged among the peer proxies.

Extensibility/Programmability

Proxy extensibility (i.e., the ability to adapt and customize its functions)
is also an important criterion to differentiate architectures. In most systems,
the proxy has predefined adaptive behavior, usually determined by the
current state of the execution environment. As a first step toward exten-
sibility, some approaches provide a generic framework in which proxies
can be easily tailored to the specific needs of an application or middleware
at deployment time, such as in MoCA’s ProxyFramework [40,41]. Yet another
group of proxy infrastructures further support the dynamic loading of filters
or new modules implementing specific functionality, such as those pre-
sented in Zenel [47].

Common Proxy Tasks

In this section, we present the other way to classify proxy-based
approaches, which is by the main task, or function, executed by the
proxies. One should note that this classification does not render disjoint
categories, as several of the tasks discussed in this section are in fact
somewhat intertwined. For example, protocol translation and optimization
are key tasks in almost any proxy architecture; hence, several of the other
tasks may also be regarded as a kind of translation or optimization.
Moreover, the set of tasks discussed here is unavoidably incomplete, as
several other application-specific functions could be assigned to proxies.
Nevertheless, we believe we have selected the most common proxy tasks
discussed in the literature.

Protocol Translation and Optimization

Because most conventional communication protocols for wired networks
are usually not suited for wireless links because of their higher error rates,

AU3833_C13.fm Page 316 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing

■

317

smaller throughput, higher cost and latency, mutual interference, intermittent
connectivity, etc., one of the most common tasks of proxies is to deal with
protocol translation, as well as optimizations of wireline protocols for
wireless links. Wired–wireless protocol translation is required at many layers
of the protocol stack, but in this section we focus on protocol issues of the
transport layer and above, and lower-level transcodings are considered to
be below the middleware level.

In addition to the plain translation between protocol formats (i.e.,
header transcoding, data alignment, and data encoding), proxies may also
have to deal with an array of other communication-specific issues, such
as flow control, error detection and recovery, and medium multiplexing,
which essentially aim at optimizing data transfer over the wireless link
and smoothing the wired–wireless gap. This is particularly true for con-
nection-oriented protocols, such as TCP, whose mechanism for flow con-
trol does not react properly to disconnections, burst packet losses, or
fluctuations in round-trip delay. This has motivated the development of
several so-called

TCP split connection protocols

 (e.g., MTCP, I-TCP, M-TCP,
SRP) [15], where a proxy performs the mapping between the conventional
TCP and an optimized transport protocol for the wireless link. Another
example is the

Wireless-Profiled TCP

, adopted in the WAP 2.0 standard by
the acronym WTCP [18] and used in i-Mode [14]. WTCP was developed
for wireless metropolitan area networks (MANs) and wide area networks
(WANs) and essentially uses the ratio of inter-packet separation as the
primary metric for rate control, rather than packet loss and timeouts. Many
other examples can be found of proxies being used for protocol translation
at the session or application layers; for example, the WAP gateway is
responsible for converting between wire-line session, presentation, and
application-level protocols and the corresponding protocols of the WAP
protocol stack [17].

A related task commonly assigned to proxies is that of optimizing data
transfer of a conventional protocol over the wireless link. Protocol opti-
mization essentially has two goals: to achieve higher bandwidth utilization
and to provide smaller round-trip delay. The usual optimization techniques
include caching of data, connection multiplexing, header and payload
compression, adaptive flow control, and data volume reduction. HTTP
and TCP are probably the most frequently cited protocols that have been
optimized for wireless networks. Most optimizations done in the TCP split
connection approach are based on the following general principles: using
separate error and flow controls on each side of the connection (wireless/
wire-line); performing faster recovery of wireless errors due to shorter
round-trip times (RTTs); hiding transmission errors from the sender; and
generating selective/spontaneous TCP acknowledgments (ACKs) to avoid
window resizing.

AU3833_C13.fm Page 317 Tuesday, August 15, 2006 12:18 PM

318

■

Mobile Middleware

Concerning HTTP, the main problems associated with communication
over a wireless link include the following: human-readable and verbose
headers; transfer of data objects without compression; huge RTT incurred
by the use of a connection-oriented transport protocol and frequent Domain
Name System (DNS) lookups; and separate HTTP requests for each inline
image, such as buttons, icons, and bullet marks. One of the earliest works
attempting to optimize HTTP over wireless links was Mowgli [29], which
employs an HTTP proxy pair using asynchronous messages over long-lived
transport-level connections with header and payload compression. IBM’s
WebExpress [21] also uses a proxy pair to optimize HTTP traffic through
caching, differentiating (i.e., transmitting the delta between an HTTP result
and a cached base Web object), HTTP header reduction, and multiplexing
of several HTTP connections over a single TCP connection. More recently,
Rodriguez et al. [39] have proposed a proxy-based architecture also aimed
at reducing the RTT caused by DNS lookup. In fact, most current infra-
structures for mobile Web access are proxy based and perform some of
the above-mentioned HTTP optimizations [13].

Content Adaptation

Although protocol translation deals with protocol-specific adaptations and
optimizations, content adaptation is largely protocol independent and aims
at transforming the messsage payload for optimized transmission and presen-
tation at the mobile device. The specific kind of adaptation used is determined
primarily by the application requirements, and may take into account the
following issues: the quality of the wireless link (broadband, cellular); char-
acteristics of the device, such as its computational power (CPU, memory);
output capabilities (screen size, gray-scale screens); and supported protocols
(e.g., HTML, WML). A wide range of approaches for content adaptation for
different kinds of data has been proposed, including techniques such as data
distillation or refinement, summarization, intelligent filtering, and transcoding.
Although no unique and widely accepted definitions of these terms exist, in
the following we use the most common definitions found in the literature.
Because the term

transcoding

 is often used to denote any of the previous
types of adaptation, we also use it to discuss general techniques and present
architectures supporting a larger spectrum of content adaptations.

Distillation and Refinement

Distillation

 is a highly lossy, real-time, data-specific compression technique
that attempts to eliminate redundant or unnecessary information while
preserving most of the

semantic content

 of the data. Distillation is thus a
general term for several forms of data compression, which may or may

AU3833_C13.fm Page 318 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing

■

319

not be based on coding standards and representations; for example, JPEG
is a lossy compression method where compression rates can be controlled
according to desired image quality.

An example of non-coding-based distillation could be a transformation
where images are scaled down on each dimension to reduce their total
size, thereby also reducing their binary representations. Yet another exam-
ple of distillation is a reduction of color depth or color-map size. The
resulting representation, though poorer in color and resolution than the
original, is nonetheless still recognizable and therefore useful to the user.

Alternatively, the user may want to see the highly precise content of
some part of the original data — for example, by zooming in on a section
of a graphic or image or by rendering a particular PostScript page with
figures without having to render the other pages.

Refinement

 refers to the
process of selecting some part of a document in its original quality. In
fact, one can define a distillation–refinement space for each type of data
(e.g., text, image, video), where distillation and refinement can be applied
orthogonally to the data to reduce its binary size.

ActiveProxies [19], developed within the BARWAN project, was a pio-
neering piece of work focusing on data distillation and refinement. Active
proxies are a means to perform on-the-fly content adaptation to support
variations in the network, device characteristics, and software capabilities.
The Transformation, Aggregation, Caching, and Customization (TACC)
model provides mechanisms for the composition of TACC

workers

, where
each worker handles the distillation or refinement for a specific Multipur-
pose Internet Mail Extensions (MIME) type. The project built several
workers to deal with text, image, and video content, such as distillers for
GIF and JPEG images, for HTML, and for MPEG video streams.

Summarization

Summarization

 is a sort of lossy compression where

specific

 parts of the
original data are selected for presentation, aiming at the least possible
loss of information. The most common data types summarized for mobile
and wireless devices are text and video. Text summarization techniques
have been researched for quite a while, but the recent desire to display
Web contents on small screens has given the field a new impetus. A video
summary (or abstract) is defined as a sequence of still or moving pictures,
with or without audio, that presents the content of a video file in such a
way that the user is provided with concise information about the content
while the essential message of the original is preserved. It may be a shorter
version of a video file assembled by picking important segments from the
original or a series of short clips containing the essence of a longer video
file, without a break in the presentation medium [28]. For transmission

AU3833_C13.fm Page 319 Tuesday, August 15, 2006 12:18 PM

320

■

Mobile Middleware

over a low-throughput connection, video summarization is useful for
providing users with a video digest so they can obtain the content quickly
and comprehensively.

A canonical example of a system that applies video summarization is
Mowser [4], a server-side proxy for dynamic context-based modification
of HTTP streams that uses content negotiation as described in the HTTP/1.1
specification. It selects the best representation of a data resource based
on the browser-supplied preferences for media type, network connection,
available resources, languages, and encoding. Mowser allows the user to
set viewing/presentation preferences, such as starting point; color capa-
bility; video resolution; sound capability; maximum allowed size for text,
image, video, and audio files; and size restrictions for image files.

Intelligent Filtering

Intelligent filtering

 is usually defined as a mechanism to transform, drop, or
delay data delivery by applying filters on a data path, according to network
or target device conditions. Mobiware [34] is a quality of service (QoS)-aware
middleware platform for mobile multimedia applications. Mobiware intro-
duces the concept of

active filters

, which can be dynamically dispatched
during handoff to strategic points in the network (e.g., base stations, mobile
devices) to provide media scaling of audio and video streams when and
where needed. Its goal is to support valued-added QoS with the best
utilization of available bandwidth and seamless media delivery. The two
styles of filters are

active media

(for audio/video flows) and

adaptive forward
error correction

 (FEC). In Mobiware, so-called

QoS adaptation proxy

 (QAP)
objects play a central role in allowing mobile devices to probe resource
availability and to adapt to changes in the quality of the wireless link. Zenel
[47] was one of the first to propose a framework for generic filtering. His
architecture consists of a

proxy server

, composed of a high-level proxy and
a low-level proxy, and a

filter control

 (EventManager). The high-level proxy
supports filters for application-layer protocols, and the low-level proxy
supports filters for network and transport layers. These filters may drop,
delay, or transform any sort of data being transferred to and from the mobile
host, such as to improve the perceived quality of the network.

Transcoding

Transcoding

 is the general process of transforming the format and repre-
sentation of content. Data may be filtered, transformed, converted, or
reformatted to make it accessible by a variety of devices. Transcoding is
commonly used for the conversion of video formats (i.e., QuickTime to
MPEG) or the adjustment of HTML and graphics files to the constraints of

AU3833_C13.fm Page 320 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing

■

321

mobile devices (e.g., HTML to WML transcoding). It is often used when
device characteristics prevent the content from being presented in its
original format. In one approach to transcoding, the transformation depends
only on the type of content, and in a second approach the conversion is
specified by an external annotation describing specific requirements of the
device and the adaptations to be performed.

Far more proxy-based architectures employ the first approach, but we
begin here by describing a system based on the latter approach. Annotation-
based Web content transcoding [20] is an example of the external annotation
approach. This system handles HTML documents and focuses on page
fragmentation for small-screen devices. Upon receiving a request from a
mobile device, the proxy server adapts the document to the capabilities of
the particular client on the basis of associated annotations. An annotation
specifies the transformations and contains information to help a transcoding
proxy select from several alternative representations the one that best suits
the client device. In the remainder of this section we summarize some well-
known systems adopting the pure content-based transcoding approach.

AT&T Mobile Network (AMN™) [10] is a proxy-based mobile platform
designed to deliver customized multimedia services to users of mobile
devices. The server-side multi-protocol proxy is composed of

devlets

,

infolets

,
and

applets

. Devlets are protocol adapters that provide protocol interfaces
to different mobile devices, infolets are responsible for obtaining information
from various data sources, and applets incorporate the application-specific
logic. The proxy engine supports user and device profiles for customization,
performs content transcoding and adaptation, and invokes the proper applets
and infolets to answer requests from devlets. The transcoders transform
content based on the MIME type specified in the service request.

IBM’s Internet Transcoding for Universal Access [32] is a transcoding
system that adapts video, images, audio, and text to the devices with
diverse capabilities using a proxy that allows the content to be summa-
rized, translated, and converted on the fly. The system handles composite
multimedia documents and device constraints.

The Mowgli [29] infrastructure consists of two mediators that use the
MowgliHTTP protocol to communicate with each other, thus reducing the
number of round-trips between the client and the server. Mowgli reduces
HTTP data transfer over the wireless link by employing three different
techniques: data compression, caching, and intelligent filtering.

Caching and Consistency Management

Caching of data close to (or at) the mobile host is a very common task
assigned to proxies. The common and main goals of caching are to reduce
traffic to and from the source server, restrict the user-perceived latency,

AU3833_C13.fm Page 321 Tuesday, August 15, 2006 12:18 PM

322 ■ Mobile Middleware

conserve wireless bandwidth and the battery power of the mobile device,
and handle client disconnections (i.e., support some limited functionality
of the client application at mobile hosts while disconnected). For the first
two goals (reducing traffic and latency) it may be sufficient to cache data
at a node on the edge of the wired network (i.e., to use a server-side
proxy), but for the remaining goals caching at a client-side proxy on the
mobile host is necessary.

In principle, server-side caching for mobile hosts does not significantly
differ from conventional proxy-based caching for wired network access (e.g.,
Web proxies). The main difference, however, is that in mobile communications
there is a wider range of possible networks and devices (e.g., laptops,
palmtops, or cellphones) used by clients and which have much different
capabilities. To cope with such diversity, it is now common to store content
in different formats and fidelities. This practice has a serious implication on
caching: Because each request is treated independently, popular items (e.g.,
Web objects) might be cached at the same time in different formats, thus
wasting valuable storage at the proxy. To solve this problem, several proposals
have been made to combine active transcoding with adaptive caching at the
proxy so as to transcode contents into the various formats closer to the client.

Client-side caching, on the other hand, aims at enabling some limited
form of data access by the user during the time in which the mobile host
is disconnected. The main problem is to handle involuntary disconnections
and to guarantee consistency of the cached objects (e.g., files, database
records), particularly when cached objects can be modified by clients,
when more than one client can cache the same data object, or when the
original copy of the object at the server can be modified by other means.
Several approaches for handling cache consistency in these networks have
been proposed in the context of databases [2], but significant work has
also come from other areas, such as distributed file systems and other
data-sharing applications.

Due to the high probability of disconnections and the limited wireless
bandwidth, neither a pure detection-based approach (client detects incon-
sistencies) nor a pure avoidance-based approach (server sends invalida-
tion reports to the cache holder whenever the original object is modified)
can be used for guaranteeing cache consistency. However, several other
strategies for cache consistency have been proposed that are based on
stateful, stateless, or hybrid servers or on incremental approaches [2,7]. In
fact, many recent studies suggest that invalidation-report-based caching
management is better suited for mobile networks, but a major problem
with invalidation reports is that disconnected clients may miss some of
these reports. To overcome this problem and avoid stateful servers that
must track which clients have received (and acknowledged) which reports,
Kahol et al. [25] have proposed the asynchronous stateful (AS) caching

AU3833_C13.fm Page 322 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 323

scheme, whereby server-side proxies, called home location caches (HLCs),
buffer the invalidation reports from servers while the MH is disconnected,
and deliver these reports to the MH when it reconnects to the network.
Furthermore, each time a MH migrates, this buffer of invalidation reports
is transferred to an HLC that is close to the next access point. More
recently, other cache invalidation schemes based on intermediates that
claim to be more efficient have been proposed [45].

To ensure operation in spite of intermittent connectivity, two main
approaches have been explored. The first is supporting eager prefetching
of data objects and performing conflict resolution on demand. The second
considers each mobile host as being an autonomous entity and regards
the disconnected mode, rather than the connected mode, as the norm
and not the exception. Here, hosts synchronize their data objects upon
sporadic connections. An example of the first approach is the well-known
Coda file system [26], whose client-side proxy Venus does predictive
caching (hoarding) of files being used while the host has network con-
nectivity and supports reintegration of these files at host reconnection.
Similarly, the OSMOSE mobility framework [16] aims at general-purpose
support for service continuity in spite of disconnections. A well-known
example of the other approach (asynchronous operation) is the Bayou
[44] system for P2P file sharing, where an anti-entropy protocol is executed
among replicated data managers (i.e., peer-side proxies) to resolve con-
flicts of potentially inconsistent files on peer hosts.

Session Management

Many applications use the notion of a session, which in general consists of
a set, or sequence, of coherent actions performed by a user. Although the
concept of a session may differ from one type of application or service to
another, all of them have the notion of a session state. In a mobile and
wireless computing environment, session management is thus concerned
with maintaining the session state of a service in spite of disconnections
and migrations of the user. Notice that, in this context, migration can have
several meanings. In the simplest form, users keep their devices and simply
reconnect to a different AP within the same network or a different network,
an approach referred to as network migration. A more complex kind of
migration occurs when the user switches devices but wishes to continue
using the same service from the new device (device migration). In this case,
the session state must not only be transferred to the new device but probably
must also be adapted to the new communication or transport protocol (e.g.,
HTTP to WAP). Finally, in a yet more sophisticated kind of migration, the
user switches between different, albeit related, applications or services
(application migration); for example, users may switch from synchronous

AU3833_C13.fm Page 323 Tuesday, August 15, 2006 12:18 PM

324 ■ Mobile Middleware

to asynchronous communication upon noticing that their devices are con-
nected to a wireless network with higher latency and smaller throughput.
In this case, the session initiated with the first service must be transformed
into the session of the new service.

Session management essentially deals with how to represent, encapsu-
late, and adapt the session state; how to transfer and install the session
state at the new device; and how to implement mechanisms for controlling
online sessions. Gardner and Shahi [30] have proposed a middleware-level
proxy architecture that maintains voice and Web data sessions and allows
users to seamlessly transfer session states between different devices or to
share them with other users. It consists of two parts. A server-side proxy
intercepts application-level commands and handles user authentication and
authorization, session storage, and synchronization. The client side features
a graphical user interface (GUI) for session administration (e.g., the user
may keep several ongoing sessions) and application plug-ins for capturing
the state of the associated applications, managing the transfer, and syn-
chronizing session states between multiple clients. Central to their work is
the definition of a session schema for capturing state information of Web
browsing sessions.

Handover Management

Among the several advantages offered by the wireless network, user
mobility is perhaps the most appealing benefit, as it enables users to access
information from different locations even while they are moving; however,
to support this, mobile networks must provide support for mobility man-
agement (i.e., handover management). A handover, or handoff, occurs
when a user previously connected to some network reconnects to the
same or to a new network. Handover management is mainly responsible
for two tasks: updating the location and address of the MH to ensure that
it can be reached, and transferring the session state of the MH from the
old to the new network. Thus, essentially handover management is con-
cerned with offering mobility transparency to the applications.

Wireless CORBA [5,35] and Mobile IP [37] are two examples of proxy-
based infrastructures that support handover management. Both define a
very similar architecture composed of three basic elements: home location
agents (HLAs), proxies (in Mobile IP terminology, foreign agents), and
the MHs. The HLA contains records of which proxy is serving which MH,
and the proxies manage the handover and act as intermediaries for all
communications between the MH and servers in the wired network. Due
to the similarity between the Wireless CORBA (wCORBA) and Mobile IP
approaches, in the following we describe only Wireless CORBA in some
more detail.

AU3833_C13.fm Page 324 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 325

The wCORBA specification supports mobility transparency of objects
through a mobile interoperable object reference (mobile IOR) and a
General Inter-ORB Protocol (GIOP) tunneling protocol, which handles
handovers between access bridges in a technology-independent way. The
access bridge plays the role of an object proxy, through which clients on
the wired network can request execution of an object’s method on a MH,
and vice versa. Among other tasks, access bridges are also in charge of
synchronizing the session state transferred between them when the MH
performs a handover. This is implemented through notification messages
about the mobility events of the MH which are exchanged among the
access bridges and the HLA of the MH.

To provide mobility transparency in CORBA applications, wCORBA’s
mobile IOR is used to hide the mobility of the device from clients
invoking operations on target objects at the device. Instead of informing
the concrete address of the target object, the host and port fields of an
Internet Inter-ORB Protocol (IIOP) profile, a mobile IOR indicates the
address of either the HLA of the MH hosting the target object or the
access bridge currently associated with the MH. In this way, all infor-
mation addressed to the MH is routed through its HLA, if it has one,
which in turn forwards the received information to the current access
bridge of the MH (through a LOCATION_FORWARD message), which
forwards the information directly to the MH. If the MH is homeless,
the information is sent directly to the current access bridge of the MH.

In contrast to wCORBA and Mobile IP, the home proxy (HP)-based
wireless Internet framework [8] provides mobility support through an
application-level proxy. In addition to supporting handover management,
this framework aims to facilitate the integration of mobility support with
QoS management mechanisms. Just as in Mobile IP, all packets addressed
to the MH are first routed to its home network, then the home proxy
intercepts the packets and redirects them to the current subnet of the MH.
Unlike the home agent in Mobile IP, the HP uses a split-connection
approach, based on session-layer mobility (SLM) [27], to relay packets to
the MH. Using this approach, the HP creates two separate connections,
one with the MH and the other with the peer host, so it can route packets
between them. This work extends the SLM for recovering and managing
TCP connection states when the MHs perform handovers.

Discovery and Autoconfiguration

The dynamicity of mobile computing environments imposes stronger
requirements for service discovery mechanisms than traditional distributed
environments; for example, service discovery should handle changes in
the availability of devices or services and should be able to choose the

AU3833_C13.fm Page 325 Tuesday, August 15, 2006 12:18 PM

326 ■ Mobile Middleware

most suitable service for each client, according to its current context. Proxy-
based system architectures can help to overcome such challenges by hiding
network heterogeneity and dynamicity, as well as by reducing the com-
plexity of the control mechanisms to manage such dynamism. By accessing
a service through a proxy, instead of interacting directly with a particular
instance of the service, a client is exempted from such responsibilities as
choosing the most suitable service, executing the service-specific protocol,
and making the appropriate reconfiguration when the execution context
changes. This approach is adopted by some Jini™-based middlewares [9,23].

Other proxy-based architectures focus on dynamic service reconfigura-
tion. In WebPADS [11], clients and servers communicate with each other
over wireless links using a WebPADS proxy instance that provides a service
discovery mechanism. When some adaptation is required (e.g., bandwidth
decrease), the proxy loads the suitable service from the network and installs
it in the WebPADS proxy. A service is developed as a mobilet, using the
WebPADS application programming interface (API), and it can migrate from
the service directory to a proxy. Such reconfiguration is transparent to
clients and servers.

Security

Services for secure mobile communications may also employ a proxy-
based approach. In a mobile environment, proxies can be used to decen-
tralize the authentication process and allow the application to use a public-
key security model on the wired network that may require a high com-
putational effort, while keeping the computed functions at the device as
simple as possible. Furthermore, by acting as intermediaries between
clients and servers, proxies may provide a natural and efficient means of
implementing anonymity for the mobile application, hiding the real identity
of the requester whenever necessary. In this case, the proxies are used
to represent mobile clients and may be responsible for handling privacy,
authorization, user authentication, or data encryption.

In the proxy-based security architecture proposed by Burnside et al.
[6], the proxies implement a public-key security model to control access
over shared resources (e.g., files, printers). For guaranteeing security and
privacy, this work uses two separate protocols: a protocol for secure
device-to-proxy communication and a protocol for secure proxy-to-proxy
communication.

The protocol for device-to-proxy communication sets up a secure
channel that encrypts and authenticates all messages on the wireless link
using symmetric keys. On the other hand, the proxy-to-proxy protocol
uses a public key infrastructure to implement the access control through
access control lists (ACLs) on the public or protected resources. If a

AU3833_C13.fm Page 326 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 327

requested resource is protected by an ACL, the request must be accom-
panied by a proof of authenticity, which shows that it is authentic, and
a proof of authorization, which shows that the requester is authorized to
perform the particular request on the particular resource. The proof of
authenticity is typically a signed request, and the proof of authorization
is typically a chain of certificates.

With respect to user authentication, much work has been done on
employing proxy-based signature generation. For example, Park and Lee
[36] have proposed a nominative proxy signature scheme, a method in
which the proxy generates a nominative signature and transmits it to the
certification authority instead of sending it to the original client. The
advantages are that it preserves user anonymity and decreases the mobile
client’s cost of computing the signature. A refinement of this approach
has recently been proposed by Seo and Lee [42] which guarantees non-
repudiation by the proxy and does not assume a secure channel between
the client and the proxy.

Other Tasks

In this section, we briefly discuss some other proxy tasks commonly found
in the literature. Many other application- or protocol-specific tasks could
be mentioned, but due to space limitations we cannot discuss them all
in depth here.

Personalization refers to the function of tailoring the information
content in response to a request, learning the user’s profile or current
preferences, and possibly performing some complex task on behalf of
the user. For example, when searching for some information on the Web,
the proxy can select the most suitable universal resource locators (URLs)
for a given user request or infer a semantic match between the user’s
query terms and the objects referred by the URLs. As an example, eRACE
[12] supports personalization in the form of user-specific differentiated
services (filtering, data aggregation, personalized dissemination), which
are determined by eXtensible Markup Language (XML)-encoded eRACE
profiles.

Content creation by a proxy is possible when the infrastructure sup-
ports the offloading and execution of application- and client-specific code
at the proxy. On behalf of the client and based on user preferences, the
proxy might be able to autonomously access network services, discover
new data sources, and retrieve information from several sources to produce
new content that is a composition, a summary, or a selection of the
different pieces of retrieved data. IBM’s WBI [3] and TACC [19] are
examples of infrastructures supporting the dynamic instantiation of content
aggregation modules at general-purpose proxies.

AU3833_C13.fm Page 327 Tuesday, August 15, 2006 12:18 PM

328 ■ Mobile Middleware

Checkpointing may be necessary for recovering the state of a distributed
application after a failure, but, unfortunately, checkpointing algorithms usu-
ally incur high overhead in terms of control messages. To support checkpoint-
based recovery in mobile networks, several studies have proposed the use
of proxies as representatives of the MHs and in charge of collecting and
managing the states of the mobile client. For example, the checkpointing
algorithm proposed in Ni et al. [33] uses a proxy coordinator on the wired
network that acts as a representative for processes executing on the mobile
host to avoid sending checkpoint control messages over wireless links.

Proxy Frameworks
Because proxies have been used as a general approach for handling dynamic
adaptation, several efforts have been made to develop generic proxy archi-
tectures, or proxy frameworks, that can be customized or extended to
solve a particular problem. An example of such an effort is the Internet
Engineering Task Force’s Open Pluggable Edge Services (OPES) [46], which
proposes a reference architecture for Web proxies and addresses such
issues as security, distribution, and dynamic configuration.

In this section, we describe common mechanisms used in proxy frame-
works and compare well-known systems, such as TACC, RAPIDware, Mobi-
ware, MARCH, Web Intermediaries, and MoCA’s ProxyFramework. The
RAPIDware [31] project has proposed adaptive proxy services for multimedia
streams. Mobiware [34] is a QoS-aware middleware platform for multimedia
applications that also provides support for handoff control. WBI [22] was
developed at IBM for HTTP-based adaptations, such as personalizing con-
tents, transcoding, or caching. MARCH [1], TACC [19], and MoCA’s Proxy-
Framework [40,41] are general-purpose content adaptation frameworks.

Most proxy frameworks provide general-purpose solutions for the
following four main issues: (1) implementation and composition of adap-
tation modules, called adapters; (2) description of the conditions in which
the adapters should be applied; (3) monitoring of the context, such as
the profile of the mobile device, the state of the application, and the
network bandwidth; and (4) loading of adapters. In the remainder of this
section, we discuss these features in more detail. A complementary dis-
cussion about proxy frameworks can be found in Dikaiakos [13].

Adapter Development

The main customization point of a content-adaptation proxy framework
is the adapter, a module responsible for implementing a transcoding
function for a message or its content. (Note that some publications use

AU3833_C13.fm Page 328 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 329

different names for the adapter, including filter [31], transcoder [3], and
worker [19].) A proxy may use several adapter instances for implementing
specific adaptations required for different clients or contexts. Taking into
account the client’s current context, a proxy determines at runtime which
adapter should be used for manipulating data content. In some cases,
more than one adapter can be selected for transcoding a message; there-
fore, some frameworks support the definition of priorities, ordering, and
composition of adapters.

Most proxy frameworks are designed on the basis of extensibility
mechanisms and component-based approaches to support the develop-
ment and composition of adapters, as well as their loading into a proxy.
In some frameworks, such as WBI, RAPIDware, and MARCH, adapters
can be developed as independent and composable components that are
stored in adapter repositories or libraries and deployed in proxies. Some
frameworks provide classes of special-purpose adapters; for example,
RAPIDware provides some FEC filters to improve the ability of the
audio/video stream to tolerate errors in a wireless environment. The TACC
model supports adapters for transformation (content adaptation), aggre-
gation (information collecting), caching, and customization.

Adapter Selection

The choice of adapters and when to use them is an extensible characteristic
of proxy frameworks that can be defined in two ways: via programmable
interfaces or via rule-based configuration. An example of the first approach
can be found in Mobiware, where the application requirements and the
adaptations to be applied must be programmed using an API provided by
the framework. When a rule-based configuration is supported, the devel-
oper must define rules that contain trigger conditions, described in terms
of the client and network states (i.e., context); the adaptations to be
executed; and sometimes also a priority of the rule. Usually, the rules are
described manually via an XML file. In MARCH, the selection process
evaluates a set of rules during session setup and, as a result, produces a
sequence of adapters to be applied. In MoCA’s ProxyFramework and WBI,
rules are evaluated just before each message is sent to the client. Rule-
based systems are easily configured and less error prone than the ones
based on programmable interfaces; also, it is not necessary to deal with
intrinsic programming details of the framework. Furthermore, only the
content provider can decide which adaptation is acceptable in different
contexts. By using rules, he or she may define the sequence of adaptations
to apply to data, thus better controlling the composition of the data, which
is a very complex task to automate.

AU3833_C13.fm Page 329 Tuesday, August 15, 2006 12:18 PM

330 ■ Mobile Middleware

Context Monitoring

The monitoring and gathering of context information — the client profile
and conditions of the execution environment, such as the available
resources, load, and energy at the mobile host and the network — are
part of the desired functionality of proxy frameworks. Probing the network
state, such as available bandwidth or connectivity, is generally done via a
monitoring function or service, as in TACC, MARCH, and MoCA’s Proxy-
Framework. Information related to the client device may be obtained at
the startup connection request [1], via a customization database containing
profiles [19], or through monitoring of the resources of the device [40]. In
most frameworks, context changes are notified through asynchronous
events, which must be interpreted and processed by the proxy to execute
the appropriate action.

Adapter Loading and Execution

According to how adapters are loaded and activated, proxy frameworks
can be classified as configurable or dynamic proxies. In a configurable
proxy, adapters are defined statically at proxy deployment time. The
developer can change the behavior of the proxy by using trigger rules
that define the order and context in which an adapter should be executed.
A dynamic proxy supports dynamic and on-demand loading of adapters
from an adapter repository, according to the current context.

Two examples of dynamic proxies are RAPIDware and MARCH. RAPID-
ware provides a composable proxy framework to support the dynamic
composition of services by fetching adapters (or filters) from a repository
and instantiating and reconfiguring them dynamically at the proxy in
response to the changing needs of mobile clients. MARCH provides a
dynamic execution environment for adapters that facilitates the uploading
of proxies to the server or the mobile client on a per-session basis. In
MARCH, the mobile-aware server (MAS) component is in charge of decid-
ing which adapters, chosen from the proxy repositories, are to be used
and where to execute them.

An example of frameworks for the configurable deployment of proxies
is Web Intermediaries (WBI). At proxy startup, the registered adapters (or
plug-ins) are instantiated with the corresponding firing rule conditions
and an associated priority. WBI supports the aggregation of adapters, and
the proxy can be placed either on the server or on the client side. Another
example is MoCA’s ProxyFramework, where the adapters are instantiated
during proxy initialization according to trigger rules (described in an XML
configuration file) specifying the context in which the adaptation (or set
of adaptations) should be applied. This framework also supports the

AU3833_C13.fm Page 330 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 331

chaining of adapters, use of priorities, and mechanisms for specifying
caching policies.

Comparing the two approaches, the dynamic loading of adapters gives
more flexibility to a system; however, configurable proxies support veri-
fication of a consistent combination/configuration of adapters. In addition,
dynamic loading of adapters from a repository can be time consuming;
therefore, this approach is more suited for systems where context changes
are not very frequent.

Table 13.1 presents the cited frameworks, summarizing their main char-
acteristics according to the aspects discussed in this section and earlier.
Comparing the systems presented in the table, it is worth mentioning that
all of them support content adaptation, caching management appears as
the second most frequent functionality, and handover management is pro-
vided only by Mobiware. Furthermore, an equal number of systems address
adapter loading (dynamic- versus configuration-based) and the form of
adaptation selection (programmable versus trigger-rule configuration), sug-
gesting that all of these approaches have their advantages and disadvantages.
Concerning communication capabilities, only MoCA’s ProxyFramework and
WBI support asynchronous (publish–subscribe) communication, which
has been recognized as well suited for mobile computing. Context aware-
ness is also supported by most of the frameworks (except WBI), but only
MARCH and MoCA’s ProxyFramework also consider the state of the client’s
devices. Although it is quite difficult to compare the frameworks, Mobiware
seems to be one of the most complete systems in terms of supported
functionality, extensibility, and architecture.

Conclusion
In this chapter, we presented two classifications of proxy-based architec-
tures for mobile computing, identified and discussed broad categories of
responsibilities assigned to these intermediaries, and presented the most
representative examples of such systems. Despite the widespread adoption
of proxy-based architectures for mobile computing, a number of open
challenges remain to be addressed to make proxy-based systems more
flexible, scalable, and shaped to the specific requirements of current and
future mobile networks and applications.

More precisely, some justified concerns have been raised with regard
to the scalability of the proxy-based approaches. As the number of mobile
users connecting through wireless links increases, server-side proxies may
not be able to cope with the increasing computational demands of the
mobile clients they represent. This is particularly true if the adaptation
and transcoding performed at the proxies is specific for each mobile client

AU3833_C13.fm Page 331 Tuesday, August 15, 2006 12:18 PM

332 ■ Mobile Middleware

Ta
bl

e
13

.1
C

om
pa

ri
so

n
of

 E
xt

en
si

bl
e

Pr
ox

y
A

pp
ro

ac
he

s

R
A

PI
D

w
ar

e
M

o
b

iw
ar

e
M

A
R

C
H

TA

C
C

M

o
C

A

Pr
ox

yF
ra

m
ew

o
rk

W

B
I

Pu
rp

o
se

M

u
lt

im
ed

ia

M
u

lt
im

ed
ia

,
Q

o
S

G
en

er
al

G

en
er

al

G
en

er
al

W

eb

ap
p

lic
at

io
n

s

Le
ve

l
M

id
d

le
w

ar
e

M
id

d
le

w
ar

e
A

p
p

lic
at

io
n

M

id
d

le
w

ar
e

M
id

d
le

w
ar

e
A

p
p

lic
at

io
n

Pr
o

xy
 p

la
ce

m
en

t
Se

rv
er

-s
id

e
C

lie
n

t-
si

d
e

an
d

se

rv
er

-s
id

e

Se
rv

er
-s

id
e

an
d

p

ro
xy

-p
ai

r

Se
rv

er
-s

id
e

Se
rv

er
-s

id
e

C
lie

n
t-

si
d

e
an

d

se
rv

er
-s

id
e

D
yn

am
ic

ad

ap
te

r l
o

ad
in

g
Ye

s
Ye

s
Ye

s
N

o

N
o

N

o

A
d

ap
ta

ti
o

n

se
le

ct
io

n

Pr
o

gr
am

m
ab

le

Pr
o

gr
am

m
ab

le

Tr
ig

ge
r-

ru
le

s
co

n
fi

gu
ra

ti
o

n

Pr
o

gr
am

m
ab

le

Tr
ig

ge
r-

ru
le

s
co

n
fi

gu
ra

ti
o

n

Tr
ig

ge
r-

ru
le

s
co

n
fi

gu
ra

ti
o

n

Fu
n

ct
io

n
al

it
y

C
o

n
te

n
t

ad
ap

ta
ti

o
n

C

o
n

te
n

t
ad

ap
ta

ti
o

n
,

h
an

d
o

ve
r

m
an

ag
em

en
t

C
o

n
te

n
t

ad
ap

ta
ti

o
n

C

ac
h

in
g,

co

n
te

n
t

ad
ap

ta
ti

o
n

C
ac

h
in

g,

co
n

te
n

t
ad

ap
ta

ti
o

n

C
ac

h
in

g,

co
n

te
n

t
ad

ap
ta

ti
o

n

C
o

m
m

u
n

ic
at

io
n

Sy

n
ch

ro
n

o
u

s
Sy

n
ch

ro
n

o
u

s
Sy

n
ch

ro
n

o
u

s
Sy

n
ch

ro
n

o
u

s
Sy

n
ch

ro
n

o
u

s,

as
yn

ch
ro

n
o

u
s

Sy
n

ch
ro

n
o

u
s,

as

yn
ch

ro
n

o
u

s

C
o

n
te

xt

aw
ar

en
es

s
W

ir
el

es
s

lin
k

W
ir

el
es

s
lin

k
D

ev
ic

e
an

d

w
ir

el
es

s
lin

k
W

ir
el

es
s

lin
k

D
ev

ic
e

an
d

w

ir
el

es
s

lin
k

—

AU3833_C13.fm Page 332 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 333

(e.g., takes into account the particular device characteristics and limita-
tions) and is resource hungry, such as, for example, the transcoding of
multimedia streams.

The obvious alternative to the use of proxies is the adoption of an
end-to-end approach where information servers pre-transcode contents
to an array of different formats and resolutions and deliver content to
each client in the most suitable form and fidelity, according to the
capabilities of the corresponding device and the current quality of its
wireless connection. Because disk storage is becoming increasingly less
expensive, several content providers are pursuing such an end-to-end
approach.

A pure end-to-end approach, however, does have some drawbacks:
(1) It requires the use of servers that are capable of interpreting the
information about client capabilities and current network conditions; (2)
it is not scalable because servers would have to store all their content in
different formats and fidelities so as to adequately serve their mobile and
resource-limited clients, in addition to the stationary clients; (3) it does
not support dynamic and seamless switching from one format or fidelity
to another during a transmission, which may be necessary for adapting
to the variable quality of wireless connections; and (4) tasks such as
disconnection and handover management, caching, and protocol transla-
tion cannot be properly handled by servers, as these tasks solve specific
problems related to the mobility and resource limitations of the client
devices, as well as to the specific characteristics of the wireless technol-
ogies. Hence, for most adaptations required by mobile applications, a
proxy-based approach turns out to be the best choice.

A major challenge remaining, though, is to design proxy-based archi-
tectures that are scalable. One possibility is to combine the end-to-end
and proxy approaches, such as is discussed in Joshi [24]. Another promising
approach is to develop infrastructures that support the deployment of
distributed and cooperative networks of intermediaries that collectively
perform adaptations for a huge variety of devices and protocols, such as
in IETF’s proposals of Open Pluggable Edge Services (OPES) [46].

As the number of applications for mobile networks increases, and their
services become more complex and personalized, proxies will be used
for an increasing number of specialized functions. Although each type of
application will have specific demands for proxy-based functions, we have
identified a common and recurrent set of functions, structures, and archi-
tectural patterns in proxy implementations that can be used as the basis
for developing proxies for specific needs. In our opinion, the demand is
increasing for flexible and extensible tools and frameworks for the rapid
development and customization of proxy-based architectures, at both the
application and middleware levels.

AU3833_C13.fm Page 333 Tuesday, August 15, 2006 12:18 PM

334 ■ Mobile Middleware

The other trend we envisage in proxy-based architectures is that of
dynamic proxy configuration, which allows shaping the proxy’s function-
ality according to dynamic demand by the clients, server load, or current
mobile network conditions. Ideally, we should have a library of standard-
ized modules for content adaptation, protocol translation, caching man-
agement, etc., that could be automatically loaded, instantiated, and
interconnected in a proxy framework, according to the specific needs and
network conditions.

References
[1] Ardon, S., Gunningberg, P., LandFeldt, B., Portmann, M., Ismailov, Y., and

Seneviratne, A., March: a distributed content adaptation architecture, Int. J.
Commun. Syst., 16(1), 97–115, 2003 (special issue on wireless access to the
global Internet: mobile radio networks and satellite systems).

[2] Barbara, D., Mobile computing and databases: a survey, Trans. Knowledge
Data Eng., 11(1), 108–117, 1999.

[3] Barrett, R. and Maglio, P.P., Intermediaries: an approach to manipulating
information streams, IBM Syst. J., 38, 629–641, 1999.

[4] Bharadvaj, H., Joshi, A., and Auephanwiriyakul, S., An active transcoding
proxy to support mobile Web access, in Proc. of the 17th IEEE Symp. on
Reliable Distributed Systems (SRDS’98), W. Lafayette, IN, October, 1998.

[5] Black, K., Currey, J., Kangasharju, J., Länsiö, J., and Raatikainen, K., Wireless
Access and Terminal Mobility in CORBA, White Paper, Department of
Computer Science, University of Helsinki, Finland, 2001.

[6] Burnside, M., Clarke, D., Mills, T., Maywah, A., Devadas, S., and Rivest, R.,
Proxy-based security protocols in networked mobile devices, in Proc. of
the 17th ACM Symp. on Applied Computing (SAC’02), Madrid, Spain, March,
2002, pp. 265–272.

[7] Cai, J., Tan, K.-L., and Ooi, B.C., On incremental cache coherency schemes
in mobile computing environments, in Proc. of the 13th Int. Conf. on Data
Engineering (ICDE’97), Birmingham, U.K., April, 1997, pp. 114–123.

[8] Chan, J., Landfeldt, B., Liu, R., and Seneviratne, A., A home-proxy based
wireless internet framework in supporting mobility and roaming of real-
time services, IEICE Trans. Commun., E84–B(4), 873–884, 2001 (special
issue on mobile multimedia communications).

[9] Chen, H., Joshi, A., and Finin, T.W., Dynamic service discovery for mobile
computing: intelligent agents meet Jini in the aether, Cluster Comput., 4(4),
343–354, 2001.

[10] Chen, Y.-F., Huang, H., Jana, R., Jim, T., Hiltunen, M. et al., iMobile EE: an
enterprise mobile service platform, Wireless Networks, 9(4), 283–297, 2003.

[11] Chuang, S.-N., Chan, A.T.S., Cao, J., and Cheung, R., Dynamic service
reconfiguration for wireless Web access, in Proc. of the Twelfth Int. Conf.
on the World Wide Web (WWW 2003), Budapest, Hungary, May, 2003, pp.
58–67.

AU3833_C13.fm Page 334 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 335

[12] Dikaiakos, M. and Zeinalipour-Yazti, D., A Distributed Middleware Infra-
structure for Personalized Services, Technical Report TR-2001-4, Department
of Computer Science, University of Cyprus, 2001.

[13] Dikaiakos, M.D., Intermediary infrastructures for the World Wide Web,
Comput. Networks, 45(4), 421–447, 2004.

[14] NTT DoCoMo, i-Mode, www.nttdocomo.com/corebiz/services/imode.
[15] Elaarg, H., Improving TCP performance over mobile networks, ACM Com-

put. Surv., 34, 357–374, 2002.
[16] Conan, D. et al., Wp2 Frameworks: Architecture and API of the Mobility

Framework, Technical Report WP2-040108-1, Information Technology for
European Advancement (ITEA), INT, INRIA/OASIS, and Thales, 2004.

[17] WAP Forum, Wireless Application Protocol Architecture Specification, WAP-
210-WAPArch-20010712-a, 2001, www.wapforum.org.

[18] WAP Forum, Wireless Profiled TCP, Version 31, WAP-225-TCP-20010331-a,
2001, www.wapforum.org.

[19] Fox, A., Gribble, S., Chawathe, Y., and Brewer, E., Adapting to network
and client variation using active proxies: lessons and perspectives, IEEE
Pers. Commun., 5(4), 10–19, 1998.

[20] Hori, M., Kondoh, G., Ono, K., Hirose, S.I., and Singhal, S., Annotation-
based Web content transcoding, Computer Networks, 33(1–6), 197–211, 2000.

[21] Housel, B.C. and Lindquist, D.B., Webexpress: a system for optimizing web
browsing in a wireless environment, in Proc. of the 2nd ACM/IEEE Int. Conf.
on Mobile Computing and Networking (MOBICOM’96), White Plains, NY,
November, 1996, pp. 108–116.

[22] Ihde, S.C., Maglio, P.P., Meyer, J., and Barrett, R., Intermediary-based
transcoding framework, in Proc. of the Ninth Int. Conf. on the World Wide
Web (WWW 2000), Amsterdam, The Netherlands, May, 2000.

[23] PsiNaptic, Inc., Jmatos, http://www.psinaptic.com/.
[24] Joshi, A., On proxy agents, mobility, and Web access, Mobile Networks Appl.,

5(4), 233–241, 2000.
[25] Kahol, A., Khurana, S., Gupta, S.K.S., and Srimani, P.K., A strategy to manage

cache consistency in a disconnected distributed environment, IEEE Trans.
Parallel Distrib. Syst., 12(7), 686–700, 2001.

[26] Kistler, J.J. and Satyanarayanan, M., Disconnected operation in the Coda
file system, ACM Trans. Comput. Syst., 10(1), 3–25, 1992.

[27] Landfeldt, B., Larsson, T., Ismailov, Y., and Seneviratne, A., SLM, a frame-
work for session layer mobility management, in Proc. of the 10th IEEE Int.
Conf. on Computer Communications and Networks (ICCCN’99), Boston, MA,
October, 1999.

[28] Lienhart, R., Pfeiffer, S., and Effelsberg, W., Video abstracting, Commun.
ACM, 40(12), 55–62, 1997.

[29] Liljeberg, M., Alanko, T., Kojo, M., Laamanen, H., and Raatikainen, K.,
Optimizing World-Wide Web for weakly connected mobile workstations:
an indirect approach, in Proc. of 2nd Int. Workshop on Services in Distributed
and Networked Environments (SDNE’95), Whistler, Canada, June, 1996.

[30] Gardner, M. and Shahi, A., Mobile Web Sessions for Mobile Computing,
Chimera Working Paper 2004-01, University of Essex, Colchester, U.K., 2004.

AU3833_C13.fm Page 335 Tuesday, August 15, 2006 12:18 PM

336 ■ Mobile Middleware

[31] McKinley, P.K., Padmanabhan, U.I., Ancha, N., and Sadjadi, S.M., Compos-
able proxy services to support collaboration on the mobile Internet, IEEE
Trans. Comput., 52(6), 713–726, 2003.

[32] Mohan, R., Smith, J.R., and Li, C.-S., Adapting multimedia internet content
for universal access, IEEE Trans. Multimedia, 1(1), 104–114, 1999.

[33] Ni, W., Vrbsky, S.V., and Ray, S., Low-cost nonblocking coordinated check-
pointing in mobile computing systems, in Proc. of the 8th IEEE Int. Symp.
on Computers and Communications (ISCC’03), Kemer-Antalya, Turkey,
June, 2003, pp. 1427–1434.

[34] Angin, O., Campbell, A.T., Kounavis, M.E., and Liao, R.R.-F., The Mobiware
Toolkit: programmable support for adaptive mobile networking, IEEE Pers.
Commun. Mag., 5(4), 32–43, 1998 (special issue on adapting to network
and client variability).

[35] OMG, Wireless Access and Terminal Mobility in CORBA, Object Management
Group, Needham, MA, 2002 (http://www.omg.org/technology/documents/
formal/telecom_wireless.htm).

[36] Park, H.-U. and Lee, I.-Y., A digital nominative proxy signature scheme for
mobile communication, in Proc. of the Third Int. Conf. on Information and
Communications Security (ICICS’01), Xian, China, November, 2001, pp.
451–455.

[37] Perkins, C.E. and Johnson, D.B., Mobility support in IPv6, in Proc. of the
2nd ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBI-
COM’96), White Plains, NY, November, 1996, pp. 27–37, 1996.

[38] Pitoura, E. and Samaras, G., Data Management for Mobile Computing,
Kluwer, Dordrecht, 1998.

[39] Rodriguez, P., Mukherjee, S., and Rangararajan, S., Session level techniques
for improving Web browsing performance on wireless links, in Proc. of the
Thirteenth Int. Conf. on the World Wide Web (WWW 2004), New York, May,
2004.

[40] Rubinsztejn, H.K., Endler, M., and Rodrigues, N., A framework for building
customized adaptation proxies for mobile computing, in Proc. of the IFIP
Conf. on Intelligence in Communication Systems (INTELLCOMM 2005), Mon-
treal, October 1–11, 2005.

[41] Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.S., Gonçalves, K., and
do Nascimento, F.N., MoCA: a middleware for developing collaborative
applications for mobile users, IEEE Distributed Syst. Online, 5(10), 2004.

[42] Seo, S.-H. and Lee, S.-H., New nominative proxy signature scheme for
mobile communications, in Proc. of Int. Conf. on Security and Protection
of Information (SPI 2003), Brno, Czech Republic, April, 2003, pp. 149–156.

[43] Spyrou, C., Samaras, G., Pitoura, E., and Evripidou, P., Mobile agents for
wireless computing: the convergence of wireless computational models with
mobile-agent technologies, Mobile Networks Appl., 9(5), 517–528, 2004.

[44] Terry, D.B., Petersen, K., Spreitzer, M.J., and Theimer, M.M., The case for
non-transparent replication: examples from Bayou, IEEE Data Eng., 21(4),
12–20, 1998.

AU3833_C13.fm Page 336 Tuesday, August 15, 2006 12:18 PM

Proxy-Based Adaptation for Mobile Computing ■ 337

[45] Wang, Z., Das, S., Che, H., and Kumar, M., A scalable asynchronous cache
consistency scheme (SACCS) for mobile environments, IEEE Trans. Parallel
Distributed Syst., 15(11), 983–995, 2004.

[46] OPES Working Group, Open Pluggable Edge Services, Technical Report,
Internet Engineering Task Force (IETF), 2006 (www.ietf.org/html.char-
ters/opes-charter.html).

[47] Zenel, B., A general purpose proxy filtering mechanism applied to the
mobile environment, Wireless Networks, 5(5), 391–409, 1999.

AU3833_C13.fm Page 337 Tuesday, August 15, 2006 12:18 PM

AU3833_C13.fm Page 338 Tuesday, August 15, 2006 12:18 PM

339

Chapter 14

Reflective Middleware

Paul Grace and Gordon Blair

CONTENTS

Introduction... 340
Reflection... 341

Overview of Reflection... 341
Reflective Middleware... 342
Fundamental Reflective Middleware Architectures..................................... 343

The Lancaster Approach... 344
DynamicTAO.. 346

Four Complementary Case Studies ... 347
Overview ... 347
Universal Interoperable Core ... 347
ExORB.. 349
ReMMoC... 350
CARISMA.. 352

Dynamic Aspect-Oriented Programming .. 355
Introduction to Aspect-Oriented Programming .. 355
MIDAS/PROSE: Invasive Dynamic AOP.. 356
Lasagne: A Noninvasive Dynamic AOP .. 356

Future Research Challenges... 357
Coordinated Adaptation.. 357
Autonomic Computing.. 359

Summary.. 360
References ... 360

AU3833_C14.fm Page 339 Tuesday, August 15, 2006 1:14 PM

340

■

Mobile Middleware

Introduction

The environmental characteristics of the mobile computing environment
present middleware engineers with challenging problems. Primarily,
mobile middleware research has focused on addressing the key problems
— namely, unpredictable network connections, poor network quality of
service (QoS),

ad hoc

 interaction, and limited end-system resources. In
many cases, mobile middleware has extended traditional object-oriented
middleware, including the Common Object Request Broker Architecture
(CORBA™) and Java Remote Method Invocation (RMI), to mobile settings.
Example middleware solutions of this type are the Architecture for Loca-
tion-Independent Computing Environments (ALICE) [1] and MobileRMI [2];
these provide solutions to maintain the Internet Inter-ORB Protocol (IIOP)
(ALICE) and Java RMI (MobileRMI) connections transparently in the face
of disconnection and poor network QoS. On the other hand, wireless
communication is more naturally served by decoupled and opportunistic
communication paradigms (i.e., mobile devices do not have to be simul-
taneously connected) and exploit connectivity whenever it becomes avail-
able. Tuple spaces [3] and publish–subscribe middleware [4] are examples
of these paradigm types. These key problems, however, are compounded
further by the dynamism of the mobile environment. As a mobile device
moves, it naturally encounters changes in its environment: change in
context (such as the device location), change in network conditions, and
change in available resources. Therefore, when developing mobile mid-
dleware, it is not enough to consider only the primary properties of
wireless networks; rather, solutions must be able to adapt dynamically to
deal with changes in the context of a mobile device.

We now introduce five examples of middleware adaptation that illus-
trate how adaptation of the middleware behavior, based on environmental
change, benefits mobile applications (this is not an exhaustive list):

■

Mobile device heterogeneity

 — Mobile devices have varied charac-
teristics in terms of size, screen dimensions, processing power,
system memory, network connections, etc.; therefore, a “one-size
fits all” approach to mobile middleware development is not feasi-
ble. Instead, the middleware must be configurable to operate
effectively across multiple device types.

■

Network context change

 — Fluctuations in network QoS, caused,
for example, by a change in the network type of the device (e.g.,
from a GPRS to a 802.11b network connection), requires the
middleware to adapt its behavior to the resultant changes in
bandwidth, latency, etc. to maintain the performance levels of a
given interaction. In a video application, for example, the media
content streamed between mobile nodes may be filtered to reduce

AU3833_C14.fm Page 340 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware

■

341

or increase the amount of data transmitted to maintain the video
output (with a corresponding change in picture quality).

■

Connectivity

 — During periods of use, a mobile device may remain
permanently connected, but at other times the connection may be
intermittent; hence, mobile middleware must adapt its interaction
mechanism to suit the current connection conditions and applica-
tion requirements.

■

Resource fluctuation

 — Available battery power and system memory
are limited resources on mobile devices and must be carefully
managed in the face of high- and low-level loads; therefore, the
middleware must adapt its resource use (e.g., by utilizing less power
and memory when fewer resources are available and

vice versa

).

■

Middleware heterogeneity

 — Mobile applications are not imple-
mented using identical middleware platforms. Many mobile mid-
dleware solutions are available to application developers, including
distributed-object-based, publish–subscribe, agent-based, and tuple
spaces. Dynamically adaptable middleware must cope with this
property to ensure that interaction between heterogeneous mid-
dleware types can continue.

To manage environmental change and perform adaptations of the types
previously listed, mobile middleware must be able to adapt itself based
on reasoning about both its current behavior and the current environmen-
tal conditions. The authors believe

reflection

 is well suited to the devel-
opment of such adaptive middleware; the technique provides principled
mechanisms to inspect the structure and behavior of the middleware and
make changes to both at runtime. In this chapter, we introduce the reader
to the fundamental techniques of reflection and reflective middleware and
examine complementary case studies that have applied reflection to the
domain of mobile computing middleware. We also examine the closely
related technology of dynamic aspect-oriented programming, which offers
powerful techniques for performing systemwide dynamic adaptation
(offering both functional and nonfunctional extensions) of middleware
implementations.

Reflection

Overview of Reflection

Reflection is a technique that first emerged in the language community to
support the design of more open and extensible languages (e.g., see Kiczales
et al. [5]). The approach is nicely summarized by the following quote from
Brian Cantwell Smith, the originator of early work on reflection [6]:

AU3833_C14.fm Page 341 Tuesday, August 15, 2006 1:14 PM

342

■

Mobile Middleware

In as much as a computational process can be constructed to
reason about an external world in virtue of comprising an
ingredient process (interpreter) formally manipulating represen-
tations of that world, so too a computational process could be
made to reason about itself in virtue of comprising an ingredient
process (interpreter) formally manipulating representations of
its own operations and structures.

Hence, reflection is the capability of a system to reason about itself and
act upon this information. For this purpose, a reflective system maintains
a representation of itself that is causally connected to the underlying
system that it describes. This is known as

causally connected self-repre-
sentation

 (CCSR) [7]. CCSR is often referred to as the

meta level

, and the
system itself the

base level

; hence, changes made at the meta level via
this self-representation are reflected in the underlying base level, and

vice
versa

. The process of making the base level tangible and accessible at
the meta level is known as

reification.

Operations to introspect and make
changes to the meta level are commonly referred to as the Meta Object
Protocol (MOP).

As discussed earlier, reflection has been predominantly applied to
language design, and a wide variety of reflective languages are now
available. Examples include CLOS [5], Sun’s Core Java Reflection library
[8], Iguana [9], and OpenC++ [10]. In this section, we concentrate on the
application of reflection to the design of middleware systems. We focus
in particular on the general techniques involved, which are common to
the mobile middleware solutions described later in the chapter.

Reflective Middleware

One of the goals of this chapter is to convince the reader as to why we
should make mobile middleware reflective. In the introduction, we pre-
sented five examples that illustrated the need for change in middleware
behavior. In these situations, a fixed, static middleware platform is unsuit-
able; for example, such a platform cannot be configured to operate on
heterogeneous devices, nor can it alter its behavior to react to changing
environmental contexts. Instead, solutions that promote

openness

 in the
development of middleware are essential. That is, the internal details about
the middleware implementations must be made available to support both
configuration and also dynamic reconfiguration decisions. Reflection pro-
vides principled (as opposed to

ad hoc

) mechanisms for introspection
and adaptation and hence is well suited to developing open solutions
that manage dynamic change. Furthermore, middleware is ideally placed

AU3833_C14.fm Page 342 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware

■

343

as the arbitrator between applications and the network environment; the
middleware can reason about itself and the current environment and make
dynamic changes that will benefit the running applications. Notably,
reflective mechanisms also offer an ideal solution to the problem of
middleware heterogeneity within the mobile domain (as discussed further
later in this chapter). Reflection does not assume or require any particular
communication paradigm. Reflective middleware can provide any com-
munication style (e.g., tuple space) or, better, can provide different com-
munication paradigms (e.g., remote procedure calls, events, messages)
from which applications can dynamically choose the one that best suits
their current needs.

In middleware platforms, two (complementary) styles of reflection have
emerged:

■

Structural reflection

 is concerned with the underlying structure of
objects or components (e.g., in terms of interfaces supported). This
is similar, for example, to the introspection features found in Java
1.2 and associated technologies, such as JavaBeans™ [8]. More
advanced features may also be offered, such as the ability to adapt
the structure of an object (e.g., to add new behavior at runtime).
Similarly, some systems provide architectural reflection, whereby
the software architecture of the system can be reified and altered
(e.g., in terms of components and connectors) [11,12]. This can be
applied to the very structure of the middleware platform itself,
allowing customization of the architecture for the current environ-
mental conditions. Finally, metadata or context can be viewed as
a form of structural reflection, providing additional (meta) infor-
mation about the underlying system (e.g., physical location, current
battery levels, performance of the network).

■

Behavioral reflection

 is concerned with activity in the underlying
system (e.g., in terms of the arrival and dispatching of invocations).
Typical mechanisms provided include the use of interceptors that
support the reification of the process of invocation and the sub-
sequent insertion of pre- or post-actions. Other systems provide
similar capabilities through dynamic proxies [8].

Fundamental Reflective Middleware Architectures

We now investigate two key reflective middleware approaches: the Lan-
caster approach and DynamicTAO. These architectures underpin the reflec-
tive middleware solutions applied to the mobile computing domain, as
will be seen in the case studies that follow.

AU3833_C14.fm Page 343 Tuesday, August 15, 2006 1:14 PM

344

■

Mobile Middleware

The Lancaster Approach

The Lancaster approach [11] to reflective middleware development is based
on a design philosophy that promotes a marriage of reflection, component
technologies, and component frameworks. Notably, the approach can be
used to create families of reflective middleware in domains, including
multimedia computing, mobile computing, and sensor-based computing,
among others. Components are the fundamental building blocks of these
middleware, where a component is “a unit of composition with contrac-
tually specified interfaces, which can be deployed independently and is
subject to third-party creation” [13]. It is important to note that the use of
component programming promotes the benefits of

configurability

,

recon-
figurability

,

and

reuse

 at the middleware level. All reflective middleware
implementations that follow this philosophy have been developed using
the OpenCOM component model [14], which supports explicit dependen-
cies (bindings) between components; that is, it maintains information
about the connections between one component’s provided interface and
the required interface of another component. Reflection is then used to
provide a principled mechanism to inspect and dynamically adapt the
component structure (in terms of components and their bindings) of the
middleware implementation. Finally, component frameworks constrain the
design space and the scope for evolution, where a component framework
(CF) is defined as a collection of rules and contracts that govern the
interaction of a set of components [13]. Hence, component frameworks
act to ensure that the middleware behavior is not compromised by
malicious or invalid reconfigurations.

Figure 14.1 illustrates the metaspace model that forms the basis of the
Lancaster reflective middleware design. Every OpenCOM component has
access to an associated

metaspace

. Three distinct metamodels represent
the metaspace:

interface

,

architecture

, and

interception

. The interface and
architecture metamodels provide structural reflection, and the interception
metamodel supports behavioral reflection:

■

The

interface metamodel

 supports inspection of the provided and
required interfaces of a component. Typically, it is possible to
examine the operations available on these interfaces or dynamically
invoke one of the operations.

■

The

architecture metamodel

 accesses the software architecture of
a component represented by two elements: a

component graph

and a set of

architectural constraints

. The component graph is
represented by a set of connected components, where a connection
maps between a required and a provided interface in the same
address space; hence, the architecture metamodel can be used to
both discover and make changes to this structure at runtime. The

AU3833_C14.fm Page 344 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware

■

345

metamodel can also be used to discover the architectural constraints
defined over the component graph; such constraints must be
preserved during periods of adaptation and indeed are checked
as changes occur, as discussed below.

■

The

interception metamodel

 enables the dynamic insertion of

inter-
ceptors

, which support the insertion of pre- and post-behavior onto
interfaces. These interceptors are executed before each operation
invocation of an interface and after the operation has completed.

The architecture metamodel is fundamental when developing dynamic
middleware solutions, as seen in the Reflective Middleware for Mobile
Commuting (ReMMoC) framework described later; however, providing
open access to the structure of the system and the ability to make runtime
changes increases the likelihood of system failure and opens it up to third-
party attack. To prevent invalid or malicious reconfigurations, OpenCOM
supports the architecture metamodel by including a component framework
model [15]. Here, a CF is a composite component (seen in Figure 14.2)
that contains its own internal structure (a graph of components). Each CF
supports the architecture MOP described above, which provides reflective
operations to inspect and dynamically reconfigure the framework’s local
component architecture. Notably, the framework exports a health check
mechanism (illustrated in Figure 14.2 as the required interface called
IAccept); components providing rules about valid dynamic reconfigura-
tions for this particular framework are then plugged into this interface.
All reconfigurations are checked against these rules and valid changes are

Figure 14.1 The metaspace structure of OpenCOM.

Base
level

Meta
level

Architecture
meta interface

Interface
meta interface

Interception
meta interface

AU3833_C14.fm Page 345 Tuesday, August 15, 2006 1:14 PM

346

■

Mobile Middleware

accepted, but invalid attempts are prevented and the framework rolls back
to its last safe state. This general architecture has been used to implement
a small family of reflective middleware platforms, including OpenORB (a
reflective CORBA ORB) [11] and ReMMoC [15].

DynamicTAO

DynamicTAO [16] is a reflective CORBA ORB built as an extension of the
TAO middleware platform [17]. The ACE ORB (TAO) is a portable, flexible,
extensible, and configurable ORB that conforms to the CORBA standard
and utilizes the strategy design pattern to encapsulate different aspects of
the ORB internal engine. In particular, TAO contains a configuration file
that specifies the strategies the ORB uses to implement aspects such as
concurrency, request demultiplexing, scheduling, and connection man-
agement. When the ORB is initiated, the configuration file is parsed and
the selected strategies are loaded. DynamicTAO

extends TAO to support
runtime reconfiguration; this is achieved by keeping an explicit represen-
tation of the ORB internal components and of the dynamic interactions
among them (this is identified as the metalevel). This reification allows
the ORB to change its own specific strategies without having to restart its
execution; this process is managed by elements known as

component
configurators

, the role of which is to maintain the dependencies between
a component and other system components. For example, each instance
of the ORB contains a customized configurator called the

TAOConfigurator

,
which contains hooks to which implementations of dynamicTAO

strategies
are attached. Example strategies are scheduling strategies, security strate-
gies, and monitoring strategies; to change the current scheduling policy
in place, the mounted strategy is removed and a new one is inserted.

Figure 14.2 The OpenCOM framework model for maintaining system integrity.

AU3833_C14.fm Page 346 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware

■

347

The meta level of dynamicTAO presents a MOP that supports three key
capabilities:

■

Components can be transferred across the distributed system, so
components not currently available on the local system can be
fetched from remote repositories.

■

Modules encapsulating different elements of the behavior of the
ORB can be loaded and unloaded, which allows behavior to be
added and removed from the middleware.

■

The ORB configuration state can be inspected and modified dynam-
ically to support dynamic adaptation of the internal ORB engine.

Four Complementary Case Studies

Overview

In the introduction, we described five examples of middleware adaptation
that improves support for mobile application development and deploy-
ment. In this section, we examine mobile middleware solutions that have
explicitly utilized reflective techniques to support these adaptation types.
We first investigate the Universal Interoperable Core, which tackles device
heterogeneity and middleware heterogeneity using configurable multi-ORB
middleware personalities. Its successor, ExORB, then extends this solution
to provide third-party software reconfiguration techniques in the face of
failure and context changes. Third, ReMMoC offers improved techniques
for overcoming device and middleware heterogeneity in dynamically
changing environments; a wider range of middleware personalities is made
available and the middleware supports dynamic self-reconfiguration.
Finally, CARISMA (Context-Aware Reflective Middleware System for Mobile
Applications) concentrates on responding to general context changes and
resource fluctuations. Notably, these solutions are complementary in
nature. We describe later combinations of these techniques for a more
comprehensive approach to adaptation; for example, ReMMoC and CAR-
ISMA can usefully be combined to provide all five of the adaptation types
defined in the introduction [18].

Universal Interoperable Core

The Universally Interoperable Core (UIC) [19] is a reflective middleware,
the design of which is based on the previously described dynamicTAO
architecture. The primary goal of UIC is to provide a tailorable middleware
personality that can be changed from one service interaction type to

AU3833_C14.fm Page 347 Tuesday, August 15, 2006 1:14 PM

348

■

Mobile Middleware

another. In one instance, the middleware can be configured to provide a
CORBA ORB personality to interact with other CORBA-based applications,
whereas an alternative configuration on another device may implement a
Java RMI or Simple Object Access Protocol (SOAP)-based personality.
Furthermore, to tackle device heterogeneity, the design of the platform is
driven by the principle of “what you need is what you get” [19]. UIC
determines that existing middleware platforms contain all possible func-
tionality, even if the application only uses a subset; this is not suitable for
devices with limited resources. UIC, therefore, provides more fine-grained
configurability; for example, on devices with limited resources only a
personality supporting CORBA client requests is configured, whereas on
resource-rich devices a complete ORB implementation is configured.

At its core, UIC provides a skeleton of abstract components that form
the base architecture. To enable the system to have the properties of
particular middleware platforms (e.g., CORBA client, CORBA client and
server, or SOAP server), components are dynamically added to specialize
the abstract components. Hence, a UIC

personality

 is a particular instance
of the UIC obtained after this process of specialization, as illustrated in
Figure 14.3. It can be seen from the diagram that personalities can be
classified as single personality or multi-personality. A single personality
interacts with a single middleware platform (e.g., the CORBA personality
interacts only with a CORBA server), and a multi-personality UIC can interact
with more than one platform at the same time (e.g., the CORBA and Java
RMI personalities can interact with both CORBA and Java RMI servers).

The UIC personalities can be configured either statically or dynamically.
In static configurations, personalities are built at compile time by statically
assembling all the components together. The result is a single, fixed
personality. In dynamic configurations, personalities are a collection of
dynamically loadable libraries that can be fully reconfigured at run time.

Figure 14.3 Specializing UIC personalities.

Specialization one Specialization two Specialization three

CORBA and Java RMI
personality

AU3833_C14.fm Page 348 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware

■

349

The main benefit of the dynamic configuration is the ability to modify the
architecture of the personalities dynamically without affecting the appli-
cations, but with added memory footprint.

ExORB

ExORB [20] extends the UIC approach further, examining in particular
middleware for cellular telephones. Such devices require a middleware
infrastructure to make it possible for device carriers to configure new
software, upgrade existing software, and repair software bugs without
manual intervention (which may otherwise involve the user returning the
device). To address this, ExORB employs a new technique called

exter-
nalization

 to explicitly describe the state, logic, and component architec-
ture of the middleware platform at runtime; notably, this information is
available remotely, thus allowing the software configuration to be con-
trolled by a third party. The downside of such an open approach is that
it must be designed to prevent malicious attacks on individual devices.
ExORB is implemented using a technique referred to as Dynamically
Programmable and Reconfigurable Software (DPRS), which gives rise to
the following three abstractions:

■

Micro building blocks

 (MBBs) are the smallest addressable func-
tional unit in the system (i.e., a single operation or method). The
local state of the MBB is held separately in a system-provided
storage area. When an MBB is replaced, the state need not be
transferred to the new unit; rather, it simply accesses the existing
state.

■

Actions

 specify the order in which MBBs execute; hence, they
define the system logic. An action in DPRS is a deterministic
directed graph, the nodes of which are the operational units and
the edges the execution transitions.

■

Domains

aggregate collections of related MBBs. These store both
the list of building blocks and the corresponding list of actions,
plus the localized state of the domain; hence, collections of building
blocks can be treated as single units (to be suspended, resumed,
inserted, and removed).

The ExORB middleware demonstrates the capabilities of this abstraction
to support

configurability

,

updateability

, and

upgradeability

. The middle-
ware itself implements a multi-ORB personality (like UIC). In one typical
configuration, the system offers an IIOP personality and an XML–RPC
protocol personality; this configurations consists of 28 MBBs grouped into
11 domains that can be tailored and changed at runtime. In addition, the

AU3833_C14.fm Page 349 Tuesday, August 15, 2006 1:14 PM

350 ■ Mobile Middleware

middleware can be customized to support client-side functionality only
(domains supporting service-side behavior are not included), or an existing
protocol implementation can be replaced by an optimized version. These
operations are supported by the ability to externalize and adapt the
domains within the implementation. More fine-grained reflection can be
used to update or correct errors in the middleware. An example of this
is that an MBB producing the IIOP header can be replaced if it begins
to produce faulty messages or if an optimized operation is available. Such
fine-grained reflection also supports the evolution of the software (where
new behavior is added later). ExORB allows interceptor-like behavior to
be introduced in the middleware; that is, additional operations can be
invoked before and after sending the ORB requests (e.g., interceptors for
encrypting and decrypting message buffers evolve the platform with new
security features). The interception behavior is achieved by adding a new
component implementing the additional behavior to the externalized
structure and then simply updating the action logic to ensure that this
operation is called before and after the ORB’s “Send MBB.”

ReMMoC

The ReMMoC framework [15] uses the Lancaster philosophy to overcome
a specific problem in the mobile computing domain. When mobile devices
move from location to location they do not know how the services and
applications with which they will inevitably interact have been imple-
mented. Mobile applications thus cannot easily be written assuming a
single middleware standard because of the dynamic nature of interaction.
Moreover, it is likely that many different middleware implementations will
be encountered. This is often referred to as the middleware heterogeneity
problem [21]. ReMMoC addresses this issue by presenting a reflective
middleware to adapt dynamically between different middleware person-
alities at runtime; this ensures that a mobile application can continue
operating in potentially many unknown locations.

As previously noted, UIC and ExORB initially identified the problem
of middleware heterogeneity and promote a multi-personality ORB to
address this problem. This approach, however, is limited in three respects:
(1) an ORB-based middleware cannot cope with the diversity of interaction
paradigms used in the mobile environment, including publish–subscribe,
tuple spaces, and data-sharing; (2) a higher level abstraction to hide the
application developer from middleware heterogeneity is not provided;
and, most importantly, (3) third-party reconfiguration is not sufficient to
handle changing interaction types as the device moves from location to
location. The middleware must dynamically adapt itself based on infor-
mation retrieved about the current environmental context; that is, it must

AU3833_C14.fm Page 350 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 351

find out which interaction type is required before reconfiguring to that
type. To address these issues, ReMMoC is based on three fundamental
principles: reconfigurable resource discovery, reconfigurable interaction,
and a suitable common interaction abstraction (in this case, Web services).

The discovery framework illustrated in Figure 14.4 (as part of the
overall ReMMoC architecture) is responsible for reconfigurable resource
discovery. The role of the service discovery framework is to perform
lookup operations across a set of different discovery protocols; for exam-
ple, in one location, a tourist guide service advertised using Service
Location Protocol (SLP) may be found, and in the next location the same
service type may be found advertised using Universal Plug and Play
(UPnP™). To meet this goal, the framework has two key characteristics:

■ The framework automatically mirrors the current environmental
conditions (i.e., which discovery protocols are in use). If UPnP
and SLP are both being used to advertise local resources, then
both personalities are configured into the framework. Reconfigu-
ration is based on a “cycle-and-see” approach; every location
change forces the framework to discover local context information
about discovery protocols in use, and a test for each known
protocol determines whether or not its personality should be

Figure 14.4 The ReMMoC framework for reconfigurable resource discovery and
interaction.

AU3833_C14.fm Page 351 Tuesday, August 15, 2006 1:14 PM

352 ■ Mobile Middleware

configured. In addition, the framework monitors the environment
to detect for new protocols that have emerged, again forcing the
protocol personality to be configured dynamically.

■ A single resource lookup abstraction allows lookup requests to be
executed in parallel over all personalities configured in the frame-
work; the found resources are then returned in a common format.

The principal function of the binding framework is to provide a
configurable and dynamically reconfigurable interaction mechanism that
allows mobile clients to bind and interoperate with application services
implemented upon particular interaction paradigms (e.g., remote method
invocation, publish–subscribe, asynchronous messaging). Reconfiguration
of the binding framework is again controlled by the middleware itself.
ReMMoC receives information from the service discovery framework to
drive the correct configuration; that is, it finds a SOAP service and then
reconfigures to SOAP. Fine-grained reconfiguration is also supported; for
example, when a mobile device switches from an infrastructure-based
wireless network to an ad hoc network, the lookup and interaction
protocols can be reconfigured accordingly. Both SLP and the event sub-
scriber personality utilize an Internet Protocol (IP) multicast component;
however, this can be replaced by an epidemic-style multicast component
(for example) that operates by intelligently flooding the ad hoc network.

Using dynamic reconfiguration to mirror protocols in the current envi-
ronment does not protect the application developer from middleware
heterogeneity. A programmer using this technology would need to explic-
itly program for each dynamic change; for example, when the discovered
service is of type SOAP, a SOAP RPC invocation must be made, then when
an event publisher is found the client must subscribe for events. ReMMoC
promotes a common interaction abstraction, which has the following
property: Applications invoke operations on abstract mobile services; that
is, ReMMoC follows the Web services concept of separating the description
of the behavior of a service from its interaction protocol. ReMMoC takes
the information from an application programming interface (API) program-
ming Web services and maps this onto the concrete binding and discovery
protocols (as seen in Figure 14.4). Further details on this mapping process
can be found in Grace [21].

CARISMA

The CARISMA platform [22], developed at University College London, is
a reflective, policy-based framework for adapting the behavior and oper-
ation of an underlying middleware platform; it utilizes the XMIDDLE data-
sharing platform [23]. The work concentrates on the important issue of

AU3833_C14.fm Page 352 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 353

how context information (e.g., device context, such as power or memory;
external context, such as network connection, bandwidth, or location)
affects the performance of a mobile application and how middleware
adaptation can be performed to maintain the best level of performance
in the face of these changes.

In a particular context, an application may require the middleware to
behave in a particular way; for example, an image-processing application
may ask to display pictures in black and white rather than color when
the battery power is low or compress the image before sending it across
the network. Each application describes its adaptation requirements in an
application profile that contains associations among the services that the
middleware delivers, the policies that can be applied to deliver the
services, and the context configurations that must hold in order for a
policy to be applied.

Figure 14.5 illustrates the general layout of application policies and an
example policy for a message sending service. For the previously described
example, the middleware service “Messaging Service” has two policies to
select from: the “PlainMessage” policy, with a context of greater than 40
percent capacity network bandwidth available, and a “CompressedMes-
sage” policy, with a context of less than 40 percent network bandwidth
available. Each time the application invokes the “Messaging Service,”
CARISMA consults the required profile and then selects the appropriate
policy, based on the current context (bandwidth capacity).

Every application submits its policy to the middleware upon initializa-
tion; however, given the dynamic nature of mobile applications, it is
expected that the policies themselves must be changed dynamically.
CARISMA provides a reflective API that allows introspection and dynamic
reconfiguration of this policy. CARISMA also manages the end-system
resources of the mobile device being utilized by competing mobile appli-
cations. Different policies have different middleware requirements; for
example, one policy may require increased throughput, but a competing
policy may want to reduce battery power (these goals are in conflict with
one another). Conflicts of this type are resolved by an auction protocol.
Each application submits a bid for resource use citing nonfunctional
concerns (e.g., security, performance, availability). The resource goes to
the highest bidder. In a similar fashion, reflection allows the application
to dynamically change the nonfunctional properties of its bid if its require-
ments dynamically change.

CARISMA promotes the use of higher level policies that control the
behavior of middleware based on context metadata. Changes to context
information alter the middleware behavior; similarly, dynamic changes to
the policies themselves will affect the runtime behavior of the middleware.
CARISMA cannot be singularly classified as reflective middleware; rather,

AU3833_C14.fm Page 353 Tuesday, August 15, 2006 1:14 PM

354 ■ Mobile Middleware

reflection is used to inspect and alter the system policies (this in turn
alters the middleware behavior). It can effectively supplement existing
reflective middleware solutions, adding support to dynamically alter the
strategies for dynamic reconfiguration; for example, it can extend ReMMoC
to support additional context-based reconfigurations, handle conflicting
reconfiguration requests, and allow the middleware to evolve [18]. As an
example, a policy could be added dynamically describing the following
reconfiguration: When the context changes from a wireless infrastructure
network type to an ad hoc interaction type, the binding framework
replaces the IP multicast component with a network flooding component.
Notably, the reflective properties of CARISMA ensure that the behavior of
the middleware is extensible and evolvable to handle newly defined
context-based reconfigurations.

In addition, a number of policy-based approaches to dynamic adap-
tation are not reflective in nature but could equally be utilized to manage
dynamic reconfigurations in mobile environments or be integrated with
adaptive middleware solutions. For example, Ponder [24] is a language
for specifying policies for management and security in distributed systems.
The Lancaster Context Architecture [25] provides mechanisms to resolve
conflicts between multiple policies for mobile computing applications.
Puppeteer [26] uses policies to manage resources such as battery power
on mobile hosts; Puppeteer policies define how media presentation
applications present smaller parts of the document or display them in
lower resolutions when fewer resources are available. Odyssey [27] is an
extension to the Coda file-sharing system, designed to support access to
shared information from mobile hosts; the application specifies the pol-
icies to adapt the behavior of the platform in terms of utilization of system
resources.

Figure 14.5 A CARISMA application profile. (From Capra, L. et al., IEEE Trans.
Software Eng., 29(10), 929–945, 2003. With permission.)

AU3833_C14.fm Page 354 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 355

Dynamic Aspect-Oriented Programming

Introduction to Aspect-Oriented Programming

Aspect-oriented programming (AOP) [28] is a software engineering approach
designed to tackle the problems of tangled code; that is, the basic functional
implementation of a component becomes tangled with additional code for
features such as security, persistence, logging, and monitoring. Developers
often implement these features in an ad hoc manner across the system,
which leads to increased system development, debugging, and evaluation
time because of the increased system complexity. AOP supports the concept
of separation of concerns to counter this problem in such a way that
individual concerns such as security and monitoring code are not imple-
mented within the base code; instead, these are each implemented as
individual aspects, which are pieces of code that can then be woven into
the base code at compile time. A single monitoring aspect, for example,
can be woven into every base component of the system. Developers utilize
point cuts, which identify positions in the code where these aspects should
be attached.

Dynamic aspect-oriented programming promotes the same benefits as
AOP, but the aspects are woven at runtime rather than compile time. This
is an important technique for mobile computing middleware. In particular,
AOP provides a series of techniques to enable the programmer to reason
at a higher level about issues that cross-cut the structure of a system, with
dynamic AOP allowing such concerns to be adapted to suit the current
context. Security is a classic example of such a cross-cutting concern;
aspects can be used to insert security policies and procedures at various
points in the base-level code which can then be modified at runtime to
reflect the current operating environment (e.g., type of network). This
higher level view also promotes correctness of the resultant software and
supports reasoning about interactions between aspects of the system
structure. The approach is complementary to the aforementioned studies
of reflection. Dynamic AOP supports higher level reasoning about software
structure but this inevitably relies on underlying reflective mechanisms in
the underlying implementation.

In the remainder of this section, we examine two techniques to
dynamically insert aspects into middleware systems: invasive and nonin-
vasive. Invasive dynamic AOP breaks the component architecture by
weaving code within the base component implementation (i.e., behind
the interface contracts), whereas noninvasive approaches utilize the com-
ponent interfaces as point cuts, and these aspects are implemented as
interceptors on the interfaces. The former approach tends to rely on code
rewriting techniques, such as bye-code rewriting as supported by tools
such as Javassist [29]. In contrast, noninvasive approaches tend to rely on

AU3833_C14.fm Page 355 Tuesday, August 15, 2006 1:14 PM

356 ■ Mobile Middleware

behavioral reflection mechanisms, such as interception, to dynamically
introduce or remove aspects.

MIDAS/PROSE: Invasive Dynamic AOP

MIDAS is a middleware layer developed at ETH Zurich for providing
runtime extensions to mobile applications. Popovici et al. [30] observed
that mobile applications must adapt and extend themselves to their current
environment conditions; for example, a PDA may interoperate with appli-
cation services from different mobile locations. In these different locations,
however, different functionalities may be required to interact with the local
services; for example, encryption layers must be added to allow interaction
to happen at one location, whereas billing modules must be included to
pay for services at another location. The applications cannot carry every
piece of possible code around with them nor can the developer plan for
every interoperation eventuality. It is the role of MIDAS, therefore, to add
the functional extensions to the developer’s basic code implementation (in
this case, service interoperation) at runtime. When a function extension is
required it is downloaded to the MIDAS middleware, which then dynam-
ically weaves the code into the base application at runtime.

MIDAS is underpinned by PROSE (PROgrammable extenSions of sEr-
vices), the purpose of which is to provide a dynamic AOP system; that is,
PROSE provides the capability to do runtime weaving of functional exten-
sions. PROSE and MIDAS are both implemented in Java, and PROSE relies
on just-in-time (JIT) compilation (i.e., the original byte code is converted
to native code at execution time to support efficient operation) to perform
the dynamic insertion of aspects. Hence, PROSE instructs the JIT compiler
to include the additional actions (the aspect code described as an extension)
when converting from byte code to native code. In PROSE, potential point
cuts are described in the base code by the developer. When the JIT compiler
detects these point cuts it can add the new behavior in the native code.
PROSE, then, promotes invasive dynamic AOP; that is, the internal imple-
mentation of a component is changed at runtime.

Lasagne: A Noninvasive Dynamic AOP

Lasagne [31] is an AOP framework that supports the dynamic customization
of middleware platforms and distributed services. In Lasagne, aspects are
introduced dynamically at system runtime in a noninvasive manner, and
the selection of which aspects to compose is context sensitive. Core
functionality can be woven with two categories of system extensions: new
service functionality or nonfunctional services, such as authentication or
persistence.

AU3833_C14.fm Page 356 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 357

The aspect-oriented approach of Lasagne is based on extensions, where
an extension encapsulates a slice of behavior that updates multiple com-
ponents at the same time. For example, an authentication extension may
cross-cut a number of components involved in a client–server request
(potentially distributed). Only when the extension is applied across the
complete system has the new nonfunctional service been dynamically
added to the system. The extension is implemented by a set of wrappers,
where a wrapper is the per-instance implementation of the aspect that is
to be applied at each component. The dynamic insertion of wrappers is
noninvasive; the point cut is outside the base component interface. Lasagne
dynamically alters the message flow of the system to be directed to the
wrappers before the component interface (using a technique similar to
message interception).

Finally, Lasagne uses context information to decide when extensions
should be dynamically employed. Contextual properties are defined and
attached to specific service functionalities, and interceptors attached to the
components of the middleware then inspect the values of these properties
to decide which extensions should be executed. Furthermore, this decision
is propagated with the message flow of the basic service to enable con-
sistent, systemwide dispatching to all the wrappers of a selected extension.

Future Research Challenges
The case studies presented in the previous two sections have shown that
reflection and the related technique of dynamic AOP offer promising
solutions for providing principled adaptation of middleware in mobile
computing environments; however, many questions still remain unan-
swered in this field. Open systems are vulnerable to many types of security
attacks; therefore, what security measures should be taken to make reflec-
tive middleware secure? Reflection is also expensive in terms of system
performance due to the storage of meta-information and the time involved
in configuration and reconfiguration. How can reflection be made more
efficient for devices with limited resources? Furthermore, we also see two
fundamentally important, future directions where reflective middleware can
be extended to support a richer set of mobile applications. We now discuss
these topics in more detail.

Coordinated Adaptation

As can be seen, reflective middleware provides a set of underlying
mechanisms that can then be supplemented by higher level statements of
policy. In practice, the scope of such policies has been rather limited

AU3833_C14.fm Page 357 Tuesday, August 15, 2006 1:14 PM

358 ■ Mobile Middleware

(e.g., focusing on the behavior of one node and also most likely to one
layer or aspect of the software on that node); however, a large class of
mobile applications involves collaboration between groups of mobile
users. Examples include peer-to-peer (P2P) data sharing, shared work-
spaces, and multimedia conference applications. Here it is not enough to
perform local adaptation. In our view, coordinated reconfiguration of
middleware across entire systems is required to make adaptations that are
beneficial to the operation of the application as a whole. We now present
two examples where coordinated reconfiguration between collaborating
nodes will be beneficial:

■ A multimedia conferencing application — A common media filter
may have to be agreed upon and applied so all members of the
multicast can receive and view video frames if the sender changes
the filter.

■ A P2P messaging application — Suppose a set of mobile nodes is
participating in a group messaging application based on a group
multicast service. If a message sender changes from sending text
messages to sending picture messages or video messages, then the
members of the group must change to be able to receive the
streaming data. The interaction type has changed from message
based to streaming based. A local change at the sender only would
not affect the remainder of the multicast group, which would be
unable to receive the new messages.

As we see it, there are two important dimensions to coordinated
reconfigurations: horizontal and vertical. The horizontal dimension refers
to the various levels or layers that form the architecture of local instances
of a middleware implementation. A reconfiguration in this dimension
describes the changes that must be made across the local architecture to
accommodate the new behavior; for example, a reconfiguration from
event-based messaging to streaming media on the local host will affect
different layers of the implementation, such as how components interact
with a network transport component. Similarly, if we were to add new
features to the middleware (e.g., security), then that would affect elements
across the middleware implementation.

The vertical dimension refers to the coordinated agreement between
peer-to-peer collaborators. This reconfiguration will affect the middleware
service or interaction type in which the nodes themselves are participat-
ing; for example, this could involve a multicast stream of multimedia
data, a virtually synchronous group communication service, a pool of
shared resources, or advertisement and discovery of application services.
Reconfiguration across the vertical dimension ensures that each member

AU3833_C14.fm Page 358 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 359

of the collaboration maintains the same consistent view of the middleware
service (e.g., the same interaction method as described in the P2P
messaging application above). We believe that reflective technologies can
be employed to make reconfigurations across the vertical dimension.
Rather than reifying the middleware on an individual node, information
about the middleware service across nodes should be made available.
Policies must be extended to support decision making across the group
of nodes as a whole, and consensus mechanisms must be provided to
commit dynamic reconfigurations across each local node of the partici-
pating group.

Autonomic Computing

Experience from the mobile community (and, indeed, other communities)
has shown that the development of adaptive applications is complex.
Although reflection does help by providing a strong element of separation
of concerns, the underlying complexity of controlling adaptation does not
go away. It is also not feasible for the middleware developer to program
for every possible reconfiguration that may be required over the lifecycle
of the middleware. Furthermore, third-party evolution (e.g., as provided
by ExORB) is similarly often infeasible due to the complexity confronting
the human developer, and in many mobile environments such update
facilities are unavailable. This has led researchers to consider the extent
to which platforms can be self-managed. More specifically, the field of
autonomic computing has emerged, promoting a vision of software that
is able to reconfigure itself, heal itself, and optimize itself [32]. It is an
obvious and yet important fact that autonomic computing requires a level
of openness; hence, it is very interesting to consider a potential marriage
of autonomic techniques and reflective middleware platforms.

An example of autonomous middleware in the mobile environment is
as follows. As mentioned above, ReMMoC supports different discovery
protocols; hence, it can find services advertised by different mechanisms.
In our current approach, the cycle-and-see philosophy would be used to
discover the relevant protocol in use. This search, however, can be
optimized. In particular, when a location has been visited, it is likely that
on returning to that location the same service discovery protocol will be
in use; therefore, the middleware can learn to optimize itself to ensure
that as the user moves toward such a location the middleware can be
reconfigured appropriately. In more general terms, middleware is ideally
placed to learn about environmental conditions and can define reconfig-
urations that provide the best level of service in these conditions based
on past experiences and not on fixed policies.

AU3833_C14.fm Page 359 Tuesday, August 15, 2006 1:14 PM

360 ■ Mobile Middleware

Summary
In this chapter, we have focused on the need to cope with dynamic change
in mobile computing environments. These environments are inherently
dynamic in nature, and fixed middleware implementations cannot cope
with change. We have argued that dynamic, adaptive middleware is ideally
placed to respond to the frequent changes in mobile environments and
that reflection offers principled techniques to develop such middleware.
To emphasize this point, reflective middleware solutions are becoming
more prevalent in the mobile computing domain. To keep this discussion
concise, we have presented four key individual, but complementary, reflec-
tion middleware solutions; these have illustrated how middleware adapta-
tion can benefit mobile computing applications. The authors believe that
future platforms in this domain will build upon the complementary and
fundamental properties provided by these platforms to offer richer support
to mobile application developers.

In addition, we have investigated the emerging role of dynamic AOP
in the realm of mobile computing and mobile middleware. This technique,
although not labeled as reflective, is complementary in nature, and we
have identified the inherent similarities between dynamic AOP and behav-
ioral reflection. Our discussions of two solutions for invasive and nonin-
vasive dynamic AOP revealed that similar dynamic adaptations, as provided
by their reflective counterparts, can be made (e.g., the addition of new
functional implementations to existing base implementations). In addition,
dynamic AOP offers improved software engineering techniques to maintain
the separation of concerns across collaborating components (i.e., the com-
plexity of reflective programming is hidden from the system developers).

Finally, we have identified coordinated reconfiguration and autono-
mous computing as two of the fundamental research challenges in the
domain of adaptive mobile middleware. We believe these in turn will
produce new techniques for applying reflection across distributed mid-
dleware instances and in turn produce more powerful and sophisticated
middleware platforms.

References
[1] Haahr, M., Cunningham, R., and Cahill, V., Towards a generic architecture

for mobile object-oriented applications, in Proc. of the 2000 IEEE Workshop
on Service Portability and Virtual Customer Environments, San Francisco,
CA, December, 2000, pp. 91–96.

[2] Campadello, S., Helin, H., Koskimies, O. and Raatikainen, K., Wireless Java
RMI, in Proc. of the 4th International Enterprise Distributed Object Comput-
ing Conf., Makuhari, Japan, September, 2000, pp. 114-123.

AU3833_C14.fm Page 360 Tuesday, August 15, 2006 1:14 PM

Reflective Middleware ■ 361

[3] Murphy, A., Picco, G., and Roman, G., LIME: a middleware for logical and
physical mobility, in Proc. of the 21st Int. Conf. on Distributed Computing
Systems (ICDCS-21), Phoenix, AZ, April, 2001, pp. 524–533.

[4] Cugola, G., Di Nitto, E., and Fuggetta, A., The JEDI event-based infrastruc-
ture and its application to the development of the OPSS WFMS, IEEE Trans.
Software Eng., 9(27), 827–850, 2001.

[5] Kiczales, G., des Rivières, J., and Bobrow, D., The Art of the Metaobject
Protocol, MIT Press, Cambridge, MA, 1991.

[6] Smith, B.C., Reflection and Semantics in a Procedural Programming Language,
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1982.

[7] Maes, P., Concepts and experiments in computational reflection, in Proc.
of the ACM Conf. on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), Vol. 22, SIGPLAN Notices, ACM Press/Addison–
Wesley, Boston, MA, 1987, pp. 147–155.

[8] Java Reflection API, http://java.sun.com/j2se/1.3/docs/guide/reflection/
index.html.

[9] Gowing, B. and Cahill, V., Meta-object protocols for C++: the iguana approach,
in Proc. of Reflection’96, San Francisco, CA, April, 1996, pp. 137–152.

[10] Chiba, S., A Metaobject protocol for C++, in Proc. of the ACM Conf. on
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’95), Austin, TX, October, 1995, pp. 285–299.

[11] Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M. et al., The design
and implementation of Open ORB 2, IEEE Distributed Syst. Online, 2(6), 2001.

[12] Cazzola, W., Savigni, W., Sosio, A., and Tisato, F., Rule-based strategic
reflection: observing and modifying behaviour at the architectural level, in
Proc. of the 14th IEEE Int. Conf. on Automated Software Engineering
(ASE’99), Cocoa Beach, FL, October, 1999, pp. 287–290.

[13] Szyperski, C., Component Software: Beyond Object-Oriented Programming,
ACM Press/Addison-Wesley, Boston, MA, 1998.

[14] Clarke, M., Blair, G., Coulson, G., and Parlavantzas, N., An efficient com-
ponent model for the construction of adaptive middleware, in Proc. of
Middleware 2001, Heidelberg, Germany, November, 2001, pp. 160–178.

[15] Grace, P., Blair, G., and Samuel, S., A reflective framework for discovery
and interaction in heterogeneous mobile environments, ACM SIGMOBILE
Mobile Comput. Comm. Rev., 9(1), 2–14, 2005 (special section on discovery
and interaction of mobile services).

[16] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T. et al., Monitoring, security,
and dynamic configuration with the dynamicTAO reflective ORB, in Proc.
of Middleware 2000, New York, April, 2000, pp. 121–143.

[17] Schmidt, D. and Cleeland, C., Applying patterns to develop extensible ORB
middleware, IEEE Comm. Mag., 37(4), 54–63, 1999 (special issue on design
patterns).

[18] Capra, L., Blair, G., Mascolo, C., Emmerich, W., and Grace, P., Exploiting
reflection in mobile computing middleware, ACM SIGMOBILE Mobile Comp.
Comm. Rev., 6(4), 34–44, 2002.

[19] Roman, M., Kon, F., and Campbell, R., Reflective middleware: from your
desk to your hand, IEEE Distributed Syst. Online, 2(5), 2001.

AU3833_C14.fm Page 361 Tuesday, August 15, 2006 1:14 PM

362 ■ Mobile Middleware

[20] Roman, M. and Islam, N., Dynamically programmable and reconfigurable
middleware services, in Proc. of the 5th ACM/IFIP/USENIX Int. Conf. on
Middleware, Toronto, Canada, November, 2004, pp. 372–396.

[21] Grace, P., Overcoming Middleware Heterogeneity in Mobile Computing
Applications, Ph.D. thesis, Lancaster University, Lancaster, U.K., March, 2004.

[22] Capra, L., Emmerich, W., and Mascolo, C., CARISMA: context-aware reflec-
tive middleware system for mobile applications, IEEE Trans. Software Eng.,
29(10), 929–945, 2003.

[23] Mascolo, C., Capra, L., Zachariadis, S., and Emmerich, W., XMIDDLE: a
data-sharing middleware for mobile computing, Wireless Pers. Comm., 21(1),
77–103, 2002.

[24] Lymberopoulos, L., Lupu, E., and Sloman, M., An adaptive policy based
framework for network services management, J. Network Syst. Manage.,
11(3), 277–303, 2003 (special issue on policy-based management).

[25] Efstratiou, C., Friday, A., Davies, N., and Cheverst, K., A platform supporting
coordinated adaptation in mobile systems, in Proc. of the 4th IEEE Workshop
on Mobile Computing Systems and Applications, Callicoon, NY, June, 2002,
pp. 128–137.

[26] Flinn, J., de Lara, E., Satyanarayanan, M., Wallach, D., and Zwaenepoel, W.,
Reducing the energy usage of office applications, in Proc. of Middleware
2001, Heidelberg, Germany, November, 2001, pp. 252–272.

[27] Satyanarayanan, M., Mobile information access, IEEE Pers. Comm., 3(1),
26–33, 1996.

[28] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C. et
al., Aspect oriented programming, in Proc. of the 11th European Conf. on
Object-Oriented Programming (ECOOP’97), Jyväskylä, Finland, June, 1997,
pp. 220–242.

[29] Chiba, S. and Nishizawa, M., An easy-to-use toolkit for efficient Java byte-
code translators, in Proc. of the 2nd Int. Conf. Generative Programming
and Component Engineering (GPCE’03), Springer-Verlag, New York, 2003,
pp. 364–376.

[30] Popovici, A., Frei, A., and Alonso, G., A proactive middleware platform for
mobile computing, in Proc. of the 4th ACM/IFIP/USENIX Int. Middleware
Conf., Rio de Janeiro, Brazil, June, 2003, pp. 455–473.

[31] Truyen, E., Dynamic and Context-Sensitive Composition in Distributed
Systems, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 2004.

[32] Kephart, J. and Chess, D., The vision of autonomic computing, IEEE Comp.,
36(1), 41–50, 2003.

AU3833_C14.fm Page 362 Tuesday, August 15, 2006 1:14 PM

363

Chapter 15

Techniques for
Dynamic Adaptation

of Mobile Services

John Keeney, Vinny Cahill, and Mads Haahr

CONTENTS

Introduction... 364
Issues in Dynamically Adaptable Mobile Applications and Middleware........... 364

Middleware for Mobile Computing ... 365

Difficulties with Applications and Middleware for Mobile Computing

.... 365
Reflective Middleware .. 366

Principals and Key Ideas.. 366
Case Studies of Reflective Middleware ... 366

ACT... 367
Correlate... 367

Discussion.. 368
Aspect-Oriented Approaches to Dynamic Adaptation... 369

Principals and Key Ideas.. 369
Case Studies of Dynamic Aspect-Oriented Systems................................... 369
Wool ... 369

PROSE .. 370
TRAP/J.. 371

Discussion.. 372

AU3833_C15.fm Page 363 Tuesday, August 15, 2006 1:44 PM

364

■

Mobile Middleware

Policy-Based Management of Dynamic Adaptation... 372
Principles and Key Ideas.. 372
Case Studies of Policy-Based Middleware .. 373

RAM.. 373
CARISMA .. 375

Benefits of Policy-Based Management of Dynamic Adaptations.............. 376

Chisel and ALICE: Policy-Based Reflective Middleware for Mobile Computing

.... 376
Chisel ... 376
ALICE ... 378
Chisel and ALICE .. 379
Findings and Further Adaptations ... 381

Conclusions ... 381
References ... 382

Introduction

This chapter discusses the dynamic adaptation of software for mobile
computing. The primary focus of this chapter is on techniques for adapting
software as it runs and managing the application of these adaptations. In
a mobile computing environment, the need for adaptation can often arise
as a result of a spontaneous change in the context of the operating
environment, ancillary software, or indeed the user. To exacerbate this
problem, if that contextual change is in some way unanticipated, then the
required adaptation may itself be unanticipated until the need for it arises.
For this reason, this chapter is particularly concerned with supporting
adaptations that are completely unanticipated [19]. This chapter discusses
reflective and aspect-oriented techniques for dynamically adapting software
for mobile computing. Policy-based management is then addressed as a
mechanism to control such dynamic adaptation mechanisms. The chapter
then introduces the Chisel dynamic adaptation framework, which supports
completely unanticipated dynamic adaptation, and provides a case study
where Chisel is used with the Architecture for Location-Independent Com-
puting Environments (ALICE), a mobile middleware, to provide a flexible
and adaptable middleware framework for mobile computing.

Issues in Dynamically Adaptable
Mobile Applications and Middleware

The main difficulty with mobile computing is the inherent scarcity and
variability of resources available for use by mobile computers as they
move. The primary resource requirement of a mobile device when it is
working as part of a distributed system is its network connection, often

AU3833_C15.fm Page 364 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

365

some form of wireless connection, which, when used by a device that is
physically moving, suffers from unanticipated and possibly prolonged
disconnections [14]. The reason why this issue is such a major problem
for mobile computing is that the applications currently being developed
are being built as distributed system applications that do not sufficiently
account for these disconnections and reconnections [30].

Middleware for Mobile Computing

“Middleware can be viewed as a reusable, expandable set of services and
functions that are commonly needed by many applications to function well
in a networked environment” [1]. Traditional middleware systems provide
abstractions and shelter applications from the complexities of the under-
lying environment, communication subsystems, and distribution mecha-
nisms, thereby providing a single view of the underlying environment, as
seen in traditional middleware systems such as COM+ [24], Java Remote
Method Invocation (RMI) [39], and the Common Object Request Broker
Architecture (CORBA™) [25]. A middleware system for mobile computing
must be flexible to provide a homogeneous and stable programming model
and interface for possibly erratic execution contexts. It is desirable that an
adaptable middleware for mobile computing be open, allowing the appli-
cation and the user to inspect the execution environment and manipulate
the application and middleware in a mobile-aware manner, using applica-
tion-specific and user-specific semantic knowledge.

Difficulties with Applications and
Middleware for Mobile Computing

As environmental conditions change to unprecedented values unknown
to the application designer, the middleware that provides abstractions for
these environmental resources must dynamically adapt to support the
applications that run on top of that middleware. As stated, one of the
primary services provided by middleware is the ability to supply network
communications services as these resources change. A key requirement
for middleware for mobile computing is the ability to adapt to drastic
changes in available resources, especially network connection availability
[15]. The characteristics of the available connections can range from an
inexpensive, very-high-bandwidth, low-latency connection, such as a high-
speed wired local area network (LAN) connection, to a very expensive,
low-bandwidth, high-latency connection such as a Global System for
Mobile Communications (GSM) connection, where each communication
protocol used may make use of different communication models and
addressing modes.

AU3833_C15.fm Page 365 Tuesday, August 15, 2006 1:44 PM

366

■

Mobile Middleware

Mobile computing applications should also be able to handle periods
of disconnection, supported by the middleware underneath. The difficul-
ties that are associated with such a range of connection characteristics are
further compounded by the fact that these characteristics can change in
an unanticipated manner. For example, these disconnections occur when
the device moves out of range for wireless connections or an interface
device is suddenly disconnected, as seen when a user suddenly discon-
nects the device from a synchronization cradle or removes a networking
device currently in use.

A further issue with such a varied collection of communication tech-
nologies that can be leveraged for mobile computing is that the user may
not wish to make full use of the available resources in an eager or greedy
manner to maintain data connectivity; for example, even if a General Packet
Radio Service (GPRS) connection is available, this connection is generally
much more expensive than available wireless connections. A further exam-
ple is the case where, although currently disconnected but with connections
available, the user may be aware that a less expensive or more convenient
connection resource will soon be available — something that cannot be
anticipated in a generalized manner by the adaptable middleware platform.
For these reasons, it is imperative that the added potential of the user’s
own resources, preferences, and intelligence is exploited.

Reflective Middleware

Principals and Key Ideas

A reflective computational system is one that reasons about its own
computation. This is achieved by the system maintaining a representation
(metadata) of itself that is causally connected to its own operation, so if
the system changes its representation of itself then the system adapts [22].
With behavioral reflection in an object-oriented system, the reflective
system reasons about and adapts its own behavior by associating meta
objects with the objects in the application, where the meta objects control
or adapt the behavior of the application objects [12]. In a reflective system,
the communications between the meta objects and base objects takes
place through a set of well-defined interfaces, referred to as that Meta
Object Protocol (MOP) of the system [20].

Case Studies of Reflective Middleware

Although several reflective middleware frameworks have been discussed
in detail in previous chapters, this section discusses two additional reflective

AU3833_C15.fm Page 366 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

367

systems that target middleware for dynamic adaptation. In addition, a
number of systems described later in this chapter make use of reflective
techniques but are discussed under a different category.

ACT

ACT [35,36] is a generic adaptation framework for CORBA™-compliant [25]
ORBs that supports unanticipated dynamic adaptation. When the ORB is
started, ACT is enabled by registering a specific portable request inter-
ceptor [25], intercepting every remote invocation request and handing
them to a set of dynamically registered interceptors. These dynamically
registered interceptors can be added in an unanticipated manner. Rule-
based dynamic interceptors allow the request to be redirected to a different
source or handed either to a number of local proxy components exporting
the same interface as that of the destination server component [35] or to
a generic local proxy component [36]. This generic proxy component can
also be dynamically created in an unanticipated manner. This proxy in
turn can request a rule-based decision-making component, which can
incorporate an event service to either perform the invocation or change
parameters and forward the request to its original destination or to a
different destination. A prototype is described whereby the Quality Objects
(QuO) framework [2], an aspect-oriented quality of Service (QoS) adap-
tation framework for CORBA ORBs, was used with a CORBA-compliant
ORB to support completely unanticipated runtime aspect weaving in the
ORB. A number of management interfaces were also provided to manage
the runtime registration of new rule-based dynamic interceptors and the
addition of new rules to these interceptors.

Correlate

Presented by the DistriNet research group at Katholieke Universiteit Leu-
ven, Correlate [16,33,34,40], is a concurrent object-oriented language based
on C++ (and later Java) to support mobile agents. It has a flexible runtime
engine to support migration and location-independent inter-object com-
munication. Each agent object has an associated meta object that can
intercept creation, deletion, and all invocation messages for the object.
This system allows nonfunctional aspects of the application to be separated
from the application object. The nonfunctional behaviors are designed to
be largely application independent; however, independent policy objects
can be defined to contain application-specific information to assist in the
operation of these meta-level nonfunctional behaviors. The meta-level

AU3833_C15.fm Page 367 Tuesday, August 15, 2006 1:44 PM

368

■

Mobile Middleware

system was initially used to implement nonfunctional concerns such as
real-time operation, load balancing, security, and fault tolerance. Later,
this system was used to customize ORBs, using application-specific
requirements, as an adaptable graph of meta-level components that could
be extended or adapted at runtime.

The application-independent nonfunctional behaviors are imple-
mented as meta-object classes that can interact with the base program
to adapt its operation using a message-based MOP. These meta-object
classes define a set of possible property values in a policy template. Each
application class has an associated singleton policy-class object, which
is an instantiation of these templates and contains application-specific
information. These singleton policy-class objects are consulted by the
meta level before performing the nonfunctional behaviors of the appli-
cation, allowing the operation to be customized in an application-specific
manner.

This policy system, however, is limited because policy templates are
imposed at the time the meta program is written. These templates, written
in a declarative language, must fully define what possible customizations
an application may require at a later stage. The policies, also written in
the same declarative manner, select values for template properties according
to the application classes with which they are associated. These templates
cannot be changed, so adaptation in response to unanticipated require-
ments cannot be fully handled.

Policies are written before runtime by a system integrator, and these
policies are then translated to code and compiled with the application
and so cannot be changed at runtime. Unanticipated forms of dynamic
adaptation cannot be achieved in this architecture as the meta-level
programmer and template designer need complete

a priori

 knowledge
of the possible changes in context values that may occur; also, the set
of customizations from which the meta level can choose is fixed at
compile time.

Discussion

The use of reflective mechanisms for adaptable middleware is an old yet
active research area. The main issue with reflection for the adaptation of
middleware lies not with the use of reflection to adapt the structure,
behavior, or architecture of middleware but with how the application of
those adaptations is controlled and managed. This issue is of particular
importance if the adaptation is required in response to an unanticipated
change in the state, requirements, or context of the users, applications,
or environment.

AU3833_C15.fm Page 368 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

369

Aspect-Oriented Approaches
to Dynamic Adaptation

Principals and Key Ideas

Aspect-oriented programming (AOP) [13,21] is a programming methodol-
ogy that allows cross-cutting concerns to be declared as “aspects.” A cross-
cutting concern is a property or function of a system that cannot be cleanly
declared in terms of individual components, because the application of
the cross-cutting concern must be scattered or distributed across otherwise
unrelated components. AspectJ [42], the

de facto

 standard for AOP, intro-
duced the concept of an aspect as a language construct used to specify
a modular unit to encapsulate a cross-cutting concern, which is then
woven into the application code at compile time. An aspect is defined in
terms of

point cuts

 (a collection of join-point locations within the appli-
cation code where the aspect should be woven and conditional contextual
values at those join points),

advice

 (code executed before, after, or around
a join point when it is reached), and

introductions

 (Java code to be
introduced into base classes) [42].

Aspect-oriented programming supports the production of these aspects
in a manner that is separate from or

oblivious

 to the application components
[13] into which the aspects are later incorporated or woven at a specified
or quantified set of join points.

Obliviousness

, one of the key components
of AOP, refers to the degree of separation between the aspects of the
system and how they can be developed independently without preparation,
cooperation, or anticipation. Most AOP systems support weaving before
runtime, but newer dynamic AOP systems (e.g., Wool and PROSE)
described in this section allow aspects to be woven at load time or runtime,
thereby allowing the incorporation of aspects into base programs to remain
unanticipated until load time or runtime.

Case Studies of Dynamic Aspect-Oriented Systems

Wool

Wool [38] is a dynamic AOP framework that uses a hybrid aspect weaving
approach utilizing both the Java Platform Debugger Architecture (JPDA)
and the Java HotSwap mechanism [39]. Because JPDA supports remote
activation of breakpoints at runtime, join-point hooks in the form of
debugging breakpoints can be dynamically set from outside of the appli-
cation. A point cut may be made up of a number of these hooks. Each
aspect specifies a point cut and a set of advices to be executed when
one of the point cut’s join points (represented as breakpoints) is reached.

AU3833_C15.fm Page 369 Tuesday, August 15, 2006 1:44 PM

370

■

Mobile Middleware

New aspects can be serialized and sent to the target the Java Virtual
Machine (JVM) for weaving at any point cut. In one approach, when a
join point is encountered, the inserted breakpoint redirects the operation
to the Wool runtime component in a manner similar to a debugger, where
advices are then executed.

The alternative approach allows the advice to be hotswapped into the
application class, thereby improving performance if the join point is
encountered repeatedly. This is achieved by using Javassist [7] to rewrite
the class, without access to its source code, and having the adapted class
replace the original application class using the Java HotSwap mechanism.
This also removes the breakpoint, so calls to the debugger are removed;
however, this mechanism means that all objects of the woven class will
have the adaptation incorporated, so individual objects cannot be adapted.
Currently, the aspect programmer must specify in the source code of the
aspect whether the advice should be woven by the HotSwap mechanism
or by the debug interface, so to achieve good performance the aspect
writer should anticipate the access patterns of the point cut of the aspect.
Wool does not support adding introductions, but a proposed solution is
provided.

PROSE

PROSE (PROgrammable extenSions of sErvices) [26,29] is another dynamic
AOP framework for Java that supports runtime aspect weaving. PROSE
was originally intended as a framework for debugging or rapid prototyping
of AOP systems which could later be completed using compile-time or
load-time aspect weaving [29]. This was mainly due to its use of the Java
Virtual Machine Debug Interface (JVMDI) [39], which resulted in a large
performance penalty. A later version of PROSE [26] was implemented by
modifying an open-source JVM, greatly improving its performance. In both
versions, new aspects can be to dynamically woven, with support for
these aspects to define new join points for which new interception hooks
are created at weave time, thereby allowing PROSE to be used to support
dynamic adaptation by weaving additional nonfunctional behaviors into
the code at runtime.

A number of graphical user interfaces (GUIs) are included to manage
the unanticipated weaving of new aspects at runtime; however, like Wool
above, PROSE only supports weaving at a class level, so individual objects
cannot be adapted individually. MIDAS [27], implemented as a spontane-
ous container [28], is middleware for the management of PROSE extensions
that provides a distributed event-based system for the dissemination and
management of aspects from a central server to mobile computers based
on their location.

AU3833_C15.fm Page 370 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

371

TRAP/J

TRAP/J [37] is a prototype unanticipated dynamic adaptation framework
for Java. It combines compile-time aspect weaving using AspectJ [42] and
unanticipated dynamic adaptation with wrapper classes and delegate
classes. At compile time, the programmer selects a subset of application
classes that will be adaptable. The TRAP/J system then automatically
creates AspectJ code to replace all instantiations of the selected classes
with wrapper class instantiations. Java code for each wrapper class and
a meta-object class for that wrapper class are also automatically created.
At runtime, each instantiated wrapper object has an instance of the original
wrapped object and a meta object bound to it. These wrapper objects
redirect all method calls to their meta objects, which in turn act as
placeholders for a set of delegate objects that may handle the invocation
of the method or adjust its parameters prior to execution by the original
wrapped object. New, dynamically created delegates can be added or
removed at runtime via a Remote Method Invocation (RMI) [39] interface
using a management console. These delegates can be added on a per-
object basis because the meta objects can supply a name for each instance
and register it in an RMI registry.

This framework was used to demonstrate the dynamic adaptation of
a network-enabled application by replacing instances of the

java.
net.MulticastSocket

 class with instances of an adaptable socket
class,

MetaSocket

 [18]. The TRAP/J framework, however, does not
support completely unanticipated dynamic adaptation. The adaptation,
its intelligent and controlled dynamic application, and the timing of its
application all remain unanticipated until runtime, but the possible loca-
tions for the adaptations are specified in the application source code, as
the version of AspectJ used requires access to the application source
code. Despite improving the performance of the TRAP/J framework, this
restriction greatly limits the nature of the unanticipated dynamic adapta-
tions that can be applied. No information is provided about whether the
generated meta-object class code can be modified prior to compilation
and weaving.

In addition, TRAP/J seems to delegate the invocation of the method
to only one delegate (the first one it finds implementing the method), but
this ordering of delegates can be configured. This means that only one
adaptation can be applied at a time because adaptation behaviors are not
automatically composed. In addition, TRAP /J does not seem to allow the
user to apply an easily recognizable name to the base object being adapted
which may make it difficult for the user to identify the object to which
adaptations should be dynamically applied. From the documentation,
TRAP/J does not seem to support applying dynamic adaptations via new
delegates on a structured class-wide or interface-wide basis because RMI

AU3833_C15.fm Page 371 Tuesday, August 15, 2006 1:44 PM

372

■

Mobile Middleware

registry look-ups are on a per-meta-object basis. Unlike Wool and PROSE,
which support only the adaptation of classes, TRAP/J supports only the
adaptation of individual objects at any one time.

Discussion

Dynamic AOP technologies would appear to be a promising area of
research for dynamically adaptable middleware. Aspects can be used not
only to implement nonfunctional concerns within the middleware but also
to adapt or augment the functional behavior of the middleware [21]. This
ability to dynamically adapt functionality or inject new functionality at
clearly defined join points is of particular importance to middleware for
mobile computing because dynamic and possibly unanticipated adaptation
requirements are typical for mobile computing. The

separation of concerns

model of aspects reduces the difficulty of incorporating adaptations into
complex middleware frameworks because the introduced cross-cutting
concerns can be targeted correctly to the location requiring adaptation;
however, current dynamic AOP methodologies such as Wool, PROSE, and
TRAP/J are lacking a structured mechanism to dynamically specify these
locations for dynamic adaptation and how these adaptations should be
applied after the target software has begun execution in a manner that
incorporates user, application, and environmental context at runtime.
Despite this, this area of AOP-based dynamic adaptation of middleware
is proving to be an active area of research and should quickly provide a
number of solutions for this issue.

Policy-Based Management of Dynamic Adaptation

Principles and Key Ideas

Many traditional adaptable systems are composed of a single adaptation
manager that is responsible for the entire adaptation process (i.e., moni-
toring, adaptation selection intelligence, and performing the actual adap-
tation). Because the intelligence to select appropriate adaptations and the
mechanism to perform these adaptations are embedded directly within
the adaptation manager, this type of system becomes inflexible and
inappropriate for general use. By decoupling the adaptation mechanism
from the adaptation manager and removing the intelligence mechanism
that selects or triggers adaptations, the adaptation manager becomes more
scalable and flexible. Policy specifications maintain a very clear separation
of concerns between the adaptations available, the adaptation mechanism
itself, and the decision process that determines when these adaptations
are performed.

AU3833_C15.fm Page 372 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

373

Policy specification documents are usually persistent text-based declar-
ative representations of policy rules that ideally can be read, understood,
and generated by users, programmers, and applications. A

policy rule

 is
defined as a rule governing the choices in behavior of a managed system
[8]. Informally, a policy rule can be regarded as an instruction or authority
for a manager to execute actions on a managed target to achieve an
objective or execute a change.

An adaptation policy rule is usually made up of an event specification
that triggers the rule, which is often fired as a result of a monitoring
operation; an action to perform in response to the trigger; and a target
object that is part of the managed system upon which that action is
performed [8]. Many policies will also contain some restrictions or guards
confining the rule action to appropriate occasions. This

event–condition–
action

 (ECA) format is standard for rule-based adaptation systems [4–6,
8,9,16,19,33–36,40], where an adaptation management system is respon-
sible for monitoring these events, evaluating the conditions, and initiating
the management action on the targeted managed object. In a policy-based
dynamic adaptation system, it should be possible to edit the rule set and
have it reinterpreted to support the dynamic addition of new rules or
changes in policy.

Case Studies of Policy-Based Middleware

This section discusses two systems that employ policy-based management
techniques to manage dynamic adaptation of middleware, but additionally
the ACT, TRAP/J, and Correlate systems could also be described in terms
of their use of policy-rule-based techniques. A number of mechanisms
discussed in other chapters could also be discussed in terms of their use
of rule-based management mechanisms.

RAM

Reflection for Adaptable Mobility (RAM) [4,9] from École des Mines de
Nantes, takes the approach of completely separating functional and non-
functional aspects of an application in a manner related to aspect-oriented
programming. Using this separation of concerns approach, only the core
application functionality is inserted into the application code, with all
middleware services represented as nonfunctional concerns.

Container

meta objects wrap each application object and support the composition
of other meta objects that implement these nonfunctional concerns. The
wrapping of application objects with

Containers

 occurs at either load
time using Javassist [4,7] or at compile-time using AspectJ [9,42]. These
meta objects provide the middleware services by selecting appropriate

AU3833_C15.fm Page 373 Tuesday, August 15, 2006 1:44 PM

374

■

Mobile Middleware

RoleProvider

 objects for each service (i.e., the meta objects that provide
the actual implementations of the services). Adaptation can occur by
adding, removing, or reordering these

RoleProviders

.
The RAM approach also provides a resource manager, whereby the

system maintains a tree of

MonitoredResource

 objects, which describe
a contextual resource or group of resources. These

MonitoredResource

objects are updated by

probe

 objects that actively monitor the environ-
ment.

MonitoredResource

 objects can be queried explicitly or alter-
natively by requesting change notifications to signal the adaptation engine
when an interesting resource change occurs. The

Container

 meta objects
that wrap each application component can also expose the

Monitored-
Resource

 interface, supporting queries of application context as
resources, thereby exploiting application-specific knowledge in the adap-
tation process.

The set of meta objects (aspects) to use in each

Container

 is adapted
at runtime by means of an adaptation engine that uses an application
policy and a system policy, both written in a declarative Scheme-like
language and both of which are passed to the adaptation engine when
the application is started. The application policy defines point cuts (a
dynamic set of join points, or

Container

 objects) in the application
and the named nonfunctional aspects to be used at these point cuts in
an application-aware but resource-independent manner. The set of rules
that determine which join points make up a point cut is also specified
in the application policy, but these rules are dynamically evaluated, so
this set of join points can change dynamically. The nonfunctional aspects
woven at these point cuts are defined in the system policy in an adaptive
condition–action model, where sets of application-independent but
resource-aware conditions are dynamically evaluated to decide which
meta objects will implement the nonfunctional aspect. When the condi-
tions are dynamically evaluated, the bindings of meta objects can be
changed, in a manner similar to dynamic aspect weaving; therefore, the
set of join points that make up a point cut and the set of meta objects
that implement an aspect can both be dynamically specified according
to the rules in the policies.

The current system does not support dynamic changes to the policies
and so cannot support unanticipated adaptation management logic; how-
ever, this capability is planned for future versions. In most cases where
AspectJ is used, access to the source code of the application is also
required. A version of RAM suggests using a configuration file to specify
the set of join points that can be used and using AspectJ to create these
join points at compile time rather than have

Containers

 wrap every
application object [11]. This means, however, that all possible locations
for adaptation must be anticipated at compile time and access to the

AU3833_C15.fm Page 374 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services

■

375

source code of the application is required. Preliminary designs for an
adaptation framework extending RAM that would possibly support com-
pletely unanticipated adaptation by allowing dynamic specification of
policies and dynamic selection of adaptation locations is presented in
David and Ledoux [10], but this system has yet to be implemented.

CARISMA

Research carried out at University College London on the Context-Aware
Reflective Middleware System for Mobile Applications (CARISMA) project
[5,6] presents a design for peer-to-peer middleware based on service
provision. Each node can export services and possible different behaviors
or implementations for those services. Services can be selected according
to user and application context information, as specified in an

application
profile

, an eXtensible Markup Language (XML) policy document. Embed-
ded in this application profile is the application-specific information that
the middleware uses when binding to these services (e.g., which service
behavior to use in response to changes in the execution context). The
middleware is responsible for maintaining a view of the system environ-
ment by directly querying the underlying network-enabled operating
system. Applications may request viewing and changing their profiles at
runtime, thereby adapting the middleware as application-specific and user-
specific requirements change dynamically.

This system also provides the ability for the application to be informed
by the middleware of changes in specific execution conditions, supporting
the development of resource-aware applications. This system is based on
the provision of multiple implementations of the same service with dif-
ferent behaviors, in a manner similar to the strategy design pattern rather
than adapting the service itself. The primary contribution of this work
focuses on the identification and resolution of profile conflicts [6], not on
the actual provision of an adaptable middleware implementation. No
information is provided about how the services are implemented, if they
can be dynamically loaded, how they implement their different strategies,
or if these strategies can be expanded at runtime. It should be noted,
however, that the application profile that controls how the system adapts
and the mechanism for profile conflicts can both be adapted at runtime
in an unanticipated manner. XMIDDLE [23], which appears to form the
basis for CARISMA, is peer-to-peer data sharing middleware for mobile
computing. In XMIDDLE, data is replicated as XML trees pending discon-
nections, with these trees being reconciled when possible in a policy-
based manner according to application-specific conflict resolution data
embedded in the shared data structures.

AU3833_C15.fm Page 375 Tuesday, August 15, 2006 1:44 PM

376 ■ Mobile Middleware

Benefits of Policy-Based Management
of Dynamic Adaptations

An adaptable system that has its adaptation logic encoded directly into it
cannot operate in a general-purpose manner or adapt in response to
unanticipated changes, as often arises with an enabling technology such
as middleware operating in an environment where the operating context
changes erratically (as seen in a mobile computing environment). The use
of a policy-based control model allows the clean decoupling of adaptation
logic from the adaptation mechanism used by the adaptation framework.

The control logic to manage the dynamic application of an adaptation
must be capable of specifying what adaptation should be applied, where
and when it should be applied, and the conditions for restricting application
of the adaptation, if necessary. Because many dynamic adaptations are
necessarily required when some state, resource, or requirement has
changed for the user, application, or execution environment, this dynam-
ically specified control logic must also support the querying of this runtime
context. Using dynamic loading and interpretation of policy directives can
also be used to support the management of new unanticipated adaptations
by allowing those new adaptations to be referred to dynamically, along
with where they should be applied and what management logic should
be used to control how and when those adaptations are applied.

Chisel and ALICE: Policy-Based Reflective
Middleware for Mobile Computing
This section describes the Chisel dynamic adaptation framework and how
it can be used with the ALICE middleware for mobile computing to create
a dynamically adaptable middleware that can be used to adapt a standard
network application in an unanticipated manner to operate in a mobile
computing environment.

Chisel

The Chisel dynamic adaptation framework [19], developed in Trinity
College Dublin, supports the application of arbitrary completely unantic-
ipated dynamic adaptations to compiled Java software as it runs. An
adaptation is completely unanticipated if the behavioral change contained
in the adaptation, the location at which that adaptation is to be applied,
the time when that adaptation will be applied, and the control logic that
controls the application of the adaptation can all remain unanticipated
until after the target software has begun execution [19].

AU3833_C15.fm Page 376 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services ■ 377

The adaptations are achieved by dynamically associating Iguana/J meta-
types [31,32] with any application object or class and so changing their
behavior on the fly, without regard to the type of the object or class and
indeed without access to its source code. The metatype of a class or object
represents some coherent internal behavior change from its original source
code behavior [31] (i.e., a behavioral change associated with the class or
object). In Iguana/J, metatypes are implemented using custom MOPs to
decide which parts of the object model to reify, writing a set of meta-
object classes for these reifications to implement the new metatype behavior
and then associating that metatype implementation with an object or class.
In the Iguana literature, the terms metatype association and MOP selection
are similar and refer to this association of MOP implementations with
objects and classes. This association mechanism is performed using runtime
behavioral reflection techniques, whereby selected parts of application
objects and classes are reified and intercepted and the new metatype
behavior inserted at this interception point. Iguana/J supplies the frame-
work to instantiate these meta objects to reify the object model and correctly
order metatypes if more than one is selected. Iguana/J provides a mech-
anism to associate new metatypes with objects and classes at runtime,
thereby changing the behavior of the system on the fly.

The execution of a new behavior embedded in the meta objects can
then occur alongside or around the original behavior of the target object
by wrapping the behavior of the target object and adapting or tailoring
the intercepted operation or by introducing the new behavior before, after,
or instead of the intercepted operation. New metatypes can be defined
at any time and compiled offline using the Iguana/J metatype compiler,
even as a target application is running. In this way, the adaptations to be
applied can remain unprepared and unanticipated until needed. When a
metatype is associated with a class, the behaviors that are changed are
the static behaviors of the class, the behaviors of each current and future
instance of the class, and the behavior of all subclasses and their current
and future instances. Here, static refers to the behavior and data embedded
in a class, instead of in each of its instances — for example, static methods,
static data fields, and class initialization procedures, implemented using
the static keyword in Java and C++.

The dynamic associations of these metatypes are driven by a dynamically
specified and interpreted policy script. Using this policy script, the user can
specify which classes or named objects should be adapted, either in a
proactive manner or in a reactive event-based manner. The Chisel policy
language, described in detail in Keeney [19], also supports the dynamic
definition of new event types for use in reactive rules. In addition, the
Chisel policy language allows events to be dynamically fired by other rules
or in response to changes in dynamically specified contextual conditions.

AU3833_C15.fm Page 377 Tuesday, August 15, 2006 1:44 PM

378 ■ Mobile Middleware

In this manner, the timing and control logic for any dynamic metatype
association can remain unspecified until during runtime and so remain
unanticipated. By dynamically creating a new policy, specifying which
class or object to adapt, and specifying which named metatype to
associate, the location of the adaptation can also remain unanticipated
until runtime. This use of runtime behavioral reflection and runtime
specification and interpretation of adaptation policies allows the Chisel
framework to support the completely unanticipated dynamic adaptation
of any running Java application, without stopping it and without access
to its source code.

ALICE

ALICE [3,15,41], also developed at Trinity College Dublin, is an architectural
middleware framework that supports network connectivity in a mobile
computing environment by providing a range of client–server protocols
(Figure 15.1). In ALICE, mobile hosts are mobile devices that may interact
with fixed computers, called fixed hosts. These connections are tunneled
through mobility gateways, which are also fixed computers. The mobile
host can become disconnected from a mobility gateway and later become
reconnected to a different mobility gateway without interfering with the
virtual connection to the fixed host. The ALICE mobility layer handles
communications between devices by overriding socket functions while
hiding which communication interface is being used for the connection.
The mobility layer tracks available connections and picks one using a
reconfigurable selection algorithm. When a disconnection occurs, the
ALICE mobility layer will synchronously queue unsent data between the
mobile host and the mobility gateway until a connection is re-established.

For this case study, a full Java implementation of the ALICE mobility
layer was completed, based on work in Reference 41. It provides a class,

Figure 15.1 ALICE middleware framework.

AU3833_C15.fm Page 378 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services ■ 379

MASocket, that contains the ALICE connection behavior, which imple-
ments a socket interface similar to the standard Java socket class
java.net.Socket. When the MASocket class is used instead of the
standard Java socket, all messages from a mobile host to a fixed host are
redirected via a mobility gateway. When the connection between the
mobile host and the mobility gateway breaks, all network data is cached
at the mobile host and the mobility gateway for later reconnection. This
disconnection and reconnection occurs without the application being
made aware of the disconnection.

Chisel and ALICE

To demonstrate the use of the Chisel dynamic adaptation framework, an
off-the-shelf application, the Java Telnet Application/Applet [17], was
adapted to operate in a mobile computing environment by dynamically
adapting it to use the ALICE mobility layer, all without stopping the
application and without changing or requiring access to the source code
of the application in any way. The only initial assumption made about
the internal programming of the application was that a standard Java
socket, or a subclass of java.net.Socket, is used to connect the client
and the telnet server, a reasonable assumption for any network enabled
Java application.

A metatype, DoAliceConnection, was developed to intercept the
creation of the socket connection to the telnet server and replace the
socket in use with an instance of the ALICE MASocket. The metatype
definition below specifies that the reified creation of objects should be
intercepted and handled by the MetaObjectCreateALICEConn meta-
object class:

protocol DoAliceConnection {
reify Creation: MetaObjectCreateALICEConn();

}

This redirection behavior was embedded in the meta object class MetaOb-
jectCreateALICEConn, as shown below. This redirection behavior is
achieved by intercepting the creation of all socket objects, and if the
connection is a not a local host connection or one used by ALICE then,
by the use of the Java reflective application programming interface (API),
the java.net.Socket constructor is replaced by the MASocket con-
structor. The application would be completely unaware of the change
because the returned MASocket is extended from java.net.Socket
and exposes the same interface.

AU3833_C15.fm Page 379 Tuesday, August 15, 2006 1:44 PM

380 ■ Mobile Middleware

class MetaObjectCreateALICEConn extends
ie.tcd.iguana.MCreate {

 public Object create(Constructor cons, Object[]
args) … {

 if(/*not a localhost connection, or a
connection used by ALICE */){

 // Change the constructor, from
java.net.Socket to MASocket

 cons = (Class.forName(“MASocket”)).getCon-
structor(…);

 }
 Object result = proceed(cons, args);/*

create the socket */
 return result;// result is either a normal

socket or an MASocket
 }
};

This adaptation was then applied to the telnet application in a number
of ways using the Chisel policy language [19]. One method was to apply
this adaptation in a context-aware manner — that is, only perform the
metatype association if the application was being used in a mobile
computing environment, where the network connection was known to
be intermittent. In the adaptation policy rules seen below, the DoAlice-
Connection metatype is only associated with the java.net.Socket
class if the UsingDodgyNet event fires. When the connection moves to
a stable network connection, the UsingGoodNet event is fired, thereby
re-enabling the use of standard Java sockets.

ON UsingDodgyNet java.net.Socket.DoAliceConnection

ON UsingGoodNet java.net.Socket.NullProtocol

The event UsingDodgyNet could be fired automatically by the Chisel
event manager using an automatic rule definition and trigger rule, by the
Chisel context manager when a wireless connection was detected, by the
user using another event manipulation policy rule, etc. Similarly, the
UsingGoodNet event could be fired when the network connection is
deemed stable, by another policy rule, by some network monitoring code,
or by the context manager. In Keeney [19], several methods are presented
to describe how these events could be defined and automatically triggered
in an unanticipated manner.

AU3833_C15.fm Page 380 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services ■ 381

Findings and Further Adaptations

This case study was fully implemented and functions as expected. This
case study demonstrates the use of the Chisel dynamic adaptation frame-
work to adapt an arbitrary application in a context-aware manner for use
in a mobile computing environment, without accessing its source code.
The telnet application was not prepared in any way to have the particular
adaptation applied. Only when the adaptation was deemed necessary did
the user have to create a set of adaptation rules, similar to the ones above,
embedding any necessary context information. Only when these rules
triggered application of the adaptation would the adaptation be necessary,
so it could be loaded and applied to the unprepared location deep inside
the compiled application, without any requirement to change, interrupt,
or restart the application. This case study also demonstrates how the
operation of a complex compiled application was changed dynamically
according to the environment and user’s needs.

Using the Chisel framework, further adaptations are also possible to
both the application and the ALICE middleware framework. This mech-
anism of dynamically redirecting Java socket connections to ALICE
MASocket socket connections could also be used to dynamically adapt
the Java RMI middleware model, similar to the approach discussed in
Biegel et al. [3] and Haahr [15], but in an unanticipated manner. This
possible approach could enable the adaptations described by Biegel [3]
by intercepting the instantiation of both the java.net.Socket and
sun.rmi.server.UnicastRef classes. An alternative approach could
intercept the operations of the java.rmi.server.RMISocketFactory
interface when it is requested to create the actual sockets used to perform
remote object invocations [41].

Although a mobile computing scenario was chosen to demonstrate the
Chisel dynamic adaptation framework, this case study equally applies to
any environment or operation mode where unanticipated dynamic adap-
tation is required for satisfactory operation. A mobile computing environ-
ment was seen as a perfect example because the state, resources, and
requirements of the application, the environment, and the user can all
change to extreme values in an unanticipated manner.

Conclusions
This chapter has presented a discussion of dynamic adaptation for mobile
middleware. The chapter began with a discussion of how unanticipated
dynamic adaptation of applications and middleware is required in a
mobile computing environment. A number of reflective and aspect-

AU3833_C15.fm Page 381 Tuesday, August 15, 2006 1:44 PM

382 ■ Mobile Middleware

oriented techniques for dynamic adaptation were discussed, paying par-
ticular attention to support for unanticipated dynamic adaptation. The
chapter then discussed the use of policy-based management to control
unanticipated dynamic adaptation in a manner that was itself dynamically
adaptable. The chapter then continued with an introduction to the Chisel
dynamic adaptation framework. Chisel was discussed in terms of how
the ALICE middleware for mobile computing could be used to adapt an
off-the-shelf network application to operate in a mobile computing envi-
ronment in a completely unanticipated manner.

References
[1] Aiken, R. et al., Network Policy and Services: A Report of a Workshop on

Middleware, Request for Comments 2768, Internet Engineering Task Force
(IETF), 2000 (http://www.ietf.org/rfc/rfc2768.txt).

[2] Quality Objects (QuO), BBN Technologies, http://quo.bbn.com.
[3] Biegel, G., Cahill, V., and Haahr, M., A dynamic proxy-based architecture

to support distributed Java objects in mobile environments, in Proc. of the
Int. Symp. on Distributed Objects and Applications (DOA 2002), Irvine, CA,
October 28–30, 2002.

[4] Bouraqadi-Saâdani, N., Ledoux, T., and Südholt, M., A Reflective Infrastruc-
ture for Coarse-Grained Strong Mobility and Its Tool-Based Implementation,
Technical Report 01-7-INFO, École des Mines de Nantes, Nantes, France,
2001.

[5] Capra, L., Reflective Mobile Middleware for Context-Aware Applications,
Ph.D. thesis, Department of Computer Science, University College London,
2003.

[6] Capra, L., Emmerich, W., and Mascolo, C., CARISMA: Context-Aware Reflec-
tive mIddleware System for Mobile Applications, IEEE Trans. Software Eng.,
29(10), 929–945, 2003.

[7] Chiba, S., Load-time structural reflection in Java, in Proc. of the 14th
European Conf. on Object-Oriented Programming (ECOOP 2000), Sophia
Antipolis/Cannes, France, June 12–16, 2000.

[8] Damianou, N. et al., The Ponder specification language, in Proc. of IEEE
Int. Workshop on Policies for Distributed Systems and Networks (Policy 2001),
Bristol, U.K., January 29–31, 2001.

[9] David, P.-C. and Ledoux, T., An infrastructure for adaptable middleware, in
Proc. of the Int. Symp. on Distributed Objects and Applications (DOA 2002),
Irvine, CA, October 28–30, 2002.

[10] David, P.-C. and Ledoux, T., Towards a framework for self-adaptive com-
ponent-based applications, in Proc. of the 4th Ifip Wg6.1 Int. Conf. on
Distributed Applications and Interoperable Systems (DAIS 2003), Paris,
November 17–21, 2003.

AU3833_C15.fm Page 382 Tuesday, August 15, 2006 1:44 PM

Techniques for Dynamic Adaptation of Mobile Services ■ 383

[11] David, P.-C., Ledoux, T., and Bouraqadi-Saâdani, N.M., Two-step weaving
with reflection using AspectJ, in Proc. of OOPSLA Workshop on Advanced
Separation of Concerns, Tampa Bay, FL, October 14–18, 2001.

[12] Ferber, J., Computational reflection in class based object-oriented languages,
in Proc. of the Conf. on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 1989), New Orleans, LA, October 1–6, 1989.

[13] Filman, R. and Friedman, D., Aspect-oriented programming is quantification
and obliviousness, in Proc. of OOPSLA Workshop on Advanced Separation
of Concerns, Minneapolis, MN, October 15–19, 2000.

[14] Forman, G.H. and Zahorjan, J., The Challenges of Mobile Computing, Uni-
versity of Washington, Seattle, 1994.

[15] Haahr, M., Supporting Mobile Computing in Object-Oriented Middleware
Architectures, Ph.D. thesis, Department of Computer Science, Trinity Col-
lege, Dublin, 2003.

[16] Jørgensen, B.N. et al., Customization of object request brokers by application
specific policies, in Proc. of Middleware 2000, New York, April 4–7, 2000.

[17] Jugel, M.L. and Meisner, M., The Java Telnet Application/Applet, http://jav-
atelnet.org.

[18] Kasten, E.P. and McKinley, P.K., Adaptive Java: Refractive and Transmutative
Support for Adaptive Software, Technical Report MSU-CSE-01-30, Department
of Computer Science and Engineering, Michigan State University, East
Lansing, 2001.

[19] Keeney, J. Completely Unanticipated Dynamic Adaptation of Software, Ph.D.
thesis, Department of Computer Science, Trinity College, Dublin, 2004.

[20] Kiczales, G., des Rivieres, J., and Bobrow, D., The Art of the Metaobject
Protocol, MIT Press, Cambridge, MA, 1991.

[21] Kiczales, G. et al., Aspect-oriented programming, in Proc. of the 11th
European Conf. on Object-Oriented Programming (ECOOP’97), Jyväskylä,
Finland, June 9–13, 1997, pp. 220–242.

[22] Maes, P., Computational Reflection, Ph.D. thesis, Artificial Intelligence Lab-
oratory, Vrije Universiteit, Brussels, Belgium, 1987.

[23] Mascolo, C. et al., XMIDDLE: a data-sharing middleware for mobile com-
puting, Personal Wireless Comm., 21, 77–103, 2001.

[24] COM+, Microsoft Corp., http://www.microsoft.com/com/tech/COMPlus.asp.
[25] OMG, Common Object Request Broker Architecture: Core Specification,

Object Management Group, Needham, MA, 2002.
[26] Popovici, A., Alonso, G., and Gross, T., Just-in-time aspects: efficient

dynamic weaving for Java, in Proc. of the 2nd Int. Conf. on Aspect-Oriented
Software Development (AOSD 2003), Boston, MA, March 17–21, 2003.

[27] Popovici, A., Frei, A., and Alonso, G., A proactive middleware platform for
mobile computing, in Proc. of the 4th ACM/IFIP/USENIX Int. Middleware
Conf. (Middleware 2003), Rio de Janeiro, Brazil, June 16–20, 2003.

[28] Popovici, A., Alonso, G., and Gross, T., Spontaneous container services, in
Proc. of the 17th European Conf. for Object-Oriented Programming (ECOOP
2003), July 21–25, 2003, Darmstadt, Germany.

AU3833_C15.fm Page 383 Tuesday, August 15, 2006 1:44 PM

384 ■ Mobile Middleware

[29] Popovici, A., Gross, T., and Alonso, G., Dynamic weaving for aspect oriented
programming, in Proc. of the 1st Int. Conf. on Aspect-Oriented Software
Development (AOSD 2002), Enschede, The Netherlands, April 22–26, 2002.

[30] Prakash, R., Education: mobile computing, IEEE Distributed Systems Online,
2(6), 2001.

[31] Redmond, B., Supporting Unanticipated Dynamic Adaptation of Object-
Oriented Software, Ph.D. thesis, Department of Computer Science, Trinity
College, Dublin, 2003.

[32] Redmond, B. and Cahill, V., Supporting unanticipated dynamic adaptation
of application behaviour, in Proc. of the 16th European Conf. on Object-
Oriented Programming (ECOOP 2002), Malaga, Spain, June 10–14, 2002.

[33] Robben, B. et al., Building a Meta-Level Architecture for Distributed Appli-
cations, Technical Report CW 265, Department of Computer Science, Katho-
lieke Universiteit Leuven, Belgium, 1998, p. 17.

[34] Robben, B. et al., Non-functional policies, in Proc. of the Second Int. Conf.
on Metalevel Architectures and Reflection, Saint-Malo, France, July 19–21,
1999.

[35] Sadjadi, S.M. and McKinley, P.K., ACT: an adaptive CORBA template to
support unanticipated adaptation, in Proc. of the 24th IEEE Int. Conf. on
Distributed Computing Systems (ICDCS’04), Tokyo, Japan, March 23–26,
2004.

[36] Sadjadi, S.M. and McKinley, P.K., Transparent self-optimization in existing
CORBA applications, in Proc. of the Int. Conf. on Autonomic Computing
(ICAC’04), New York, May 17–18, 2004.

[37] Sadjadi, S.M. et al., TRAP: Transparent Reflective Aspect Programming,
Technical Report MSU-CSE-03-31, Computer Science and Engineering
Department, Michigan State University, East Lansing, 2003.

[38] Sato, Y., Chiba, S., and Tatsubori, M., A selective, just-in-time aspect weaver,
in Proc. of the 2nd Int. Conf. on Generative Programming and Component
Engineering (GPCE 2003), Erfurt, Germany, September 22–25, 2003.

[39] Java 2 Platform, Standard Edition (J2SE), Sun Microsystems, http://java.
sun.com/j2se/.

[40] Truyen, E., Vanhaute, B., and Joosen, W., Integrating flexible middleware
solutions with applications through non-functional policies, in Proc. of
OOPSLA Workshop on Object-Oriented Reflection and Software Engineering
(OORaSE’99), Denver, CO, November 1, 1999.

[41] Wall, T., Mobility and Java RMI, M.Sc. thesis, Department of Computing
Science, Trinity College, Dublin, 2000.

[42] The AspectJ Project, Xerox PARC, http://aspectj.org.

AU3833_C15.fm Page 384 Tuesday, August 15, 2006 1:44 PM

Section 3

REQUIREMENTS AND
GUIDELINES FOR
MOBILE MIDDLEWARE

AU3833_S03.fm Page 385 Tuesday, August 15, 2006 3:02 PM

AU3833_S03.fm Page 386 Tuesday, August 15, 2006 3:02 PM

387

Chapter 16

Naming and Discovery

in Mobile Systems

Guanling Chen, Kazuhiro Minami,
and David Kotz

CONTENTS

Introduction... 387
A General Model... 388
Challenges for a Mobile Environment .. 390

Existing Standards... 391
Mobility.. 393
Scalability... 395
Context Awareness ... 397
Security and Privacy ... 399
Summary and Future Work.. 404
Acknowledgment .. 404
References ... 405

Introduction

Much of the technology necessary to realize Mark Weiser’s vision of
ubiquitous computing [37] is now available. Small portable devices, and
the wireless networks to support them, are pervasive. Sensors capable of

AU3833_C16.fm Page 387 Tuesday, August 15, 2006 3:54 PM

388

■

Mobile Middleware

location tracking [23] and environmental monitoring [24] will soon be
small, inexpensive, and plentiful. The resulting mobile and pervasive-
computing environments are crowded, heterogeneous, and always chang-
ing. To succeed without distracting the user, middleware systems must
provide naming and discovery methods to facilitate anytime, anywhere
service access.

Let us first consider a simple scenario to help understand the problem
at hand. Suppose Alice is visiting a university to meet several of her
colleagues, and she needs directions to various offices in different
buildings. The campus is covered by an 802.11 wireless network and
Alice can use her dual-mode mobile phone to gain access. A location
service can provide rough location information for the entire campus;
for example, it can tell which buildings Alice is nearby based on which
access point (AP) Alice’s phone is currently associated with [26]. Indi-
vidual buildings may also have separate location services, based on
extensive radio fingerprint maps that allow the service to return a precise
location by comparing the signal strength perceived by Alice’s mobile
phone [6]. As Alice moves around, the map application on her phone
must find, select, and maintain communication with the appropriate
location services depending on her current location. Alice should also
be able to redirect the map to a nearby display or print it on a nearby
printer for better readability. This scenario clearly illustrates the need
for a middleware to bridge the services and clients, but the mobile
environment poses several challenges.

In this chapter, we investigate the question of how the middleware
can effectively and efficiently enable clients, such as Alice’s mobile phone,
to discover and interact with desired services, such as the location and
display services mentioned here, in a mobile environment. As a framework
for our discussion, we first give a general naming and discovery model
and then identify the challenges confronting mobile middleware trying to
provide naming and discovery functionalities.

A General Model

Here we define a general model for naming and discovery, as shown in
Figure 16.1. In this model, the services

register

 with the middleware and
the clients

query

 the middleware to get

results

 (the desired services). The
service registrations include a

name

 describing the service properties and
some other information. Although it is possible to provide type-only
service discovery, we believe that service names are more expressive and
necessary to distinguish services with the same type. A service may have
to

update

 its registration to reflect changes. A client’s query could be
persistent; when it is stored, the middleware will notify the client whenever

AU3833_C16.fm Page 388 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

389

the result of that query changes. All service names form a

name space

,
and a

directory

 is a data structure used to store the service names and
other information. A middleware may contain a centralized directory
storing the entire name space or a set of distributed directories, each of
which stores either the full name space or portion of it.

A name is a description of the service, which could be a simple string,
a set of attributes, or a full-blown eXtensible Markup Language (XML)
document [10]. A string may or may not have a syntactic structure, such
as “printer120” or “/device/printer/120.” A string representation typically
has limited expressiveness, and the syntax could be awkward with a
complex description. Another commonly used representation is attribute-
based naming. An

attribute

 is a key–value tuple, and a name contains a
set of attributes. Note that an attribute could be the child of another
attribute, forming a hierarchy; for example, the printer could be named
as

[service=printer, color=true, building=sudikoff
[floor=1 [room=120]]]

. XML-based names are also expressive, and
the standard syntax facilitates interoperability between services and clients.
In addition to the properties of the service, XML can also be used to
specify the syntax and semantics of the functional interface of the service,
allowing a client to directly invoke these methods by inspecting the XML
names. A disadvantage of XML-based naming is its verbose syntax, leading
to increased processing overhead.

Figure 16.1 A general model for naming and discovery middleware.

AU3833_C16.fm Page 389 Tuesday, August 15, 2006 3:54 PM

390

■

Mobile Middleware

A query is typically specified in a similar syntax similar to that of name
encoding, using a simple string, a set of attributes, or an XML description.
Given a query, the middleware returns all names that match the query.
The matching criteria could be simple equality tests, wild-card compari-
sons, a subset of matching attributes, or a complex evaluation of XPath
and XQuery for XML-based names.

When the middleware returns the names that match a client’s query,
the client can then directly communicate with the selected services;
however, the communication could also be mediated through the mid-
dleware, in which case the middleware acts as a broker by passing the
messages back and forth between the client and service. We discuss the
tradeoffs between these two approaches later in this chapter. Note that

middleware

 is a general term, and it could be either a distributed infra-
structure, as shown in Figure 16.1, or simple some library code embedded
in services and clients so they can speak the same protocols. In this
chapter, we are mainly concerned with infrastructure-based middleware
that contains one or more directories.

Challenges for a Mobile Environment

One goal of middleware for naming and discovery is to provide interfaces
or protocols to facilitate interactions between clients and services with
minimum administrative and configuration overhead. Four challenges must
be explicitly addressed in a mobile environment. The first problem is the

mobility

 of services and clients. Device movement may cause an update
of service names, a change of communication location or addresses,
changes in the attachment points to the middleware, weak network
connections, or temporary disconnections. For example, Alice’s phone
may roam from AP to AP as Alice moves on campus; the communication
between Alice’s phone and the location service must be maintained, even
when the network address of the phone has changed.

The second challenge is

scalability

 — that is, whether the middleware
can scale beyond the local network to support a large number of services
and clients while avoiding excessive network traffic. In our example, thou-
sands of devices on campus may query the middleware to find an appropriate
location service, and the middleware must also support tens of thousands
of devices in the environment, such as displays, printers, and sensors.

A third issue, often, is that the service registration and client query are

context dependent

; that is, the middleware must also support context
monitoring to dynamically adapt naming and discovery processes by itself
rather than leaving this burden to services and clients. In our example,
the middleware must be able to return an appropriate location service
that best resolves Alice’s current location as she moves on the campus.

AU3833_C16.fm Page 390 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

391

Finally,

security

and

 privacy

 must also be addressed by the mobile
middleware. In our example, although Alice may allow her colleagues to
view her current location, she may not want to reveal her location to the
general public. Many trust, authentication, and access control issues are
involved.

In the following sections, we first survey the existing service-discovery
standards. These standards, however, are not necessarily designed for
mobile environments and do not address the previous challenges suffi-
ciently. We then provide a detailed discussion of the approaches, address-
ing each of those challenging issues. Finally, we conclude and identify
future work.

Existing Standards

Jini™ is a Java-based architecture, introduced by Sun Microsystems in
1998, which enables a dynamic federation of users and resources [35].
Network services first use a

discovery

 protocol to locate a Jini

lookup

service to which the services register using a

join

 protocol. The lookup
service then stores both the service attributes (describing the services) and
the service objects (implementing appropriate interfaces). A client queries
the Jini lookup service and downloads the service object matching the
query. The service object acts as the proxy between the client and the
service provider, and this interaction does not go through the lookup
service. One advantage of Jini, then, is that the proxy service object is
downloaded to the client on the fly, and no device driver has to be
manually installed for service interaction. Both service registration with
lookup and client access to Jini services leverage

leases

. The lease must
be renewed before its expiration for continuous registration and access.
The lease-based access control gives Jini another advantage: It is robust
against abrupt device failures and departures. Jini also supports remote

events

 to notify the clients about changes in the system, such as the arrival
of new services or state changes of existing services.

Universal Plug and Play (UPnP™), an extension of Plug and Play (PnP)
by Microsoft

®

, aims at automatic discovery and control of devices [34].
UPnP uses the Simple Service Discovery Protocol (SSDP) for service dis-
covery, which is similar to the discovery, join, and lookup protocols used
by Jini. The counterpart of Jini’s lookup service in UPnP is called a

control
point

. Unlike Jini, however, UPnP leverages standard Transmission Control
Protocol (TCP)/Internet Protocol (IP) and the Hypertext Transfer Protocol
(HTTP) for communication and XML for service description, eliminating
the need to rely on a single programming language. The XML-based
description is much richer than Jini’s simple attributes, and it contains a

AU3833_C16.fm Page 391 Tuesday, August 15, 2006 3:54 PM

392

■

Mobile Middleware

universal resource locator (URL) to which clients can send their control
messages (also encoded as XML). Note that this approach removes the
need to install any service-specific code on the client. UPnP further reduces
administrative overhead by enabling devices to obtain an IP address
automatically through AutoIP, when the Dynamic Host Configuration Pro-
tocol (DHCP) is not available, without explicit network configuration.

The Salutation Consortium is developing another service-discovery
standard called Salutation [33]. The key component is the Salutation
Manager (SLM), which acts as a broker between services and clients, much
like the lookup service of Jini. Multiple SLMs can communicate reliably
with each other using transportation managers (TMs) to exchange service
registrations, and TMs understand different network transports to enable
seamless integration. To facilitate interoperation between heterogeneous
services and clients, SLM may work in the middle to define the message
formats used by the communicating endpoints. Unlike Jini and UPnP,
however, Salutation does not provide lease-based service access; instead,
it allows a client to ask SLM to periodically check the status of desired
services to see if they are still available. Salutation also provides a slim
version of its architecture for devices with small footprints.

The Service Location Protocol (SLP) is a standard from the Internet
Engineering Task Force (IETF) [20]. The main components include the
user agent (UA), service agent (SA), and directory agent (DA). On behalf
of the services, SAs advertise their location URLs and descriptive attributes,
while UAs discover this information for the clients. A DA acts as the
central cache storing the registration information for the services on the
network. Note that the service registration with a DA is lease based and
must be renewed periodically. SAs and UAs can discover DAs either
actively (with a multicast request) or passively (by listening for periodic
DA announcements). They may also use DHCP, if appropriately configured
to support SLP, to find local DAs.

ZeroConf, also known as Rendezvous, is another IETF standard. Like
UPnP, it can automatically configure the IP addresses of devices [3]. It has
two extensions to provide service-discovery functionalities: one to leverage
SLP and the other to use the Domain Name System (DNS). For the second
approach, each service sends its DNS resource record to a known multicast
address (224.0.0.251) on port 5253, and so does the query from a client.
A small DNS responder runs on each ZeroConf host of the local network
and processes these multicast DNS records and queries to allow hosts and
services to operate without the presence of a DNS server.

We now summarize these service-discovery standards. Jini is a Java-
based architecture, but the other protocols do not enforce a single lan-
guage implementation. UPnP uses XML-based service description, but
others use less-expressive attributes. On the other hand, SLP allows query

AU3833_C16.fm Page 392 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

393

operators other than equality tests. All protocols except Salutation have a
concept of leasing, either for service registration or access, to improve
system robustness against abrupt failures. All protocols except SLP support
asynchronous event notifications to improve system reliability and scal-
ability. None of these protocols requires manual installation of service-
specific driver on clients, and all of the service brokers (such as Jini’s
lookup service) can be automatically discovered by services and clients.
The control points of UPnP and the directory agents of SLP are optional
components; that is, the clients may directly discover services using
multicast on a local network. Finally, UPnP does not explicitly support
security, but Jini has an optional encryption package. The only security
mechanism of SLP is to authenticate the source of service registration. For
further details of these protocols, both Helal [21] and Richard [31] have
written excellent surveys.

Mobility

Both the client and the service-provisioning devices may move in the
environment. At least three significant issues are raised by mobility. First,
the network addresses of the devices may change, disrupting existing
communications between services and clients. Second, the device may
have to register with a new directory in the distributed middleware. We
call this

handoff

 between directories. Finally, device mobility may also
cause a change in the name of a service to reflect the movement. In this
section, we discuss the first two issues and leave the third to later in the
chapter. For simplicity, here we discuss only the situation of service
mobility. The handling of client mobility is similar.

When a client has located a desired service through the discovery
middleware, it may begin to communicate with that service directly or
through the middleware that acts as a message broker. If the client
communicates with the service directly, the endpoints must handle the
change of network address by themselves. The middleware could send
notification events to a client as its service moves and registers with the
middleware for a new address. It is up to the client to track its service
and send messages to the current address of the server. One solution is
to use Mobile IP [29], but the client may still have to resend the messages
that were undeliverable during movement of the service.

On the other hand, if the middleware acts as a message broker between
the client and service, the mobility of the service can be shielded from
the client. A client simply sends its messages to the middleware and
specifies the destination service. If the service is on the move, the mid-
dleware will buffer the message and deliver it as the service connects

AU3833_C16.fm Page 393 Tuesday, August 15, 2006 3:54 PM

394

■

Mobile Middleware

back. The Intentional Naming System (INS) takes this approach to provide
combined functionalities of service discovery and message delivery [1].
INS consists of a set of Intentional Name Resolvers (INRs), to which a
service registers an attribute-based name. The service name propagates
through the INR overlay so eventually every INR will have the name of
all services. A client sends a message to an INR and specifies its destination
as a name query. The message traverses through the overlay with the
name query resolved hop-by-hop, eventually reaching the service whose
name matches the query. INS supports both unicast and multicast (so all
services whose names match the query will receive that message). Simi-
larly, Service-Oriented Network Sockets (SoNS) allow a client to specify
a destination by name query, which can be resolved by any service-
discovery system [32]. The message is then delivered to the identified
service using direct socket communication, and all these details are hidden
from the application layer.

For scalability reasons, a mobile middleware may contain a distributed
set of directories, each responsible for the services in one region. As a
service moves from one region into another, it may need to handoff from
its previous registered directory to one in the new region. The handoff
process includes moving the registration information from the old directory
to the new one and triggering a notification event about this movement
to the client. Designed for discovering moving network services, the
Mobiscope system dedicates one directory for each rectangular region of
geographic space [17]. As the service moves across regions in the envi-
ronment, its name registration will always be routed to the directory
responsible for its current location. The amount of traffic caused by handoff
is determined by the region granularity, the number of mobile services,
and their mobility patterns. To cope with failures, Mobiscope does not
explicitly remove the service registration from the old directory. Instead,
it employs a soft-state approach similar to the leasing concept. Because
the service has to periodically renew its registration, the old registration
will eventually expire and be removed from the old directory. Although
it causes more network traffic, this leasing approach is simpler to imple-
ment and reduces the chance of inconsistency due to failures during the
handoff process.

It is worthwhile to distinguish between physical mobility and network
mobility, which are two orthogonal issues. As a service moves physically,
it may or may not change its network address. For many of the service-
discovery protocols surveyed earlier, a service has not moved as long as
it is still in the same subnet. Using our example of Alice’s mobile phone,
communication between the location service and Alice’s mobile phone
will not be disrupted as long as the APs with which the phone associates
are all in the same subnet. In other words, these discovery protocols

AU3833_C16.fm Page 394 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

395

define a region as the network subnet. Other protocols, such as Mobiscope,
define a region as geometric rectangles that have nothing to do with
network boundaries.

In summary, mobility may cause changes in the system. The mobile
middleware may choose to only notify the clients about the changes and
leave the handling to the clients, or the middleware may choose to handle
the mobility itself and hide the changes completely from the clients. The
first approach increases the complexity of client development, and the
second approach increases the complexity of the middleware system. A
designer using the second approach, however, also needs to be careful
about the assumptions it makes for the clients, as it takes some control
away from clients. For example, if the middleware receives a message
from a client while the specified service is on the move, how long should
the message be buffered before declaring a failure, or should the message
be routed to another service that is newly available?

Scalability

If we consider tracking and monitoring the services that may move in a
large area, scalability is an inevitable design issue for naming and discovery
middleware. For our simple scenario, thousands of mobile clients may
query the middleware to find location services, and the middleware may
also have to support registrations from tens of thousands of service-
provisioning devices, such as displays, printers, and sensors in the envi-
ronment. The general approach is to partition the name space into several
subspaces, each of which is handled by a directory. Two issues must be
addressed here: how to partition the name space and how to route the
service registrations and client queries to the corresponding directory.

One natural approach is to divide the entire area into geometric regions
and put a dedicated directory in each region for services that have a
“location.” Each directory is responsible for the name registrations of all
the services in its own region. In the Globe system, directories form a
hierarchy according to a region-containment relationship [5]; namely, a
directory for building A is the child of the directory responding for the
whole campus. If a query for printers in building B arrives at the directory
of building A, the query is propagated upward to the campus directory
and then pushed downward to the directory of building B. Such a
hierarchical structure exploits the locality of registration and queries to
partition the workload, assuming the queries from one region are mostly
to find services in the same region. The queries that do have to cross
regions can be further reduced using extensive caching. DataSpace
employs a similar approach where each three-dimensional

data cube

 has

AU3833_C16.fm Page 395 Tuesday, August 15, 2006 3:54 PM

396

■

Mobile Middleware

its own directory [25]. The directories for the data cubes form a hierarchy
as a big cube encompasses smaller cubes. By also partitioning the name
space into directories using physical regions, Mobiscope routes registra-
tions and queries in a peer-to-peer fashion instead of using a hierarchical
structure [17]. In Mobiscope, each directory maintains a

spatial routing
table

 that records all regions of the directories. Given a query, the
Mobiscope directory examines its routing table to find all directories
intersecting with the region specified in the query.

Instead of grouping services based on their current location, it is also
possible to group them using other properties. For example, INS/Twine
and CAMEL divide the name space into a set of subspaces, each containing
a single directory for the names in the corresponding subspace. Each name
is then mapped onto one or more (for redundancy) of these subspaces
using some kind of transformation. Both systems consist of a set of direc-
tories connected through a distributed hash table (DHT) using peer-to-peer
(P2P) protocols [7,18]. A directory has a unique ID, and the DHT layer
allows clients to send messages to a specified ID rather than an IP address.
The message is then be routed to the directory whose ID is closest to the
destination ID of the message in the P2P network. Given a name registration
specified as a set of attributes, the system hashes the name into several IDs
to which the name will be sent for processing. A similar process occurs for
query resolutions. A query is specified as another set of attributes, one of
which is selected and hashed into a query ID to which the query is sent.
Because a name is replicated in all the directories responsible for the hashed
attributes of that name, the query is guaranteed to be sent to a directory
containing all the matching names. Here, the matching criterion is that the
name contains all the attributes specified in the query.

In summary, naming and discovery middleware must partition the
name space into a set of distributed directories for large-scale processing
of service registrations and client queries. Most of the existing service-
discovery standards surveyed earlier in this chapter partition the name
space based on network topology, but they do not provide a scalable
mechanism to allow interdirectory queries. The service-discovery systems
discussed in this section propose to partition the name space based on
location or on a hash of other attribute values. The directories are orga-
nized into a hierarchical or a peer-to-peer structure for scalable registration
and query routing. The directories cooperatively store the names and
resolve the queries, reducing the workload on each individual. By increas-
ing the number of directories, the naming and discovery middleware scales
up to handle more services and clients. The tradeoff for the increased
scalability generally is the increased request processing latency, as the
registrations and queries must be routed to corresponding directories
which may take several hops; for example, in a DHT-based directory

AU3833_C16.fm Page 396 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

397

system, a message may take log(

N

) hops to reach a destination directory,
where

N

 is the number of directories in the system.

Context Awareness

Mobile clients must discover and use services based on the current context.

Context

 is the circumstance in which an application runs and may include
physical state (such as noise and light levels), computational state (such
as network latency and bandwidth), and user state (such as location and
current task). Consider our sample scenario, in which Alice finds nearby
services (such as displays and printers) depending on her current location.
Note that Alice’s query is both a

persistent query

, which is continuously
evaluated as the name space changes, and a

context-sensitive query

, which
changes itself according to the context. On the other hand, the names for
the display and printer may include their current locations, which should
be automatically updated when the devices move (although not fre-
quently). This requires a

context-sensitive name

 that changes itself accord-
ing to the context.

These scenarios impose several requirements on the naming and
discovery service. It must be flexible, so names can characterize the
resource and so queries can express the desired characteristics; it must
be scalable, to handle many names and queries; it must be fast, to support
frequent name and query updates; and it must be responsive, to quickly
notify applications about changes to the set of matches for their persistent
query. Some of the existing systems are designed to address these prob-
lems, such as the scalability as we discussed earlier. These scenarios,
however, also place several requirements on the clients and services.
Services must actively track their context so they may update their name.
Clients must also track their context so they may update their persistent
query. The context tracking and computation sometimes are not trivial
and may well exceed the capability of mobile devices attached to a low-
bandwidth network.

It is thus desirable to support both context-sensitive names and queries
inside the infrastructure. A context-sensitive name registered by a service
or a context-sensitive query requested by a client specifies how it should
be updated according to the context. The middleware is responsible then
to track context data sources and perform context computation to appro-
priately update the names and queries. Every time the names or the
queries are updated, the queries should also be re-evaluated to determine
whether the answer to the query is also changed. By offloading these
duties from the services and clients, naming and discovery middleware
improves performance and facilitates the development of both services
and clients.

AU3833_C16.fm Page 397 Tuesday, August 15, 2006 3:54 PM

398

■

Mobile Middleware

We have built a distributed system, called

Solar

, to support context-
sensitive names and queries [11]. The core of Solar is a set of functionally
equivalent nodes, called

Planets

, that connect with each other using a
DHT-based peer-to-peer network [12]. Solar employs an attribute-based
naming specification, and each Planet hosts a name directory. We use an
attribute-hashing scheme, similar to INS/Twine [7], to partition the name
space onto all the Planets. We envision that context is computed by
aggregating data from one or more physical or virtual

sensors

. These
sensors, like other services, connect to a Planet and register a name.

Figure 16.2 shows the architecture of Solar. A service registers with
Planet A, which forwards the service name to the appropriate Planets
based on attribute hashing. Now imagine that Alice’s phone sends a
context-sensitive query to Planet B to find printers in the building:

$campus-locator = [sensor=locator,
scope=campus];

$alice-locator = @filter("00022dd54817")
<- $campus-locator;

query [service=printer, building=$alice-
locator:building].

The context-sensitive query is defined in such a way that the value of
some attribute is some context dynamically computed from other sensors.
Here, it first defines a campus-wide locator,

$campus-locator

, that

Figure 16.2 Architecture of the Solar system.

AU3833_C16.fm Page 398 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems

■

399

tracks all devices in the wireless network. Next, it defines a locator that
only tracks the location of Alice’s phone by filtering through the output
of campus locator using the Media Access Control (MAC) address of the
phone. Finally, the query asks for all the printers in the same building of
Alice’s current location, where the value of the “building” attribute equals
the one in the output of Alice’s locator.

Planet B handles the client’s context-sensitive query, and it must com-
pute context from data of sensors that may connect to other Planets, such
as on C and D. The planetary overlay thus also serves as an application-
level routing layer for the sensor data [12]. The filter, as discussed earlier,
is called an

operator

. An operator is a data-processing component that
takes one or more sensor datastreams and outputs another one. A context-
sensitive name or query can specify a graph of operators to specify the
logic for combining data from multiple sensors [11]. Solar is responsible
for loading and deploying these operators onto the Planets. Our experi-
mental evaluation of the Solar system demonstrated two advantages of
middleware support for context-sensitive names and queries: reduced query
latency and improved system scalability [11]. Later, we further evaluated
the impact of context updates (changes in the attribute values) on the
system using a more realistic naming structure, and we showed that Solar’s
resource discovery generally performed well in a typical dynamic environ-
ment [36].

Other systems also support limited context awareness in their service-
discovery approaches. Instead of sending messages to a fixed address,
both INS and SoNS allow clients to send messages to a destination
controlled by a name query [1,32]. The name query is always resolved
with the current set of registered names, so the message may reach a
different service at different times. To support context-sensitive names,
however, services must monitor their context and update their name
registrations. The iQueue system uses a nonprocedural language for an
application to specify data composition [13]. The data sources used for
composition are determined by name queries. Like Solar, the iQueue
system continuously re-evaluates the queries based on current context
and rebinds the data sources, if necessary [14].

Security and Privacy

In this section, we discuss security requirements for a resource-discovery
system (such as Solar [11]) that supports context-sensitive names. Figure
16.3 shows the information flow among a client, a resource, and a
resource-discovery system. Each resource (e.g., the camera) advertises its
description as a set of attributes to the resource-discovery system. The

AU3833_C16.fm Page 399 Tuesday, August 15, 2006 3:54 PM

400

■

Mobile Middleware

building

 and

room

 attributes of the resource in the example in Figure
16.3 could be dynamic; that is, the values of those attributes will change
dynamically as the person carries the camera around. When a client issues
a query that specifies conditions on attributes of a resource to the system
to locate that resource, the system returns a list of references to the
matched resources. For example, a query

[building = sudikoff]
matches the resources in the Sudikoff building. The client obtains from
the server the values of the other attributes of the resource as well as the
reference to the resource. The client then chooses a resource (i.e., a
camera) from the list and accesses it to receive service. The client’s access
is authorized by the resource if the client satisfies the resource’s authori-
zation policies, which are usually defined by the resource owner.

We make a few assumptions about the resource-discovery system in
Figure 16.3. First, we assume that the attribute–value pairs of a resource
are flat; that is, no hierarchical structure is involved in the attributes.
Second, we assume that the resource-discovery system is administered by
a single authority, although the system might consist of multiple servers
in a distributed environment. Third, clients, resources, and the resource-
discovery system establish secure channels with a session key to commu-
nicate with each other while ensuring the secrecy and authenticity of the
messages.

Figure 16.3 Information flow among a client, a resource, and a resource dis-
covery system. The resource (camera) advertises its description with the four
attribute–value pairs to the resource discovery system. The numbers in the labels
of the solid arrows specify the sequence of the message flows.

AU3833_C16.fm Page 400 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems ■ 401

Two kinds of information must be protected in the example shown in
Figure 16.3. One is the resource’s advertisement that contains the descrip-
tion of a resource. The other is the client’s query containing the conditions
on a resource. The security requirements for the resource-discovery system
depend on whether the clients and resources trust the system not to disclose
their confidential information. We first discuss the case with a trusted
system. After that, we discuss the case with an untrusted system.

In the first case, we only need to consider the protection of resource
descriptions from an unauthorized client, because the information in each
client’s query is shared only with the system. Several existing resource-
discovery systems [16,30] require a client issuing a query to have the
privilege to access a resource to obtain the reference to that resource;
that is, the client will not be aware of existence of the resources to which
the client does not have access. Those systems assume that the authori-
zation policies on each resource are static; the policies do not change
dynamically. In those systems, the client avoids accessing a list of received
resources sequentially until an accessible resource is found.

Pervasive computing, however, has two additional requirements for
protecting the resource descriptions. First, the system must protect each
attribute of a resource description with a different authorization policy,
because an attribute of a resource description might contain confidential
or private information. For example, suppose Bob advertises his mobile
camera with a wireless network interface as a resource to the resource-
discovery system, and he describes the device with the attributes own-
ership and location. The location attribute contains the current
location of the camera. A query that specifies the value of location
attributes produces a list of resources, including Bob’s camera, if the value
in the query matches the current location of the camera. Bob may be
willing to allow other people to access the video stream from the camera
if his identity is not disclosed to them. However, if the value of the
ownership attribute of the camera is also accessible to the client, then
the client is able to keep track of Bob’s location, and Bob’s privacy might
be compromised. Because many people are concerned with location
privacy [8,19,22,28] in pervasive computing, the location attribute of a
device should be protected appropriately to preserve user privacy.

Second, the resource-discovery system must support context-sensitive
authorization policies that consider the situation of the users and envi-
ronments. For example, suppose that a patient in a hospital carries a
mobile device that monitors his medical condition and that the description
of that device, which contains the attributes ownership and location,
is maintained in the resource-discovery system. The administrator of the
system could define a context-sensitive policy that states: “A caregiver of
the hospital is granted access to the attribute location of the patient’s

AU3833_C16.fm Page 401 Tuesday, August 15, 2006 3:54 PM

402 ■ Mobile Middleware

mobile device only if the patient’s medical condition is critical.” This
authorization policy is necessary to protect the patient’s privacy in a
noncritical situation.

Making a context-sensitive authorization decision requires the resource-
discovery system to refer to context information (e.g., a patient’s medical
data). Several existing authorization systems [2,4,15,28] that support context-
sensitive policies take a centralized approach; that is, those systems have
a central server that collects all the context information necessary to make
authorization decisions. However, the centralized approach does not work
if context information is maintained by different servers that do not trust
the resource-discovery system to protect their confidential information.
Instead of collecting detailed context information, the resource-discovery
system could make the authorization decision without obtaining a patient’s
medical data by collaborating with a medical server that maintains the
patient’s medical data and that tells the resource-discovery system whether
the patient’s condition is critical. This collaboration is possible only if the
resource-discovery system trusts the medical server to provide correct
information. Minami and Kotz [27] generalized this idea and built a secure
context-sensitive authorization system that does not require a centralized
server trusted by every principal. The system performs an authorization
query involving multiple principals in different multiple administrative
domains. The proof tree for the query is decomposed into multiple subproof
trees produced by different hosts so each participating principal’s confi-
dentiality and integrity policies concerning the rules and facts contained
in the proof tree are preserved.

We now analyze two existing systems that protect resource descriptions.
Berkeley’s Secure Service Discovery Service (SSDS) [16] protects the descrip-
tion of each resource by checking whether the client is granted access to
that resource. In SSDS, the capability manager converts an access control
list (ACL) that is used to protect a resource into a capability for accessing
the corresponding resource description in the directory server. If a client
is in the ACL, the client receives from the capability manager a capability
that can only be used by that client. Because the clients maintain their
privileges, the system does not have to maintain any authorization policies
to protect the resource descriptions.

Raman et al. [30] extended the Intentional Naming System (INS) [1] to
route a client’s message only to resources that the client has the privilege
to access. The major difference from SSDS is that INS maintains the
authorization policies of each resource as the hidden attribute of that
resource. In INS, each Intentional Name Resolver (INR) traverses an INS
name tree that encodes the hierarchical arrangement of the attribute–value
pairs of resources to map a resource name (name specifier) to a destination
node to which a client’s message is routed. Each node in an INS name

AU3833_C16.fm Page 402 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems ■ 403

tree is associated with an ACL to reduce the search space in the tree.
When the matching process in the INR reaches a node whose ACL does
not contain the client, it prunes the subtree under that node from the
search space. INS associates each resource’s original ACL with the corre-
sponding leaf node in the INS name tree and derives the ACLs for
intermediate nodes by taking the union of the ACLs in its children nodes.

We now discuss the second case where the resource-discovery system
is not trusted by the clients and resources. The clients need to protect their
queries and credentials (or capabilities) from the system, because queries
might imply the clients’ interests, which should be kept confidential, and
credentials might imply confidential relationships with the resources. Sim-
ilarly, the resources need to protect their advertisements from the system.
Because it is difficult to hide that information completely from the resource-
discovery system, some existing research projects focus on minimizing
information to be disclosed to the system.

Splendor [40] is a directory service in pervasive computing, and its
focus is to protect the privacy of resource owners from the directory
server. In Splendor, each resource advertises its description to the directory
service through a proxy server trusted by that service; therefore, the
directory service cannot associate attributes of the resource that contains
confidential information with the identity of the resource owner. Splendor,
however, does not address the issue of traffic analysis by an adversary
who is capable of monitoring all the network traffic.

PrudentExposure [41] minimizes disclosure of a client’s credentials to
a directory service using the technique of hash summarization with a
Bloom filter [9]. In PrudentExposure, each credential corresponds to a
domain that contains multiple resources, and the credential allows a client
to access all the resources in that domain. This connectivity is not appro-
priate; therefore, a client wants to know which domains the directory
service supports while minimizing the disclosure of his credentials. The
client sends a bit vector of a fixed length to the service instead of sending
the actual credentials. The bit vector represents the client’s credentials;
that is, if a bit at a certain position in the vector is set, that means that
the client possesses the corresponding credential. The position for each
credential is decided by computing mod(h(domain identity), n) where
mod is the mod function, h is a hash function, n is the length of the bit
vector, and domain identity is the identity of the domain specified in the
credential. We assume that the bit vector is long enough to experience
no collisions between two different credentials.

Similarly, the directory service computes a bit vector that represents a
set of domains it supports, using the same hash function. When the
directory service receives the bit vector from the client, it intersects it with
its own bit vector and returns it to the client. The returned vector represents

AU3833_C16.fm Page 403 Tuesday, August 15, 2006 3:54 PM

404 ■ Mobile Middleware

the list of domains the client can access through the directory service. The
service can figure out which credentials the client has only if the service
supports the corresponding domain. The client is thus able to minimize
the disclosure of his credentials; however, this scheme is not applicable
to a resource-discovery system that supports context-sensitive policies,
because it is impossible to distribute static credentials to clients in advance.

In summary, resource descriptions maintained by a resource discovery
system in pervasive computing contain confidential information to be
protected appropriately. The major difference from traditional authorization
systems is the necessity to support context-sensitive policies. The protection
of a client’s query and resource description from an untrusted directory
service remains largely left for future research. The literature of trust
negotiation [39,38] may provide some insight here, because these protocols
often focus on limiting exposure of information to the other party.

Summary and Future Work
Middleware support for naming and discovery is crucial for anytime, any-
where service access in a mobile and pervasive-computing environment.
In this chapter, we have identified four challenging issues that existing
service-discovery standards do not address well: mobility, scalability, context
awareness, and security and privacy. While individual challenges are being
addressed by the research community, an integrated system addressing all
of these aspects remains to be seen. Our experience tells us that these
issues are interwoven with each other, and a new system must have global
design principles; for example, scalability must be considered by many
components, including overall architecture, name storage, message multi-
cast, and security protocols. The end system should not become so complex
that it is difficult to diagnose and maintain, thus defeating the goal of naming
and discovery middleware to facilitate discovery and interactions.

Acknowledgment
This research has been supported by NSF Award EIA-9802068, by DARPA
contract F30602-98-2-0107, by DoD MURI contract F49620-97-1-03821, by
Microsoft Research, by the Cisco Systems University Research Program,
and by USENIX Scholars Program. This research program is a part of the
Institute for Security Technology Studies, supported under Award No.
2000-DT-CX-K001 from the U.S. Department of Homeland Security, Science
and Technology Directorate. Points of view in this document are those
of the authors and do not necessarily represent the official position of the
U.S. Department of Homeland Security.

AU3833_C16.fm Page 404 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems ■ 405

References
[1] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and Lilley, J., The design

and implementation of an intentional naming system, in Proc. of the 17th
ACM Symp. on Operating System Principles, Charleston, SC, December, 1999,
pp. 186–201.

[2] Al-Muhtadi, J., Ranganathan, A., Campbell, R., and Mickunas, D., Cerberus:
a context-aware security scheme for smart spaces, in Proc. of the First IEEE
Int. Conf. on Pervasive Computing and Communications (PerCom 2003),
Dallas, TX, March, 2003, pp. 489–496.

[3] AutoConf, http://www.autoconf.org/.
[4] Bacon, J., Moody, K., and Yao, W., A model of OASIS role-based access

control and its support for active security, Proc. of the Sixth ACM Symp. on
Access Control Models and Technologies, Monterey, CA, June, 2002, pp.
492–540.

[5] Baggio, A., Ballintijn, G., van Steen, M., and Tanenbaum, A.S., Efficient
tracking of mobile objects in Globe, Comput. J., 44(5), 340–353, 2001.

[6] Bahl, P. and Padmanabhan, V.N., RADAR: an in-building RF-based user
location and tracking system, in Proc. of the 19th Annual Joint Conf. of the
IEEE Computer and Communications Societies, Tel Aviv, Israel, March, 2000.

[7] Balazinska, M., Balakrishnan, H., and Karger, D., INS/Twine: a scalable
peer-to-peer architecture for intentional resource discovery, in Proc. of the
First Int. Conf. on Grid and Pervasive Computing, Zurich, Switzerland,
August, 2002.

[8] Beresford, A.R. and Stajano, F., Location privacy in pervasive computing,
IEEE Pervasive Comput., 2(1), 46–55, 2003.

[9] Bloom, B.H., Space/time trade-offs in hash coding with allowable errors,
Commun. ACM, 13(7), 422–426, 1970.

[10] Chen, G. and Kotz, D., Context aggregation and dissemination in ubiquitous
computing systems, in Proc. of the Fourth IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA’02), Callicoon, NY, June 2002,
pp. 105–114.

[11] Chen, G. and Kotz, D., Context-sensitive resource discovery, in Proc. of the
First IEEE Int. Conf. on Pervasive Computing and Communications (PerCom
2003), Dallas, TX, March, 2003, pp. 243–252.

[12] Chen, G., Li, M., and Kotz, D., Design and implementation of a large-scale
context fusion network, in Proc. of the First Annual Int. Conf. on Mobile
and Ubiquitous Systems: Networking and Services, Boston, MA, August, 2004,
pp. 246–255.

[13] Cohen, N.H., Lei, H., Castro, P., Davis II, J.S., and Purakayastha, A., Com-
posing pervasive data using iQL, in Proc. of the Fourth IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA’02), Callicoon, NY,
June, 2002, pp. 94–104.

[14] Cohen, N.H., Purakayastha, A., Wong, L., and Yeh, D.L., iQueue: a pervasive
data composition framework, in Proc. of the Third Int. Conf. on Mobile Data
Management (MDM’02), Singapore, January, 2002, pp. 146–153.

AU3833_C16.fm Page 405 Tuesday, August 15, 2006 3:54 PM

406 ■ Mobile Middleware

[15] Covington, M.J., Long, W., Srinivasan, S., Dey, A.K., Ahamad, M., and
Abowd, G.D., Securing context-aware applications using environment roles,
in Proc. of the Sixth ACM Symp. on Access Control Models and Technologies,
Chantilly, VA, May, 2001, pp. 10–20.

[16] Czerwinski, S.E., Zhao, B.Y., Hodes, T.D., Joseph, A.D., and Katz, R.H.,
An architecture for a secure service discovery service, in Proc. of the 5th
ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBICOM’99),
Seattle, WA, August, 1999, pp. 24–35.

[17] Denny, M., Franklin, M.J., Castro, P., and Purakayastha, A., Mobiscope: a
scalable spatial discovery service for mobile network resources, in Proc. of
the ACM Int. Conf. on Mobile Data Management (MDM’03), Melbourne,
Australia, January, 2003, pp. 307–324.

[18] Gao, J. and Steenkiste, P., Design and evaluation of a distributed scalable
content discovery system, IEEE J. Selected Areas Commun., 22(1), 54–66,
2004.

[19] Gruteser, M. and Grunwald, D., Anonymous usage of location-based services
through spatial and temporal cloaking, in Proc. of the First Int. Conf. on
Mobile Systems, Applications, and Services (MobiSys’03), San Francisco, CA,
May, 2003.

[20] Guttman, E., Service Location Protocol: automatic discovery of IP network
services, IEEE Internet Comput., 3(4),71–80, 1999.

[21] Helal, S., Standards for service discovery and delivery, IEEE Pervasive
Comput., 1(3), 95–100, 2002.

[22] Hengartner, U. and Steenkiste, P., Access control to information in pervasive
computing environments, in Proc. of the 9th Workshop on Hot Topics in
Operating Systems (HotOS), Lihue, HI, May, 2003, pp. 157–162.

[23] Hightower, J. and Borriello, G., Location systems for ubiquitous computing,
IEEE Comput., 34(8), 57–66, 2001.

[24] Hill, H., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K., System
architecture directions for network sensors, in Proc. of the Ninth Int. Conf.
on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS’00), Cambridge, MA, November, 2000, pp. 93–104.

[25] Imielinski, T. and Goel, S., Dataspace: querying and monitoring deeply
networked collections in physical space, IEEE Pers. Commun., 7, 4–9, 2000.

[26] Kotz, D. and Essien, K., Analysis of a campus-wide wireless network, in
Proc. of the 8th ACM/IEEE Int. Conf. on Mobile Computing and Networking
(MOBICOM’02), Atlanta, GA, September, 2002, pp. 107–118.

[27] Minami, K. and Kotz, D., Secure context-sensitive authorization, J. Pervasive
Mobile Comput., 1(1), 257–268, 2005.

[28] Myles, G., Friday, A., and Davies, N., Preserving privacy in environments
with location-based applications, IEEE Pervasive Comput., 2(1), 56–64, 2003.

[29] Perkins, C.E., Mobile networking through Mobile IP, IEEE Internet Comput.,
2(1), 32–41, 1998.

[30] Raman, S., Clarke, D., Burnside, M., Devadas, S., and Rivest, R., Access-
controlled resource discovery for pervasive networks, in Proc. of the 18th
ACM Symp. on Applied Computing (SAC’03), Melbourne, FL, March, 2003.

AU3833_C16.fm Page 406 Tuesday, August 15, 2006 3:54 PM

Naming and Discovery in Mobile Systems ■ 407

[31] Richard, G.G., Service advertisement and discovery: enabling universal
device cooperation, IEEE Internet Comput., 4(5), 18–26, 2000.

[32] Saif, U. and Paluska, J.M., Service-oriented network sockets, in Proc. of First
Int. Conf. on Mobile Systems, Applications, and Services (MobiSys’03), San
Francisco, CA, May, 2003.

[33] Solutation Architecture, http://www.salutation.org/.
[34] Universal Plug and Play, http://www.upnp.org/.
[35] Waldo, J., The Jini architecture for network-centric computing, Commun.

ACM, 42(7), 76–82, 1999.
[36] Wang, J., Performance Evaluation of a Resource Discovery Service, Technical

Report TR2004-513, Dartmouth College, Hanover, NH, 2004.
[37] Weiser, M., The computer for the 21st century, Sci. Am., 265(3), 66–75, 1991.
[38] Winsborough, W.H. and Li, N., Protecting sensitive attributes in automated

trust negotiation, in Proc. of ACM Workshop on Privacy in the Electronic
Society (WPES’02), New York, NY, November, 2002, pp. 41–51.

[39] Yu, T., Winslett, M., and Seamons, K.E., Interoperable strategies in auto-
mated trust negotiation, in Proc. of the 8th ACM Conf. on Computer and
Communications Security (CCS’01), Philadelphia, PA, November, 2001, pp.
146–155.

[40] Zhu, F., Mutka, M., and Ni, L., Splendor: a secure, private, and location-
aware service discovery protocol supporting mobile services, in Proc. of the
First IEEE Int. Conf. on Pervasive Computing and Communications (PerCom
2003), Dallas, TX, March, 2003, pp. 235–242.

[41] Zhu, F., Mutka, M., and Ni, L., PrudentExposure: a private and user-centric
service discovery protocol, in Proc. of the Second IEEE Int. Conf. on Pervasive
Computing and Communications (PerCom 2004), Orlando, FL, March, 2004,
pp. 329–338.

AU3833_C16.fm Page 407 Tuesday, August 15, 2006 3:54 PM

AU3833_C16.fm Page 408 Tuesday, August 15, 2006 3:54 PM

409

Chapter 17

Efficient Data Caching
and Consistency
Maintenance in Wireless

Mobile Systems

Sajal K. Das and Mohan Kumar

CONTENTS

Introduction... 410
Cache and System Architecture ... 411

Replacement .. 412
Prefetching... 413

Mobile Cache Consistency Schemes ... 414
Stateless Approach .. 414
Stateful Approach.. 416

Scalable Asynchronous Cache Consistency Scheme.. 416
MUC Management... 418
MUC Consistency Maintenance.. 419
Efficiency and Cooperation.. 419
Mobility .. 420
Failure Handling.. 421
Performance Study.. 423

AU3833_C17.fm Page 409 Tuesday, August 15, 2006 4:50 PM

410

■

Mobile Middleware

Single-Cell Environment.. 423
Multi-Cell Environment ... 428

Utility-Based Data Caching and Prefetching .. 431
GreedyDual Least Utility Caching Mechanism ... 433

Cache Replacement Algorithm ... 433
Passive Prefetching Algorithm.. 434

Performance Evaluation.. 435
Conclusion... 436
Acknowledgment .. 437
References ... 437

Introduction

Rapid advances in wireless mobile communications technologies and
successful deployment of a multitude of wireless network infrastructures
(e.g., 3G cellular,

ad hoc

, wireless local area networks, or mesh) have
made ubiquitous information access a reality. Mobile users desire online
access to a variety of data such as news headlines, stock quotes, weather
forecasts, traffic or flight information, games, and so on. Efficient caching
at mobile devices has the potential to deal with traditional constraints of
wireless mobile networks, including limited bandwidth, battery power,
user and device mobility, and disconnections. This chapter focuses on a
very challenging issue — the design and deployment of efficient and
scalable schemes for data caching — as well as cache consistency main-
tenance in mobile computing systems.

Data broadcasting offers a simple mechanism to disseminate and share
information among a large number of users in a wireless communication
environment. Data broadcast schemes can be classified into three catego-
ries: push-based, pull-based (or on-demand), and hybrid. In a

push-based

scheme, data is periodically broadcast from the server to the clients or
mobile users (MUs) via the downlink channel according to a schedule
that usually makes use of data access patterns. An MU must tune into the
broadcast channel to acquire the desired data. The access latency involved
here is mainly due to the waiting period for tuning to the next broadcast
cycle. In a

pull-based

 scheme, on the other hand, queries made by the
MUs on uplink channels are satisfied on-demand by the server via the
downlink channel. Due to the asymmetric nature of communications in
wireless systems, the downlink channel has higher bandwidth than the
uplink channel; hence, the query delay in push-based schemes depends
on the data size and system load, among other factors. In a

hybrid

 scheme,
more popular items are pushed and less popular items are pulled. Deter-
mining an optimal cutoff point that partitions the entire dataset dynamically
into push and pull subsets is an important problem [2,16,29].

AU3833_C17.fm Page 410 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems

■

411

As is well known,

 caching

 more frequently accessed data at the
client’s end (i.e., mobile devices) is an efficient way to reduce the
average access or query delay, save bandwidth, and improve the overall
performance of wireless mobile systems [4,38,48]. An efficient cache
management strategy can substantially improve the hit ratio. In most
of the mobile devices, such as laptops, palmtops, and cellular phones,
wireless communication is a major source of energy consumption that
reduces battery life [14]. As an example, the wireless transmission of
1000 bits of information consumes approximately the same amount of
energy as the execution of 3 million instructions [28]; thus, caching can
potentially minimize communication overhead and conserve battery
power. Due to frequent mobility and the possible disconnection of
mobile users, the data in device caches is prone to becoming stale quite
often; therefore,

cache consistency

 is another challenge to be tackled
in wireless mobile environments.

Cache and System Architecture

Figure 17.1 illustrates a typical wireless mobile data communication
system architecture consisting of a wired backbone network (e.g., the
Internet), data servers, mobile support stations (MSSs), and MUs. Each
(hexagonal) cell has a base station (BS) or an MSS connected to the
servers through the backbone network. Each MSS serves multiple MUs
via wireless links (channels) and has a server cache (SC) to store data
items. Each MU has a local cache (MUC) that stores the retrieved data
items. An MSS is also responsible for cache consistency between the
servers and MUCs. Because this chapter focuses on efficient data caching
and cache consistency between the SC and MUCs, it is assumed that
the consistency between the SC and servers is maintained in the wired
network by existing methods [10,22,49].

Scarce resources (e.g., bandwidth) of clients remain as barriers to the
full utilization of mobile computing capabilities. Client data caching offers
a good solution to cope with the inefficiency of wireless data dissemination
by reducing the amount of traffic over the communication channel. The
three main issues in cache design for mobile devices are [48]: (1) a

replacement

 policy, which chooses to discard a set of victim data currently
in the cache in order to accommodate new incoming data; (2) a

pre-
fetching

 policy, which prefetches data into the cache in anticipation of
possible future accesses; and (3) a cache

invalidation

 scheme, which
maintains data consistency between the local cache and the original server.
The first two issues are discussed in this section, and the third issue is
the focus of the next section.

AU3833_C17.fm Page 411 Tuesday, August 15, 2006 4:50 PM

412

■

Mobile Middleware

Replacement

Replacement policies in Web proxy caching have been studied widely,
and several deterministic schemes have been proposed in the literature
[9,31,36,42]; however, such algorithms cannot be adopted directly to
manage mobile caches due to the poor connectivity, limited energy, and
memory of mobile devices. The cache replacement algorithm for wireless
data dissemination was first studied in the context of

broadcast disks

[1]. A replacement policy was proposed in which the data item with the
minimum value of

p

/

f

 was evicted for replacement, where

p

 is the access
probability of the item and

f

 is its broadcast frequency; thus, an evicted
item either has a low access probability or a short retrieval delay. A
cache update policy that attempts to minimize average access latency is
presented in Shim et al. [36]. Here, the broadcast channel is divided into
time slots of equal size, which are equal to the broadcast time of a
single item.

Figure 17.1 Wireless data communication system architecture.

AU3833_C17.fm Page 412 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems

■

413

Caching algorithms for broadcast disk systems were also investigated
in Khanna and Liberatore [21]. In contrast to previous approaches, this
caching algorithm took into consideration the factors of both access history
and retrieval delay for cache replacement. Most of the above schemes
must work cooperatively with a specific broadcast schedule algorithm to
achieve good performance. Xu et al. [48] proposed a cache replacement
algorithm that considers access probability, update frequency, data size,
retrieval delay, and cache invalidation cost for minimizing the access
latency by mobile devices. In particular, a cache replacement policy called

Min-SAUD

 accounts for the cost of ensuing cache consistency before each
cached item is used. Min-SAUD uses

stretch

 as the major performance
metric, which accounts for the data service time and thus is fair for data
items of variable sizes. Because this approach requires an aging daemon
to periodically update the estimated information of each data item, the
computational complexity and energy consumption of the algorithm are
too high for mobile devices.

Prefetching

Prefetching is a technique that can reduce access latency and improve the
cache hit ratio by fetching remote data

a priori

. The idea of prefetching
stems from the fact that, after retrieving a page or data item from the remote
server, a user usually spends some time viewing the page, and during this
period the network link is generally idle. Files that are likely be accessed
in the future can be fetched in anticipation, with a view to reduce the
transmission delay when the user actually requests these files. In addition,
prefetched files can be immediately processed if decryption or decompres-
sion is required, allowing further reduction in the delay of loading a page
in the mobile device. The difficulty of realizing efficient prefetching lies in
accurate anticipation. If some of the prefetched files are never used, prefetch-
ing increases the system load. At some point, this increase in load may
increase the delay of on-demand requests significantly and may eventually
cause the overall system performance to degrade. In the wireless network,
prefetch may increase energy consumption due to increased communication,
particularly on downlink channels; therefore, the key challenge is to deter-
mine what to prefetch for performance improvement.

Prefetching has been investigated to reduce Web access latency in
wire-line networks. Existing works [13,15] have investigated prefetching
schemes involving a point-to-point session transmission model, which is
different from the broadcast communication model in wireless mobile
networks. Prefetching and data invalidation have also been studied for
performance tradeoff. For example, in Cao [7], mobile devices calculate
the prefetch access ratio (PAR), the number of prefetches is divided by

AU3833_C17.fm Page 413 Tuesday, August 15, 2006 4:50 PM

414

■

Mobile Middleware

the number of accesses for each data item, and a threshold PAR is used
to determine whether to prefetch a data item. In Yin et al. [51], a value
function is used instead of PAR. These works use prefetching to retrieve
the desired data by sending an uplink message to the base station. Due
to channel contention and data transmissions at the mobile devices, such
proactive prefetching schemes are generally not energy efficient [14].

An adaptive network prefetching scheme proposed in Jiang and Klein-
rock [19] utilizes prediction and threshold modules that compute access
probabilities and prefetch thresholds, respectively. Whenever a new page
is displayed, the prediction module updates the local access history and
computes the access probability of each link on that page. At the same
time, for each server with at least one link on this page, the threshold
module computes its prefetch threshold based on the network and server
conditions as well as the costs of time and bandwidth to the user. Finally,
all the files with access probability greater than the prefetch threshold of
the server are prefetched. The prediction algorithm may also be run at
the server, in which case access probabilities will be sent to the user along
with the requested page.

Mobile Cache Consistency Schemes

The existing literature for cache consistency maintenance in wireless mobile
environments can be broadly categorized into three classes: stateless,
stateful, and hybrid. In the

stateless

 approach [4,7,17,18,25,39,47,50], the
server is unaware of the cache content of the client and hence periodically
broadcasts invalidation reports (IRs) to all the MUs. The client must check
the validity of cached entries from the server before each query. Even
though stateless approaches employ simple database management, they
lack in scalability and addressing mobility and hence disconnections. In
the

stateful

 approach [20], on the other hand, the base station maintains
the state of the data item for each mobile cache and only broadcasts
invalidation reports for cached items. Although stateful approaches [8,20]
are scalable, they incur significant overhead due to server database man-
agement; therefore,

hybrid

 approaches [43–46] have been proposed that
offer scalable and efficient solutions for maintaining data consistency in
wireless cellular networks. In the following, we summarize existing schemes
followed by our own approach for cache consistency.

Stateless Approach

In the stateless approach, the server assumes no knowledge of the cache
contents of the client and hence periodically broadcasts invalidation reports.

AU3833_C17.fm Page 414 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems

■

415

At the mobile device, a data item request cannot be serviced until the next
IR from the server is received. Barbara and Imielinksi [4] proposed three
stateless algorithms: time stamps (TS), amnesic terminals (AT), and signature
(SIG), in which the MSS broadcasts IR messages every

L

seconds. An IR
message includes all data item IDs updated during the past

kL

 seconds,
where

k

 is a positive integer. The advantage of these algorithms is that an
MSS does not maintain any state information about its MUCs, thus allowing
simple management of the SC; however, they suffer from the following
drawbacks:

■

They do not scale well to large databases or fast updating data
communication systems due to the large number of IR messages.

■

The average access latency is always higher than half of the
broadcast period simply because all requests can be answered only
after the next IR.

■

When the sleep time (when an MU is disconnected from its MSS)
is longer than

kL

, all cache entries are deleted, leading to
unnecessary bandwidth consumption, particularly if the data is
still valid.

To handle the long sleep–wake-up patterns, several algorithms have
been proposed. In the bit-sequence algorithm [18], all cache entries are
deleted only when half or more of the data items in the cache have
been invalidated; however, the model requires the broadcast of a larger
number of IR messages than TS and AT schemes. Although the uplink
validation check scheme [47] can deal with long sleep–wake-up patterns,
it requires more uplink bandwidth. In order to reduce the IR messages,
Hu and Lee [17] developed adaptive methods to broadcast different IRs
based on the update frequency, MU access, and sleep–wake-up patterns.
Yuen et al. [50] employed an absolute validity interval for each data
item; however, it fails to reduce the access delay introduced by periodic
broadcast cycles.

In the above approaches, all MUs can benefit from the broadcast only
when they retrieve the same data items from the MSS in the same broadcast
cycle; however, if they retrieve in separate broadcast cycles, they cannot
share the broadcast data. This makes the broadcast inefficient and sensitive
to the number of MUs in the cell. Cao [7] modified the TS strategy to
keep the invalidated data items in an MUC such that the MU can update
data received from the broadcast channel. This approach increases the
broadcast channel utilization; however, keeping invalid data in an MUC
wastes precious cache memory. A comprehensive performance evaluation
of the existing stateless algorithms is studied in Tan et al. [39].

AU3833_C17.fm Page 415 Tuesday, August 15, 2006 4:50 PM

416

■

Mobile Middleware

Stateful Approach

Very few stateful cache consistency maintenance algorithms have been
proposed in the literature for wireless mobile environments. Kahol et al.
[20] presented an asynchronous stateful (AS) algorithm to maintain cache
consistency in which an MSS records all retrieved data items for each MU.
When an MU first retrieves a datum after it wakes up, based on the MUC
content and sleep–wake-up time, the MSS sends an IR to that particular
MU. Whenever an MSS receives an update from the original server for
each recorded data item, it immediately broadcasts the IR of that item to
MUs. The advantage of the AS scheme is that the MSS avoids unnecessary
IR broadcast to MUs. Moreover, MUs can deal with any sleep–wake-up
pattern without losing valid data items; however, to maintain each MUC,
the MSS must record all cached data for each MU, so an MU can only
download data requested through the uplink. This makes the broadcast
channel utility inefficient and sensitive to the number of MUs. More
recently, Cao [8] used a counter-based scheme to identify the frequently
accessed data and save unnecessary IR traffic. Whenever the content of
an MUC is changed, the MU must piggyback the change to the server,
thus consuming battery power and uplink bandwidth.

As mentioned earlier, stateless approaches employ simple database
management schemes but lack in scalability in terms of database size and
number of MUs; moreover, they cannot handle mobility and disconnections.
Although the stateful approaches are scalable, they incur significant over-
head due to server database management. Furthermore, existing caching
schemes assume reliable communication between the MSS and MUs for IR
broadcast; however, any reliable communication mechanism requires
acknowledgment from the MUs. After an IR is broadcast, the increased
competition for the uplink channel between the MSS and MUs will have
an impact on the uplink queries and, hence, on the average access delay
and battery consumption of the MU. If an MU is disconnected during the
IR broadcast, the server cannot get the acknowledgment back and must
retransmit the IR because it does not know whether the IR is lost or the
MU is disconnected. Also, the existing schemes do not investigate the
possible inconsistency and performance loss due to wireless channel errors;
therefore, scalable and efficient algorithms are required for maintaining
cache consistency in the error-prone wireless channels.

Scalable Asynchronous Cache Consistency Scheme

Wang et al. [43,44] proposed a hybrid approach called the

Scalable Asyn-
chronous Cache Consistency Scheme

 (SACCS) for maintaining cache con-
sistency between the server and mobile devices. SACCS relies on three key

AU3833_C17.fm Page 416 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems

■

417

features: (1) use of flag bits at the server and mobile device cache, (2) use
of an identifier for each entry in mobile device cache after its invalidation,
and (3) rendering of all valid entries of a device cache to an

uncertain

state upon wake-up. These features make SACCS a highly efficient (in
terms of bandwidth) and scalable algorithm with minimum data manage-
ment overhead. A dynamic version of this scheme for a multi-cell environ-
ment that considers user mobility is presented in Wang et al. [45,46].

In SACCS, each data item in a server is associated with a flag bit. When
a device retrieves an item, the corresponding flag bit is set, indicating that
a valid copy may be available in the mobile cache. When the data item
is updated, the server immediately broadcasts its IR to mobile devices and
resets the flag bit. The reset flag bit implies that there is no valid copy in
any mobile cache; hence, subsequent updates do not broadcast IRs until
the flag bit is set again. A device is either in an

awake

 state (i.e., connected
with the base station) or in a

sleep

 state (i.e., disconnected from the base
station) at the time of the IR broadcast. If a device is in the awake state,
it deletes the valid copy and sets the entry to an

invalidated

 state (i.e.,
the item is deleted, but an ID is kept) after it receives the IR. If the device
is in the sleep state, it misses the IR, and upon wake-up it sets all valid
cache entries to an

uncertain

 state. An uncertain entry must be refreshed
or checked before its usage, thus guaranteeing the cache consistency. All
entries with data items in uncertain or invalidated states can be used to
identify useful broadcast messages for validating and triggering of data
item downloading.

Each data item in the system is considered to be in one of three states:
invalid, certain (or valid), or uncertain. The

invalidated

 state is defined
for items that are not cached at the device. The

uncertain

 state is defined
for items cached at the mobile device but their validity is not confirmed.
The

certain

 state is defined for items whose validity is confirmed and can
be used to satisfy the data request by an application.

A highly scalable, efficient, and low-complexity algorithm, SACCS
provides only weak cache consistency with a small probability of stale
cache hits under unreliable IR broadcast environments. Unlike synchro-
nous periodic IR broadcast schemes (for example, see Barbara and Imi-
elinksi [4]), most of the unnecessary IRs can be avoided and, consequently,
substantial bandwidth is saved. SACCS maintains only

one extra flag bit

for each data item in the SC. In contrast, the asynchronous stateful
algorithm [20] requires

O

(

MN

) space in the MSS to maintain the states of
MUCs, where

M

 is the number of MUs and

N

 is the number of data items
in SC. Moreover, the database management overhead is minimal, requiring
only a single bit check and set/reset. Once an item is invalidated, its entry
in an MUC is set to the ID-only state; that is, the object is deleted but its
ID is kept. All the valid MUC data entries are set to the uncertain state

AU3833_C17.fm Page 417 Tuesday, August 15, 2006 4:50 PM

418

■

Mobile Middleware

(i.e., the validity of a cache entry is not clear) after an MU wakes up.
This mechanism makes the handling of disconnections and mobility very
simple. The MSS sets an estimated time to live (TTL) for each data item
based on its update history. This TTL is also cached together with the
data in the MUC when acquired from the MSS. The cached data entry in
the MUC is automatically set to an uncertain state when its TTL expires.
This will protect stale data from being used for an arbitrarily long time
due to IR loss, which means that a connected MU cannot correctly receive
a broadcast IR. All entries in the uncertain or ID-only state can be used
to identify useful broadcast messages for validation and triggering of data
object downloading; hence, all the MUs strongly cooperate in sharing the
broadcast resource. Figure 17.2 shows how a data entry (

d

x

) changes from
one state to another.

MUC Management

Because the focus here is on cache consistency maintenance, we use a
least recently used (LRU)-based replacement algorithm for the manage-
ment of MUCs in which a newly cached data item or one that receives a
hit is moved to the head of the cache list. If an item must be cached
when the cache is full, data entries from the tail whose flags do not
indicate waiting are deleted to accommodate this new item. Any refreshed
items from the uncertain or ID-only state are placed in their original

Figure 17.2 State diagram of cache entry

x

.

AU3833_C17.fm Page 418 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems

■

419

location and again, if necessary, enough data entries from the tail are
removed. We limit the number of ID-only entries that can be used at any
given instant; for example, if a cache can hold

C

 items, then the number
of ID-only entries is limited to

C

. Because the MU has limited cache size,
during a broadcast it caches only those items with IDs in the cache.

MUC Consistency Maintenance

In the following, we discuss data consistency between an SC and MUCs.
For simplicity, we assume an error-free channel in which all MUs in the
awake state receive IRs (i.e., the MU is connected to the MSS). For details
on IR loss due to fading wireless channels, see Wang et al. [44].

For each cached data item

d

x

, SACCS uses a single flag bit (

f

x

) in the
SC to maintain the consistency between the SC and MUC. When

d

x

 is
retrieved by an MU,

f

x

 is set indicating that a valid copy of

dx may be
available in an MUC. If and when the MSS receives an updated dx, it
broadcasts an IR(x) and resets fx. This action implies there are no valid
copies of dx in any MUC. Furthermore, for fx = 0, subsequent updates do
not entail broadcast of IR(x). The flag fx is set again when the MSS services
a retrieval (including request and confirmation) for dx by an MU.

As mentioned before, an MUC can be in one of two states: awake or
sleep. If an MU is awake at the time of an IR(x) broadcast, the copy of
dx is invalidated and an ID-only entry is maintained by the MU. The data
items of an MU in the sleep state are unaffected until it wakes up. When
an MU wakes up, it sets all cached valid items (including dx) into the
uncertain state; consequently, MUs and their cached entries are unaffected
if an IR(x) broadcast occurs during their sleep times. A TTL is associated
with each cache entry. When the TTL of a cache entry expires, an MU
automatically sets it into an uncertain state. There are some probabilities
that an MU can get a stale cache hit in the case of IR loss.

Efficiency and Cooperation

A good cache consistency maintenance algorithm must be scalable and
efficient in terms of the database size and the number of MUs. In this
regard, SACCS can handle large and fast updating data systems (such as
news or stock quotes) because the MSS has some knowledge of the MUC.
Only data entries with flag bits set result in the broadcast of IRs when
data items are updated; consequently, the IR broadcast frequency is the
minimum of the uplink query (i.e., confirmation frequency) and the data
update frequency. In this way, the consumption of broadcast channel
bandwidth for IRs is minimized. Besides IR traffic, all other traffic in SACCS

AU3833_C17.fm Page 419 Tuesday, August 15, 2006 4:50 PM

420 ■ Mobile Middleware

is also minimized due to the strong cooperation among the MUCs. This
is specifically due to the introduction of the uncertain state and the ID-
only state for the MUCs. The retrieval of a data item, dx, from the MSS
issued by any given MU brings the entries of x in the uncertain or ID-
only state in all of the awake MUCs to a valid state. Moreover, a single
uplink confirmation for entry x causes all entries of x in the uncertain
state for all the awake MUCs to be in either a valid or an ID-only state.
The addition of the uncertain state also allows an MUC to keep all the
valid data objects when it wakes up after an arbitrary sleep time. In
contrast, in the AS and TS algorithms, all invalidated data is completely
deleted from the MUC. This allows little cooperation among the MUs,
resulting in a dramatic increase of traffic volume between the MSS and
the MUs as the number of MUs increases. Although the scalability of the
TS scheme can be improved by retaining the invalid data [7], the cache
efficiency is reduced by having to keep in the MUC the invalid data objects
rather than IDs, as in the SACCS approach.

The TTL expiration of a valid cache entry is checked only when its
data object is accessed or available on the channel. When the data item
of a valid entry is accessed or available on the channel, its TTL is first
checked. If the TTL has not expired, the entry is treated as valid; otherwise,
it is handled as an uncertain entry. The cost of a TTL expiration check is
less than that of a query or download of an item.

Mobility
The SACCS algorithm can handle the mobility of MUs as effectively as the
AS scheme. When an MU roams, it is in either the awake or sleep state.
In the sleep state, no extra work is required in SACCS or AS. Upon wake-
up, in SACCS an MU sets all its valid cache entries to the uncertain state.
If a roaming MU is awake, SACCS treats it as if it just woke up from the
sleep state; thus, consistency is guaranteed and all valid data objects are
retained. In AS, when a roaming MU wakes up, its first query will be sent
to the new MSS, which in turn retrieves the cache state from the previous
MSS. Two alternatives are possible in AS:

■ The MU notifies the MSS when it roams. In this case, the MSS
manages the handoff and transfers the cache state to the new MSS,
requiring no extra action for cache consistency maintenance.

■ The MU does not notify the MSS when it roams. A wake-up event
is forced in this case. The next query message to the MSS includes
a cache state request message that contains the previous MSS and
roaming time. The current MSS retrieves its state from the previous
MSS and sends the IRs of items (that were updated after the MU
roamed) to the requesting MU, thus maintaining cache consistency.

AU3833_C17.fm Page 420 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 421

Failure Handling

The SACCS algorithm treats an MU failure as a disconnection. When an
MU recovers from a failure, it sets all cached valid data entries into the
uncertain state. This situation is similar to wake-up from a sleep state.
The handling of server failures is also simple. When an MSS server is back
after a failure, it simply broadcasts a server-down message to all MUs,
which in turn set all valid data entries into the uncertain state. The MUs
in the sleep state miss the server-down message, but upon wake-up all
valid entries are automatically set to the uncertain state; thus, cache
consistency is maintained even if some cached data items are updated
during the MSS server failure. This is because the validation of any cached
data object must be refreshed or checked before its usage. Finally, all
valid data is retained after a server failure due to the fact that it is set to
the uncertain state, thus avoiding the download of extra data. Figure 17.3
shows the stale cache hit probability for various IR miss probabilities. The
results show that the stale cache hit probability is about 10 percent (21
percent) for an MU with 10 percent (20 percent) IR miss probability,
independent of the data object update frequency. This analytical model
assumes that an MU is always awake. If we consider the sleep–wake-up

Figure 17.3 Upper bound on stale cache hit probability versus IR miss probability.

AU3833_C17.fm Page 421 Tuesday, August 15, 2006 4:50 PM

422 ■ Mobile Middleware

event for an MU, then the stale hit probability is reduced because, when
the MU wakes up from the sleep state, all valid entries will be checked
prior to their usage. The stale cache hit probability for a frequently
disconnected MU is much smaller than the upper bound.

In a simulation of a system with 100 MUs, each MU has a sleep–wake-up
period randomly picked from the set of values (600, 1200, 1800, 2400, 3000)
seconds, the sleep ratio picked from (0.2, 0.35, 0.5, 0.65, 0.8), and the request
arrival rate picked from (1/20, 1/40, 1/60, 1/80, 1/100). Figure 17.4 shows
the simulation results for the stale cache hit probability of the system, which
is reduced significantly as compared to that of MUs that are always awake.
For example, when the IR miss probability is 10 percent the stale hit probability
is only about 4 percent, and for an IR miss probability of 20 percent the stale
hit probability is about 7 percent. To reduce the stale hit probability, we can
broadcast the IR multiple times when an object is updated earlier than its
TTL expiration. Figure 17.5 shows the stale cache hit probability for broad-
casting each IR twice if its update is earlier than the TTL expiration. The
results indicate that, if the IR miss probability is less than 40 percent, the stale
cache hit probability is less than 5 percent. These results demonstrate that
SACCS exhibits very small stale cache hit probability by broadcasting IR
multiple times when the update is earlier than the TTL expiration.

Figure 17.4 Simulation of stale cache hit probability versus IR miss probability.

AU3833_C17.fm Page 422 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 423

Performance Study

Wang et al. [44] proposed an analytical model to estimate the upper bound
on the stale cache hit probability. A two-state Markov chain model was
introduced to characterize the Rayleigh-fading, error-prone wireless channel
[12,30]. Simulation experiments were also conducted to evaluate SACCS in
terms of stale cache hit probability and average access delay under varying
MU speeds. Simulation results demonstrated that SACCS offers superior
performance over existing stateful and stateless algorithms in both single-
and multi-cell environments. For example, in a single-cell system with five
types of MU access and sleep–wake-up patterns and 10 types of data update
frequencies, the average query delay for SACCS is less than 50 percent of
the asynchronous stateful algorithm and less than 88 percent of the time
stamp scheme, a stateless scheme. In a seven-cell system, SACCS achieves
30 percent more gain in terms of average access delay, compared to AS
in a wide range of MU roaming frequencies [45,46].

In the following, we describe the performance of SACCS and compare
it with the TS and AS schemes. For meaningful comparison, we also use
an extended version of TS (called ETS) with some advanced features of
SACCS, including: (1) introduction of the uncertain state for an MU keeping
its valid data entry after long disconnection, (2) use of the ID-only state
in the MUC to trigger data object download, and (3) use of flag bits in
the SC to reduce the IR broadcast traffic. For SACCS, an IR of a data object
is broadcast twice if its update time is earlier than the TTL expiration to
reduce the stale hit probability. The other error recovery costs, such as
data retransmission, are ignored in all three algorithms. The TTL (lx) of a
data item is dynamically calculated as lx = (lx + linterval) × 0.5, where linterval

is the current update interval for the data.

Single-Cell Environment

We consider a single-cell system with one SC and multiple MUs of identical
cache size. The parameters are defined in Table 17.1. The request and
data update processes of each MU are assumed to follow Poisson distri-
butions. The sleep–wake-up process is modeled as a two-state Markov
chain. The state transition probability from awake to sleep state is α =
1/(1 – s)Tp, and that from sleep to awake state is β = 1/sTp.

In the simulations, we use two channels with bandwidth Wd and Wu

for downlink and uplink data transmission, respectively. In the uplink
channel, all messages are buffered as a first-in, first-out (FIFO) queue.
The downlink has two FIFO queues, one having higher priority than the
other. The IR messages are buffered in the higher priority queue. All other
messages are buffered in the lower priority queue; this queue can be

AU3833_C17.fm Page 423 Tuesday, August 15, 2006 4:50 PM

424 ■ Mobile Middleware

scheduled only if the higher priority queue is empty. All requests are
ignored when an MU is in the sleep state. When a requested data object
is available at an MUC, the query delay is counted as 0. We consider a
Zipf-like distribution for the MU access pattern [6,53] such that the access
probability (px) for data item dx is proportional to its popularity rank,
rank(x). More specifically, px = k/rank(x)z, where k is a normalization
constant and z is the Zipf coefficient.

The performance comparison is made in terms of two metrics, D and
UPQ, for three different cases. The average waiting time (i.e., half of the
IR broadcast period, L = 2) is removed from D for ETS to make a better
comparison with SACCS and AS in all figures. As shown, for the same
sleep–wake-up pattern, the stale cache hit probability is less than 5 percent
if the IR miss rate is smaller than 40 percent; hence, the stale hit probability
is not presented as a metric in the result. In each case, bu = bd = 20 bytes
for both SACCS and AS, and bu = bd = 10 bytes for TS and ETS. The
bandwidth is set as Wd = 200 Kbps and Wu = 1 Kbps. The other parameters
may be changed in some cases. Some default values are set as N = 10,000,
M = 100, C = 5 MBytes, z = 0.9, L = 20 sec, and wsz = 5.

In all cases, we consider a system with 10 types of data objects. The
data update rate (Tu), size, and percentage of each type over the total objects
are shown in Table 17.2. The chosen parameter values are based on the
understanding that a faster updated object usually has a smaller size. The
average data object size is about 25 Kbytes, as in Internet measurements [5].

Table 17.1 Parameter Definitions

M Number of MUs in the system
N Number of data objects in the system
C MU cache size (bytes)
λ Average arrival rate of request for an MU
Tu Average update time interval for a data object (seconds)
Tp MU sleep–wake-up cycle period (seconds)
s Ratio of sleep time to sleep–wake-up period of an MU
bo Data object size (bytes)
bu Uplink message size (bytes)
bd Downlink invalidation of or confirmation message size (bytes)
D Average query delay (seconds)
UPQ Uplink per query, defined as the total number of queries through

uplink channel divided by the total number of queries
L Invalidation broadcast period for TS scheme (seconds)
wsz Broadcast window size for TS scheme

AU3833_C17.fm Page 424 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 425

The MUs may differ from one another in terms of the sleep ratio (s),
sleep–wake-up period (Tp), and inter-arrival time (Tr) of requests. These
parameters for each MU can take values from the corresponding given
sets. Each value has an equal probability of being chosen for each MU.
The following sets of values are used: arrival rate (1/20, 1/40, 1/60, 1/80,
1/100), sleep ratio (0.2, 0.35, 0.5, 0.65, 0.8), and sleep–wake-up period
(600, 1200, 1800, 2400, 3000) seconds.

The query patterns for each MU are assumed to follow a Zipf-like
distribution. The access popularity rank of each MU is shifted by a random
number between 0 and 99. For example, an MU picks up a shift number
50, which means the MU has the highest access popularity for data object
numbered 51. The popularity decreases from 51 to N (the total number
of objects), then from 1 to 50. The data object 50 has the lowest access
popularity.

Effect of the Number of MUs

In this case, we study the impact of the novel features of SACCS on the
system performance as compared with TS, ETS, and AS. We also consider
three variants of SACSS as follows: (1) SACCS-nfg, with no flag bit set in
the SC; (2) SACCS-nid, with no ID in the MUC; and (3) SACCS-nuc, without
the uncertain state in the MUC. (Recall that ETS is an extension of TS
with all of the SACCS features.) Table 17.3 and Table 17.4 present the
average delay (D) and uplink per query (UPQ) values for a varying number
(M) of MUs. For all algorithms, D increases with M. The variants of SACCS
have much shorter D as compared with AS, TS, and ETS, especially when

Table 17.2 Ten Types of Data Objects in Database

Data Type

Parameter 1 2 3 4 5

Size (bytes) 1 K 5 K 10 K 15 K 20 K
Tu (sec) 50 100 200 400 800
Percentage (%) 5 5 10 10 20

Data Type

Parameter 6 7 8 9 10

Size (bytes) 25 K 30 K 35 K 40 K 45 K
Tu (sec) 1600 3200 6400 12,800 25,600
Percentage (%) 20 10 10 5 5

AU3833_C17.fm Page 425 Tuesday, August 15, 2006 4:50 PM

426 ■ Mobile Middleware

M > 100. Moreover, turning off the flag bit in SC has the least impact on
D. This is due to the fact that the IR message is very small compared to
the data object size. SACCS has about 10 percent less delay than SACCS-
nfg when M = 120. Turning off the ID-only or uncertain state makes
SACCS less scalable and leads to a larger D as M increases. This is because
the ID-only and uncertain states allow MUs to share the broadcast data
objects, thus saving the downlink bandwidth and, consequently, reducing
the access delay. The AS scheme has smaller D than TS, but it does not
scale as much as ETS, which allows strong cooperation among MUs
because ETS incorporates all three features of SACCS.

For SACCS-based algorithms and ETS, the UPQ metric decreases as M
increases, but, for AS and TS, it is almost constant. This is due to the
cooperation among MUs in SACCS-based algorithms and ETS. Note that
SACCS has the least UPQ, and turning off the ID produces the largest
increase in UPQ. Simulation results validate our claims — namely, that
the ID-only entry and uncertain state in the MUC are critical for SACCS,
and use of the flag bit in the SC reduces IR traffic. Because ETS performs
better than TS, in the following cases we will use ETS instead of TS.

Effect of Database Size

Figure 17.5 and Figure 17.6 present the simulation results showing the effects
of database size. For ETS, the average query waiting time (L/2 = 10 seconds)
is not counted. In other words, only the queue delay and transmission time
are counted for ETS in all cases. SACCS outperforms AS and ETS in both D
and UPQ metrics by avoiding unnecessary IR traffic while retaining all the
valid data objects in the MUCs. As expected, with an increased number of

Table 17.3 Average Access Delay (D) Versus Number of MUs

Average Access Delay (D) (sec)

Algorithm 20 MUs 40 MUs 60 MUs 80 MUs 100 MUs 120 MUs

SACCS 0.907 1.006 1.129 1.329 1.836 2.999

SACCS-nfg 0.912 1.021 1.153 1.372 1.932 3.293

SACCS-nid 0.968 1.129 1.346 1.736 3.128 13.400

SACCS-nuc 1.044 1.149 1.391 1.693 2.674 10.033

AS 0.969 1.139 1.376 1.824 3.619 18.429

TS 13.242 14.444 15.818 17.585 27.244 125.164

ETS 12.774 13.779 14.674 15.488 16.587 18.767

AU3833_C17.fm Page 426 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 427

data objects, the performance metrics also increase for all algorithms, but
SACCS has much smaller D than AS and ETS. Additionally, the average
gain (in terms of D) of SACCS over AS and ETS is more than 50 percent
throughout the range of database sizes. The UPQ of SACCS is slightly less
than that of ETS and about 6 percent less than that of AS.

Table 17.4 Uplink per Query (UPQ) Versus Number of MUs

Uplink per Query (UPQ)

Algorithm 20 MUs 40 MUs 60 MUs 80 MUs 100 MUs 120 MUs

SACCS 0.902 0.894 0.874 0.866 0.854 0.838

SACCS-nfg 0.904 0.895 0.876 0.868 0.856 0.839

SACCS-mid 0.927 0.926 0.927 0.925 0.920 0.917

SACCS-nuc 0.909 0.896 0.884 0.871 0.862 0.850

AS 0.900 0.904 0.906 0.910 0.909 0.901

TS 0.926 0.925 0.929 0.930 0.930 0.922

ETS 0.914 0.892 0.889 0.872 0.861 0.847

Figure 17.5 Average access delay versus number of data objects.

AU3833_C17.fm Page 427 Tuesday, August 15, 2006 4:50 PM

428 ■ Mobile Middleware

Effect of Zipf Coefficient

Here, we choose a small database with N = 1000 objects. This is because,
for a small Zipf coefficient, the access frequencies for different data objects
are very close to each other; hence, a large database size results in very
few cache hits, which make the comparison meaningless. Figure 17.7 and
Figure 17.8 show that SACCS has much smaller D than AS or ETS. The
average gain is more than 50 percent over the others. The AS scheme has
the largest UPQ, and SACCS has the lowest UPQ when z > 0.6 and slightly
more than ETS when z < 0.6. All three schemes perform better as z
increases because the data accesses are more concentrated for larger z,
thus increasing the cache hit ratio and then reducing access delay.

Multi-Cell Environment

Figure 17.9 shows a wireless system of seven hexagonal cells. Initially,
we assume each cell has an equal number of MUs (i.e., M = 7). An MU
roaming process is assumed to be Poisson with an average sojourn time
of Tr (seconds) in a cell. An MU from cell 1 has equal probability (1/6)
of roaming into any of its six neighbors. Similarly, an MU from any other
cell has 1/6 probability of roaming into cell 1 and 5/12 probability of

Figure 17.6 Average access delay versus Zipf coefficient.

AU3833_C17.fm Page 428 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 429

Figure 17.7 Uplink per query versus number of data objects.

Figure 17.8 Uplink per query versus Zipf coefficient.

AU3833_C17.fm Page 429 Tuesday, August 15, 2006 4:50 PM

430 ■ Mobile Middleware

roaming to another neighboring cell. This balances the number of MUs
in each cell having one uplink channel with bandwidth Wu (bps) and one
downlink channel with bandwidth Wd (bps).

Simulation results in the previous subsection demonstrated that the
performance of TS (or ETS) is much worse than that of SACCS and AS.
In addition, no good mobility handling scheme exists for TS. In the
following, we study the impact of mobility on SACCS and AS. As stated
earlier in this section, a roaming MU is treated as a forced wake-up event.
In SACCS, all valid cache entries are set to the uncertain state after the
roaming. In AS, the first query and roaming time of the MU are sent to
the MSS after the roaming. Here, we focus on the cache consistency
scheme in the multi-cell environment in our simulations, rather than the
in-session data transactions. In other words, when an MU roams from one
cell to another, all requests sent to the former MSS are dropped. The
values of the parameters are the same as shown in Table 17.2.

Effect of Average Sojourn Time

Figure 17.10 demonstrates that SACSS has much better performance in
terms of D (average query delay) for all ranges of average sojourn time.
Moreover, SACCS has a lower UPQ for long average sojourn times (e.g.,
800 seconds) but a higher UPQ than that of AS for very short average
sojourn times. In SACCS, all cache entries are set to the uncertain state
after each roaming. In AS, the first query after each roaming has to be
forwarded to the MSS to retrieve the cache state. For a very short average

Figure 17.9 Seven-cell configuration; each cell has one MSS.

AU3833_C17.fm Page 430 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 431

sojourn time, the uncertain entries in SACCS have very few chances to
be refreshed before their usage, thus resulting in a larger UPQ for SACCS
than for AS. For both SACCS and AS, the performance gets better as the
average sojourn time increases (roaming frequency decreases). The value
of D in SACCS decreases from 1.7 to 1.55 seconds. In AS, it decreases
from 2.5 to 2.1 seconds. This is due to fewer forced wake-up events and
hence fewer extra uplinks. These results show that the impact of mobility
is not significant in either scheme due to the fact that all valid data objects
are retained after roaming. In other words, the uncertain state is a powerful
method for SACCS to treat the disconnectedness and mobility of MUs.

Utility-Based Data Caching and Prefetching
In mobile computing environments, vital resources such as battery power
and wireless channel bandwidth impose significant challenges in ubiqui-
tous information access. Shen et al. [34,35] have developed a novel energy-
and bandwidth-efficient data caching mechanism called the GreedyDual
Least Utility (GD-LU), which enhances dynamic data availability while main-
taining consistency. This approach employs the SACCS scheme for con-
sistency between mobile devices and server. The analytical model

Figure 17.10 Average access delay versus MU average sojourn time.

AU3833_C17.fm Page 431 Tuesday, August 15, 2006 4:50 PM

432 ■ Mobile Middleware

considers different events such as data request, data update, connection–
disconnection, and mobility handoff that occur at mobile devices and
affect energy consumption due to data retrievals. Based on this model,
autility function is derived to evaluate each data item in terms of energy
savings. The GD-LU algorithm has two components: (1) a GD-LU cache
replacement algorithm that selects data items with the most utility to cache
in local memory, and (2) a GD-LU passive prefetch algorithm in which
mobile devices acquire data items from broadcast channels for future
requests based on the relative utility values of the items. Based on priority
queue management, these cache replacement and prefetching algorithms
achieve a time complexity of O(log N), where N is the number of data
items in the cache.

As depicted in Figure 17.13, four kinds of events in mobile devices
are related to data management: (1) data request, (2) data update (i.e.,
receiving data invalidation report), (3) disconnection, and (4) mobility
hand-off. Data update, disconnection, and hand-off events may occur zero
or more times between two consecutive request events. Each mobile
device retrieves the data from an original server through a unicast or
broadcast channel. Data consistency is maintained by mobile devices as
well as the original server.

Figure 17.11 Uplink per query versus MU average sojourn time.

AU3833_C17.fm Page 432 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 433

GreedyDual Least Utility Caching Mechanism

This section briefly describes the cache replacement and passive prefetch-
ing algorithms, followed by some performance results.

Cache Replacement Algorithm

The GreedyDual (GD) cache replacement is an efficient, online, optimal
algorithm [52] devised to deal with systems that exhibit heterogeneous
data retrieval costs. In essence, GD allows a bias to be applied to each
item in a cache so as to give higher priority to items that incur higher
retrieval costs. Enhanced GD algorithms have been deployed for Web

Figure 17.12 Mobile device events.

Figure 17.13 Power consumption with passive prefetching.

AU3833_C17.fm Page 433 Tuesday, August 15, 2006 4:50 PM

434 ■ Mobile Middleware

proxy caching [9] and multimedia stream caching [23]. Based on the GD
concept, Shen et al. [34,35] proposed the GreedyDual Least Utility, a cache
replacement algorithm for mobile devices in which each data item is
associated with a metadata that contains the necessary parameters of that
item. Because each metadata contains history information of the corre-
sponding data item, a queue is used to store the metadata of replaced
data items.

When an application requests a data item, the GD-LU algorithm first
checks the state of the item in the cache. If the data item is valid, it is
returned and the corresponding metadata is updated. If the item is in an
uncertain state, an uncertain message is sent to the server to check if the
data is valid or not since the last retrieval. In the event of a cache miss,
the message is sent to the server to retrieve the data. When the mobile
device receives the confirmation message, the data item is set to the certain
state and returned to the application. If the entire data item is received,
the GD-LU replacement algorithm chooses the victim data set to make
space to accommodate the incoming data.

Passive Prefetching Algorithm

The base station and the mobile devices can communicate through a
broadcast, multicast, or unicast channel. In multicast or broadcast, the
devices in one group can cooperatively retrieve data from the server, so
the GD-LU replacement can be expected to achieve a better performance
than in the case of unicast. Additionally, the data item requested by one
mobile device is available to all others in the data dissemination channel.
Although a device may not request the data item, prefetching the item
into the device cache may reduce future access latency. Acquiring the
item from the dissemination channel still costs energy at the mobile device;
therefore, blind prefetching of the data that was never requested may
result in a waste of energy and also replacement of some recently accessed
data, thus degrading the cache performance.

To avoid blind prefetching, the GD-LU algorithm uses a passive prefetching
scheme for cache management of mobile devices in multicast and broadcast
communications. A threshold (TH) is set at the cache to admit data
appearing at the broadcast or multicast channel. According to the GD-LU
replacement algorithm, a data item for which the metadata is kept in the
queue may have a higher probability to be requested again by the mobile
device, so this data item is considered to be a valuable candidate for
passive prefetching. To evaluate the future utility of an item at the mobile
device, the relative utility (RU) is defined as the ratio of the utility (Ui) of
data (di) to the utility of cached data. Thus,

AU3833_C17.fm Page 434 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 435

where C is the set of data items in the cache, and uj is the utility value
of cached data item j. In Shen et al. [35], a median utility threshold scheme
is proposed to achieve a near-optimal performance tradeoff between
access latency and power consumption. In passive prefetching, a mobile
device does not send an uplink request, thus reducing the burden on the
server while improving on cache performance at the device and saving
scarce wireless bandwidth.

Performance Evaluation

Extensive experiments show that the GD-LU cache replacement algorithm
achieves a greater than 10 percent energy saving than existing approaches.
The GD-LU passive prefetching algorithm achieves a near-optimal perfor-
mance tradeoff between access latency and energy consumption for
various cache sizes. In the following, we evaluate the performance of
passive prefetching under various system settings and environments. As
mentioned, a large threshold means few data items have to be prefetched.
When the threshold approaches zero, all data items in the downlink
channel are prefetched. Figure 17.13 shows the performance of the power
per query (PPQ) metrics against the prefetch threshold for various cache
sizes. As shown in Figure 17.13, the energy consumption is high when
the threshold is small. For TH ≤ 10–2, the energy consumption significantly
decreases as the threshold increases, but, if TH > 10–2, the energy con-
sumption is almost a constant. This is because more data items are
prefetched at lower threshold values and some of them are not useful to
users. For a large threshold, most of the prefetched items are useful,
leading to constant energy consumption.

In Figure 17.14, if we consider energy stretch (EST) as the main perfor-
mance metric for passive prefetching, we can get an optimal threshold
value. Because energy stretch factors into both energy consumption and
access latency, the optimal value of threshold can be considered as the best
point for the tradeoff between energy consumption and access latency. As
shown in Table 17.5, if we choose points with minimum EST, the energy
stretch performance of the median utility threshold setting (MU_EST)
achieves near-optimal performance under different cache sizes. This dem-
onstrates that the median relative utility threshold setting is a good heuristic
method to achieve the optimal performance tradeoff between energy con-
sumption and access latency.

RU d
U d

u u
i

i
c

i

j C j j C j

() = ()
() − ()∈ ∈MAX MIN

AU3833_C17.fm Page 435 Tuesday, August 15, 2006 4:50 PM

436 ■ Mobile Middleware

Conclusion
In this chapter, we discussed the main issues and candidate solutions for
mobile caching, replacement, prefetching, and consistency. We also pro-
posed a scalable and efficient scheme, called Scalable Asynchronous Cache
Consistency Scheme (SACCS), for mobile environments and evaluated its
performance. Unlike existing methods, SACCS provides weak cache con-
sistency under realistic environments for an MU with IR broadcast miss.
The basic idea involves the use of flag bits at the server cache (SC) and
mobile user cache (MUC), an identifier (ID) in MUC for each entry after
its invalidation, and an estimated time to live (TTL) for each cached entry,
as well as the rendering of all valid entries of MUC to the uncertain state
when an MU wakes up. Unlike stateful algorithms, SACCS maintains only
one flag bit for each data item in the mobile support station to determine
when to broadcast the IRs. Furthermore, unlike existing synchronous
stateless approaches, SACCS does not require the periodic broadcast of
IRs, thus significantly reducing IR messages sent through the downlink
broadcast channel. Comprehensive simulation results show that this
scheme exhibits significantly better performance than the TS and AS
schemes in both single- and multi-cell environments. An LRU-based cache

Figure 17.14 Energy stretch with passive prefetching.

AU3833_C17.fm Page 436 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 437

replacement algorithm is used in SACCS. It would be interesting to study
the impact of other replacement algorithms on its performance. Further
study is also needed for the MSS cache management algorithm and
effective transfer of cached data among MSSs in response to the roaming
of MUs among different MSSs.

This chapter also presented a utility model that investigates energy
conservation by deploying caches at mobile devices in a dynamic data
environment. Based on the utility function derived, a novel caching
mechanism was proposed, called GreedyDual Least Utility (GD-LU), which
combines a cache replacement algorithm with a passive prefetching
scheme to reduce energy consumption and access latency of various
applications such as Web caching at mobile devices. Future work includes
the analysis of GD-LU performance under multi-cell data dissemination
environments.

Acknowledgment
This work is supported by Texas Advanced Research Program grant 14-
771032 and U.S. National Science Foundation grants IIS-0326505 and STI
0129682.

References
[1] Acharya, S. et al., Broadcast disks: data management for asymmetric com-

munications environments, in Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, San Jose, CA, May, 1995, pp. 199–210.

[2] Acharya, S., Franklin, M., and Zdonik, S., Balancing push and pull for data
broadcast, in Proc. of the ACM SIGMOD Int. Conf. on Management of Data,
Tucson, AZ, May, 1997, pp. 183–194.

Table 17.5 Points of Minimal Energy

Cache
Size
(M)

MU PPQ
(104 uw/sec) MU HR MU ST

MU_EST
(104 uw/sec)

Min EST
(104 uw/sec)

2 1.20368 0.256328 6.39952 7.70297 7.7069
3 1.2057 0.271676 5.45998 6.5831 6.57452
4 1.21802 0.281747 4.99865 6.0845 6.12083
5 1.23306 0.289208 4.75577 5.86415 5.87524

AU3833_C17.fm Page 437 Tuesday, August 15, 2006 4:50 PM

438 ■ Mobile Middleware

[3] Aksoy, D. and Franklin, M., Scheduling for large scale on-demand data
broadcast, in Proc. IEEE INFOCOM’98, San Francisco, CA, March, 1998.

[4] Barbara, D. and Imielinksi, T., Sleeper and workaholics: caching strategy
in mobile environments, in Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, Minneapolis, MN, May, 1994, pp. 1–12.

[5] Barford, P. and Crovella, M., Generating representative web workloads for
network and server performance evaluation, in Proc. of ACM SIGMET-
RICS’98, Madison, WI, June, 1998.

[6] Breslau, L. et al., Web caching and Zipf-like distributions: evidence and
implications, in Proc. IEEE INFOCOM’99, New York, March, 1999, pp.
126–134.

[7] Cao, G., A scalable low-latency cache invalidation strategy for mobile
environments, in Proc. of ACM Int. Conf. on Mobile Computing and Net-
working, Seattle, WA, August, 2001, pp. 200–209.

[8] Cao, G., On improving the performance of cache invalidation in mobile
environments, Mobile Networks Appl., 7(4), 291–303, 2002.

[9] Cao, P. and Irani, S., Cost-aware WWW proxy caching algorithms, in Proc.
of the USENIX Symp. on Internet Technologies and Systems (USITS’97),
Monterey, CA, December, 1997, pp. 193–206.

[10] Cao, P. and Liu, C., Maintaining strong cache consistency in the World-Wide
Web, in Proc. of the 17th Int. Conf. on Distributed Computing Systems
(ICDCS’97), Baltimore, MD, May, 1997, pp. 12–21.

[11] Che, H., Tung, Y., and Wang, Z., Hierarchical web caching systems: mod-
eling, design, and experimental results, IEEE J. Selected Areas Comm., 20(7),
1305–1315, 2002.

[12] Chockalingam, A. et al., Performance of a wireless access protocol on
correlated Rayleigh-fading channels with capture, IEEE Trans. Comm., 46,
644–655, 1998.

[13] Fan, L., Cao, P., Lin, W., and Jacobson, Q., Web prefetching between low-
bandwidth clients and proxies: potential and performance, in Proc. ACM
SIGMETRICS’99, Atlanta, GA, May, 1999, pp. 178–187.

[14] Feeney, L. and Nilsson, M., Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment, in Proc.
IEEE INFOCOM’01, Anchorage, AK, April, 2001.

[15] Gitzenis, S. and Bambos, N., Power-controlled data prefetching/caching in
wireless packet networks, in Proc. IEEE INFOCOM’02, New York, June,
2002.

[16] Guo, Y., Pinotti, M.C., and Das, S.K., A new hybrid broadcast scheduling
algorithm for asymmetric communication systems, ACM Mobile Comput.
Comm. Rev., 5(3), 39–54, 2001.

[17] Hu, Q. and Lee, D.K., Cache algorithms based on adaptive invalidation
reports for mobile environments, Cluster Comput., 1(1), 39–50, 1998.

[18] Jing, J. et al., Bit-sequences: an adaptive cache invalidation method in
mobile client/server environments, Mobile Networks Appl., 2(2), 115–127,
1997.

[19] Jiang, Z. and Kleinrock, L., An adaptive network prefetch scheme, IEEE J.
Selected Areas Comm., 16(3), 358–369, 1998.

AU3833_C17.fm Page 438 Tuesday, August 15, 2006 4:50 PM

Data Caching and Consistency in Wireless Mobile Systems ■ 439

[20] Kahol, A. et al., A strategy to manage cache consistency in a distributed
mobile wireless environment, IEEE Trans. Parallel Distributed Syst., 12(7),
686–700, 2001.

[21] Khanna, S. and Liberatore, V., On broadcast disk paging, SIAM J. Comput.,
29(5), 1688–1702, 2000.

[22] Li, D. and Cheriton, R., Scalable web caching of frequently updated objects
using reliable multicast, in Proc. of the USENIX Symp. on Internet Technol-
ogies and Systems (USITS’99), Boulder, CO, October, 1999, pp. 1–12.

[23] Lau, W.H.O., Kumar, M., and Venkatesh, S., A cache-based mobility-aware
scheme for real-time continuous media delivery in wireless networks, in
Proc. IEEE Int. Conf. on Multimedia and Expo (ICME’01), Tokyo, Japan,
August, 2001.

[24] Lin, C.W. and Lee, D.L., Adaptive data delivery in wireless communication
environments, in Proc. IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’00), Taipei, Taiwan, April, 2000, pp. 444–452.

[25] Liu, G.Y. and McGuire, G.Q., A mobility-aware dynamic database caching
scheme for wireless mobile computing and communications, Distributed
Parallel Databases, 4(5), 271–288, 1996.

[26] Lau, W., Kumar, M., and Venkatesh, S., A cache-based mobility-aware
scheme for real-time continuous media delivery in wireless networks, in
Proc. IEEE Int. Conf. on Multimedia and Expo (ICME’01), Tokyo, Japan,
August, 2001.

[27] Nuggehalli, P. et al., Energy efficient caching strategies in ad hoc wireless
networks, in Proc. ACM MobiHoc, Annapolis, MD, June, 2003, pp. 25–34.

[28] Pottie, G.J. and Kaiser, W.J., Wireless integrated network sensor, Comm.
ACM, 43(5), 551–558, 2000.

[29] Saxena, N., Pinotti, M.C., Basu, K., and Das, S.K., A new hybrid scheduling
framework for asymmetric wireless environments with request repetition,
in Proc. Int. Symp. on Modeling and Optimization in Mobile, Ad-Hoc, and
Wireless Networks (WiOpt’05), Trento, Italy, April, 2005, pp. 368–376.

[30] Rappaport, T.S., Wireless Communications: Principles and Practice, Prentice
Hall, Englewood Cliffs, NJ, 1996.

[31] Rizzo, L. and Vicisano, L., Replacement policies for a proxy cache, IEEE/ACM
Trans. Networking, 8, 158–170, 2000.

[32] Shen, H., Das, S.K., Kumar, M., and Wang, Z., Cooperative caching with
optimal radius in hybrid wireless networks, in Proc. Int. IFIP Networking
Conf., 3042, 841–853, 2004.

[34] Shen, H., Kumar, M., Das, S.K., and Wang, Z., Energy-efficient caching and
prefetching with data consistency in mobile distributed systems, in Proc. of
the IEEE Int. Conf. on Parallel and Distributed Processing Symp. (IPDPS’04),
Santa Fe, NM, April, 2004.

[35] Shen, H., Kumar, M., Das, S.K., and Wang, A., Energy-efficient data caching
and prefetching for mobile devices based on utility, Mobile Networks Appl.,
10, 475–486, 2005 (special issue on mobile services).

[36] Shim, J., Scheuermann, P., and Vingralek, R., Proxy cache design: algorithms,
implementation and performance, IEEE Trans. Knowledge Data Eng., 11(4),
549–562, 1999.

AU3833_C17.fm Page 439 Tuesday, August 15, 2006 4:50 PM

440 ■ Mobile Middleware

[37] Stathatos, K., Roussoppulos, N., and Baras, J.S., Adaptive data broadcast in
hybrid networks, in Proc. 23rd Int. Conf. on Very Large Data Bases
(VLDB’97), Athens, Greece, August, 1997, pp. 326–335.

[38] Su, C. and Tassiulas, L., Joint broadcast scheduling and user’s cache man-
agement for efficient information delivery, Wireless Networks, 6(4), 279–288,
2000.

[39] Tan, K., Cai, J., and Ooi, B., An evaluation of cache invalidation strategies
in wireless environments, IEEE Trans. Parallel Distributed Syst., 12(8),
789–807, 2001.

[40] Vaidya, N., and Hameed, S., Scheduling data broadcast in asymmetric
communication environments, Wireless Networks, 5(3), 171–182, 1999.

[41] Wong, J.W., Broadcast delivery, Proc. IEEE, 76(12), 1566–1577, 1988.
[42] Wooster, R. and Abraams, M., Proxy caching that estimates edge load delays,

in Proc. Int. World Wide Web Conf., Santa Clara, CA, April, 1997.
[43] Wang, Z., Das, S.K., Che, H., and Kumar, M., SACCS: scalable asynchronous

cache consistency scheme for mobile environments, in Proc. Int. Workshop
on Mobile Wireless Networks (MWN’03), Quebec, Canada, August, 2003, pp.
797–802.

[44] Wang, Z., Das, S.K., Che, H., and Kumar, M., A scalable asynchronous cache
consistency scheme (SACCS) for mobile environments, IEEE Trans. Parallel
Distributed Syst., 15(11), 983–995, 2004.

[45] Wang, Z., Das, S.K., Kumar, M., and Shen, H., Dynamic cache consistency
schemes for wireless cellular networks, IEEE Trans. Wireless Comm. (in
press).

[46] Wang, Z., Kumar, M., Das, S.K., and Shen, H., Investigation of cache main-
tenance strategies for multi-cell environments, in Proc. of ACM Int. Conf. on
Mobile Data Management (MDM’03), Melbourne, Australia, January, 2003.

[47] Wu, K.L., Yu, P.S., and Chen, M.S., Energy-efficient caching for wireless
mobile computing, in Proc. of the 12th Int. Conf. on Data Engineering
(ICDE’96), New Orleans, LA, February, 1996, pp. 336–345.

[48] Xu, J. et al., Performance evaluation of an optimal cache replacement policy
for wireless data dissemination, IEEE Trans. Knowledge Data Eng., 16(1),
125–139, 2004.

[49] Yu, H., Breslau, L., and Shenker, S., A scalable web cache consistency
architecture, in Proc. ACM SIGCOMM’99, Cambridge, MA, August, 1999, pp.
163–174.

[50] Yuen, J.C., Chan, E., Lam, K., and Leung, H.W., Cache invalidation scheme
for mobile computing systems with real-time data, SIGMOD Record, Decem-
ber, 2000.

[51] Yin, L. et al., Power-aware prefetch in mobile environments, in Proc. of the
IEEE Int. Conf. on Distributed Computing Systems (ICDCS’02), Vienna, Aus-
tria, July, 2002, pp. 571–578.

[52] Young, N.E., The K-server dual and loose competitiveness for paging,
Algorithmica, 11(6), 525–541, 1994.

[53] Zhang, J., Izmailov, R., Reininger, D., and Ott, M., Web cache framework:
analytical models and beyond, in Proc. IEEE Workshop on Internet Appli-
cations (WIAPP’99), San Jose, CA, July, 1999, pp. 132–141.

AU3833_C17.fm Page 440 Tuesday, August 15, 2006 4:50 PM

441

Chapter 18

Code-on-Demand
and Code Adaptation

for Mobile Computing

Francis C.M. Lau, Nalini Belaramani,
Vivien W.M. Kwan, Pauline P.L. Siu,
Wai-Kwong Wing, and Cho-Li Wang

CONTENTS

Introduction... 442
The Ultimate Thin Client.. 442
Ubiquity of Connectivity .. 443
The Where, What, and When of Computations .. 443
The Future ... 444

Small Codes for Small Devices.. 445
A New Notion of Application.. 445
Facets of Functionalities ... 446
Infinitely and Runtime Composable Software .. 448

Functionality Adaptation .. 450
Context Sensitivity... 450
Portfolio of Functionalities ... 450
Facet Architecture Based on Ontology ... 453

AU3833_C18.fm Page 441 Tuesday, August 15, 2006 5:25 PM

442

■

Mobile Middleware

Design and Implementation .. 454
The Sparkle Project... 454
Universal Browser... 456

Related Work... 458
Economics of Code-on-Demand and Adaptation....................................... 460

Conclusion... 461
Acknowledgments... 462
References ... 462

Introduction

The Ultimate Thin Client

The ultimate mobile device should be thin, lean, and mean. Being thin, it
should be physically small enough to fit in a person’s pocket. Being lean,
it should have only those functionalities that do just what the user needs
to do. Being mean, it is so affordable that one could replace the device
without hesitation — to the extent that purchasing such mobile devices is
as natural and convenient as buying a pack of beer [1]. But, is a thin, lean,
mean device sufficient for all the computing needs of a mobile user in the
future? The answer depends on what we will do as users with mobile
devices in the future. Advancements in technologies continue to give birth
to more and more powerful mobile devices. Today, we are witnessing the
proliferation of very powerful handhelds blending everything (3G phone,
digital camera, PDA, media player, massive storage) in a single device, and
the trend seems to be that these devices will evolve to become more
lightweight, less expensive, and stronger in communication.

In terms of computational power, however, we do not foresee the
closing of the gap that separates the mobile devices from the PC. The
latter has always to meet up with the rapidly growing software algorithm
complexity, whereas mobile devices would tend more to target applications
at the lower end of the complexity spectrum. If mobile devices were to
be used in place of the PC, even with the anticipated many-folds increase
in power within a short time, software performance would improve only
along a plateau. The mobile device, after all, is bound by its form factor
and limited power; therefore, the wish that one day the mobile device will
replace the PC as the ultimate personal computing device appears to be
unrealistic. But, what will a thin, lean, mean device be good for?

Mobile computing has created new usage paradigms. Tasks in the
mobile computing world can be much more dynamic than those running
on a desktop because of the changing context of the mobile user. Much
research on location and context awareness is now taking place which is
less relevant in the non-mobile computing world. The need for a mobile

AU3833_C18.fm Page 442 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

443

device to accommodate many dynamic tasks implies that the device must
come preinstalled with all kinds of software, which seems to go against
the thin, lean, mean principle.

Ubiquity of Connectivity

Advances in communication are coming fast and strong. In a recent fourth-
generation (4G) mobile communications field test, a maximum down-
stream data rate of 300 Mbps was recorded for a receiver in a car running
at 30 km/hr and 800 m to 1 km away from the base station. Before 4G
can be deployed, we are already enjoying the abundance of WiFi hotspots
as well as the most free form of wireless communication via 3G. An
emerging wireless technology is WiMax, which provides metropolitan area
network connectivity at speeds of up to 75 Mbps and covering a practical
distance of three to five miles. In a few years’ time, the wireless network
infrastructure will become completely mature, offering an abundance of
bandwidth and better coverage to connect any mobile device anywhere
in the worldwide network.

Communication is probably the only parameter in the configuration of
a mobile device that is not constrained when compared to a PC. In fact,
there are many reasons for making a mobile device more powerful in
terms of communication capability than a desktop PC. If that is the case
one day and if the devices are backed by a mature advanced wireless
infrastructure, then wireless devices will become very much an integral
part of the global network, and many of the current network-based
computing paradigms such as client–server and peer-to-peer computing
will become applicable to wireless devices

.

The Where, What, and When of Computations

When user tasks are dynamic and diversified, it is not feasible to determine

a priori

 which software to install in a mobile device. Ideally, new function-

alities should be made available to the device when they are needed or
they should be dynamically composed. Four design paradigms are related
to this requirement: client–server, mobile agent, code-on-demand [2], and
remote evaluation. In the client–server paradigm, the client asks a server
implementing the service to access some resources accessible by the server.
When someone implements the service, we say that the service holds the
know-how. Remote evaluation is similar to the client–server paradigm,
but this time it is the client that holds the know-how that will be sent to
the server to carry out the service. In the mobile agent paradigm, com-
puting may be carried out by any device in a network. In the code-on-

AU3833_C18.fm Page 443 Tuesday, August 15, 2006 5:25 PM

444

■

Mobile Middleware

demand paradigm, a client device gets the know-how from a peer or a
server and carries out the computation by itself.

In terms of capability, a mobile device may function between two
extremes. In one extreme, it acts as a remote display terminal; in the other
extreme, it functions as a fully capable computational device. Remote
display software, such as virtual network computing (VNC) [3], terminal
services client, and g-cluster [4], require a stable network connection
between the client and the server. A stable connection, however, is not
always available in a mobile environment. When wired or wireless network
connections improve, it is likely that the improvement is on the bandwidth
but not the latency. For a user not to perceive any delay, real-time
applications should have a responsive latency no longer than 50 ms [5],
which is not easily achievable in a device–server operation mode where
the connection could be multi-hop. When user commands and user screens
are sent back and forth between the device and the server, an application
would not be responsive enough.

The other extreme is to perform all functions in the device. In this
role, the device is preinstalled with all the applications and data required
to handle all the user tasks. The problem is that it might not be feasible
to determine the kinds of software to install

a priori

. Another problem is
that the device might not have enough room to accommodate the entire
collection of software.

An alternative exists in between the two extremes, which is that the
mobile device would collaborate with some server or peers to carry out a
user task. This would be more suitable in the mobile environment where
user tasks are dynamic and device functionalities are composed dynamically.

A mobile device should be able to continue working when it is
disconnected from the network; therefore, client–server, mobile agent, and
remote evaluation are not suitable for carrying out user tasks in the mobile
environment. Code-on-demand is better because the program code is
downloaded and executed in the mobile device. This paradigm would be
more tolerant to various issues such as performance bottlenecks, fault
tolerance, availability, service customization, user interface responsiveness,
and device mobility; therefore, in the context of mobile computing, code-
on-demand paradigms are suitable for carrying out dynamic and diversified
user tasks.

The Future

Much of the potential of mobile devices has yet to be exploited. Current
mobile applications tend to be simple. Comparing the desktop version
and personal digital assistant (PDA) version of a word processor, for
example, we can see that many of the functionalities are not available on

AU3833_C18.fm Page 444 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

445

the PDA. Besides the small form factor, which makes maneuvering difficult
and hence some of functionalities not appropriate, there is no reason why
feature-rich software has to be out of reach for PDAs in the future. We
believe that even the most complex actions could be carried out on mobile
devices by improving the input/output modality and redesigning the
software engineering approach.

So, what can the thin, lean, mean device do for us in the future? In
the not so distant future, it will probably play the role of a full-function
computing device, but a lesser device than the PC. Software or software
components can be installed on the fly from a nearby server wirelessly
upon request, which can be discarded after use. For this to be feasible,
the software must itself be suitably lean so downloading and installing it
on demand will be efficient and the software will not take up more
resources than is commensurate with the user’s needs. Also, lean software
will naturally be more affordable, or mean. In the longer term, as the
wireless infrastructures around us become sufficiently powerful and stable,
it can be envisioned that mobile devices will offload more or even all of
their computations to the servers, and the devices will be reduced to very
thin wireless remote display terminals. Users then will be free of all the
trouble of managing a computing system at home or in the pocket. This
chapter addresses the near-term solution of code-on-demand.

Small Codes for Small Devices

A New Notion of Application

Traditionally, applications are built as huge monolithic chunks. These
applications provide lots of functionalities, yet they are too big to fit into
the small devices that are now prevalent in the mobile environment. The
current solution is to develop other versions of an application that would
fit, and such versions would most likely be downgraded, meaning that
some of the functionalities would not be available in these versions. If we
compare a Word processor in a PC with the PDA counterpart, we would
see that the functionalities of the PC version are overkill, and the PDA
version appears to be much deprived. Our solution to the problem is to
build an application not as a monolithic chunk but out of components
that implement the various functionalities required by the application. The
PC version and the PDA version could in fact draw from the same collection
of components, and as such the idea of “version” would become blurred.

A prototype to demonstrate our idea, called

Sparkle

, was introduced
to support dynamic component composition and dynamic application
reconfiguration. Sparkle is a component-based middleware for mobile
computing. It allows an application to be dynamically composed at runtime

AU3833_C18.fm Page 445 Tuesday, August 15, 2006 5:25 PM

446

■

Mobile Middleware

and reconfigured according to changes in the context. In Sparkle, appli-
cations are built from small functional units, called

facets

. These functional
components can be implemented in different ways to fulfill the same
functionality, and one of them would be chosen at runtime based on
certain contextual information. When an application runs, suitable func-
tional units are downloaded from the network from a peer or from a
server to the device. After the application has finished using the compo-
nents, they may be cached or discarded. When a facet requires another
facet, the latter would also be selected dynamically based on the context.
Whenever the context changes because of changes in the environment,
new functional components may be brought in to adapt to the environ-
ment. When an application is moved from one device to another, com-
ponents of same functionality but using different implementations may be
installed in the new device. Although the implementations are different,
the same application will run and resume from the previous execution
state. This is achieved by a mechanism that supports state migration of
facets [6].

The dynamic composition and configuration of an application accord-
ing to the context is a kind of code adaptation. An application consists
also of a user interface (UI) and data or

contents

. By imposing a clear
separation between them, adaptation can be applied to the code, the UI,
and the data individually. The focus of the Sparkle project is on the
adaptation of code. UI adaptation is temporarily handled via what is called
a

container

. Contents can be considered a kind of data that is viewable.
We have done some preliminary work in contents adaptation, and some
of the techniques should be applicable to UI adaptation [7].

Facets of Functionalities

In Sparkle, applications are built from small functional units called

facets

.
The main purpose of the facets is to support dynamic component com-
position. Separation of functionality from data and the user interface is
the fundamental philosophy behind the facet model. Applications allow
users to carry out certain tasks, and they provide certain functionalities
to carry out these tasks. These functionalities are embodied in facets.

Functionality is a single well-defined task in an application. The task
could be as small as a matrix multiplication or as large as detecting
meaningful features of an image. It is mainly up to the programmer to
decide what the constituent functionalities of an application are or how
large they are. Given a set of inputs, the functionality determines what
changes are made and the outputs attained. Essentially, functionality can
be seen as a contract defining what should be done. The contract includes:

AU3833_C18.fm Page 446 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

447

■

The set of input parameters (i.e., the number and types of the
inputs)

■

The set of output parameters (i.e., the number and types of the
outputs)

■

A description of what is carried out (i.e., valid outputs for a set of
inputs)

■

Preconditions, if any (e.g., the ranges of input parameters supported)

■

Post-conditions, if any (e.g., which values are nullified and error
conditions)

■

Side-effects, if any (e.g., I/O or changes to state in the container)

The contract defines the functionality to be achieved but not how it should
be achieved. Implementations can use different algorithms, each with
different performance characteristics or resource requirements. As long as
they abide with the contract, they can be considered to be achieving the
same functionality. As a consequence, functionality defines the interface
for interaction and is independent of the implementation. To make things
simpler, every functionality is assigned a globally unique identifier, the
functionality ID (funcID); thus, a functionality ID uniquely identifies a
contract.

Facets are entities that implement the functionalities. They contain code
components that follow the contract of their corresponding functionality.
In our prototype, for simplicity, a facet implements only a single func-
tionality; in other words, a facet cannot provide two or more functionalities.
In future extensions, a facet may implement multiple functionalities that
are related. This would achieve a better scale of economy; also, from the
user’s perspectiv, related functionalities should be loaded together anyway.

Given this limitation and the nature of functionalities, a facet has only
one single programming entry point and is stateless. A facet being stateless
means that a facet is independent of any previous invocations. When the
execution of a facet is finished, it is either discarded or reset so it does
not affect the execution of the next invocation of the facet. These features
make facets dispensable — a facet can be discarded from the runtime as
soon as it is no longer needed. To keep some application states, an
internal data structure called the

container

 is used.
In short, the container is used to bring up an interface for user

interaction, which in turn will request the appropriate functionalities based
on the input of the user. A container provides a place where facets can
run. Each container is associated with a particular application and contains
a set of functionalities that the application can offer. These functionalities
are stored in the container as facet specifications. When a particular
functionality is required, the corresponding facet specification is sent as
a request to the proxy located in a server or a peer. It has a storage area

AU3833_C18.fm Page 447 Tuesday, August 15, 2006 5:25 PM

448

■

Mobile Middleware

to store the execution state and application data. By having such a storage
area, facets may communicate with each other to obtain the application
data they need. It also enables process migration when a user switches
to another device.

Our approach differs from conventional distributed systems in which
objects are used as a unifying abstraction for both data and functionality.
Because functionality is bound with the specific data implementation on
which it can act, the object paradigm may not be a good fit for a mobile
or pervasive environment [8–10]. Our design separates the data from the
functionality so it is possible to use different implementations of the
functionality in different devices to operate on the data. It has also been
argued that application functionality changes more frequently than data
implementation and data layout; therefore, it is preferable to store and
communicate passive data rather than active objects. Because a clean
separation between data and functionality allows them to be managed
and to evolve independently, we have separated data from implementa-
tion. We use the container to store the data.

Facets provide pure functionality. They take in some input and carry
out their functionality, resulting in the corresponding outputs. The user
interface is just a means to access functionality. It is highly dependent on
external factors such as display capabilities of the device and user pref-
erences, rather than on the application or task at hand. Different UIs can
be used to access the same functionality or task. In fact, the UI changes
more often than the essential functionality of an application. Because the
UI changes from device to device and version to version, it is desirable
to keep it separate from functionality. As they are not bound to each
other, this separation allows developers to change the UI without changing
the functionality and

vice versa

, thus attaining a more intuitive and flexible
software model.

Infinitely and Runtime Composable Software

A special branch of code adaptation is called

functionality adaptation

.
Functionality adaptation involves changing the way the task is carried out
to respond to changes. It selects different code implementations for
execution depending on the context; for example, if a device does not
have sufficient computation power, an application can execute another
implementation of encryption (such as DES instead of RSA).

Dynamic component composition provides a flexible mechanism for
achieving functionality adaptation. Functionality adaptation is made pos-
sible by the following: First, the component model allows functionalities
to be composed at runtime and discarded after use. Second, the context
manager in a client device maintains information about the physical

AU3833_C18.fm Page 448 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

449

resource, network connectivity, and context of devices. Third, proxies
match requests with suitable facets for clients to execute. A proxy is
executed in a peer or a server to help the mobile device choose a suitable
facet. They are the main active entities for adaptation. Functionality adap-
tation, in this approach, is achieved by choosing the appropriate component
among different ones that have the same functionality.

Developers need only specify which functionalities they require in

an
application and provide different versions of them. The adaptation mech-
anism is transparent to the programmer. Which component gets picked
depends on the system and the matching mechanism of the proxy. In
addition, because applications are linked by functionalities, rather than
specific components, as new technologies or devices emerge developers
need only write a newer version of the affected functionalities. The proxies
will automatically match these components under the appropriate condi-
tions. Rewriting or reinstallation of the entire program is not required.
Because the components are thrown away at runtime after use, even the
biggest programs can be used in a small device, depending on the size
and runtime behavior of each component.

During the course of application execution, a facet may call upon
other facets to help achieve its functionality. To allow dynamic and flexible
adaptation, facet providers do not specify the location of a requesting
facet; instead, they specify the functionalities that the facet requires for
dynamic binding. These functionalities required by the facet are referred
to as its

facet dependencies

 (or simply

dependencies

). Facet dependencies,
therefore, represent a local point of view of the facet. The dependencies
on which a facet depends can be represented as a facet dependency tree,
as shown in Figure 18.1a. Facet dependency trees are only one level, as
a facet knows only the dependencies it requires.

At runtime, when a facet requires another functionality for execution,
the client sends a request for a facet with the required functionality. The
returned facet, in turn, can have its own dependencies to help achieve

Figure 18.1 (a) Facet dependency tree, (b) facet execution tree.

AU3833_C18.fm Page 449 Tuesday, August 15, 2006 5:25 PM

450

■

Mobile Middleware

its functionality. These dependencies are used as requests for the actual
facets only when they are required for execution. If we draw lines between
a facet and the actual facets it calls at runtime, we come up with a

facet
execution tree

. This facet execution tree cannot be determined statically,
but can only be known at runtime. This is because different facets may
be selected under different contexts. The facet tree shows the relationship
between a facet and all the facets required at runtime to achieve its
specified functionality, thus representing a global view of the facet. Figure
18.1b shows an example of a facet execution tree.

Functionality Adaptation

Context Sensitivity

In Sparkle, applications are able to take advantage of the context of the
user, including location, the device being used, time, preferences, and
nearby services, to provide customized and relevant services to the user;
for example, a facet for printing will be sent to a mobile device when there
is a printer nearby. Such functionality is not present in the mobile device
before the device approaches the printer; furthermore, applications may
adapt to the capabilities of the printer. For the same printing functionality,
different facets may be implemented, one for monochrome output and one
for color. In this way, different facets may be sent to the mobile device,
depending on the color of the source image. Our system is adaptive to four
types of contextual change. The first type is a change in

device resources

;
these include factors internal to the device, such as the working memory
available, processing power, and energy. The second type is a change in

network properties

; these are changes in the network characteristics, such
as the network bandwidth, network type, and protocol. The third type is
a change in the

environment

, which includes factors in the surrounding
environment such as location, entities available nearby, and time. The last
type is a change in

user preferences

; these are specific choices that the user
has made in relation to the execution of a particular application.

Portfolio of Functionalities

Software is commonly distributed to users, at least conceptually, as mono-
lithic applications with a fixed set of functionalities. The major drawback
of this model is the rigid boundary placed on the accessibility of func-
tionalities. A functionality can only be accessed in the context of the
application with which it is associated and not by another application.
We therefore introduce the concept of personalized software. Instead of

AU3833_C18.fm Page 450 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

451

applications being the focal point of software development and distribu-
tion, software is treated as functionalities associated with and used by a
particular user. Users have their own portfolios of functionalities. Each
user decides which of the functionalities are needed and puts them in
the portfolio. When they are in the portfolio, these functionalities are
always accessible, in a sense blurring the application boundary.

The actual implementation of these functionalities is distributed at run-
time. The functionalities are composed from various components that are
brought in at runtime and discarded after they have been used. The system
essentially plays the role of a corkboard, pinning up components when
they are being used and unpinning them when they are no longer required.

The advantage of such a model is its flexibility. Functionalities are not
confined to being invoked only under the realms of certain applications.
The model facilitates incorporation of new functionalities, updates to
current functionalities, and adaptation to new environments. The revenue
model is more accommodating to the specific needs of different users. In
addition, this component-based model allows for more code reusability
and easier maintenance of the code base for developers.

Sparkle is a demonstration of the feasibility of such a software distri-
bution scheme. The basic foundation of Sparkle is facets, the software
components used to build the functionalities. These functionalities are
categorized according to the functions or services they provide to users.
Users can choose which functionalities to put into their portfolios from
among various categories. For example, a user who is viewing an image
decides to make changes to it. If a mobile device has not specified any
image editing tool, the user should be able to go through a categorization
process to add the tool to the portfolio and use it immediately. The image
can then be edited regardless of the application context in which the
image was opened. Such a scenario blurs application boundaries to a
certain extent. Functions and tools are not bounded to a certain applica-
tion, which enhances the productivity of users. In addition, it is possible
for the underlying system to have some intelligence or rules to predict
what functions may be required in the near future based on information
regarding the functions the user has called recently. These functions can
either be displayed to the user or brought in beforehand to enhance the
user experience.

Even though the portfolio may contain several functionalities, these
functionalities are brought in only as they are required. The functions are
brought in from the network, loaded, linked to the system, executed,
unloaded, and discarded at runtime. At start-up, different users receive
different sets of components according to their portfolios. During com-
puting, functionalities are brought in as they are required. Different
versions of the same functionality may be suitable for different resource

AU3833_C18.fm Page 451 Tuesday, August 15, 2006 5:25 PM

452

■

Mobile Middleware

environments. The version brought in would be the one most suitable for
the current execution environment of the user. When the functionality has
been used, it is discarded from the system.

Discarding a function from the system is not equivalent to removing
that function from the portfolio. The portfolio of the user contains the list
of functionalities that the user can access, rather than the actual compo-
nents by which they are implemented. When a function is discarded from
the system, it can be brought in again from the network, when the user
again invokes that function. All of this is transparent to the user.

Basically, this takes modular programming a step further. Software not
only is made of separate components but is distributed separately, as well.
Programmers create components, each of which is small and carries out
one thing well. They can create multiple versions to carry out the same
functionality within different resource scenarios. Composers can leverage
the different components to achieve a certain functionality or to provide
a group of functionalities. Users receive the components only when they
are needed.

The trend toward mobile and pervasive computing is unstoppable.
Users today are employing such devices as PDAs and mobile phones to
carry out computing. These devices are heterogeneous, limited in resources,
and connected to different networks, such as a wireless local area network
(WLAN) or a Bluetooth

®

ad hoc

 network. Because of its modular design
and the fact that components are brought in only when they are needed,
this model requires a smaller working memory than larger, monolithic
applications. Only components that are suitable for the current computing
environment are brought in, in essence achieving runtime compositional
adaptation. Being able to discard unnecessary functionalities is important
for resource usage efficiency as it frees up resources for currently executing
functionalities or to bring in other functionalities. In effect, small devices
can run a group of functionalities that they normally would not be able
to run if those functionalities had been distributed among applications in
a monolithic fashion.

Such a software architecture provides a convenient basis for context-
dependent applications. When users move from one place to another (say,
into a shopping mall), their devices may have to incorporate functionalities
that are required to operate in that particular environment. For example,
new functions could be incorporated that allow users to securely book
tickets for the cinema as soon as they enter the mall or perhaps to remotely
order food in a restaurant to pick up later. To do so may require devices
to use proprietary protocols to talk to the shopping mall server. This
protocol can be incorporated temporarily as functionalities provided by
the shopping mall server and discarded and removed from the portfolio
when users leave the mall.

AU3833_C18.fm Page 452 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

453

Facet Architecture Based on Ontology

Facet functionalities are specified by ontology, which has been intro-
duced for bridging the knowledge gaps between different domains [11].
Ontology represents the semantics of different concepts. It provides a
formal, explicit specification of a shared conceptualization of a domain
that can be communicated between people and heterogeneous applica-
tion systems [12]. Ontologies for their applications are defined in the
stationary environment; thus, devices can only communicate using the
same ontologies. Sparkle separates data and functionality. To describe
the functionality, we use ontology to prescribe the semantics of the user-
perceivable task description and provide a formal, explicit specification
of shared conceptualization.

A facet consists of two entities: the

code segment

 and the

shadow

. The
code segment is the part where the executable code lies and has only
one publicly callable method to be called by others. This code, when
executed, performs a predefined specific functionality. A facet is described
by metadata, or a shadow, which is used to identify a facet. A shadow
contains the properties of a facet, such as the vendor, version, the
functionality it performs, the resources it requires to provide the function-
ality, and the functionalities that the facet requires for execution. It includes
information about the facet, such as the function a facet provides, input
and output specifications, vendor and versioning information, resource
requirements (e.g., device memory), functionally capability (e.g., rendering
monochrome images), functionality dependencies (any other facets this
facet would invoke), and the charging scheme for the use of facets. It is
represented by an ontology-based task description language extended
from the Web ontology language [13] and thus is human and machine
readable. Figure 18.2 shows an example of a shadow. In the example,
FlipVertical is a functionality of a facet, and all facet vendors implementing
this functionality use this name in their shadows.

After facet functionality is described and the facet is located in a proxy,
the proxy can use a two-phase adaptation technique to choose which
facet should be sent to the client after the client has specified some
functionality requirements. Clients do not have to rely on the servers for
executing the services. The aim of the two-phase adaptation is to adap-
tively select a best-suited facet from all the available facets in a proxy.
The first phase, the

filtering phase

, filters the facets that satisfy the require-
ments of the client. These requirements include, at the very least, the
functionality required by the client and the amount of resources available
in the client device for executing the specified functionality. All the facets
filtered by the first phase have satisfied the client’s requirements and are
eligible for further processing. The second phase, the

selection phase

,

AU3833_C18.fm Page 453 Tuesday, August 15, 2006 5:25 PM

454

■

Mobile Middleware

selects a facet that best suits the device user. This decision is based on
user preferences and other execution contexts of the client. The facet
resulting from the two-phase adaptation is considered functionality adapted
and is returned to the client.

The three key techniques in the two-phase adaptation are functionality

filtering, resource filtering, and context selection. Functionality filtering
ensures that facets achieve the functionality requirement of the client,
resource filtering ensures that the functionality provided can be completed
in the device, and context selection selects a facet that best suits the user
and other execution contexts of the client. To allow more flexibility for
the proxy system to choose among the facets, requests are specified in
terms of queries instead of the exact locations of facets; furthermore, the
proxy system maintains personal proxy caches for the users so facets can
be better adapted to the device user. With all these supports, a good
amount of adaptability can be provided by the proxy system.

Design and Implementation

The Sparkle Project

Sparkle aims to build an infrastructure that is suitable for pervasive
computing environments. The infrastructure is based on the existing
Internet infrastructure, with adaptability, mobility support, and peer-to-
peer cooperation as its main features. The adaptability feature addresses
the problem of computing with heterogeneous devices in different
execution contexts. Mobility support addresses the problem of continuing

Figure 18.2 A shadow example.

AU3833_C18.fm Page 454 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

455

the current session in another device or at another location. Peer-to-peer
cooperation avoids single points of server failure by allowing facets to
be downloaded from nearby peers. To support pervasive computing,
service implementation takes the form of a facet, the mobile code
component. Facets are downloaded on-demand to the client devices,
executed, and then discarded. In fact, when other facets are required in
the course of program execution, they will be downloaded incrementally.
The constituent code components of a service are not fixed at compile
time but are dynamically bound to form a service. Facets are mainly
downloaded from proxies running in peers or servers. Facet servers,
clients, and the intermediary proxy system are the three main components
of Sparkle. Each of them plays a different role in the infrastructure. The
following is a brief introduction; for further details, please refer to
Belaramani et al. [14].

Facet servers are places for storing facets. They are similar to existing
Web servers in that both are used as main storage servers for keeping
up-to-date originals. They are used by the proxy servers for retrieving
updated information. There is no restriction on the number of copies of
a facet that can be placed on these servers. A facet can be placed on
more than one facet server, meaning that facets are not unique among
the facet servers. Facets can be added to or removed from the facet servers
by facet providers. These updates are usually quite frequent in terms of
software maintenance. To keep track of the updates made to the facets
being stored, each facet server must keep a log of updates of the facets
they store locally.

The clients are mainly mobile devices such as PDAs or mobile phones,
although the computing model could be applied to non-mobile devices.
Each of these computing devices has the capability of on-demand down-
loading, executing, and discarding the facets after use. This allows services
of any sophistication to be executed on the client device. Whenever a
service is required, a request is sent to a nearby proxy for a suitable facet.
The request consists of a description of the required service, information
about the resources in the client device that can be used for executing
the required service, and some user information. A facet satisfying the
request is then returned for execution. During execution, other subservices
might be required to help provide the service. Requests are then sent to
the proxies when these subservices are required at runtime. This enables
an unlimited chain of application functionalities.

The proxy system is a main component between the clients and the
facet servers. It could be a mobile device peer or a dedicated server.
Facets are cached in the proxies for fast retrieval and to reduce the
workload of the facet servers. Client requests for facets are therefore sent
to the proxy system instead of directly to the facet servers. Apart from

AU3833_C18.fm Page 455 Tuesday, August 15, 2006 5:25 PM

456

■

Mobile Middleware

being a caching device, the proxy system also acts as a recommender. It
makes decisions on behalf of the clients and returns a suitable facet for
each request according to the runtime execution contexts of the clients.
Because it chooses suitable facets for the client, the proxy system is
intelligent; thus, the proxy system is the key enabler in Sparkle.

As noted previously, to allow more flexibility for the proxy system to
choose among the facets, requests are specified in terms of queries instead
of exact locations of facets; furthermore, the proxy system maintains
personal proxy caches for users so facets can be better adapted to
individual device users. With all these supports, the proxy system provides
greater adaptability. Also, the proxy system supports user mobility by
cooperating with lightweight mobile agent systems in the client devices
[15]. With this support, the same user in a different location is treated
equally, independent of the location and without affecting the computing
experience; therefore, it is possible to continue ongoing services in another
device with suitable facets being adapted. The proxy system also prepares
the personal proxy cache to be used with suitable facets in support of
user mobility.

Universal Browser

The Universal Browser is not a traditional Web browser. It is a browser
designed for mobile environments. It invokes any function that a user
wants on demand. It is a special graphical user interface (GUI) imple-
mented in Sparkle. This special GUI allows users to dynamically retrieve
the functionalities they want. As shown in Figure 18.3, a user can use the
Universal Browser to browse Web pages, play games, and edit images.
These functionalities are retrieved from the network as needed by the
user; in fact, at start-up, the device shows an empty GUI. Moreover, these
functionalities can be thrown away after use to reclaim resources that may
be required by other functionalities. The Universal Browser, because it is
supported by Sparkle, can help a user to find the suitable facet (i.e.,
functionality) that matches the device and discard it when the facet is no
longer needed.

Furthermore, the Universal Browser is a context-aware and extensible
application. The context awareness of the Universal Browser is totally
different from that of state management. The former is at the application
level, and the latter is at the system level. “Context awareness” here refers
to the downloading of different functionalities under different contexts;
for example, facets that have higher memory demands are downloaded
to browsers in notebook PCs because they can render an image more
quickly than memory-thrifty ones.

AU3833_C18.fm Page 456 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing

■

457

Referring to the image viewer application, called SparkleView (showing
the puppy in Figure 18.3), if the facet is cached on the device, the user
interface will indicate to the user that the functionality is available locally
and the background color of the icon changes to dark blue. If the facet
is discarded by the underlying system, the UI will indicate it to the user
accordingly, and the background color of the icon will change to light
blue. SparkleView was run on a Pentium III Mobile CPU, 1133 MHz, with
384 MB RAM and Windows XP operating system, a configuration that is
not much more powerful than some of the latest PDAs. The proxy had
the following configuration: Pentium 4, 2.26 GHz PC with 512 MB RAM
and Fedora Core 2 operating system. The underlying Sparkle system is
roughly 650 kB. The SparkleView application is 115 kB, the majority of
which is accounted for by the user interface, and the facets are 44 kB in
total. Figure 18.4 shows how long it takes to run different functionalities,
including the time to bring in the required facets. It can be seen that
Gaussian blur takes a very long time. This can be attributed to the fact
that Gaussian blur has two levels of dependencies. It calls at least three
other facets on every execution; thus, network delay to bring in the facets
has an impact. Also, Gaussian blur involves significantly more mathemat-
ical calculations than the other functionalities so it takes more time.

Figure 18.3 Screenshot of the Universal Browser.

AU3833_C18.fm Page 457 Tuesday, August 15, 2006 5:25 PM

458 ■ Mobile Middleware

Related Work
Several types of component-based middleware exist. Not many of them,
however, consider resource constraints in mobile devices. It seems that
the code-on-demand design paradigm to handle dynamic functionality
composition is rare. In addition, most of them do not consider multiple
implementations of the same functionalities [8]. Multiple implementations
are necessary for different contexts arising from such factors as device
capabilities and user preferences; for example, a user wanting to catch
just a quick glimpse of an image would prefer a faster image rendering
component that trades image quality. Even if multiple implementations
are allowed, some of them require the implementations to be programmed
as a single component [16]. This results in other parts of a component
being superfluous and occupying memory resources. For some systems,
adaptation is application specific [17,18], whereas we employ a systemwide
adaptation scheme in our middleware.

The Code Collection Project [19] shares our belief that software com-
ponents for resource-constrained devices should be easily plugged and
unplugged. They proposed an approach to optimize the use of memory
via a garbage-collection-like algorithm. The algorithm unloads (i.e., dis-
cards) methods that are not likely to be needed in the near future. Sparkle,
on the other hand, focuses more on the loading aspect, offering many
choices for a requested functionality, and some components could be
loaded automatically due to their dependencies.

Figure 18.4 Invocation of different functionalities.

AU3833_C18.fm Page 458 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing ■ 459

The Open Services Gateway Initiative (OSGi) Alliance Service Platform
[20] is similar to our facet architecture in that it utilizes software compo-
nents called bundles, which are selected and downloaded to Internet
appliances on demand at runtime. Bundles may also be removed after
use. Although this platform has a bundle specification similar to our facet
shadow, the specification is generally not migratable; this leaves the job
of selection to the home server of a bundle. In contrast, our model
facilitates a proxy-based, code-on-demand paradigm for better runtime
performance. This enables a peer-to-peer collaboration for sharing facets;
furthermore, our facet selection scheme is more flexible. In the OSGi
platform, bundles are selected based on a service ID and a predefined
selection preference, whereas our facets are selected based on ontological
specifications and the range of functionalities facets are capable of pro-
viding.

A distributed OS rather than a middleware, 2K [17] supports reconfig-
uration of component systems at runtime. Similar to our model, when a
component is required in 2K the component and its prerequisite compo-
nents are brought in from the component repository, which may be located
locally or in the network. After that, the resource manager is contacted to
allocate the required resources for the components. Developers provide
specialized components, called configurator objects, to handle dynamic
reconfiguration. If any changes occur to the runtime resources, the resource
manager will request the component configurator to make an adaptation.
The adaptation policy, however, is application specific. Every application
implements its own adaptation policy, which places some burden on the
application programmers. The facet model instead employs a systemwide
adaptation policy that provides a better picture of the resource requirements
of all of the running applications. This allows programmers to focus on
application logic rather than adaptation details, making it easier to develop
mobile applications.

Aspect-oriented programming (AOP) [21] is a programming technique
designed to ease the development and maintenance of software. It facilitates
common or similar program code pieces for cross-cutting concerns being
neatly applied in appropriate places in different programs. For example,
to optimize memory used when processing an image via a series of image
filters, the filter codes typically are fused together into a compound code
segment. In AOP, each filter is specified individually and then fused by a
program called the aspect weaver, which generates the tangled code.
Maintenance and management become easier because individual image
filters are addressed, not the tangled code. Sparkle is similar in the sense
that it fuses small components into tangled code. It is different from AOP,
however, in that the fusion is not limited to components implementing
cross-cutting concerns and that the actual choices of components to be

AU3833_C18.fm Page 459 Tuesday, August 15, 2006 5:25 PM

460 ■ Mobile Middleware

fused depend on contextual information. AOP complements other program-
ming paradigms; for example, the component model of AspectCCM [22]
utilizes AOP. Sparkle could benefit from AOP in the same manner.

Plug-in, as popularized by Web browser software, is a code-on-demand
paradigm where new functionalities are downloaded on the fly and then
executed. The fundamental difference between our model and plug-in is
that, in plug-in, the entire program binary for the plug-in is downloaded
before execution occurs, whereas our facets are downloaded one by one
incrementally, and a facet can be extremely fine grained. Although Sparkle
may cache or prefetch facets for better performance, it does not need to
download the entire functionality at once. Also, facets may be discarded
after use to reclaim resources. Many plug-in implementations, unfortu-
nately, require manual uninstallation; furthermore, plug-in does not con-
sider adaptation, whereas Sparkle considers code adaptation based on
contextual changes.

No-touch deployment [23] and ClickOnce [24] are other code-on-
demand design paradigms where program assemblies are downloaded
incrementally on demand. Similar to plug-ins, the exact locations of the
assemblies are predetermined beforehand, so the dynamic adaptation of
functionalities based on contexts may not be feasible.

Economics of Code-on-Demand and Adaptation

Under Sparkle, users only request what they need. They receive in return
an application with just the right amount of functionality, and extra
functions may be added later. In fact, the concept of an application is
blurred, as there is no limit on the number of functions that could be
added to an application. Because only the required functionalities are
downloaded, users can pay for only what they actually use. This is
fundamentally different from the current off-the-shelf software model,
where users pay for a large software package but end up using only a
small portion of its functionalities. Runtime-installable components could
come from any vendors as long as they are compliant with the corre-
sponding facet contracts. To perform a user task, the user does not need
to be concerned with which vendor provides the functionality; rather,
facets are retrieved based on the user context. Facet providers, therefore,
would compete with each other to create facets offering the greatest value
for the money.

If software development adopts the Sparkle model, the software indus-
try may benefit in a number of ways. First, every vendor has an equal
opportunity to reach potential customers. This is because the customers
would be looking for suitable facets, not necessarily a particular vendor.
Facets are based on open standards (the contracts and specifications),

AU3833_C18.fm Page 460 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing ■ 461

thus creating an open market for any vendor capable of producing the
required facets. An actual running application would likely be composed
of facets by a multitude of different vendors. As applications are dynam-
ically composed from facets, the same collection of facets could probably
be used to produce, at a very late stage of the production cycle or even
at runtime, different versions of an application suiting different computing
platforms or devices. This differs from the current practice where different
versions of an application are predominantly standalone and self-contained
pieces of software; any sharing of code would have occurred in the very
early stages, and later it becomes difficult to add new functionalities to
all of the versions. This has a bearing on how vendors roll out new, killer
functions to attract additional revenue. These functions have to be bundled
in a new version of the software or adopt the plug-in model; either way,
it is not the best solution in terms of cost and user convenience. Finally,
with a Sparkle-like architecture, Internet services providers may take on
a new business model that includes hosting a software repository for facets.

Conclusion
Sparkle is a code-on-demand adaptive mobile middleware that allows
feature-rich applications to run on resource-constrained devices. This is
achieved by introducing a new programming model where functionalities
are made up of small functional units (facets). In the current implemen-
tation, each facet performs exactly one functionality and may be down-
loaded on demand and discarded after use. Because of this easy come-
and-go mechanism for facets, an application may have an unlimited
number of functionalities over time. This fundamentally changes the
concept of conventional mobile applications that have bounded features.
In addition, facets are not statically linked to an application. Facets are
chosen based on various contexts, such as the environmental context or
device context, during the course of application execution. This means
that different facets may be downloaded for execution in different con-
textual situations. This makes Sparkle adaptive.

Sparkle is an experiment for proving a concept and inevitably has not
touched upon many related important issues that would have to be
addressed in a real design, including security and UI adaptation. Security
could be a problem when we mix and match facets from diverse sources
or vendors. A misbehaving facet could be most damaging if it has been
adopted by a large number of applications. Some applications, such as
computer games, have a complex UI; whether or not they can be com-
posed from facets and how to synthesize the resulting dynamic UI are
interesting questions for future research.

AU3833_C18.fm Page 461 Tuesday, August 15, 2006 5:25 PM

462 ■ Mobile Middleware

Acknowledgments
This research is supported in part by two CERG grants (HKU7146/04E
and HKU7140/04E) from the Hong Kong government.

References
[1] Weiser, M., Computer Science Challenges of the Next 10 Years,

http://www.ubiq.com/hypertext/weiser/UbiHome.html.
[2] Fuggetta, A. and Vigna, G., Understanding code mobility, IEEE Trans.

Software Eng., 24(5), 342–361, 1998.
[3] RealVNC, http://www.realvnc.com/.
[4] g-cluster, http://www.g-cluster.com.
[5] Hardenberg, C.V. and Bérard, F., Bare-hand human-computer interaction,

in Proc. of the 2001 Workshop on Perceptive User Interfaces, ACM Press,
New York, 2001, pp. 1–8.

[6] Siu, P.P.L., Wang, C.L., and Lau, F.C.M., Context-aware state management for
ubiquitous applications, in Proc. of Int. Conf. on Embedded and Ubiquitous
Computing (EUC-04), Aizu, Fukushima, August, 2004, pp. 776–785.

[7] Lum, W.Y. and Lau, F.C.M., User-centric content negotiation for effective
adaptation service in mobile computing, IEEE Trans. Software Eng., 29(12),
1100–1111, 2003.

[8] Grimm, R., Anderson, T., Bershad, B., and Wetherall, D., A system archi-
tecture for pervasive computing, in Proc. of the 9th ACM SIGOPS European
Workshop, Kolding, Denmark, September, 2000, pp. 177–182.

[9] Grimm, R., Davis, J., Hendrickson, B., Lemar, E., MacBeth, A. et al., Systems
directions for pervasive computing, in Proc. of the 8th Workshop on Hot
Topics in Operating Systems (HotOS), Schloss Elmau, Germany, May, 2001,
pp. 128–132.

[10] Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S. et al., Programming
for Pervasive Computing Environments, Technical Report UW-CSE 01-06-01,
Department of Computer Science and Engineering, University of Washing-
ton, Seattle, 2001.

[11] Heflin, J., Web Ontology Language (OWL) Use Cases and Requirements, World
Wide Web Consortium (W3C), http://www.w3.org/TR/2004/REC-webont-req-
20040210/.

[12] Gruber, T.R., A translation approach to portable ontology specifications,
Knowledge Acquisition, 5(2), 199–220, 1993.

[13] Web Ontology Language, World Wide Web Consortium (W3C), http://
www.w3.org/2004/OWL.

[14] Belaramani, N.M., Chow, Y., Kwan, V.W.M., Wang, C.L., and Lau, F.C.M., A
component-based software architecture for pervasive computing, in Intelligent
Virtual World: Technologies and Applications in Distributed Virtual Environ-
ments, World Scientific, Singapore, 2004, pp. 191–212.

AU3833_C18.fm Page 462 Tuesday, August 15, 2006 5:25 PM

Code-on-Demand and Code Adaptation for Mobile Computing ■ 463

[15] Chow, Y., Zhu, W.Z., Wang, C.L., and Lau, F.C.M., The state-on-demand
execution for adaptive component-based mobile agent systems, in Proc. of
the Tenth Int. Conf. on Parallel and Distributed Systems (ICPADS’04), Newport
Beach, CA, July, 2004, pp. 46–53.

[16] Yau, S. and Karim, F., Component customization for object-oriented distrib-
uted real-time software development, in Proc. of the 3rd IEEE Int. Symp. on
Object-Oriented Real-Time Distributed Computing, Newport Beach, CA,
March, 2000, pp. 156–163.

[17] Kon, F., Campbell, R.H., Mickunas, M.D., Nahrstedt, K., and Ballesteros, F.J.,
2K: a distributed operating system for dynamic heterogeneous environ-
ments, in Proc. of the 9th IEEE Int. Symp. on High-Performance Distributed
Computing (HPDC’00), Pittsburgh, PA, August, 2000, pp. 201–210.

[18] Litiu, R. and Prakash, A., DACIA: a mobile component framework for
building adaptive distributed applications, Operating Syst. Rev., 35(2), 31–42,
2001.

[19] Popa, L., Athanasiu, I., Raiciu, C., and Pandey, R., and Teodorescu, R., Using
code collection to support large applications on mobile devices, in Proc. of
the 10th Int. Conf. on Mobile Computing and Networking (MOBICOM’04),
Philadelphia, PA, September 26–October 1, 2004, pp. 16–29.

[20] Open Services Gateway Initiative, http://www.osgi.org.
[21] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V. et al.,

Aspect-oriented programming, in Proc. of the 11th European Conf. for Object-
Oriented Programming (ECOOP’97), Jyvëskylë, Finland, June, 1997, pp.
220–242.

[22] Clemente, P.J., Hernández, J., Murillo, J.M., Pérez, M.A., and Sánchez, F.,
Component-based system design and composition: an aspect-oriented
approach, in Component-Based Software Development: Case Studies, Lau,
K.K., Ed., World Scientific, Singapore, 2004, pp. 109–128.

[23] No-Touch Deployment in the .NET Framework, http://msdn.microsoft. com/
library/default.asp?url=/library/en-us/dv_vstechart/html/vbtchNo-Touch
DeploymentInNETFramework.asp.

[24] Noyes, B., ClickOnce: deploy and update your smart client projects using
a central server, MSDN Mag., May, 2004.

AU3833_C18.fm Page 463 Tuesday, August 15, 2006 5:25 PM

AU3833_C18.fm Page 464 Tuesday, August 15, 2006 5:25 PM

465

Chapter 19

Session Maintenance

Oliver Haase

CONTENTS

Introduction... 466
Service Discovery.. 467

Centralized Service Lookup.. 467
Peer-to-Peer Lookup ... 468

Mid-Session Mobility... 469
Device Mobility ... 470

Mobile IP.. 470
Mechanisms on Top of Simple IP ... 471

User Mobility ... 472
Sample Middleware Approaches ... 475

Common Object Request Broker Architecture ... 475
Architecture for Location-Independent CORBA Environments 477
Java Remote Method Invocation.. 478
Jini .. 478
Session Initiation Protocol.. 480
Mobile-Agent-Based Ubiquitous Multimedia Middleware.......................... 482
Remote Desktop.. 482

Discussion.. 483
References ... 485

AU3833_C19.fm Page 465 Wednesday, August 16, 2006 11:37 AM

466

■

Mobile Middleware

Introduction

The term

session

 is used in many different contexts and on many different
layers; however, in general, it stands for the

temporal usage of a service

.
Services can range from simple, local services, such as file access, to
complex, distributed services, such as video conferencing and the like. In
this chapter, we primarily have rather complex, distributed services in mind,
even though the following considerations are not restricted to one particular
class of services. A typical service session consists of three phases:

■

Session establishment

■

Session continuity

■

Session termination

A mobile environment poses significant challenges for session estab-
lishment and continuity. For one, service discovery in a dynamic environ-
ment, where both servers and clients can be mobile, is a difficult task. A
client that has roamed into a new region requires a means to look up
local services (e.g., print and directory services) but also restaurant guides,
the local weather forecast, and other location-based services. Roaming
services, on the other hand, require a means to advertise their service to
the local community. In both directions, the rendezvous between services
and clients requires commonly agreed-upon communication channels,
protocols, and procedures. As far as session continuity is concerned,
changing network attachment points, temporary connection losses, and
varying network characteristics, especially over the air interface, constitute
the biggest obstacles. A good solution will shield service users from
temporary service degradation to the greatest extent possible. Another
significant challenge is to provide session continuity when nomadic users
switch from one device to another and expect their ongoing sessions to
be seamlessly handed off to the new device. Such a switch of devices
may be beneficial in terms of CPU power, I/O capabilities, and network
bandwidth. Ideally, a transferred session would adapt its resource con-
sumption to the new situation.

It is rather obvious that, under these circumstances, session mainte-
nance (i.e., the combination of session establishment, session continuity,
and session termination) is a very complex task in a mobile environment.
Without adequate middleware support, both service providers and service
users would have to spend an enormous amount of time and effort to
solve the same set of problems over and over again. With adequate
middleware support, software developers can focus on application-specific
problems and in the best case develop a sophisticated, distributed service
as if it was a centralized service.

AU3833_C19.fm Page 466 Wednesday, August 16, 2006 11:37 AM

Session Maintenance

■

467

Service Discovery

The dynamic discovery of a service in an environment where both servers
and clients can be mobile requires a

lookup

 (or

directory

) service that sits
in the middle between the two parties and helps them find each other.
The resulting service — that is, the capability of the server and client to
move

before

 the service session is set up — is referred to as

pre-session
mobility

. In general terms, we have two categories of lookup services:
the more classical category of centralized lookup services and the more
recent category of decentralized, peer-to-peer-based lookup services.

Centralized Service Lookup

As mentioned earlier, the key idea of this class of approaches is to establish
a central entity that services register with and that clients query to find
services. The name of the central entity varies with the specific middleware
approach. Typical names are

lookup service

,

service registry

, or

(service)
directory

. A service is said to

register

 with the lookup service, or to

publish

itself. A client

queries

 or

interrogates

 the lookup service, or it

discovers

 a
service from the lookup service. When the client has discovered a service,
it can

use

 it, or

bind

 to it. In any instance, the general procedures flow
is depicted in Figure 19.1.

The introduction of a centralized lookup service reduces the problem
of finding one or several appropriate services to a problem of finding one
dedicated service (i.e., the lookup service itself). A service has to find the

Figure 19.1 General scheme for centralized service lookup.

1

3

2

1

2

3

Lookup
service

Client Server

= Publish/register

= Lookup/query/interrogate

= Bind/use

AU3833_C19.fm Page 467 Wednesday, August 16, 2006 11:37 AM

468

■

Mobile Middleware

lookup service to be able to register itself with it, and a client has to find
the lookup service to be able to query it for services. This initial boot-
strapping process can be approached in several different ways:

■

The lookup service can periodically broadcast its existence within
a limited network range. These broadcasts are also called

adver-
tisements

 or

beacons

. Technically, the advertisement can be done
via Ethernet broadcast (within the same IP subnet) or IP multicast
with a small time-to-live (TTL) value so as to avoid flooding the
entire network.

■

A client (as well as a service that seeks to register itself with the
lookup service) can send out a range-limited broadcast and ask
for a lookup service. The broadcast can again be realized as an
Ethernet broadcast or IP multicast.

■

Clients and servers can learn the address of a location service
through out-of-band means. A hosting network can, for example,
publish its various server addresses on a Web page and users can
manually configure their devices, or the server addresses in the
hosting network can be learned through the Dynamic Host Con-
figuration Protocol (DHCP) [1] when the IP connection has been
established.

Peer-to-Peer Lookup

Peer-to-peer networks are a rather novel concept dealing with the problem
of finding services in a highly dynamic environment where nodes join
and leave frequently. In the pure sense, a peer-to-peer network is a
completely decentralized network of identical nodes each of which can
act both as a server (providing services to other peer nodes) and as a
client (using the services of other peer nodes). In practice, the first peer-
to-peer networks chiefly provided file sharing functionality, in particular
for music. From a more general point of view, however, the essential
services of a peer-to-peer network are the storage of (

key

,

value

) pairs
on its nodes and a decentralized lookup service that can locate such a
pair for a given key. Obviously, if

keys

 represent service descriptions and

values

 represent the actual services, then peer-to-peer technology can be
employed to resolve the service–client rendezvous problem discussed in
this section.

Early peer-to-peer networks flooded location requests into the entire
network or parts of it, until the desired (

key

,

value

) pair was found;
however, because flooding does not scale for large and very large net-
works, many recent peer-to-peer approaches use

distributed hash tables

(DHTs) for storage and retrieval of (

key

,

value

) pairs [2,3]. For DHT storage,

AU3833_C19.fm Page 468 Wednesday, August 16, 2006 11:37 AM

Session Maintenance

■

469

the core idea is to hash nodes as well as keys onto the same value range
and to store a (

key

,

value

) pair on the first node whose hash value is
greater than the hash value of the key. DHT lookup is based on a
distributed version of binary search. For this purpose, each node maintains

log N

 references to other nodes, where

N

 is the number of nodes in the
network. One reference points to a node that is half the value range apart,
another one to a node that is a quarter of the value range apart, another
one to a node that is an eighth of the value range apart, and so on. When
a node searches for a key, it determines the closest node with a hash
value less than the hash of the key from its list of references, and delegates
the search to that node. This technique guarantees an upper bound of

O

(log

N

) for a key search (measured in delegation steps) and yields an
average search effort of (log

N

)/2 delegation steps. Figure 19.2 illustrates
storage and key lookup in a DHT-based peer-to-peer network.

Mid-Session Mobility

As the name suggests, mid-session mobility denotes mobility at the time
of an ongoing session. This mobility can occur on two different layers:
(1) A user can move with his or her device from one network or one
access point to another, or (2) a user can switch from one device to
another, potentially more powerful device. The former kind of mobility

Figure 19.2 Storage and lookup in a distributed hash table.

(a) DHT storage: A peer-to-peer
network with three nodes whose
hash values are 0, 1, and 3. A key
with a hash of 1 is stored on node 1,
one with a hash of 2 on node 3, and
one with a hash of 6 on node 0.

(b) DHT key lookup: A peer-to-peer
network with five nodes whose hash
values are 0, 1, 3, 4, and 6. Node 0
maintains references to nodes 1, 3, and
4. When node 0 is asked for key6, it will
refer the request to node 4, because it is
the node closest to key 6.

AU3833_C19.fm Page 469 Wednesday, August 16, 2006 11:37 AM

470

■

Mobile Middleware

is

device mobility

, and the latter is

user

mobility

 (or

personal mobility

).
The challenge in situations of mid-session mobility is to seamlessly hand
off the ongoing sessions from one network attachment point or from one
device to another. This feature is referred to as

session continuity

.

Device Mobility

The Internet Protocol (IP) not only is the predominant communication
mechanism between PCs but also, at an ever-increasing rate, is taking
over the role of traditional circuit-switched technology for communica-
tion between land-line phones as well as cellphones; consequently, we
focus our discussion about device mobility entirely on IP. With standard,
so-called simple IP, every time a device moves from one access network
to another and re-establishes IP connectivity it gets a new IP address
assigned. To maintain ongoing sessions, either each application has to
be able to react to changes on the IP communication layer, or a
middleware layer has to sit in between the communication and appli-
cation layers to shield the latter one from changes in the former one.
Because shielding applications from changing IP addresses is such a
common and important task, the Internet community has defined a
mechanism for mobility support that is integrated right into the IP stack,
so applications that use this Mobile IP stack are kept agnostic of any
underlying changes [4,5]. Support of Mobile IP is optional in IP version
4 (IPv4) and mandatory in IPv6. Because Mobile IP is an essential
technology in virtually any mobile environment, it is explained in some
detail in the next section.

Mobile IP

In a nutshell, Mobile IP works as follows:

■

The mobile host gets assigned a static IP address (

home address

),
which rarely changes.

■

As long as the mobile host stays in its

home network

, regular IP
routing takes place and the mobile host receives packets to its
address as usual.

■

When the mobile host moves to a visited network, it contacts the
local foreign agent, which assigns a temporary IP address (

care-
of address

) to it.

■

The care-of address is sent to the home agent in the home network
of the mobile node.

AU3833_C19.fm Page 470 Wednesday, August 16, 2006 11:37 AM

Session Maintenance

■

471

■

When a

 corresponding node

 sends an IP packet to the home
address of the mobile node, the home agent intercepts it and
tunnels it (i.e., packs the entire IP packet into a new, enclosing
packet) to the foreign agent in the visited network, using the
temporary care-of address of the mobile node.

■

The foreign agent unpacks the tunneled packet and passes on the
original IP packet to the mobile node.

The above mechanism for routing an IP packet to a foreign network is
illustrated in Figure 19.3. Outgoing traffic (i.e., IP packets sent from the
mobile node to any corresponding node) is still routed directly between
the two nodes, bypassing both foreign and home agents.

Mechanisms on Top of Simple IP

Obviously, the challenge with changing IP addresses is that other nodes
in the network, the services of which the mobile device uses or to which
the mobile device is providing service, have to be informed of the new
IP address so they do not lose their ability to communicate with the mobile
device. For services following a stateless, simple request/response para-
digm, a changed IP address is only a problem if the change occurs between
the sending of a request and the receipt of a response. Simple Web services
fall into that category, because the Hypertext Transfer Protocol (HTTP) is
a simple request/response protocol; however, especially for e-commerce
applications, even Web services often implement a session concept on top
of HTTP, in which case a change of the client’s IP address breaks the

Figure 19.3 Routing of IP packets to a visited domain with Mobile IP.

AU3833_C19.fm Page 471 Wednesday, August 16, 2006 11:37 AM

472

■

Mobile Middleware

application layer session. For communication services such as Voice-over-
IP, video telephony, and messaging, changing IP addresses always pose
an issue because the ability to send (signaling) messages without interrup-
tion to the communication peer is a key part of the service.

A middleware component that resolves the above-mentioned issues
with device mobility has to sit between the communication (IP) stack and
the application on all parties that are involved in the service session. The
steps the middleware must complete include the following:

■

When the mobile device gets a new IP address assigned, the
middleware has to be notified. (Alternatively, the middleware can
periodically poll for changes in the device’s IP address; polling, of
course, is more resource consuming than event-based notification
and should only be used if the communication stack has no
notification mechanism.)

■

As soon as the middleware learns about the new IP address, it
sends a notification message to all communication peers.

■

The middleware on the peer node receives the notification with
the new IP address, and directs all future communication with the
mobile node to the new address.

Obviously, the above procedure requires: (1) the application not to
communicate directly with the communication peers, and (2) the middle-
ware to maintain a mapping table that maps all communication peers to
their current IP address. Figure 19.4 shows the procedure for the case
with one mobile device and one communication peer.

User Mobility

As mentioned earlier, the term

user mobility

 suggests that users are able
to maintain their services as they switch from one device to another. A
typical example is when an employee has both an office at work and a
home office and wants to have access to the same data in both offices
or wants to continue working on the same customer presentation at home
after hours. User mobility involves the following aspects:

■

All communication peers that participate in a service currently used
by the mobile user have to redirect their communication to the
new device. This task is very similar to the case of device mobility
with simple IP explained earlier, as in both cases the communica-
tion peers have to be informed of a new IP address. However, in
the case of user mobility, not only can the network parameters
such as bandwidth and delay change with the new point of
attachment but also the device capabilities. Mobile middleware can

AU3833_C19.fm Page 472 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 473

take these new parameters into account and adapt the service
accordingly.

■ The states of all sessions that are to be handed off to the new
device have to be transferred. This issue is even more challenging
than the previous one, as the following discussion will illustrate.
The state of a service session is determined by the collective session
states of all participating peers (that is, the state of the server and
the state of the client). The session state can be moved from the
old to the new device in several ways:
■ Directly from the old to the new device — This is the simplest

if for a certain time window the user has control over both
devices. This does not necessarily mean that the user has to
be in front of both devices, but only that the destination device
is allowed to receive state information on his or her behalf.
One way of triggering state transfer from a source to a desti-
nation device is through explicit user request. That request
might or might not specify the destination device. If it does
not, the middleware has to take a guess, based on the usual
user movement patterns, local proximity of devices (e.g., in a
smart house where the user’s whereabouts are monitored

Figure 19.4 Middleware hiding IP address changes for simple IP.

4

-

AU3833_C19.fm Page 473 Wednesday, August 16, 2006 11:37 AM

474 ■ Mobile Middleware

through smart tags), and such. In any case, there must be a
recovery mechanism to manually pull state information to a
certain device in case the middleware’s guess was wrong.

■ From the old device to the network and then on to the new
device — Evidently, this option solves the above problem at
the expense of additional network support.

■ From the old device to a home server and then on to the new
device — Technically, this option is very similar to the network-
based option above, except that the home server runs in the
user’s administrative domain. Also, this option can be consid-
ered a fall-back for the first option in case the user has not
specified a new device yet at the time of the device switch.

Regardless of how exactly the session state is transferred from one device
to another, several issues are common to all of these options:

■ They require all applications that are involved in an ongoing
session to be installed on both source and target devices; moreover,
both machines must run the same or similar versions of the
respective applications with the same user configurations. To avoid
this kind of problem, not only the states but also the entire
applications must be shipped to the new device.

■ The session state can contain a large amount of data, and shipping
it to the new device may take considerable time. This is even more
true if the entire applications are shipped (see earlier discussion).

The shipping of state information from one device to another can be
avoided if the state information or part of it is kept in the network rather
than on the actual device. One way to implement a service this way is
to follow the model–view–controller (MVC) design pattern for graphical
user interfaces [7]. The MVC model keeps separate the state of the
application (model), its graphical representation (view), and the control
software that interprets mouse and keyboard actions and translates them
into actions that modify the model and the view (controller). To support
session handoff in the case of user mobility, the model (i.e., state) should
run in the network, and the view and the controller should run on the
user device. Using that kind of separation, the software on the user device
becomes completely stateless. Then, when the user moves from one device
to another, the view and the controller on the new device connect to the
model in the network to graphically represent the session state to the end
user. In the MVC model, even multiple views and controllers can connect
to the same model at the same time from different devices. Mid-session
mobility through the use of a network-based MVC implementation is
illustrated in Figure 19.5.

AU3833_C19.fm Page 474 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 475

Sample Middleware Approaches
In this section, we compare several middleware approaches with respect
to their mobility support. For each approach, we describe the key concepts
only to the extent needed to discuss their mobility-related features.

Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA™) is middle-
ware that allows client objects to remotely invoke methods at server
objects, across machine and language boundaries [7]. For example, a C++
client object can invoke methods on a remote server object without even
knowing that the server object is written in Java. All the client knows
about the server object is the interface it provides; this interface is specified
in a programming-language-independent format, the Interface Definition
Language (IDL).

The centerpiece of CORBA is the Object Request Broker (ORB) (see Figure
19.6), to which clients connect via client stubs and servers connect via server
skeletons. When a client issues a remote invocation, the client stub marshals
the request into the language-independent Common Data Representation
(CDR) format, the ORB transports the request to the remote server, and the
server skeleton demarshals the request into the implementation language of

Figure 19.5 User mobility using a network-based MVC implementation.

When the user moves from the old to the new device, the view and
controller connect to the network-based model (i.e., state of the application).
In this way, the session is handed off to the new device without the need to
transport any state information.

AU3833_C19.fm Page 475 Wednesday, August 16, 2006 11:37 AM

476 ■ Mobile Middleware

the server object. Also, the dynamic invocation interface — together with
its counterpart, the dynamic skeleton interface, at the server side — allows
clients to dynamically inspect the interface of a server at runtime. Two
ORBs can exchange requests and responses over the General Inter-ORB
Protocol (GIOP).

In addition to the support of remote invocation, an ORB provides a
set of common services that both clients and servers can use to implement
their service logic. The most important common services in this context
are the naming and the trading services, because they offer support for
the service discovery problem. The naming service helps a client find a
server by its name, whereas the trading service helps find services by
means of the interfaces they implement as well as other properties that
are defined by the service providers; however, how a server or a client
finds a naming or a trading service is not specified in CORBA. This initial
bootstrapping process requires additional mechanisms that are outside the
scope of CORBA.

As far as mid-session mobility is concerned, the situation is asymmetric
for CORBA clients and for CORBA servers. Because of the strict request/
response communication model of CORBA, a change of the client’s IP
address is only a problem if it occurs during the time period between
sending out a request and receiving the response. In these circumstances,
the server cannot deliver the response, and the client has to issue the same
remote method invocation again. This client-side functionality has to be
implemented inside the client service logic. Whether the change of IP
address is due to device or user mobility is irrelevant in this context. For
CORBA server objects, however, the situation is more complex. A server
object is known to a client through its interoperable object reference (IOR).
CORBA supports two categories of IORs: transient and persistent. A transient

Figure 19.6 Architecture of a CORBA Object Request Broker.

A client object request broker (ORB) communicates with a server ORB over the
General Inter-ORB Protocol (GIOP). A client can connect to a server stub, it can
invoke remote services through the dynamic invocation interface (DII), and it can
use ORB services. A server can connect to a server skeleton, it can be used
through the dynamic skeleton interface (DSI), and it also can use ORB services.

AU3833_C19.fm Page 476 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 477

IOR is only valid for the lifetime of a server object. It contains, among other
things, the host that the server runs on and the port that it listens on.
Evidently, when the host or port changes, because of either device or user
mobility, the IOR becomes invalid and the server object can no longer be
reached. Persistent IORs, on the other hand, are valid longer than the lifetime
of a server object. The idea behind this is that a CORBA ORB can shut
down a server object when it is not needed and restart it when needed
(potentially even on a different host machine). Obviously, this leads to
different IP addresses each time the server is restarted, so the persistent
IOR cannot contain endpoint information about the IP address of the server.
Instead, it contains the address of an implementation repository, which
basically is a lookup server that stores mappings from persistent IORs to
transient IORs. Each time a server object is restarted, it registers its current
transient IOR with the implementation repository. A mobility-aware server
implementation can use the same mechanism to update the information
repository with a new transient IOR after the IP address of the server has
changed due to mobility; however, it should be noted that this reregistration
is not done automatically by the middleware but has to be implemented
in the application logic of the CORBA server object.

Architecture for Location-Independent
CORBA Environments

The Architecture for Location-Independent CORBA Environments (ALICE)
is a CORBA-based mobile middleware with the main focus on support of
device mobility, for both CORBA clients and servers [8]. The key idea is
to deploy mobility gateways at the edges of the fixed network that mobile
hosts can connect to via wireless communication. From a software archi-
tecture point of view, ALICE puts an additional mobility layer between
the Transmission Control Protocol (TCP)/IP stack on the mobile host and
the Internet Inter-ORB Protocol (IIOP) layer (i.e., the IP-specific GIOP
implementation). The mobility layer on a mobile host communicates with
the mobility layer on the mobility gateway to hide device mobility from
the upper layers, including IIOP. When a mobile host communicates with
a remote CORBA object, the current mobility gateway relays the requests
and responses between the two CORBA peers. When the mobile host
gets a new IP address assigned, it signals this new address to its mobility
gateway, which directs any further communication to the new address.
For server objects hosted on the mobile device, the mobility layer replaces
the IP endpoint information in the (transient) IOR with information that
refers to the mobility gateway instead. In this way, the distributed set of
all mobility gateways takes on the same task as the centralized CORBA

AU3833_C19.fm Page 477 Wednesday, August 16, 2006 11:37 AM

478 ■ Mobile Middleware

implementation repository explained above. As a mobile device moves
from one network access point to another, it can switch mobility gateways,
causing a handoff from the old to the new gateway. As a result, the state
information from the old gateway is transferred to the new one, and all
ongoing connections are tunneled to the new gateway for their remaining
lifetime.

Java Remote Method Invocation

Java Remote Method Invocation (RMI) extends the Java language with the
ability to invoke a method at a remote object, similar to CORBA, except
that both client and server objects have to be implemented in Java [9].
Also like CORBA, Java RMI uses a combination of client stub and server
skeleton to marshal and demarshal requests and responses. Before a client
can invoke a method at a remote server, it must get a remote object
reference of the server. Java RMI provides the RMI registry, a naming
service that servers can bind with and that clients can look up to get a
remote object reference. A server binds with its local registry, and a client
looks up a server by its RMI Uniform Resource Identifier (URI), which has
the format rmi://host/object-name. By means of the host part of
the RMI URI, the client’s local naming service finds the remote RMI registry
and interrogates it for the object denoted by object-name. As long as
the client uses a Domain Name System (DNS) name for the host component
of an RMI URI, changes to the address of the IP server device prior to the
naming lookup can be taken care of by the DNS. Whether the remote
object reference contains the IP address or the DNS name of the host
depends on the Java version and the way the remote object reference was
created. For remote object references that contain the DNS name of the
host, changes in the IP address can be hidden by the DNS. User mobility,
however, is not supported by Java RMI because moving a server object to
another device will break previously created remote object references.

Jini

Jini™ is a middleware technology with the primary goal of solving the
service discovery problem, especially in highly dynamic, ad hoc networks
where both clients and services can join and leave at a high rate [10]. The
two key concepts behind Jini are:

■ The separation of a service into a service proxy and a stationary part
■ A lookup service that services can register with and that clients

can query to look up services

AU3833_C19.fm Page 478 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 479

Jini requires the service proxy to be implemented in Java. This is because
when a service registers with a lookup server, the proxy object is shipped
to the lookup server; later, when a client retrieves a service from the
lookup server, the lookup server sends a copy of the service proxy to
the client. The ability to dynamically download code over the network is
an integral feature of Java and can readily be exploited by Jini without
additional mechanisms. In addition to its proxy object, a service registers
a service description with the lookup service. The service description is
a combination of the service type and a set of user-defined values. The
client specifies the desired service by means of the service description.

The service proxy, when executed on the client machine, can use any
standard or proprietary mechanism to communicate with the stationary
service part. If the stationary part is written in Java as well, communication
could, for example, be done with Java RMI; however, the stationary service
part does not have to be written in Java but can be written in any
programming language. In these cases, communication could use CORBA
or plain IP socket communication. In the extreme case, it is even possible
to implement the complete service logic in the service proxy and not
implement a stationary service part at all. Figure 19.7 illustrates the above
mechanisms.

It is relatively easy to Jini-enable legacy services by writing a thin,
portable Java proxy for them that remotely controls the legacy, stationary
service, because the stationary service part can be written in any language

Figure 19.7 Service lookup and proxy download in Jini.

Lookup service

(1) When a service registers with the lookup service, it sends a copy of its
Java service object. When a client looks up a service (2), it gets downloaded
a copy of the service proxy. When the service is executed, it can communicate
with the stationary service part using any arbitrary communication protocol (3).

AU3833_C19.fm Page 479 Wednesday, August 16, 2006 11:37 AM

480 ■ Mobile Middleware

and communication between the proxy and stationary service part can
use any protocol. Jini supports the use of three mechanisms to discover
a lookup service:

■ A lookup service can periodically advertise its existence through
IP broadcast on a well-defined broadcast address.

■ Clients and services can send lookup discovery messages on
another well-defined IP broadcast address to which the lookup
services belong.

■ A client or a service can directly address a lookup service whose
address it knows through an out-of-band mechanism; this mecha-
nism can be used to remotely connect to a home lookup service
while roaming in a visited network.

In contrast to pre-session mobility, however, the support of mid-session
mobility — both for device and user mobility — is out of the scope of
Jini, as a result of the communication between the service proxy and the
stationary service part being left to the service provider. Service providers
can and have to implement any support of session mobility themselves;
Jini does not offer any kind of support for this task.

Session Initiation Protocol

Strictly speaking, the Session Initiation Protocol (SIP) is a signaling protocol
rather than middleware [12,13]; however, a brief discussion of SIP should
be included in this chapter for at least the following two reasons:

■ SIP is the predominant signaling protocol for all kinds of media
sessions, not only in the Internet community but also for next-
generation IP-based cellular networks.

■ SIP has very interesting built-in mechanisms for the support of pre-
session as well as mid-session mobility.

In SIP, users are addressed with their SIP URI, which has the format
sip:user@domain. At registration time, the SIP user agent of user A
registers with the registrar in A’s home domain. The registrar uses a
domain-wide location service to store a mapping from the user’s SIP URI
to his or her current address of record (AoR) (i.e., the current IP endpoint
information).

When another user, B, wants to contact A, his or her user agent sends
a SIP INVITE message to the inbound proxy of A’s domain. The inbound
proxy is stored in and can be retrieved from the DNS. The inbound proxy
now can either redirect the INVITE to the current AoR or forward the
INVITE itself. Figure 19.8 shows both registration and session set-up

AU3833_C19.fm Page 480 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 481

message flows for the common case where the inbound proxy directly
forwards the incoming INVITE message to the addressed user agent.

The combination of registrar, location service, and inbound proxy
transparently hides pre-session mobility because users contact each other
using their symbolic SIP URIs. If, however, the IP endpoint changes during
the course of an ongoing session, be it due to device or user mobility,
another mechanism is necessary. In these circumstances, a user agent
whose IP information has changed can reinvite the other parties with
which it is currently engaged in a conversation. A SIP reINVITE message
is a special INVITE that contains the identifier of the already ongoing
session to indicate to the other party that this session is to be modified.
The modification can affect the IP address but also redefines the kinds
of media to be transmitted (audio, video) as well as the media encoding
format.

To summarize, when a SIP user agent changes its IP address:

■ It reregisters the new address of record with its registrar so the
user remains reachable for incoming session set-up requests (pre-
session mobility).

Figure 19.8 User agent server lookup with SIP.

AU3833_C19.fm Page 481 Wednesday, August 16, 2006 11:37 AM

482 ■ Mobile Middleware

■ It reinvites all parties that it is engaged in a SIP session with by
means of a SIP reINVITE message. If need be or if desired, the
reINVITE can not only inform the peers of the new IP address but
also renegotiate the media formats (mid-session mobility).

Mobile-Agent-Based Ubiquitous Multimedia Middleware

Mobile-Agent-Based Ubiquitous Multimedia Middleware (MUM) is middle-
ware that is specifically designed to support nomadic users [11]. In terms
of mobility, the primary focus is on mid-session mobility. MUM does not
address pre-session mobility (i.e., the service discovery problem). As far
as mid-session mobility is concerned, the scope of MUM goes beyond
transparent reconnection of server and client by also providing mechanisms
to automatically adapt the service quality to the new situation with respect
to network bandwidth and delay, as well as device capabilities. The key
idea behind MUM is the use of service proxies that are on the path between
the server and the client and that adapt the media stream to fit the device
capabilities. When a user moves to a new device, the service path changes,
and the proxies on the path adapt their behavior to make the served media
fit the new requirements. Because MUM focuses on streaming applications,
media adaptation is the greatest challenge, and it is not necessary to transfer
state information from the old to the new device.

Remote Desktop

By remote desktop we are referring to a whole family of similar systems
that allow users to remotely access a server PC from a local client PC.
More specifically, the client PC connects to the server PC and represents
its desktop as a window on the local PC. Then, every mouse and keyboard
input on that window has the same effect as performing the action directly
on the remote server. Examples of this category of approaches are Win-
dows XP Remote Desktop, GoToMyPC, and pcAnywhere.

A remote desktop solution aims at supporting user mobility rather than
device mobility. In a sense, the idea is a particular instantiation of the
MVC approach described before, except that the MVC model is not applied
to an individual service but to the entire PC. The remote server PC —
which typically runs at the edge of the network, in the end user’s home
domain — hosts the model, and the local visited PC runs the view and
the controller, because any input received at the local PC is translated
into commands being sent to the remote PC.

The biggest advantage of a remote desktop solution is that, because
the entire home desktop is represented on the local PC, users get access
to all their services and their user-specific configuration settings without

AU3833_C19.fm Page 482 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 483

having to install and configure the same applications on various machines.
This is a very beneficial feature, because maintaining versioning control
for different installations of the same service is a tough challenge; however,
remote desktop solutions have several drawbacks, as well:

■ They require the server PC to always be on and connected to the
Internet. These are serious requirements with regard to the stability
of the server PC and the reliability of its network connection.

■ Because the model itself is a graphical representation (i.e., the
desktop of the server PC), the amount of data that has to be
shipped between the server and the client PCs is large. Even for
broadband connections, this leads to significant latency and to a
very noticeable difference between working directly on a server
PC and working remotely via remote access. A per-service sepa-
ration of the model, view, and controller results in a considerably
reduced amount of data being exchanged between the model,
view, and controller.

Discussion
As we have seen in this chapter, establishing and maintaining a session
in a mobile environment are very challenging tasks. The use of mobile
middleware can help liberate application programmers from mobility-
related issues so they can focus their attention on the actual application
logic.

The first problem to be solved in a mobile environment is session
establishment, in particular service discovery. We have discussed more
traditional solutions that involve the use of a centralized lookup service,
as well as a more recent, decentralized approach that is based on peer-
to-peer techniques. After a service session has been successfully estab-
lished, the next challenge is service continuity (i.e., maintaining a session
even in mobile situations). Two kinds of mobility have to be distinguished:

■ Device mobility, where the user moves with a mobile device that
switches from one network access point to another

■ User mobility, where the user switches from one device to another

In the case of device mobility, Mobile IP is the standard way to shield
communication peers from changing IP addresses. In a nutshell, Mobile
IP is based on the concept of a home agent that receives all packages
that are addressed to the mobile client and forwards them appropriately.
Without Mobile IP (i.e., in simple IP mode), a mobile middleware has to

AU3833_C19.fm Page 483 Wednesday, August 16, 2006 11:37 AM

484 ■ Mobile Middleware

sit between the IP stack and application so it can inform its communication
peers about an IP address change and the middleware on the peer machine
can redirect any future communication to the new address.

In the case of user mobility, two issues have to be addressed. First,
all communication peers have to be informed about the changed IP
address, just as in the case of device mobility. Second, the session state
has to be transferred from the old source to the new destination device.
The session state can be transferred in several ways. These include moving
the state directly or via a network or home server location, as well as
whether only the service state or the entire service is moved. Moving only
the session state is more bandwidth efficient, but moving the entire service
avoids versioning and personalization inconsistencies. An elegant way to
avoid transferring the session state altogether is to implement the service
in a distributed model–view–controller architecture, with the model run-
ning in the network (or on a home server) and the view and the controller
running on the user device.

In this chapter, we also discussed several sample mobile middleware
approaches, including CORBA, ALICE (an extension of CORBA for mobil-
ity), Java RMI, Jini, SIP, MUM, and the remote desktop. All of these
middleware technologies provide a certain degree of mobility support,
but they vary significantly with respect to their primary focus. CORBA,
one of the most prominent distributed middleware approaches, does not
directly provide comprehensive mobility support but does offer services
that can be used to build a true mobility-supporting system. The naming
and trading services can be used to implement service discovery, and
persistent IORs can be used to implement mid-session mobility on the
server side. CORBA does not, however, provide any mobility support on
the client side.

ALICE, an architecture based on CORBA, uses so-called mobility gate-
ways to implement full mid-session mobility support. Java RMI is primarily
a remote method invocation mechanism with some support of service
discovery but no mid-session mobility support. SIP is probably the most
important mobility-supporting infrastructure in the communication arena.
It has built-in mechanisms for service discovery as well as mid-session
mobility support; however, SIP is not a fully fledged middleware but rather
a communication protocol. The primary focus of MUM is mid-session
mobility, and in this respect it goes beyond pure reconnection of a mobile
user but also adapts any ongoing media sessions to the new device and
network capabilities. Remote desktop solutions, finally, aim at user mobil-
ity by allowing access from a client PC to a remote server PC. The remote
desktop can be considered a particular instantiation of a distributed
model–view–controller solution, with the remote server PC constituting
the model and the local client PC the view and the controller.

AU3833_C19.fm Page 484 Wednesday, August 16, 2006 11:37 AM

Session Maintenance ■ 485

To summarize, different mobile middleware technologies have different
goals and thus different strengths and weaknesses. At least at this point
in time, no single, comprehensive mobile middleware covers all aspects
of mobility and is widespread and commonly used. Which approach best
suits one’s needs depends on the specific requirements and has to be
decided on a case-by-case basis.

References
[1] Droms, R. and Lemon, T., The DHCP Handbook, Macmillan, Indianapolis,

IN, 1999.
[2] Stoica, I. et al., Chord: a scalable peer-to-peer lookup service for Internet

applications, in Proc. ACM SIGCOMM’01, San Diego, CA, August, 2001.
[3] Ratnasamy, S. et al., A scalable content-addressable network, in Proc. ACM

SIGCOMM’01, San Diego, CA, August, 2001.
[4] Wisely, D., Eardley, P., and Burness, L., IP for 3G: Networking Technologies

for Mobile Communications, John Wiley & Sons, New York, 2002.
[5] Perkins, C., IP Mobility Support, Request for Comments 2002, Internet

Engineering Task Force (IETF), 1996 (http://www.ietf.org/rfc/rfc2002.txt).
[6] Gamma, E. et al., Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley, Boston, MA, 1995.
[7] Vogel, A. and Duddy, K., Java Programming with CORBA, John Wiley &

Sons, New York, 1998.
[8] Haahr, M., Cunningham, R., and Cahill, V., Supporting CORBA applications

in a mobile environment, in Proc. of the 5th ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’99), Seattle, WA, August, 1999.

[9] Pitt, E. and McNiff, K., Java.rmi: The Remote Method Invocation Guide,
Addison-Wesley, Boston, MA, 2001.

[10] Edwards, W.K., Core Jini, Prentice Hall, Upper Saddle River, NJ, 2000.
[11] Bellavista, P., Corradi, A., and Foschini, L., MUM: a middleware for the

provisioning of continuous services to mobile users, in Proc. of the 9th IEEE
Int. Symp. on Computers and Communications (ISCC’04), Alexandria, Egypt,
June, 2004.

[12] Sinnreich, H. and Johnston, A.B., Internet Communication Using SIP, John
Wiley & Sons, New York, 2001.

[13] Rosenberg, J. et al., SIP: Session Initiation Protocol, Request for Comments
3261, Internet Engineering Task Force (IETF), 2002 (http://www.ietf.org/rfc/
rfc3261.txt).

AU3833_C19.fm Page 485 Wednesday, August 16, 2006 11:37 AM

AU3833_C19.fm Page 486 Wednesday, August 16, 2006 11:37 AM

487

Chapter 20

Openness and
Interoperability in

Mobile Middleware

Eiko Yoneki and Jean Bacon

CONTENTS

Introduction... 488
Characteristics of Mobile Middleware ... 491

Network Environments ... 492
Specific Requirements of Mobile Computing ... 493

Heterogeneity/Transparency... 493
Self-Configuration .. 494
Asynchronous Communication... 494
Service Discovery .. 495
Context Adaptation ... 495
Security... 496

Trends in Mobile Middleware Solutions... 497
Emergence of Event-Based, Reflective and Service Architectures 499

IPv6 Advantages .. 500
Event-Based Communication ... 500
Service Oriented Architecture .. 502

Model Driven Architecture ... 503

AU3833_C20rev.fm Page 487 Wednesday, August 16, 2006 11:49 AM

488

■

Mobile Middleware

Heterogeneity Support.. 503
Reconfigurability.. 504
Context Modeling .. 504
Security... 505
Programming Paradigm .. 506
Wireless Communication .. 506

Standardization Activities ... 507
IETF (Internet Engineering Task Force) ... 508
OMG (Object Managing Group).. 509
OMA (Open Mobile Alliance).. 509
W3C (World Wide Web Consortium) .. 509
JCP (Java Community Process) .. 512
OSGi (Open Service Gateway Initiative) .. 512
Liberty Alliance.. 513

Future Challenges ... 513
Acknowledgement .. 514
References ... 514

Introduction

Today’s distributed systems are composed of a diverse range of devices
spread across different sites. Communication between devices is increas-
ingly wireless. Providing open distributed processing between geograph-
ically and organizationally distributed work groups significantly helps to
gain the flexibility to adjust robustly to business reengineering and envi-
ronmental/technological change. This mission has depended on middle-
ware during the past decade, and with the increase of network complexity,
such as the introduction of various wireless networks, the demand on
middleware is significantly increasing (see more mobile computing specific
requirements in the next section). Such systems must be supported by
effective, flexible, simple and comprehensible processes, with require-
ments being captured through modeling tools that provide readily usable
notations for their clear representation.

 Middleware is a term that defines the set of services, APIs, and
management systems, which support a distributed, networked computing
environment. RFC 2768

1

 summarizes the functionality of middleware. For
application programmers, everything below the API is middleware, and
for networking specialists, anything above TCP/IP is middleware. Middle-
ware can be categorized as follows: application-specific middleware for
generic purposes residing between applications and operating systems
and resource-specific lower middleware. The architecture of mobile mid-
dleware will be spread across these different types of middleware to
support a lightweight and flexible component structure. Middleware is a

AU3833_C20rev.fm Page 488 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware

■

489

contextual framework and an umbrella term for a number of concepts
and architectures for distributed computer systems. The primary goals of
middleware are:

■

Simplification of distributed programming,

■

Integration of heterogeneous systems,

■

Abstraction from the transport facility,

■

Masking the heterogeneity of networks, end-systems, operating
systems and programming languages.

 There is no absolute core set of middleware services that all
applications require and a design of middleware can be hierarchical or
layered. Considering that characteristics of mobile devices, wireless
networks, and operational environments in mobile computing vary, a
better design of middleware will be an unstructured collection of
components that can be used either individually or in various subsets.
One of the important middleware tasks is to support heterogeneous
environments over distributed computing systems. Figure 20.1 depicts the
architecture of a software stack. Middleware consists of two parts: generic
service elements and synchronous and asynchronous communication

Figure 20.1 Mobile middleware stack.

Open APIs

WSN
MANET

Operating System

Network Architecture

Reconfigurability

Middleware Generic Service Elements

Mobile Middleware Communication

Grid/P2P
Client/Server

Directory

Cross Layer

Service Discovery

Event Notification

Data Management

Resource Management

Context Management

Security

Real-Time

QoS

InteroperabilitySecurityContext Awareness Ubiquity

AU3833_C20rev.fm Page 489 Wednesday, August 16, 2006 11:49 AM

490

■

Mobile Middleware

support in mobile middleware. An application interacts with common
Application Programming Interfaces (APIs) for accessing services pro-
vided by middleware. Most of the applications in wireless network
environments are distributed, and standard protocols for interactions
among applications are essential. A set of generic services like service
discovery and event notification are desirable to allow the use of
components from various middlewares in the design and development
of computer systems, and common standards for developing interop-
erable software will help significantly. Sealing complexity within the
middleware helps to simplify the application logic and, to provide
openness and interoperability, the semantics of middleware should be
unambiguously defined. First, interactions among components need to
be modeled. Second, defining interfaces, types, semantics, constraints,
evolution and non-functional properties will rule modelled interactions.
The issues to consider in relation to such semantics for middleware are
listed below.

■

Openness

eases adding new components.

■

Interoperability

 links across different platforms and protocols.

■

Reconfigurability

 allows the system to be reconfigurable with
changing requirements for open-ended, incremental and continu-
ally evolving system.

■

Portability

 ports programs without change on different computer
systems.

■

Mobility

 supports both physical and logical mobility of system
components.

■

Scalability

 ensures efficiency with an increasing number of users.

■

Adaptability

 adapts to changing environments maintaining required
services.

■

Transparency

 hides complexity from users.

■

Brokering

 uses agents/brokers for the distribution of services.

■

Distributability

 extends the interoperability idea to allow processes
and information to be provided and migrated automatically to the
most convenient point of an interconnected set of computing
systems.

■

Fault tolerance

 avoids failure of the whole system resulting from
a partial failure.

■

Security

 ensures security among collaborating devices.

 In the mid 1990’s, a significant effort has been made to standardize
middleware architecture for distributed object environments. The Ref-
erence Model of Open Distributed Processing (RM-ODP

2

) is an effort
by the ISO (International Standardization Organization) and ITU-T

AU3833_C20rev.fm Page 490 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware

■

491

(International Telecommunication Union). RM-ODP defines architecture
for distributed processing, interoperability and portability of applications.
It is considered the most complete specification. The Object Management
Group’s Common Object Request Broker Architecture (CORBA

52

) supports
an environment for open distributed processing by addressing the require-
ments for ODP. The motivation for developing a standard for Open
Distributed Processing was the opportunity provided by a range of com-
puting and communication options, which allowed diverse systems to
work in a cooperative fashion. A further factor was the availability of units
of computing power at economic prices coupled with the liberalization
of telecommunication services. This has been accompanied by the emer-
gence of a paradigm shift in the approach to systems building by using
the object-oriented approach.

 The Open Distributed Processing standard is a reference model
standard that provides a framework in which component standards are
placed. The framework provides concepts and languages for describing
the functional components of an open distributed processing infrastructure.
However, successful development of distributed applications requires
more than an enabling infrastructure of computing and communications.

 Standardization of middleware for mobile computing requires a large
amount of work. Each potential solution attempts to extract common
interfaces (see the third section for details). References

95, 96, 97

give good
summaries of heterogeneity support in middleware in mobile computing.
The increasing diversity of devices, network elements and applications
brings a need for different middleware. Thus, various middlewares will
be coordinated in the future. This requires interoperability on two levels:
between middleware platforms and between applications components
running over different middleware.

Characteristics of Mobile Middleware

In a mobile/wireless network environment, latency is high, bandwidth is
low, and the connection can be interrupted at any time. Mobile devices
have a small footprint and different transport mechanisms to connect to
the network, and many devices are not programmable. Most current
middleware assumes continuous availability of high-bandwidth network
connections. Also mobile middleware needs to compensate for device
disparities by rendering standard application screens in device-specific
ways, interacting with client business logic in the handheld device.

 The biggest challenge for middleware in mobile computing is the
management of dynamicity. Existing middleware cannot meet the demands
of new application areas such as embedded systems, real-time, and

AU3833_C20rev.fm Page 491 Wednesday, August 16, 2006 11:49 AM

492

■

Mobile Middleware

physical and logical movement of the device. The mobility concept in
mobile computing can be:

■

A device changes its location within the topology.

■

A user changes the communication methods of her device.

■

An application element dynamically changes service/session.

 Supporting mobility is required not only over different network
environments but also for separate computations in time and space and
explicit control over resources, such as supporting Quality of Service (QoS)
and context awareness. Cooperation in time can have synchronous and
asynchronous modes, and in space can have either a single data resource
or shared data, which requires replication and consistency control.

 Moreover, distributed computing is moving from a static architecture
(e.g. client server model) towards more dynamic and decentralized setting,
such as peer-to-peer (P2P) systems, where applications are required to
adapt to changes in topology and available data.

Network Environments

In mobile computing, middleware has a much tighter relationship with
the network protocols; they often collaborate to deliver the data via a
cross layer approach. The network environments of mobile computing
can be classified into the following categories.

■

Nomadic Computing

 — Nomadic systems consist of a set of mobile
devices, which connect to a fixed network. Mobile devices move
around, maintaining an intermittent connection to the fixed net-
work.

■

Ad-hoc Networks

 — Mobile Ad-Hoc Network (MANET) is a dynamic
collection of nodes with rapidly changing multi-hop topologies
that are composed of wireless links. The combination of mobile
devices and ad-hoc networks allows the creation of highly dynamic,
self-organizing, mobile peer-to-peer systems.

■

Wireless Sensor Networks

 — The emergence of sensor networks
brought further complex network environments. Wireless Sensor
Networks (WSNs), which are composed of wireless sensor nodes
distributed in the environment, include various sensors (e.g.,
cameras as vision sensors, microphones as audio sensors, or
temperature sensors). Each node is equipped with a wireless
communication transceiver, sensor, power supply unit, machine
controllers, and microcontrollers on a MEMS (Micro Electro
Mechanical System) chip, which is only a few millimeters square.

AU3833_C20rev.fm Page 492 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware

■

493

These WSNs can cover a large space by integrating data from many
sensors, and produce diverse and precise information on the
environment. Based on such a technological vision, new types of
applications become possible, including environmental control and
medial assistance.

■

Ubiquitous (Pervasive) Computing

 — Ubiquitous computing is
about networked microprocessors embedded in everyday objects,
surrounding us, talking to each other over wireless links. These
networked microprocessors with sensing form a network for data
collection and distribution

4

. They can organize themselves in an
ad-hoc manner and new types of applications will appear where
data is transmitted to nearby nodes to establish multi-hop routes
in unstructured networks. Data and messages are propagated by
dynamic routing mechanisms among out-of-range nodes. Thus,
instantaneous data delivery is not guaranteed, and network stability
and resource cannot be expected.

Specific Requirements of Mobile Computing

We will look at the specific requirements with respect to the following
aspects.

Heterogeneity/Transparency

Supporting heterogeneity/transparencies with middleware frees the appli-
cation developers from dealing with the complexities of distributed sys-
tems. Transparencies vary in different aspects and defining common
requirements for transparencies and describing the computational refine-
ments is essential. The heterogeneity and transparencies may be classified
as follows:

■

Access transparency

 masks the data representation difference and
programming procedure calling mechanisms to enable inter-work-
ing between heterogeneous systems.

■

Location transparency

 hides the use of physical addresses, and the
distinction between local and remote environments.

■

Relocation and migration transparency

 hides the change of an
object location including interfaces bound to it.

■

Persistence transparency

 hides the reactivation and deactivation of
an object.

■

Failure transparency

 masks the failure and recovery of objects for
supporting fault tolerance.

AU3833_C20rev.fm Page 493 Wednesday, August 16, 2006 11:49 AM

494

■

Mobile Middleware

■

Replication transparency

 maintains consistency of replica objects
by providing a common interface.

■

Communication transparency

 abstracts over the communication
protocol and network types (ad-hoc, access-point, sensor networks).

■

Transaction transparency

 masks the coordination for the transac-
tional operations.

■

Device transparency

 masks the different mobile devices.

■

Programming language

transparency

 hides the dif ferences
between the various programming languages in use.

■

Context transparency

 maintains consistent operation through changes
in context.

 One of the most common goals of middleware for distributed systems
is to hide that the system is in fact distributed and present it as if it is a
single machine. In such transparent systems, resources (e.g. computation,
memory and storage) from different hosts may be shared without awareness
by the user. Applying this to mobile computing significantly increases the
range of potential application domains. Mobile devices can delegate their
tasks to other devices, facilitating load balancing and power consumption
distribution. In order to increase transparent operation over distributed sys-
tems, a unified interface must be established.

Self-Configuration

In the near future an increase of communication devices will bring large-
scale ubiquitous services and applications. The various mobile devices (e.g.
handheld computers, laptops, or phones) are increasingly powerful; the
standard mobile phone of the future will have a large screen, camera, and
various communication units. It will look around to search displays, stor-
ages, and access points for communicating to the Internet. It might also
search nearby devices for establishing temporal ad-hoc communities and
embedded sensors for obtaining context information. Supporting context
awareness is a necessary issue to support such mobile devices. Autonomous
self-configuration, adapting to changing environments, is an important
function of the middleware supporting such environments, requiring mon-
itoring the physical world, event notification, event filtering, system mod-
eling, group communication and decision rules for reconfiguration.

Asynchronous Communication

Asynchronous communication is essential to support mobile computing,
where connections are short-lived, disconnected and intermittent. Group
communication provides efficient consistency for applications that need

AU3833_C20rev.fm Page 494 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware

■

495

multi-participant interactions. In the wired environments, group commu-
nication has been shown to be useful in many application domains. Similar
applications will most likely require the same characteristics in the wireless
environment. However, traditional membership functionality designed for
the wired environment will not perform well with a large number of node
participations, where maintaining membership becomes expensive. Thus,
mobile computing is a hostile environment for strongly consistent inter-
actions among multiple participants.

Service Discovery

In existing middleware, service discovery is provided on the basis of well-
known fixed name services, such as RPC (e.g. Jini) or open standards
(e.g. UPnP

37

). The more dynamic the environment becomes, the more
difficult the discovery of a host becomes. It is challenging to determine
the most appropriate service for the device within the range of device.
The interfaces may be diverse and a device may provide the same content
via several different interfaces. This makes it impossible to provide all the
drivers and communication protocols in every mobile device. Thus, a
desirable mechanism will be that mobile devices can reconfigure them-
selves at run-time in a dynamic manner and download the appropriate
interfaces.

Context Adaptation

Context awareness is considered as an important functionality in mobile
applications. For example, a context aware phone may switch to a silent
mode when it recognizes being in the lecture room. Context adaptation
requires definition and interpretation of context and design of contextual
information processing including modeling and framework that will result
creating middleware services. Context awareness creates a new type of
user interface to support ubiquitous computing, where a wide range of
information is detected by surrounding embedded devices. According to
obtained contexts, applications dynamically adapt to the situations that
provide more efficient usability. The context information can be speed of
networks, location, identity, temporal information (e.g., time and day of
week), environmental values (e.g., temperature and humidity), social occa-
sion (e.g., with whom), communication resource (e.g., access point and
hotspot), physical condition (e.g., blood pressure and heart rate), activity
(e.g., eating), schedules and so forth. Creating an effective context-modeling
framework is complex task, involving many aspects such as interpretation,
sharing, reasoning about and querying context. Furthermore, different

AU3833_C20rev.fm Page 495 Wednesday, August 16, 2006 11:49 AM

496

■

Mobile Middleware

applications have different aspects on the same context information. Con-
text adaptation encompasses various research topics including sensor
fusion, context modeling, human-computer interaction (HCI), and distrib-
uted data management. To acquire and utilize information about context
requires the following elements in middleware:

■

Extraction of context.

■

Interpretation of context.

■

Reasoning about contextual situation and verifying it.

■

Adaptation of application behavior.

■

Distributed data management.

■

Context modeling.

Security

Mobile computing, especially in ubiquitous computing, expects a large
scale of networked environment supporting a wide range of different
types of autonomous mobile entities. This introduces new security chal-
lenges and novel approaches are required that differ from existing security
models and mechanisms. National Institute of Standard and Technology
(NIST) addresses the following issues:

■

User authentication may be disabled, a common default mode,
disclosing the contents of the device to anyone who possesses it.

■ Even if user authentication is enabled, the authentication mecha-
nism may be weak or easily circumvented.

■ Denial-of-Service attacks using radio noise can easily interrupt
wireless communication.

■ Wireless transmissions may be intercepted and, if unencrypted or
encrypted under a flawed protocol, their contents made known.

■ Connection with no authentication of the parties within intercon-
nected device groups may introduce viruses or other types of
malicious code and also other forms of attack such as a man-in-
the-middle attack.

 Another issue to address is mobile agents, which are autonomous
software entities, and they can continue their execution and decision
making in the foreign machine. The mobile agent based computing
paradigm raises several security concerns, which prevent spreading of this
new technology. Security issues include: authentication, identification,
secure messaging, certification, resource control, non-repudiation, trusted
third parties, and denial of service.

AU3833_C20rev.fm Page 496 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 497

 The current Internet can easily be attacked by worms, viruses, and
spam. Security has to be addressed including privacy, access control, and
trust. Security applies on hardware, protocols, operating systems, and
middleware. In an ad-hoc communication, there is no centralized authority
to judge integrity of information, thus trust measurement among the group
members should be used. However, trust requires complex tasks on
interpretation of trust value.

 Group security aims to establish a common security aspect to all
members of a group including confidentiality and integrity. Group
communication will form different forms such as broadcasting, multi-
casting and any-casting. In general, secure collaboration in ubiquitous
computer systems requires security models to accomplish mutual trust
and to minimize the need for human interaction. The security policy
must encompass many potential collaborators based on the size of the
infrastructure. Mobile devices will become disconnected from their
networks. Thus, they need to be able to make autonomous security
decisions independently from any specific centralized security infra-
structure. Furthermore, the dynamic infrastructure makes mobile devices
encounter previously unknown services, and the services will receive
commands from unknown users. Thus, program validation, protection
of the system against unauthorized modification, as well as key and
certificate management for the complex implications of ad-hoc commu-
nities should be carefully designed. See also6, 7 for privacy and security
in sensor networks.

Trends in Mobile Middleware Solutions
There have been many attempts to support mobile computing through
the enhancement of existing middleware approaches. IIOP (Internet
Inter ORB Protocol) is an essential part of CORBA allowing communi-
cation among devices. IIOP has been ported to dynamic environments
and used as a minimal ORB. Also RPC has been extended to add semi-
asynchronous paradigms with buffering capabilities to deal with unan-
nounced disconnection (e.g. Mobile DCE). In general, the traditional
object-oriented client-server communication needs to be replaced by
event-based reflective solutions. Note that existing middleware such as
CORBA and .NET mask system and network heterogeneity problems
and succeed in hiding the complexity of distributed systems. Thus,
openness, the ability to adapt to any new components and services, is
achieved with great efficiency.

 In industry, the first extension from wired networks required dealing
with device heterogeneity. Sun has J2ME94 (Java Micro Edition) as a basic

AU3833_C20rev.fm Page 497 Wednesday, August 16, 2006 11:49 AM

498 ■ Mobile Middleware

Java Virtual Machine running on the various mobile devices. Microsoft® has
.NET Compact Framework supporting XML5 data and Web Service connec-
tivity. These platforms support heterogeneity of devices, but they rely on
the application itself to handle non-functional requirements. This requires
further different types of services from middleware such as disconnected
operation, context aware services, location based services etc. In general,
middleware technologies can be categorized into the following models:

■ Remote procedure calls (RPCs) support heterogeneous distributed
platforms by extending traditional procedure. Application develop-
ers can use RPCs transparently to access local and remote proce-
dures. The RPC standard has been extended into the Distributed
Computing Environment (DCE) standard and more recently Mobile
DCE. Most operating systems support basics of DCE’s services.

■ Message-oriented middleware (MOM) provides asynchronous rather
than synchronous interactions. MOM encourages loose coupling
between message senders and receivers with a high degree of
anonymity, thereby removing static dependencies in distributed
environments. MOM’s characteristics (an intuitive programming
model, latency hiding, guaranteed delivery, and store-and-forward
messaging) are highly appealing for mobile applications.

■ Object-oriented middleware enables the remote invocation of object
methods. Java remote method invocation (Java RMI8), CORBA, the
Distributed Component Object Model (DCOM66), and .NET are
popular OO middleware platforms. Wireless RMI is an enhance-
ment of Java RMI for mobile environments.

■ Component-oriented middleware evolved from OO middleware
allowing the reuse of components. It gives reconfigurable capabil-
ities into distributed applications. Enterprise JavaBeans (EJB9) and
the CORBA Component Model (CCM3) are important examples.

■ Transaction-oriented middleware supports essentially distributed
transactions operations, which interconnect heterogeneous data-
base systems across platforms. It offers better data availability and
integrity including high performance.

 Any middleware system often needs to interact with another middle-
ware system, where both support similar services and functionalities. Thus
common API to interoperate those middleware is desirable. Message-
oriented middleware aims to provide communication mechanisms and the
Java Message Service (JMS10) is a semantic API for the message and object
paradigms. CORBA Notification Service is an OO platform with an event-
based communication. Component based approaches are attractive for
modeling resource management by abstracting and encapsulating the

AU3833_C20rev.fm Page 498 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 499

object. Object and component oriented middleware provides a natural
way for encapsulating and integrating resources. Both approaches can
hide the complexity of resource management operations.

Emergence of Event-Based, Reflective
and Service Architectures

Different styles of mobile middleware have emerged to solve the chal-
lenges of mobile computing. In wireless network environments, the time-
triggered approach is expensive when the expected rate of data commu-
nication is low. Event-based middleware that is based on a publish/sub-
scribe communication paradigm became popular because asynchronous
and multipoint communication is well suited for constructing reactive
distributed computing applications. Especially with the distributed event-
based middleware over peer-to-peer (P2P) overlay network environments,
the construction of event broker grids will extend the seamless messaging
capability over scalable heterogeneous network environments. Event-
based middleware is discussed in more detail in Section 3.2.

 A significant increase of the event monitoring capability in the real
world by wireless devices and sensors led to a further evolution of ubiq-
uitous computing. The middleware in sensor networks can be defined as
software that provides data aggregation and management mechanisms,
adapting to the target applications’ need, where data are collected from
sensor networks. This functionality must be well integrated within the
scheme of ubiquitous computing. The middleware should offer an open
platform for users to seamlessly utilize various resources in physically
interacting environments, unlike the traditional closed network setting for
specific applications. One of the important issues here is to support an
unambiguous event correlation mechanism over time and space in hetero-
geneous network environments, where middleware should take an active
role (see100 for requirement on event correlation). The trend of system
architecture to support such platforms is towards service broker grids based
on service management. When designing the middleware for sensor net-
works, heterogeneity of information over global distributed systems must
be considered. The information sensed by the devices is aggregated and
combined into higher-level information or knowledge and may be used as
context. Adaptation allows the middleware to choose the resources in the
given environments such as communication/discovery protocols. Reflection
provides more flexibility in middleware on location, context and device
characteristics. OpenORB3 supports adaptation. The context-aware adapta-
tion approach exposes the context information (e.g. Nexus17, CHARISMA18,
OpenORB3, and Odyssey19). See Chapter 2 for Reflective Middleware.

AU3833_C20rev.fm Page 499 Wednesday, August 16, 2006 11:49 AM

500 ■ Mobile Middleware

 A key issue here is how to orchestrate all these heterogeneous
environments. This gave rise to an architecture based on a service-oriented
model; model-driven with metadata objects that support middleware-
middleware heterogeneity. See more about SOA in Section 3.3.

IPv6 Advantages

IPv691 is becoming the protocol for the next generation of networks. The
IPv6 standard is designed to meet future demands on address space,
multicast, encryption, QoS and better support for mobile computing. For
example, the IPv6 numbering mechanism could simplify dynamic mergers
and acquisitions of network service components. Three major advantages
are bigger address space, mobility support and security support.

■ Bigger address space supports 128-bit address space and better
address aggregation properties. NATs (Network Address Transla-
tors) are no longer needed, and this allows global IP connectivity
including mobile devices. All can benefit from full IP access through
end-to-end services.

■ Mobility support is a significant advantage. Mobile IPv692 enables
to be accessed using general IPv6 APIs, appearing transparent to
the application layer.

■ Built-in Security is supported including IPsec93, which allows
authentication and encryption of IP traffic. This brings a full end-
to-end IPsec based secure communication.

Event-Based Communication

Event-based communication, usually based on the publish/subscribe par-
adigm, is an appropriate mechanism for loosely coupled interactions in
mobile computing, where interactions between devices are often only
possible for short periods of time, when the devices are nearby in the
transmission range. Therefore, it is essential to avoid complex handshake
processes, which may consume too much available bandwidth, power
and time. In the past decade many event-based middlewares in wired
networks have been reported on both centralized and decentralized mod-
els, including CEA67, SCRIBE68, IBM Gryphon14, JEDI13, Hermes12 and
SIENA69. SCRIBE is a topic-centric publish/subscribe messaging system
using Distributed Hash Tables (DHT) over Pastry70. SIENA has an extension
to support mobility by an explicit operation to relocate clients. Tuple
Spaces are supported in LIME16, TSpaces and JavaSpaces™. None of these
systems support extremely dynamic mobile environments.

AU3833_C20rev.fm Page 500 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 501

 Examples of middleware systems developed to support wireless ad-
hoc network environments are STEAM15, ECCO99 and IBM WebSphere
MQ60. STEAM provides a proximity based group communication, and
ECCO takes a cross layer approach integrating publish/subscribe seman-
tics with a Mobile Ad-hoc Network (MANET) on-demand protocol.
However, the majority of these systems construct publish/subscribe
above existing transport protocols. In MANET environments, much
research currently focuses on datagram routing in both unicast and
multicast routing. However, no definite solution to define publish/sub-
scribe semantics using these protocols has been provided. The collab-
orative style of application in MANET offers loosely coupled components
to communicate and work together in a spontaneous manner, and they
may require real-time functionality for timeliness and reliability such as
inter-vehicle communication.

 In general most middleware for wireless networks has focused on
nomadic applications. Such applications allow mobile nodes to connect
to the wireless network primarily for being a part of a fixed network
infrastructure. However node mobility may suffer a disconnection period
while moving from a connecting location to a next location.

 Future challenges of distributed event-based systems are supporting
applications based on a heterogeneous communication system, where
characteristics of networks vary, for example, from scheduled real-time
buses to wireless ad-hoc networks. Event-based middleware supporting
such applications must seamlessly disseminate messages generated by
deeply embedded processors to all interested nodes in the global net-
works. Improving group communication is important to support the
semantics of new membership and useful weakened semantics. Current
approaches include using a WAN-of-CAN structure71, where a global
network (WAN) comprises substructures subsumed by the abstraction of
a Controller Area Network (CAN). The idea is that grouping nodes reflects
potentially heterogeneous network architectures.

 In industry, as an open-standard messaging technology, open-JMS10

frameworks and robust J2ME solution for connectivity to the mobile
enterprise are thus far the best practice. Softwired’s iBus//Mobile90 supports
the development of mobile solutions that make applications accessible on
various mobile networks and offers good mobile connectivity, with support
for disconnected operation and integration with most common carrier
technologies. JMS is a de-facto industry standard; however the interoper-
ability of JMS compliant products is not yet available, and some products
support an open JMS framework, which enables enterprises to leverage
and integrate existing systems including IBM WebSphereMQ60 and TIBCO
Rendezvous6 to build robust, flexible Java applications based on JMS,
J2EE28, and Web Services standards.

AU3833_C20rev.fm Page 501 Wednesday, August 16, 2006 11:49 AM

502 ■ Mobile Middleware

 Middleware has to mask temporary disconnection states from appli-
cations. A possible approach is buffering RPC invocations for transmission
until connection is re-established. However, mobility and changes of IP
address (e.g. IPv4) can also cause problems when fixed hosts perform
RPCs to mobile hosts. JMS provides the semantics of disconnected oper-
ation. The solutions provided by Mobile IP92 may not fully satisfy the
requirements, because multiple network addresses are used. This condition
will be changed by the emergence of IPv691.

Service Oriented Architecture

Service Oriented Architecture (SOA) is a well-proven concept for distributed
computing environments. It decomposes applications, data, and middle-
ware into reusable services that can be flexibly combined in a loosely
coupled manner. SOA maintains agents that act as software services per-
forming well-defined operations. This paradigm enables the users to be
concerned only with the operational description of the service. All services
have a network-addressable interface and communication via standard
protocols and data formats (i.e., messages). SOA can deal with aspects of
heterogeneity, mobility and adaptation, and offers seamless integration of
wired and wireless environments. It helps component-oriented design on
mobile devices and improves the design and development process. SOA
for mobile computing requires supporting the heterogeneity of mobile
devices and networks and adaptation to mobile platforms. SOA can offer
an interoperable service-oriented framework with standard, self-describing
interfaces, which hide details of the underlying service.

 Generic service elements are context model, trust and privacy, mobile
data management, configuration, service discovery, event notification, and
the following are the key requirements for SOA.

■ Flexible discovery mechanisms for ad-hoc networks, which provide
the reliable discovery of newly or sporadically available services.

■ Support for adaptive communication modes, which provides an
abstract communication model underlying different transport pro-
tocols. Notably, event-based communication is suitable for asyn-
chronous communication.

 Peer-to-peer networks and grids offer promising paradigms for devel-
oping efficient distributed systems and applications. Grids are essentially P2P
systems. The grid community recently initiated a development effort to
align grid technologies with Web Services: the Open Grid Services Archi-
tecture (OGSA) 72 allows developers integrate services and resources across
distributed, dynamic, heterogeneous, environments and communities. The

AU3833_C20rev.fm Page 502 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 503

OGSA model adopts the Web Services Description Language (WSDL41) to
define the concept of a grid service using principles and technologies
from both the grid and Web Services. The architecture defines standard
mechanisms for creating, naming, and discovering persistent and transient
grid-service instances. The convergence of P2P and Grid computing is a
natural outcome of the recent evolution of distributed systems, because
many of the challenging standards issues are quite closely related. This
creates best practice that enables interoperability between computing and
networking systems for the P2P community at-large.

 One important element of SOA is service discovery. In typical service
discovery architectures, a dedicated directory agent stores service infor-
mation. A set of protocols enables users to find a directory agent and to
register with it, and also a provided naming convention for services. For
example, the Service Location Protocol (SLP), Jini, Web Service Description
Language, and UPnP proved service discovery functions. On the other
hand, the Semantic Web addresses service description and discovery
mechanisms in a different way (e.g. DAML). Open Mobile Alliance (OMA47)
is addressing the issue of global service discovery for wireless networks.
In ad-hoc networks, an agent-based approach98 is attempted.

Model Driven Architecture

The service architecture is the most promising approach for mobile com-
puting, and the model driven architecture (MDA) supports the construction
of modular service components. The MDA promises efficient program
development through modeling. Wireless World Research Forum
(WWRF73) has defined an architectural framework. There are local regional
activities such as mITF75 in Japan. Moreover the industry, NTT Docomo76

and Nokia77 for example, have linked their proposals to various forums.
The framework of OMA highlights the end-to-end view and the OMA is
a conceptual architecture that does not indicate a specific topology or
location of servers. Thus, no specific hierarchy of protocol stacks between
domains is required. The service architecture defined in the WWRF uses
an I-centric approach, where a communication system adapts to the
demands of each individual (I-centric). Future services will individually
adapt requirements raised for a large scale of personalization.

Heterogeneity Support

This section summarizes the heterogeneity support in mobile middleware
from the following aspects: reconfigurability, context modeling, security,
programming paradigm, and wireless communication, which are discussed
in reference96.

AU3833_C20rev.fm Page 503 Wednesday, August 16, 2006 11:49 AM

504 ■ Mobile Middleware

Reconfigurability

In order to construct a self-aware or reflective system, current state and
configuration has to be kept so that configuration management can provide
capability for reconfiguration. W3C’s CC/PP20 and OMA’s UAProf21, which
are based on W3C’s RDF22 address terminal capabilities for wireless devices.
In serialization CC/PP uses XML5 and UAProf WBXML24. FIPA’s Quality of
Service Specification25 gives an ontology definition for message transport.
Device Ontology Specification26 is also included in FIPA. Furthermore OMA
have kept working on Device Management27 service. XML is used for
configuration of CORBA Component Model3 and J2EE28. W3C’s Device
Independence Activity29,30 contributes configuration management. Config-
uration management further requires group membership management in
ad-hoc communications31. Recent progress of MobileIP allows more flexible
membership management. Application level of multicast also has to be
integrated as part of middleware, which requires dynamic group manage-
ment and possibly content-based routing. For event-based communication,
it is desirable to support subscriptions with filter expressions, so that only
the events that match its filter are delivered to an application. The man-
agement of subscription must be done dynamically, which is similar to the
group membership management in multicast. Detection mechanisms such
as finding new devices, or detecting devices, where their states have
changed, are necessary information for reconfiguring the environments.

 Many service discovery mechanisms exist including IETF’s Service
Location Protocol (SLP32), Jini33, OMG’s Trading Object Service34, Universal
Description, Salutation36 and Universal Plug and Play (UPnP37). Organiza-
tion for Bluetooth on the other hand offers its own protocol of Service
Discovery38. Each solution is self-contained, thus establishing common
interface for interoperability is necessary. Another aspect of reconfiguration
is software update by downloading and uploading including on-line
upgrades and rollbacks.

Context Modeling

UML23 from OMG is universal tool for system modeling. Model Driven
Architecture (MDA39) is a design approach introduced by OMG. With
MDA, system functionality is defined as a Platform Independent Models
(PIMs), using an appropriate Domain Specific Language and translated
to platform-specific models for actual implementation. This approach
promotes the flexible abstraction level in software and allows developers
to implement the defined model on the various platforms in mobile
computing. The MDA model architecture are related to multiple stan-
dards such as United Modeling Language (UML), the Meta Object Facility

AU3833_C20rev.fm Page 504 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 505

(MOF), the XML Metadata interchange (XMI), and the Common Ware-
house Metamodel (CWM).

 In W3C, Web Services, Web Services Description Language (WSDL40)
and Semantic Web (RDF22 and OWL Web Ontology Language41) address
modeling. Advancement of Structured Information Standards (OASIS42)
supports some aspects in Universal Description Discovery and Integration
(UDDI35). MDA requires model transformation, for example MOF defines
a specific standard for model transformation MOF/QVT. MDA-supporting
tools are developed by vendors and open source projects such as Sun’s
Java EE or Microsoft .NET. Modeling needs to be provided in a coherent
way so that the conceptual models in future systems can be satisfied.
Context modeling has to be light weight in mobile computing, and model
transformation will help to design less complex and efficient context
modeling.

Security

The most widely used security protocol is SSL/TLS (Transport Layer Security,
RFC224643). TLS44 is used to protect communication in the Internet, and it
relies on certificates from an external X50945 Public Key Infrastructure. TLS
is designed to provide privacy and data integrity between applications.
TSL is extended to support wireless Internet as KSSL (KiloByte SSL46) and
more recently SLL for sensor actuators using ECC (Elliptic Curve Cryptog-
raphy). Alternatively the IPsec (RFC2401, 2407, 2408) protocol can be used.
Confidentiality of data is built from Encapsulating Security Payload (ESP,
RFC2406) and data integrity is built from Authentication Header (AH,
RFC2402). Both WAP24 and Palm.net48 use security protocols (e.g., WTLS47

for WAP) for their mobile clients and insert a proxy/gateway in their
architecture to perform protocol conversions.

 The Trusted Computing Group (TCG50) originally aims to develop
Trusted Platform Modules (TPM) and TCG Software Stack (TSS) for hard-
ware and software interface that enables trusted computing. TCG recently
released Trusted Network Connect (TNC) protocol specification based on
AAA, adding the ability to authorize network clients on the basis of
hardware configuration. Future wireless devices need to address the
mapping of identities of users in distributed environments. It is necessary
to profile attributes in order to establish the identity of an individual. The
future Internet will take the form of a web of relationships among different
identities that must be accepted and trusted. The Liberty Alliance
consortium51 is specifying architecture to offer federated network identity
management including trust modeling, efficient fragmentation of informa-
tion, and key/certificate management.

AU3833_C20rev.fm Page 505 Wednesday, August 16, 2006 11:49 AM

506 ■ Mobile Middleware

 The SECURE project49 aims to provide a self-configuring security
system based on the notion of trust in human, providing mutual trust
between mobile devices, which share information and work to present
an unobtrusive interface to their users.

Programming Paradigm

The client-server programming model still dominates in application devel-
opment in spite of recent emergence of peer-to-peer networks. However,
ad-hoc communication in wireless networks will not fit into a client-server
paradigm and the functionality of server needs to be distributed among
member nodes for scalability and robustness. Moreover, supporting sensor
network programming requires a way to propagate code to the appropriate
node in the network and to collect sensed data, leading to a data centric
programming approach.

 OMG’s CORBA52, Sun’s Java 2 Enterprise28, Standard53 and Micro54

Editions, and Microsoft’s .NET55 Object Oriented Middleware (OOM) are
typical current middleware for object-oriented platforms. Another type of
middleware is message-oriented middleware (MOM), which supports
event-based reactive applications. CORBA is OOM and also MOM includ-
ing Event Service56, and Notification Service57. Java Message Service (JMS58)
and Sun Microsystems’ Java System Message Queue58 become de facto
standard of publish/subscribe messaging in the enterprise computing.
IBM’s WebSphere MQ60, Bea Systems’ MessageQ62, Microsoft Message
Queuing (MSMQ61), and TIBCO’s Active Enterprise (including TIBCO
Rendezvous63) are MOM products providing JMS API. Open Source are
ObjectWeb’s JORAM64 and xmlBlaster65. Mobile computing will mostly use
an event-based and reflective middleware paradigm, where mobile appli-
cations will be adaptive, context-aware and personalized. Thus, a novel
programming paradigm is desirable.

Wireless Communication

In general, wireless links are unstable and the degree of instability depends
on location, time, and other contexts. Devices can be disconnected any-
time. Network coverage, node mobility, node density, network dimension
and throughput differ depending on the network architectures. Moreover,
there exist various wireless networks: Wireless LANs, cellular networks,
satellite, and short-range radio and communication protocols (e.g. WiFi,
ZigBee, IEEE 802.11, and Bluetooth) are not unified. Furthermore network
coordination will vary such as pure ad-hoc or nomadic. Thus, the hybrid
systems need to support different types of communication links. Require-
ments on Quality of Service (QoS) will be diverse, that may not be satisfied

AU3833_C20rev.fm Page 506 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 507

through the traditional laying protocol architecture. The system perfor-
mance of future networks will be enhanced by cross-layer design. Design-
ing cross layer protocol requires careful consideration: when the protocol
component improves performance for mobile communications, the appli-
cation components could introduce another layer that cancels out the
enhancements of the protocol components.

 Standardization efforts are in progress to integrate various architectures
for wireless communication. Among physical, MAC and higher layers,
cross layer design issues are addressed, such as 3G standards such as
CDMA2000 and QoS support by the Data Link Layer (DLC) and physical
layer. Interoperability between wireless networks is another issue for user
adoption and management of a wide scale development of services over
wireless networks.

Standardization Activities
Several standards and drafts have been developed by the International
Standard Organization (ISO), the International Engineering Consortium
(IEC), and the International Telecommunication Union (ITU). There are
also many specifications on the operation and interaction of devices and
software, and they are considered standards such as Request for Comments
(RFCs) by the Internet Engineering Task Force (IETF59). Usually the stan-
dardization contains three aspects: compatibility, interoperability and com-
monality. A standard can be open or proprietary. Open standards can be
implemented by anyone without any restrictions. On the other hand,
proprietary standards are only available under restrictive contracts from
the organization that owns the specification. Some examples of open
standards are:

■ GSM (Global System for Mobile Communications - a mobile com-
munications systems developed by (3GPP85))

■ HTML/XML (Structured hyperlinked document format developed
by the W3C)

■ SQL (Structured Query Language developed by ANSI and ISO)
■ OpenDocument (office document specified by OASIS42)
■ TCP (implementing stremas of data over IP developed by IETF)

The IETF is considered as a backbone organization of the standard
Internet operating protocols. The primary purpose of standards by IETF
is developing Internet Protocol Suites and the protocols do not cover
middleware functionality. Thus, there are many organizations such as
OMG (Object Management Group), OMA (Open Mobile Alliance) and
W3C (World Wide Web Consortium) that contribute to provide middleware

AU3833_C20rev.fm Page 507 Wednesday, August 16, 2006 11:49 AM

508 ■ Mobile Middleware

services (see Section 4.1-7), and the list is not exhaustive. Third Generation
Partnership Project (3GPP85) and Third Generation Partnership Project 2
(3GPP286) develop an open system for mobile communication and the
Wireless World Research Forum (WWRF73) addresses issues relevant to
4G. These standardization activities include redundancy, and overlapping
standards organizations tend to cooperate purposefully by defining bound-
aries between the scopes of those organizations.

 Service description is addressed in the Organization for the Advance-
ment of Structured Information Standards (OASIS42), specifically in Universal
Description, Discovery and Integration (UDDI35). UPnP Forum37 addresses
discovery and auto configuration, Web Services Interoperability Organiza-
tion (WS-I86) promotes Web Services Interoperability, which aims to provide
interoperability across platforms and programming languages, Trusted Com-
puting Group (TCG87) specifies the security issues in the network layer,
and Digital Living Network Alliance (DLNA88) addressing interoperability
of personal computers and mobile devices at home. Foundation of Intel-
ligent Physical Agents (FIPA25, 26) provides a Device Ontology Specification.

 In this section, known standard organizations and outline of standard-
ization activities related to mobile middleware is given. References5,27,72,86,96

provide more details of activities.

IETF (Internet Engineering Task Force)

The IETF is a large international community of network operators, design-
ers, and researchers working on the Internet architecture and the operation.
The IETF is supervised by the Internet Society Internet Architecture Board.
Standards are expressed in the specification called Requests for Comments
(RFCs). Under IETF there are various working groups organized by subject
in different areas where standards are discussed and adopted. The mid-
dleware needs to coordinate required Internet protocols, where there exist
many protocols for different infrastructures. Related protocols for mobile
computing in IETF are listed in Table 20.1. IPv6 (stateless auto-configuration
and neighbor discovery), DHCPv6, MANET (ad-hoc routing), IP QoS for
wireless links and mobile networks, TCP enhancements for wireless links,
IP multicast and multi-homing, network mobility, DCCP (Datagram Con-
gestion Control Protocol), SLP (Service Location Protocol), XMPP (Exten-
sible Messaging and Presence Protocol – jabber), SIP78 (Session Initiation
Protocol) and its extension (e.g., SIMPLE working group) are essential. An
incorporated solution between the basic Internet mechanism and MANET
is required for establishing IP connectivity such as SIP and DHCPv6. Figure
20.2 shows the protocols that are influential to mobile computing by
mapping OSI stack. The protocol such as MANET split into the transport
and network layer providing routing algorithms and a network interface.

AU3833_C20rev.fm Page 508 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 509

BGP (Border Gateway Protocol) runs over TCP and UDP and is considered
part of the application or network layer.

OMG (Object Managing Group)

The Object Management Group (OMG79) was formed in 1989 for creating
standard architecture for distributed objects (i.e. components). OMG pro-
duced Common Object Request Broker Architecture (CORBA), UML and
metadata modeling. A central element in CORBA is the Object Request
Broker (ORB) and CORBA itself is for wired networks. Wireless CORBA80,
Super Distributed Objects and Smart Transducers appeared recently for
wireless network environments. OMG currently includes over 500 member
companies. Both International Organization (ISO) and X/Open have sanc-
tioned CORBA as the standard architecture for distributed objects. Microsoft
has its own distributed object architecture, the Distributed Component
Object Model (DCOM). In wireless network environments, component
based design will be important such as The Model Driven Architecture
(MDA89). MDA helps to construct platform-independent models of appli-
cation. It can be realized on any platform including Web Services, .NET,
CORBA, J2EE, and others. Automatic code generation from the model
specification will provide efficiency for development.

OMA (Open Mobile Alliance)

The Open Mobile Alliance (OMA74) is a consolidation of six industry
groups; Wireless Village, SyncML initiative, WAP forum, Location Interop-
erability Forum, Mobile Wireless Internet Forum, and Mobile Gaming
Interoperability Forum. It addresses specific end-to-end interoperability
for mobile computing addressing.

W3C (World Wide Web Consortium)

The World Wide Web Consortium (W3C40) is an industry consortium which
aims to promote standards for the WWW and interoperability between WWW
products. W3C mainly produces specifications and reference software and
its products are freely available. Specifications are in form of Recommenda-
tion (RFC) culminated from Working Drafts. Recommendation may be
updated by separately-published Errata until enough substantial edits accu-
mulate, at which time a new edition of the Recommendation may be
produced (e.g., XML is now in its third edition). The W3C was initially formed
by CERN, where the Web originated, and by DARPA and the European
Commission. W3C Activities are organized into groups such as Document

AU3833_C20rev.fm Page 509 Wednesday, August 16, 2006 11:49 AM

510 ■ Mobile Middleware

 Table 20.1 Mobile Computing Related Working Group in IETF

Area Working Group

Application (apparea) Applications Open Area
(geopriv) Geographic Location/Privacy
(imapext) Internet Message Access Protocol Extension
(opes) Open Pluggable Edge Services
(simple) SIP for Instant Messaging and Presence

Leveraging Extension
(slrrp) Simple Lightweight RFID Reader Protocol
(xmpp) Extensible Messaging and Presence Protocol

Internet (autoconf) Ad-hoc Network Configuration
(dhc) Dynamic Host Configuration
(eap) Extensible Authentication Protocol
(ipv6) IP Version 6 Working Group
(l2vpn) Layer 2 Virtual Private Networks
(l3vpn) Layer 3 Virtual Private Networks
(magma) Multicast & Anycast Group Membership
(mip4) Mobility for IPv4
(mip6) Mobility for IPv6
(mipshop) MIPv6 Signaling and Handoff Optimization
(nemo) Network Mobility
(pana) Protocol for carrying Authentication for

Network Access
(send) Securing Neighbor Discovery
(slp) Service Location Protocol

Operations and
Management

(aaa) Authentication, Authorization and Accounting
(multi6) Site Multihoming in Ipv6
(netconf) Network Configuration
(policy) Policy Framework
(rap) Resource Allocation Protocol
(ssm) Source Specific Multicast
(v6ops) IPv6 Operations

Routing (bgmp) Border Gateway Multicast Protocol
(forces) Forwarding and Control Element Separation
(manet) Mobile Ad-hoc Networks
(mpls) Multiprotocol Label Switching
(vrrp) Virtual Router Redundancy Protocol

Security (ipsec) IP Security Protocol
(ipseckey) IPsec KEYing information resource record
(ipsp) IP Security Policy
(kssl) KiloByte SSL
(pkix) Public-Key Infrastructure (X.509)
(sacred) Securely Available Credentials

AU3833_C20rev.fm Page 510 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 511

 Table 20.1 Mobile Computing Related Working Group in IETF

Area Working Group

Transport (avt) Audio/Video Transport
(beep) Blocks Extensible Exchange Protocol Core
(dccp) Datagram Congestion Control Protocol
(diffserv) Differentiated Services
(enum) Telephone Number Mapping
(iptel) IP Telephony
(megaco) Media Gateway Control
(midcom) Middlebox Communication
(mmusic) Multiparty Multimedia Session Control
(nsis) Next Steps in Signaling
(pilc) Performance Implications of Link Characteristics
(rsvp) Resource Reservation Setup Protocol
(rohc) Robust Header Compression
(sip) Session Initiation Protocol
(sipping) Session Initiation Proposal Investigation
(spirits) Service in the PSTN/IN Requesting Internet

Service
(tsvwg) Transport Area Working Group

Figure 20.2 Internet Protocol suite.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Transport

Network

Interface

Physical

HTTP, SIP, SLP, DNS, RSVP, RAP, SNMP,
BGP

TCP, UDP, BEEP, BGP, MANET, IPSEC, SSL,
KSSL, PKIX, RTP

IPv6, MobileIPv6, DHCPv6, MANET, BGP,
802.11x

Physical media (e.g. radio), Encoding

OSI TCP/IP Protocols

AU3833_C20rev.fm Page 511 Wednesday, August 16, 2006 11:49 AM

512 ■ Mobile Middleware

Object Model, XML, URI, Web Services, Graphics, HTML, Math, Semantic
Web, Device Independence, Mobile Web Initiative, Voice Browser, and WAI
activities. Web Services activity consist of Web Services Architecture, Web
Services Description, XML Protocol (SOAP81), Web Services Choreography
and so forth. Semantic Web activity consists of RDF, and the Web Ontology.
W3C is one of the most influential organizations for mobile computing.

JCP (Java Community Process)

Java Community Process (JCP82) has produced several JSRs to extend Java
2 Micro Edition (J2ME) functionality below.

■ J2ME RMI (JSR-66)
■ J2ME Location API (JSR-179)
■ Mobile Media API (JSR-135)
■ Wireless Messaging API (JSR-120)
■ Security/Trust Services (JSR-177)
■ Graphics and User Interface for J2ME (JSR-184)
■ Event Tracking API (JSR-190)
■ Java Speech API (JSR-113)
■ JDBC (JSR-169)
■ J2ME SIP API (JSR-180)
■ J2ME Web Service (JSR-172)
■ Bluetooth API (JSR-82)

 The J2ME architecture consists of configurations, profiles, and optional
packages. The Connection Limited Device Configuration (CLDC) and the
Connection Device Configuration (CDC) are available. The Mobile Infor-
mation Device Profile (MIDP) is available for CLDC. JMS (Java Messaging
Service) provides the industry standard for messaging, and JXTA83 and
JXTA for J2ME introduce the service-oriented architecture over P2P net-
work environments.

OSGi (Open Service Gateway Initiative)

The Open Services Gateway Initiative (OSGi84) was founded in 1999. Its
mission was to create open specifications for the delivery of multiple
services over wide-area networks to local networks and devices. The Open
Services Gateway Initiative focuses on the application layer and is open
to almost any protocol, transport or device layers. The three key aspects
of the OSGi mission are multiple services, wide area networks, and local
networks and devices. Main benefits of the OSGi are that it is platform
independent and application independent. In other words, the OSGi

AU3833_C20rev.fm Page 512 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 513

specifies an open, independent technology, which can link diverse devices
in the local home network. The central component of the OSGi specifi-
cation effort is the services gateway. A services gateway is a server that
is inserted into the network to connect the external Internet to internal
clients. The services gateway enables, consolidates, and manages voice,
data, Internet, and multimedia communications to and from the home,
office and other locations.

Liberty Alliance

The Liberty Alliance Project51 is a consortium for building open standard
specification for federated identity management. It supports security, and
privacy-improving trust. It eliminates excess passwords and single sign-
on is implemented. Recently identity-based Web Services are implemented
so that it authorizes a service provider to access location information.

Future Challenges
The recent evolution of ubiquitous computing, with a dramatic increase
of event monitoring capabilities by wireless devices and sensors, requires
complex and sophisticated mobile middleware. This new platform enables
users to seamlessly deploy various resources in physically interacting
environments. The future vision of ubiquitous computing requires progress
of devices and technologies, which will be ubiquitous and form a smart
environment.

 To support such heterogeneous environments in networks, devices,
programming models, and data contexts, designing a service model based
on a service-oriented architecture will be a key issue. The most difficult
challenge will be to determine the appropriate level of detail in the
definition of services and components. The aim of the service architecture
is to provide a sustainable modular framework, where any module can
be replaced without causing any impact. The important role of service
architecture can be seen in the global interest in service architectures for
future systems. Once the backbone of the service architecture is estab-
lished, specific aspects of heterogeneity support must be added including
the data model, communication model, and programming model. The
network environments will be more heterogeneous than ever, and open,
peer-to-peer based networking environments will become common.

 As the first step to realize interoperability in such heterogeneous
environments, it will be important to define mobile middleware architec-
tures that achieve wide acceptance as existing middleware in wired
networks. A common set of interfaces and service associated semantics

AU3833_C20rev.fm Page 513 Wednesday, August 16, 2006 11:49 AM

514 ■ Mobile Middleware

will constitute a solid base for the faster emergence of future mobile
applications deployed in a wide range of devices. Security research in
mobile computing, especially access control, will be a major issue for the
design of mobile middleware.

Acknowledgement
This research is funded by EPSRC (Engineering and Physical Sciences
Research Council) under grant GR/557303. We would like to thank mem-
bers of the System Research and Opera Groups at the University of
Cambridge Computer Laboratory for the valuable comments.

References
[1] Aiken, B. et al., Network policy and services: A report of a workshop on

middleware. IETF, RFC 2768, February 2000.
[2] ISO\IEC IS 10746-2, Open Distributed Processing – Reference Model: Foun-

dations, 1996.
[3] CORBA Component Model, v 3.0. OMG document formal/2002-06-05, June

2002.
[4] Banavar, G. et al., Challenges: An Application Model for Pervasive Com-

puting, in Proc. MobiCom, 266-274, 2000.
[5] W3C, XML Information Set. W3C Recommendation, 24 October 2001.
[6] Haowen, C. and Perrig, A., Security and Privacy in Sensor Networks, IEEE

Computer, Vol. 36, No. 10, 103-105, October 2003.
[7] IEEE Spectrum, Special report, Sensor nation, July 2004.
[8] Java remote method invocation (Java RMI), http://java.sun.com/j2se/1.3/docs/

guide/rmi/index.html.
[9] Enterprise JavaBeans (EJB), http://java.sun.com/products/ejb.

[10] Sun Microsystems, Java Message Service. (JMS), http://java.sun.com/prod-
ucts/jms/.

[11] Bacon, J. et al., Using Events to build Distributed Applications, in Proc.
IEEE SDNE Services in Distributed and Networked Environments, 148-155,
1995.

[12] Pietzuch, P. and Bacon, J., Hermes: A Distributed Event-Based Middleware
Architecture, in Proc. Int. Workshop on Distributed Event-Based Systems
(ICDCS/DEBS’02), 611-618, 2002.

[13] Cugola, G. et al., The JEDI Event-Based Infrastructure and its Application
to the Development of the OPSS WFMS, IEEE Transactions on Software
Engineering (TSE), vol. 27, pp. 827-850, 2001.

[14] IBM, Gryphon: Publish/Subscribe over Public Networks. In http://research-
web.watson.ibm.com/gryphon/gryphon.html.

[15] Meier, R. et al. STEAM: Event-based middleware for wireless ad hoc net-
works, in Proc. Int. Workshop on Distributed Event-Based Systems (ICDCS/
DEBS’02), 639-644, 2002.

AU3833_C20rev.fm Page 514 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 515

[16] Murphy, A. et al., Lime: A Middleware for Physical and Logical Mobility,
in Proc. 21st Int. Conf. Distributed Computing Systems, 524-233, 2001.

[17] Fritsch, D., Klinec, D., and Volz, S., NEXUS Positioning and Data Manage-
ment Concepts for Location Aware Applications, in Proc. 2nd Int. Sympo-
sium on Telegeoprocessing, 171-184, 2000.

[18] Capra, L. , Emmerich, W., and Mascolo, C., CARISMA: Context-Aware
Reflective Middleware System for Mobile Applications, IEEE Transactions on
Software Engineering, 29(10):929-945, 2003.

[19] Satyanarayanan, M., Mobile Information Access, IEEE Personal Communi-
cations, 3(1): 26–33, 1996.

[20] W3C, Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies, W3C Working Draft, 25 March 2003.

[21] OMA User Agent Profile Version 2.0, http://www.openmobilealliance.org/
documents.html.

[22] W3C, Resource Description Framework (RDF). http://www.w3.org/RDF/.
[23] Unified Modeling Language (UML) Specification 1.5, OMG document for-

mal/2003-03-01, March 2003.
[24] WAP Forum, WAP Binary XML Content Format. Document: WAP-192105-

WBXML-20011015-a.
[25] FIPA Quality of Service Specification, FIPA document number SC00094A,

December 2002.
[26] FIPA Device Ontology Specification, FIPA document number SC00091E,

December 2002.
[27] OMA Device Management Version 1.1.2, http://www.openmobilealliance.

org/documents.html.
[28] Sun Microsystems, Java 2 Platform, Enterprise Edition (J2EE), http://java.

sun.com/j2ee/.
[29] W3C Device Independence Activity, http://www.w3.org/2001/di/.
[30] W3C, Device Independence Principles, W3C Working Group Note, 01

September 2003.
[31] Chockler, G. V., Heidar, I., and Vitenberg, R., Group Communication Spec-

ifications: A Comprehensive Study, ACM Computing Surveys, 427-469, 2001.
[32] Service Location Protocol, Version 2, IETF RFC 2608.
[33] Sun Microsystems, Jini Network Technology, http://wwws.sun.com/soft-

ware/jini/.
[34] Trading Object Service Specification, OMG document formal/2000-06-27, 2000.
[35] OASIS UDDI Specification: Universal Description, Discovery and Integration

of Business for the Web. (UDDI Version 3), http://www.oasis-open.org/com-
mittees/uddi-spec/doc/tcspecs.htm.

[36] Salutation, http://www.salutation.org/.
[37] UPnP Forum, Universal Plug and Play, http://www.upnp.org/.
[38] Bluetooth Service Discovery Protocol, https://www.bluetooth.org/spec/.
[39] OMG, Model Driven Architecture, http://www.omg.org/mda/.
[40] W3C, Web Services Description Language (WSDL) Version 2.0, Two W3C

Working Drafts, 10 November 2003.
[41] W3C, OWL Web Ontology Language, A set of W3C Candidate Recommen-

dations, 18 August 2003.

AU3833_C20rev.fm Page 515 Wednesday, August 16, 2006 11:49 AM

516 ■ Mobile Middleware

[42] Organization for the Advancement of Structured Information Standards
(OASIS), http://www.oasis-open.org/home/index.php.

[43] Frier, A., Karlton, P., and Kocher, P., “The SSL3.0 Protocol Version 3.0”,
http://home.netscape.com/eng/ssl3/.

[44] Dierks, T. and Allen, C., The TLS Protocol Version 1.0, http://www.ietf.org/
rfc/rfc2246.txt

[45] CCITT. Recommendation X.509: "The Directory – Authentication Frame-
work". 1988

[46] Gupta, V. and Gupta, S., KSSL: Experiments in Wireless Internet Security,
Sun Microsystems Technical Report: TR-2001-103.

[47] WAP Forum, “Wireless Transport Layer Security Specification”, http://www.
wapforum.org/tech/documents/WAP-261-WTLS-20010406-2.pdf

[48] Palm, Inc., “The Palm.Net Wireless Communication Service”, see http://
www.palm.com/products/palmvii/wireless.html

[49] Cahill, V. et al., Using trust for secure collaboration in uncertain environ-
ments, IEEE Pervasive Computing, 2(3): 52-61, 2003.

[50] Trusted Computing Group, https://www.trustedcomputinggroup.org.
[51] Liberty Alliance Project, http://www.projectliberty.org/.
[52] Common Object Request Broker Architecture (CORBA/IIOP). OMG docu-

ment formal/2002-12-06, December 2002.
[53] Sun Microsystems, Java 2 Platform, Standard Edition (J2SE), http://java. sun.

com/j2se/.
[54] Sun Microsystems, Java 2 Platform, Micro Edition (J2ME), http://java. sun.

com/j2me/.
[55] Microsoft, .NET Framework, http://www.microsoft.com/net/.
[56] OMG, Event Service Specification, OMG document formal/2001-03-01, 2001.
[57] OMG, Notification Service Specification, OMG document formal/2002-08-

04, August 2002.
[58] Sun Microsystems, Sun Java System Message Queue, http://wwws.sun.com/

software/products/message/fiqueue/index.html.
[59] IETF TSVWG home page. http://www.ietf.org/html.charters/tsvwg-charter.

html.
[60] IBM, WebSphere MQ, http://www.ibm.com/software/integration/wmq/.
[61] Microsoft Message Queuing (MSMQ), http://www.microsoft.com/windows

2000/technologies/communications/msmq/default.asp.
[62] Bea Systems, MessageQ, http://www.bea.com/framework.jsp?CNT=index.

htm\&FP=/content/products/more/messageq/.
[63] TIBCO, ActiveEnterpris, http://www.tibco.com/solutions/products/default.

jsp.
[64] ObjectWeb Consortium, JORAM, http://joram.objectweb.org/.
[65] xmlBlaster.org, Open Source for MOM, http://www.xmlblaster.org/.
[66] Distributed Component Object Model (DCOM), http://www.microsoft.com/

com/dcom.asp.
[67] Bacon, J. et al., Generic Support for Distributed Applications, IEEE Computer,

vol. 33, pp. 68-76, 2000.

AU3833_C20rev.fm Page 516 Wednesday, August 16, 2006 11:49 AM

Openness and Interoperability in Mobile Middleware ■ 517

[68] Rowstron, A. et al., SCRIBE: The design of a large-scale event notification
infrastructure, in Proc. Int. Workshop of Networked Group Communication
(NGC), 30-43, 2001.

[69] Siena, http://www.cs.colorado.edu/users/carzanig/siena/.
[70] Rowstron, A. et al., Pastry: Scalable Decentralized Object Location, and

Routing for Large-Scale Peer-to-Peer Systems, in Proc. IFIP/ACM Middleware,
329-350, 2001.

[71] Veríssimo, P. et al., CORTEX: Towards Supporting Autonomous and Coop-
erating Sentient Entities, in Proc. European Wireless, 2002.

[72] Open Grid Services Architecture (OGSA) Working Group, http://www.ggf.
org/ogsa-wg/".

[73] Wireless World Research Forum, Book of Visions 2001, http://www.wireless-
world-research.org/.

[74] Open Mobile Alliance, http://www.openmobilealliance.org/.
[75] Mobile IT Forum, http://www.mitf.org/index\fie.html.
[76] Yumiba, H. et al., IP-Based IMT Platform. IEEE Personal Communications,

October 18-23, 2001.
[77] Nokia, Mobile Internet Technical Architecture, Parts 1-3. ISBN 951-826-671-

9, IT Press, 2002.
[78] SIP Web site. http://www.softarmor.com/sipwg/.
[79] Object Management Group, http://www.omg.org/.
[80] Wireless Access and Terminal Mobility in CORBA 1.1 Specification, OMG

document dtc/04-04-02, April 2004.
[81] SOAP Version 1.2. W3C Recommendation, June 2003.
[82] Java Community Process (JCP), http://jcp.org/.
[83] JXTA. www.jxta.org.
[84] OSGi, http://www.osgi.org.
[85] 3GPP, http://www.3gpp.org/.
[86] Web Services Interoperability Organization (WS-I), http://www.ws-i.org/.
[87] Trusted Computing Group (TCG), https://www.trustedcomputinggroup.org/home.
[88] Digital Living Network Alliance (DLNA), http://www.dlna.org/.
[89] Model Driven Architecture (MDA), http://www.omg.org/mda/)
[90] Softwired, http://www.softwired-inc.com/
[91] Deering, S., Internet Protocol, Version 6 (Ipv6) Specification, RFC 2460, 1998.
[92] Fristche, W., Mobile Ipv6 – the Mobility Support for Next Generation

Internet, Ipv6 forum, http://www.ipv6forum.com, 2000.
[93] Kent, S., Security Architecture for the Internet Protocol, RFC2401, 1998.
[94] Arora, A. et al., JXTA for J2ME – Extending the Reach of Wireless with JXTA

Technology, Whitepaper, Sun Microsystems, 2003.
[95] Raatikainen, K., A New Look at Mobile Computing Proceedings of ANWIRE

Workshop, 2004.
[96] Raatikainen, K., Columns in OT Land Expert’s Corner on Middleware in

Mobile World, 2004.
[97] Grace, P. et al., Interoperating with Services in a Mobile Environment,

Technical Report (MPG-03-01), Lancaster University. 2003.

AU3833_C20rev.fm Page 517 Wednesday, August 16, 2006 11:49 AM

518 ■ Mobile Middleware

[98] Perich, F. et al., Query Routing and Processing in Mobile Ad-Hoc Environ-
ments, Technical Report, UMBC, 2001.

[99] Yoneki, E. and Bacon, J., Distributed Multicast Grouping for Publish/Sub-
scribe over Mobile Ad Hoc Networks, in Proc. IEEE Wireless Communica-
tions and Networking Conference (WCNC), 2005.

[100] Yoneki, E. and Bacon, J., Unified Semantics for Event Correlation over Time
and Space in Hybrid Network Environments, in Proc. IFIP International
Conference on Cooperative Information Systems (CoopIS), LNCS 3760, 366-
384, 2005.

AU3833_C20rev.fm Page 518 Wednesday, August 16, 2006 11:49 AM

519

Chapter 21

Trust in Pervasive

Computing

Jim Parker, Anand Patwardhan, Filip Perich,
Anupam Joshi, and Tim Finin

CONTENTS

Introduction... 520
Social Communities in Pervasive Networks ... 522

Pervasive Trust .. 522
Services To Go.. 524

Pack Formation and Collaborative Queries ... 525
Belief and Reputation in MANETs .. 527

Related Work ... 527
Reputation Model.. 528

Information Source Discovery.. 529
Information Advertisement .. 529
Querying Peers .. 530
Collecting Answers.. 530
Recommendation Request .. 530
Recommendation Response.. 530
Calculating Final Answer .. 531
Updating Trust Belief .. 532

Answering Peers.. 533

AU3833_C21.fm Page 519 Wednesday, August 16, 2006 12:34 PM

520

■

Mobile Middleware

Malicious Activity Detection and Trust ... 534
Malicious Activity Detection... 535
Cross-Layer Information Processing .. 538

Discussion.. 540
References ... 541

Introduction

The idea of

ad hoc

 networking and pervasive environments is now more
than a decade old. A significant amount of research on trust and privacy
has been accomplished in the area of social sciences; however, because

ad hoc

 networks have thus far not been popularly adopted in commercial
products, little application research on trust and privacy has been per-
formed in this area. Although recent advances in wireless and storage
technology and the consequent proliferation of highly capable portable
devices and wireless appliances are expected to lead to widespread use
of

ad hoc

 networking technologies, practical solutions for achieving secu-
rity, privacy, and trust are still lacking. The highly invasive nature of some
of these technologies poses a threat to the security and privacy of personal
data and the area of pervasive computing.

Mobile devices with small form factors, yet with computing power
comparable to desktops only years old, are now common. Enhanced
multimodal user interfaces such as touch screens, biometric security
devices, and accelerometers have significantly improved the usability of
these devices. The integration of global position system (GPS) receivers,
cameras, and recorders in cellphones and personal digital assistants
(PDAs) has ushered in a new generation of

converged

 mobile devices.
We are now witnessing a continuous proliferation of wireless appliances
in everyday life, such as crib monitors, home security alarms, fire alarm
annunciators, and surveillance cameras. These technological advances
are helping create resource-rich environments in which personal mobile
devices can seamlessly integrate to utilize and provide services; moreover,
these mobile devices will be capable of sharing their capabilities via
wireless means. Peer-to-peer relationships will enable devices to dynam-
ically form collaborative relationships and perform complex tasks lever-
aging available resources either shared among the peers or present in
their surrounding environment.

Thus far, wireless networking has primarily served to extend the reach
of the Internet. Most of the prevalent wireless technologies and their
applications are infrastructure based. In traditional mobile computing
environments, devices primarily adhere to the basic client–server model
in which the devices act as clients and access stationary information on

AU3833_C21.fm Page 520 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing

■

521

trusted servers. In the client–server model, the server is anchored, and a
client can verify through several authentication and integrity schemes that
the information has originated from the server, forcing accountability.
Mobile devices lack the common sense that people often employ to
determine the reliability of both the source and information provided by
the source; consequently, devices require a mechanism to evaluate the
integrity of their peers and the accuracy of information provided by their
peers, as otherwise there is no scheme for protecting a device from
malicious peers that deliberately provide unreliable information.

A mobile

ad hoc

 network (MANET) is a self-organized collection of
wireless mobile nodes lacking a fixed network infrastructure and having
no central authority. The flexibility and openness of MANETs make them
very appealing as an information-gathering and exchange medium; how-
ever, these two properties can also lead to security vulnerabilities. Fully
realizing the potential of the mobile

ad hoc

 paradigm requires an
autonomous approach to mitigating risk and placing users in control of
risk evaluation and usage. Along with enabling devices to estimate the
trust they have in other devices and the accuracy of the information
obtained from them, a mechanism must be provided that enables devices
to detect and distinguish among

malicious peers

, which purposely provide
incorrect information;

ignorant peers

, which are unable to guarantee a
reliable level of provided information; and

uncooperative peers

, which
have reliable information but refuse to make it available to other devices.
This mechanism would also implicitly support an

incentive model

, in
which all devices must provide only reliable information and provide this
information often; otherwise, they risk losing the ability to communicate
with other devices in the environment.

In MANETs, a server-centric mechanism of identification and authen-
tication is not suitable. Even with limited Internet connectivity, total
reliance on conventional security mechanisms involving key distribution
centers (KDCs), certificate authorities (CAs), or similar forms of remote

trusted

 sources imposes serious limitations on the functioning of these
devices, in effect limiting them to function only when those remote sources
can be contacted. In pervasive environments, the number of devices
embedded in the surrounding infrastructure and personal mobile devices
will be immense; thus, it will not be possible to predetermine all possible
devices that may be encountered nor will it be feasible to centrally register
all such devices and then later identify and authenticate them on every
encounter.

This chapter presents research work that addresses some of the concerns
raised with regard to protecting the privacy and security of mobile devices.
The inherent vulnerabilities of pervasive networks have thus far restricted
their use. Providing strong assurances of reliability and trustworthiness of

AU3833_C21.fm Page 521 Wednesday, August 16, 2006 12:34 PM

522

■

Mobile Middleware

information and services with practical implementation considerations for
pervasive environments will be the most significant contribution of our
research and will be another step toward making the vision of

anytime,
anywhere

 computing a viable reality.

Social Communities in Pervasive Networks

Pervasive Trust

Using locally available information collected from the surrounding perva-
sive environment or peers in the vicinity introduces several trust and
security issues. Due to the inherent nature of pervasive environments,
conventional mechanisms of providing security are not suitable. Devices
must be made self-reliant to make trust evaluations and use reputations
to guide their behavior; however, because mobile devices are potentially
innumerable, it is not possible to cache the identities and reputations of
all the encountered devices nor can we expect all devices to be cooper-
ative. The abundant storage capacities of the mobile devices, however,
will be sufficient to cache specific device identities; that is, it will be
sufficient to remember only those devices that are of future potential value
in forming social networks and those that will be most likely to cooperate.

Scenario:

Peter is flying a red-eye from LA to NY. His calendar
shows a meeting in his NY office at 9:00 a.m. His portable device
notices other people present in the airplane and finds his col-
leagues Clark and Lex, who are also attending the same meeting.
Peter can’t see them from his seat, but their devices can interface
with the personal display screens in front of them, and the built-
in cameras in their devices allow the three men to have a live
video conversation and exchange notes for the next morning’s
presentation. They later decide to watch Peter’s presentation to
provide feedback. Peter grants them the right to access his device
and make changes to the presentation. None of the devices
belonging to Peter, Clark, or Lex has the capability to edit video
content, but Clark discovers that an old friend, Brenda, is also
on the airplane and her device has the required capability. On
Clark’s request and recommendation, Brenda allows Peter to use
the video-editing capability. Peter is able to improve and finish
his presentation without even leaving his seat.

In this scenario, the participants were initially unaware of the others’
presence. Authenticating each other’s devices is usually not possible unless
prior security associations exist, but predetermining all possible devices

AU3833_C21.fm Page 522 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing

■

523

that can be encountered is not a feasible option; thus, distributed trust
management becomes a necessity for the survival of the network. In the
following sections, we propose a distributed trust management scheme
that utilizes activity monitoring and reputation management to evaluate
trust. We propose employing mobility patterns and distinguishing land-
marks or beacons to evolve trust and establish a scalable pervasive
reputation management framework. Reputations of known devices in
addition to activity monitoring can be used to compute trust in that device.

The networking layers can benefit from knowing who the reliable or
trusted peers are within the local neighborhood for preferential consider-
ation in forming routes and for peer discovery. The application layer can
benefit from reports of malicious activity detected by the lower layers and
then appropriately modify their trust assessments. Further recommenda-
tions by trusted devices can then be used to create new trust relationships
or modify existing ones.

Connectivity provided by

ad hoc

 networking requires that peers in the
pervasive environment be cooperative. Due to the security threats posed
to individual mobile devices, collaborative efforts in countering intrusive
behavior are required. Most of the response mechanisms we have described
in Patwardhan et al. [20] are reactionary. Because the scope of intrusion-
detection mechanisms deployed on individual devices is limited to their
radio range, collaborative mechanisms are required for communicating
suspicious activity and intrusions to other devices in the vicinity. We
propose using

reputations

 to proactively detect and deny resources to
devices that have been deemed malicious. Also, in the course of sharing
information and services among devices, complex processes of trust evo-
lution can be simplified using recommendations among trusted peers —
which are again motivating factors for forming local collaborative groups.
We propose the concept of

pack formation

, which uses accounts of prior
encounters, evolved trust, and recommendations to form local packs.

Using context information and notions of neighborhoods that can be
identified by specific unique landmarks, devices need only store trust
information pertaining to the relevant context; for example, a portable
device owned by a college student should only remember the most
frequently encountered devices in the vicinity of the university campus
to deduce that those particular entities are frequent visitors of that neigh-
borhood/community. Furthermore, if malicious activity is attributed to any
such known entity, this fact can be reported back to the community where
that entity is known to be a frequent visitor.

Without assurances of the reliability and trustworthiness of retrieved
data, the utility and effectiveness of the completed tasks are questionable.
Metrics to evaluate the reliability of data and trustworthiness for peer-
provided information must be available. Further trust evaluation and

AU3833_C21.fm Page 523 Wednesday, August 16, 2006 12:34 PM

524

■

Mobile Middleware

reputation management mechanisms will allow devices to function auton-
omously with minimal user intervention. To achieve these goals, it is
necessary to take a holistic approach in addressing issues of device
security, secure routing, peer discovery, data management, and trust
relationships, as these issues are highly interdependent.

We propose giving MANET nodes the ability to independently evaluate

trust

 in the nodes with which they interact. This solution involves a
reputation management system through which nodes can evaluate, main-
tain, and distribute information about trust relationships within a MANET.
Each node can make autonomous decisions about the trustworthiness of
other nodes, providing an alternative to third-party authentication during
periods of disconnection. Ding et al. [13] propose using two kinds of trust:

domain trust

 and

referral trust

. Nodes can ask other trustworthy nodes
to provide information (domain trust) or trust them to provide referrals
to other devices that might have that information (referral trust).

Because MANETs rely on cooperation from all nodes, detection and
isolation of malicious nodes are necessary for a MANET to function.
Malicious and uncooperative nodes can cause disruption in MANETs and
potentially disable the network. Each node must be able to identify
malicious activity because centralized intrusion-detection (ID) schemes
and firewalls cannot be effective in a MANET environment [19,20]. Also,
at the application level, devices should be able to make autonomous
assessments (i.e., reliable, corrupt, or unknown) about data provided by
peers. For our discussion regarding trust management at the application
level, we present results from our work in distributed reputation manage-
ment and accuracy beliefs, followed by a description of several activity
monitoring techniques that we use to detect intrusive or malicious behavior
at the lower networking levels.

Services To Go

Continuous improvements in compact storage technologies, including
semiconductor memory (e.g., CompactFlash, MMC cards) and miniature
hard disks and microdrives, have spawned a generation of mobile devices
with substantial storage capacities. Abundant onboard storage relieves the
burden of requesting services or data from remote servers, thereby freeing
devices from the dependency on connectivity to remote servers. Devices
guided by their profiles [11,21] can cache large amounts of potentially
useful information and keep required information updated by querying
other trusted devices in the vicinity and requiring connectivity to the
Internet only when absolutely necessary. To guide themselves, the devices
will have to be able to sense their contexts (both spatial and temporal).
By acquiring local information from reliable sources, the devices could

AU3833_C21.fm Page 524 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing

■

525

compose locally available services and use their existing knowledge bases
to service their needs; in other words, they will be largely self-reliant.
Moreover, all such devices will be capable of providing useful services to
other (mobile) devices in their vicinity. The collective resources of the
individual data storage capacities, the unique sensory and effector capa-
bilities of the devices, and the individual trust relationships will enable
complex tasks to be performed and improve the overall performance of
collective and individual tasks. Long-range wireless services are often not
suitable for high data rates and at times are not cost effective. We propose
harnessing the immense storage capacity of mobile devices, optimizing
the use of available connectivity to keep the knowledge base updated,
and enabling devices to function autonomously.

Pack Formation and Collaborative Queries

As exemplified in our earlier scenario, mobile devices are often bound
by commonalities in the physical world. Common goals can be deduced
from the profiles of the users and their devices; thus, there exist natural
incentives to collaborate. The pack formation mechanism that we have
proposed has several advantages: faster response times, increased scope
of search, and distributed trust and reputation management. Also, collab-
orative mechanisms will prove useful when collective action must be taken
against colluding adversaries. Here, we present some of the preliminary
results from our simulations.

Collaboration in query processing leads to improved response times.
We simulated an environment with 50 nodes spread in random locations
in a two-dimensional square area using GloMoSim [27]. We present some
of the interesting performance results from two separate sets of simula-
tions. In the first case, each device assigned a task set of distinct questions
searches individually for answers. Later, the same set of devices with the
same task set of questions searches for the answers collaboratively.

For simplicity, we assumed that some initial trust already existed to
be able to form collaborative groups. Our results are for pack sizes of
five in a total population of 50 devices in a 150-m

2

 area. Each device had
a transmission range of 25 m and followed a random waypoint model
(speeds varying from 1 to 5 m/sec and pauses of 5 sec). Each device tried
to find answers for its assigned task set of 100 questions, and the answers
were randomly distributed among the remaining nodes. To simulate the
serendipitous nature of the environment, we varied the percentage of the
knowledge base present in the neighborhood from 40 to 100 percent in
increments of 20 percentage points. We ran the simulation using five
different starting positions for the devices, for five runs of the simulation.

AU3833_C21.fm Page 525 Wednesday, August 16, 2006 12:34 PM

526

■

Mobile Middleware

Because our focus was on the effectiveness and response time of the
search, we assumed that all the sources of information were reliable and
would only provide accurate answers. In the collaborative version, pack
members helped each other find answers to their questions. When an
answer for a collaborator’s question was found, the device tried to send
it back to that collaborator.

The plots in Figure 21.1 depict two sets of trends, each representing the
five different starting positions of the five collaborators, each of which had
a task set of 100 questions (not common with other collaborators). Also,
the devices themselves did not answer their own questions. Parts a, b, c,
and d of Figure 21.1 have decreasing knowledge bases, from 100 to 40
percent, in decrements of 20 percentage points. The collaborative version
consistently outperformed the individual searches. In Figure 21.1a, devices
in the collaborative scenario were able to find twice as many answers within
less than a minute from the start of the querying process. In the non-
collaborative version, where the devices independently tried to query other
devices in their radio range, they managed to find approximately 50 percent

Figure 21.1 Preliminary results from simulations with five collaborators.

AU3833_C21.fm Page 526 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing

■

527

of the answers and required up to 10 minutes to do so. In Figure 21.1d,
with only 40 percent knowledge (i.e., answers to only 40 percent of the
questions were available), the performance difference is more pronounced.
Here, it can be seen that in the non-collaborative setup the devices were
able to find no more than 5 percent of the answers, whereas the collabo-
rating devices managed to find as many as 30 percent of the answers in
less than 4 minutes.

All the simulations showed promising results in terms of faster
responses and search effectiveness with regard to the collaborative models.
We observed that, as the pack size was increased from 5 to 10, the control
overhead for communication between the pack members increased and
introduced minor increases in query response latency, yet the number of
successfully answered queries was consistently greater than for the non-
collaborative version.

Belief and Reputation in MANETs

This section introduces a

distributed reputation model

 that extends the
traditional query processing model [22] to allow devices to capture beliefs
on the reputations of their peers and accuracy beliefs regarding information
obtained from those peers. To mitigate the negative effects of malicious
or ill-informed devices, the model categorizes peers as

reliable

 and

unre-
liable

. In the model, the accuracy of an answer is a function of the
trustworthiness of the information source and its belief in the accuracy of
its answer. Devices assign trust to an information source based on past
experience and the recommendations of those devices that it trusts.

Related Work

Trust and belief management models can be divided into two categories:
mathematical and logical. Jonker and Treur [15] proposed a mathematical
model for capturing trust in multi-agent systems. Their model consists of
beliefs, and trust is a function of the values of these beliefs. The trust
function is based on initial trust, experiences, and trust dynamics. The
types of trust dynamics determine how past experiences affect the newly
computed trust value. Richardson et al.

[24] presented a mechanism for
calculating the trustworthiness of users on the Semantic Web by developing
a “web of trust” based on Web algorithms such as Google’s PageRank [1].
In this approach, users maintain trust values for a small set of users and
use the belief values of these users and their own trust in the users to
calculate their own beliefs. Abdul-Rahman and Hailes [2] define a formal
trust model based on trust and recommendations. Users store trust values

AU3833_C21.fm Page 527 Wednesday, August 16, 2006 12:34 PM

528

■

Mobile Middleware

for other users and ask trusted users for recommendations when dealing
with unknown users; however, when a trust value is calculated it is not
updated.

A significant amount of work has been carried out on developing logical
trust models. Blaze et al. [6,7] define trust management as creating policies
and assigning credentials. They use a PolicyMaker engine for checking if
users’ credentials conform to policies before granting them access. KeyNote
[5] is designed along the same lines as PolicyMaker, but it has been designed
to be simpler, to provide more support for the public key infrastructure
(PKI), and to allow policies and credentials to be transported over insecure
communication channels. REFEREE is a similar trust management system
that is designed to facilitate security decisions for the Web [12]. Kagal et
al. [16,17] also described a policy-based infrastructure for security and trust
management in multi-agent systems and the Semantic Web. In this system,
every entity has a policy that reflects its current binary trust values and
exchanges them with other entities via speech acts.

The model described in this section employs a mathematical approach.
This is because a mathematical model requires fewer computing resources
than logical models, which require reasoning engines and certificate
verification. Additionally, unlike logical models that only describe condi-
tions when devices are trusted enough to access a certain information,
mathematical models can also be employed to represent answer accuracy
and to handle situations when more than one answer is provided for a
given query. This model differs from other mathematical models in that
the new model proposes several trust learning schemes based on expe-
rience and recommendations, allows information sources to specify their
trust in the information being provided, and uses both kinds of values to
compute beliefs. Most other schemes provide trust learning algorithms
based on either experience or recommendations but do not combine the
two. They also ignore the believed accuracy of the information source,
whereas the proposed model uses it as a factor for rating the trustwor-
thiness of a source.

Reputation Model

A successful model evaluating the integrity and information accuracy of
a device must address the inherent limitations of mobile

ad hoc

 networks
and of mobile devices, including power, memory, and computation con-
straints as well as network reachability and wired infrastructure support
limitations. The reputation model described in this section overcomes
these issues because it does not rely on any wired infrastructure nor does
it assume connectivity among all devices. The model also does not assume

AU3833_C21.fm Page 528 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing

■

529

that each device can maintain belief information about every other device
or information the other devices can provide.

The model only assumes that every device is able to assign an accuracy
degree to any information the device provides to its peers and that every
device maintains trust degrees about a subset of devices in the environment
representing how much a device trusts the other devices for providing
accurate answers to queries. The accuracy degree represents the device’s
belief about the correctness of the information, which can range in value
from

distrust

 to

undecided

 to

trust

. A device, when asked, can provide
a recommendation for some other device in question. Similar to accuracy
degree, the recommendation can range in value from

distrust

 to

undecided

to

trust

.
The model functions as an extension to a traditional query processing

model for mobile

ad hoc

 networks. In this reputation-driven model, a
querying device collects responses from peers but also computes their
trust degrees. It has been suggested that this approach is superior to the
alternative where a device first computes the reputation of its peers and
then queries those peers for information [23].

Information Source Discovery

When a device needs to obtain an answer for a query, it first attempts to
discover which of its peers may have the necessary answer. The device
does so by evaluating its cache of advertisements received from its peers
and by broadcasting a source discovery request messages to its peers up
to

n

 hops away. The discovery message consists of the device’s identity
(

ID

Q

), the question (

Q

), and a nonce for differentiating it from other
discovery messages sent by this device. A device may send out the
discovery messages more than once based on the responses it receives
from its peers.

Information Advertisement

When a cooperating, nonmalicious peer receives a source discovery, it
checks its cache to find an answer matching the question. If the peer has
a cached answer, it will respond by sending an advertisement message
containing the identifier of the device (

ID

S

) and the question it can answer
(

Q

), where the ID is some globally unique string (e.g., the Media Access
Control, or MAC, address) or a cryptographically secure scheme that
prevents ID spoofing, such as those presented by Eschenauer et al. [18].
A device may optionally proactively broadcast bulk advertisements at
random intervals.

AU3833_C21.fm Page 529 Wednesday, August 16, 2006 12:34 PM

530

■

Mobile Middleware

Querying Peers

The querying device evaluates all advertisements in its cache to deter-
mine possible sources for its query. If a device is unable to discover a
sufficient number of information sources that could provide an answer
to its question, the device simply broadcasts the question to all peers
in its vicinity, again up to

n

 hops away. If, however, the device is able
to collect some information sources, the device sends a query to only
those peers.

Collecting Answers

When a cooperating, nonmalicious peer receives a query message and
has a matching answer, it will respond with a message containing its ID,
the answer (

A

i

), and the accuracy degree (

A

D

(

i

)) of the answer from –1 to 1.

Recommendation Request

Each querying device (

Q) has a lower limit (n) on the number of trusted
peers that must provide an answer to a given query. A trusted peer (R)
is any peer for which device Q has a trust degree (TQ(R)) above a certain
trust threshold (τ). When a device has not received enough answers from
at least that many trusted peers, it computes the trust degree of every
peer that sends it an answer (IDR), using its initial trust belief function
(αD) and current trust values. If the device is unable to determine if the
answering peer is trusted and it has not reached the minimum number
of trusted responses, then the device may initiate a recommendation
session about the answering peer. In the model, the device can either ask
only those devices that it believes are its trusted peers or the device can
ask anyone within n-hop distance for recommendations about the answer-
ing device. The querying device (IDQ) does so by sending out a recom-
mendation request message to some remote peer IDR with the identity of
the answering peer.

Recommendation Response

When a cooperating, nonmalicious peer receives a recommendation
request, it looks up its trust beliefs to determine if the querying device
(IDQ) is one of its trusted peers. If this is the case, then the device
responds with its trust degree in IDS by sending a recommendation
response message.

AU3833_C21.fm Page 530 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 531

Calculating Final Answer

When a device receives all responses from all peers to whom it sent its
query message or when its session time-out period ends, the querying
device proceeds by calculating the final answer. For every different answer
value it has received, the device calculates the combined accuracy degree
of the particular value based on the suggested accuracy degree of the
information sources and their trust degrees using its trust-weighting and
accuracy-merging functions (⊗ and ⊕, respectively):

(21.1)

The model defines three accuracy-merging functions: AFV, MIN, and
MAX. These functions are similar to computing membership degrees in
Boolean combinations of fuzzy variables. The querying device uses the
merging function to compute a combined accuracy degree for every
distinct value it received as a possible answer:

(21.2)

If all trusted devices provide the same answer to the original query (i.e.,
there is only one tuple in PA), the querying device will simply use that
answer as the final value if its combined accuracy degree is above a
certain threshold (τ). This is similar to the threshold concept for a trusted
peer.

In many cases, however, the querying device may receive multiple
conflicting answers from trusted peers. To address this problem, in this
model the querying device can apply two dif ferent techniques. The
querying device may accept an answer only if precisely one of the
suggested answers has a combined accuracy level above τ. This technique
is referred to as only-one answer (OO). Formally:

(21.3)

This is a pessimistic approach, as the device chooses precisely one answer
(e.g., when the device is querying for the current stock price of a certain
company), and only one possible answer exists. The querying device will
not cache an answer if more than one answer is above the threshold or

∀ = ⊕ ⊗()answer A i A i T Di combined S D Q: () () ()

PA answer A ii combined= (){ }, ()

answer OO

answer A i PA
A i i x

A i i x

x

i combined
combined

combined

is ⇔

∀() ∈
> =
≤ ≠

, () :
()

()

τ
τ

AU3833_C21.fm Page 531 Wednesday, August 16, 2006 12:34 PM

532 ■ Mobile Middleware

if no answers are above the threshold. At the same time, this approach
will limit the amount of uncertain or distrusted data kept in the cache.

Alternatively, a device may employ a more optimistic technique that
considers the possibility of a question having multiple valid answers (e.g.,
Chinese restaurants in a given location). In this case, the device will choose
the answer with the highest combined accuracy degree above τ. If multiple
answers have the highest degree of accuracy, then the device will ran-
domly choose one. This is called the highest-one answer (HO). Formally:

(21.4)

Updating Trust Belief

If a querying device is able to determine its final answer (Λ), then it uses
that fact to evaluate the interaction experiences it had with the answering
peers. A querying device has a positive experience with an answering peer
if the answering peer provided the same answer as the final one and if
the answering peer suggested a non-negative accuracy degree for the
answer. A querying device has a negative experience with an answering
peer if the answering peer provides a different answer to the query and
suggests a positive degree of accuracy. The querying device also has a
negative experience if the querying peer provides the same answer but
suggests a negative degree of accuracy. Finally, for all other cases, the
querying device has an undecided experience. When a querying device
has either a positive or negative experience with any answering device,
it should update its trust degree for that device for future interactions by
using one of the available trust learning functions (∆) adapted from Jonker
and Treur [15].

The first category of trust learning functions employs all history infor-
mation to predict a future trust degree of a device. In one technique, referred
to as blindly positive, a device will absolutely trust its peer if it has had at
least n positive experiences. One can similarly define a blindly negative
approach. The other category of trust employs only the current experience
of the querying devices with the answering peer and the current trust degree
the querying devices has of its peer to calculate the future trust degree.
The querying device does so by either increasing or decreasing the trust
degree using slow, fast, or exponential steps. The model uses fast–positive/
slow–negative, slow–positive/fast–negative, balanced–slow, balanced–fast,

answer HO

answer PA

answer A i PA A i

x

x

i combined combined

is ⇔ ∃

> ∧ () ∈() ∧

∀() ∈ ≤()

max :

(max) ,max

, () : () max

τ

AU3833_C21.fm Page 532 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 533

and exponential techniques. The first four techniques use a fixed fast or
slow step to increase or decrease a trust degree. The last technique always
increases by the half step necessary to move from the current trust degree
to an absolute trust degree of 1.0 and similarly to decrease to an absolute
distrust degree at –1.0. Updating the querying device will affect to which
devices the device sends its queries in the future, as well as how the device
recommends the answering devices to its peers.

Answering Peers

For an honest device to return an answer (provided it has an answer),
the device must be able to determine whether the querying device is one
of its trusted peers. The answering device evaluates its beliefs to determine
if its local trust degree of the querying device is above the trust threshold
(τ); otherwise, the device first initiates a recommendation session by either
asking all of its n-hop peers for recommendations about the querying
device or by selectively asking devices that it has determined are trusted
peers based on its local belief.

Given a set R of recommendation tuples (Q, D, TD(Q)), where Q is
the querying source, D is the recommending peer, and TD(Q) is the
recommended trust degree representing how honest Q is according to D,
then the combined recommendation trust degree is computed by the
answering device A as:

(21.5)

Similar to combining the weighted answer accuracy degree values, the
AVG, MIN, and MAX methods can be employed here for combining
recommended trust degrees. The device then sends back an answer to
the querying device when TA(Q) > τ or Rcombined(Q) > τ. This mechanism
implicitly creates an incentive model, where it is in the best interests of
every device to provide only reliable information and provide this infor-
mation often because others maintain and share reputation degrees about
this device.

The model computes trust and accuracy degrees using a two-level-
deep path algebra only; therefore, in the model, a mobile device calculates
a trust degree of another device using only its trust degrees of its peers
and their proposed trust of the other device. Similarly, a device computes
an accuracy degree using only its combined trust degree of answering
devices and the suggested accuracy values obtained from these answering
devices.

R Q T Q T Qcombined R D A() () ()= ⊕ ⊗()

AU3833_C21.fm Page 533 Wednesday, August 16, 2006 12:34 PM

534 ■ Mobile Middleware

The advantage of using only a limited depth is straightforward. Because
each devices combines only up to two trust values, where one value is
its own and one is of a remote device, one cannot introduce a possible
cycle in the path computation. Second, because each device answers
recommendation requests by evaluating only its local trust degrees, this
model does not generate additional traffic in the resource-limited wireless
ad hoc network. Finally, it is a relatively easy exercise for a mobile device
to automatically update its beliefs about cached trust degrees and answer
accuracy degrees when it changes a trust degree of any of its peers. For
these reasons, the model uses only a two-level-deep path algebra.

Malicious Activity Detection and Trust
Mobile wireless networks can be divided into two types of architectures:
infrastructure and ad hoc. In the infrastructure type, each network has a
central node, or access point, through which all traffic must pass. The access
points act not only to route traffic between nodes but also to grant or deny
access to the network based on policies or access lists. Wireless intrusion-
detection devices have been developed to a limited extent for wireless
traffic monitoring in infrastructure networks. Because all wireless traffic must
transit a central node, the wireless intrusion-detection device can be located
at the access point to scan wireless channels and look for malicious activity.
Devices trying to gain unauthorized access or disrupt network activity can
be easily detected. True MANETs have no central access point. Nodes
connect together in an ad hoc fashion to form a mesh network for infor-
mation routing. Single intrusion-detection systems cannot effectively operate
in this environment, as the dynamic nature of the network makes a central
observation point very unlikely. For the remainder of the discussion, we
will assume MANETs are being used for node connections

Current wired security mechanisms require either a third-party authority
for authentication or a priori distribution of key material. MANETs offer
no guarantee of a constant Internet connection, so third-party authentica-
tion may not be available. Proposed solutions to this problem for MANETs
involve the establishment of a security association (SA) either out of band
or with a priori knowledge of encounters on which additional secure
protocols are enabled [3,8,10,26]. The problem is that SAs cannot be
randomly established between two nodes that are previously unknown
to one another in a disconnected-Internet scenario. In order for MANETs
to become widely accepted and used, some mechanism must give users
confidence that security exists within the MANET. We believe the way for
security to be established in MANETs is to evaluate and foster trust between
interacting nodes. Failure to provide this mechanism could have a negative

AU3833_C21.fm Page 534 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 535

effect on security, quality of service (QoS), and overall willingness to risk
information exchange over MANETs.

Malicious Activity Detection
Our research into malicious node detection is based on promiscuous
snooping of the network channel. Snooping leverages two properties
inherent in most mobile ad hoc protocols. The first property is that each
node in the network maintains a neighbor list containing the addresses of
those nodes with which it is in immediate proximity or on the path from
a source to a destination. The second property, as is the case in the IEEE
802.11 [14] and MACAW [4] link-layer protocols, is that a node is able to
“hear” the ready-to-send (RTS)/clear-to-send (CTS) negotiation of its neigh-
bors. Accordingly, each node participates in the intrusion-detection process
and snoops on its neighbors’ transmissions to ensure that the network
packets have not been modified or misrouted. The notion of snooping is
also employed in Dynamic Source Routing (DSR), which is used for
reflecting shorter routes to optimize the route maintenance process.

Our initial research involved an extension that is viable for many ad
hoc routing protocols (e.g., DSR or Ad Hoc On-Demand Distance Vector
[AODV]), where the snooping nodes listen to all other nodes in their
proximity. In Figure 21.2, promiscuous snooping is shown in an example
where node A is sending traffic to node E via nodes B and D. In this

Figure 21.2 Malicious node detection.

AU3833_C21.fm Page 535 Wednesday, August 16, 2006 12:34 PM

536 ■ Mobile Middleware

example, node C can monitor the traffic as it transits from node B to node
D and is then forwarded to node E. Node C is in the position to determine
whether node D changes, reroutes, or drops any packets in the datastream.

We drew a distinction between our work and others, such as Watchdog
[25] and Neighborhood Watch [9], which work primarily with DSR, as they
watch the forward node on the patch from source to destination. We
experimented with two response mechanisms for observing node recog-
nition of ongoing malicious activity. In the first, a passive response mode,
a node, upon determining that another node is aberrant, unilaterally
decides to cease interacting with the offending node. Although each node
acts independently, eventually the intrusive node will be blocked from
using all of the network resources. In the second, an active response
mode, each node relies on a cluster-based hierarchy (Figure 21.2). When
a node detects an aberrant neighbor, it informs its cluster head, which in
turn initiates a voting procedure. If a voting majority determines that the
suspect node is in fact intrusive, an alert will be broadcast throughout the
network and the intrusive node will be denied network resources. The
algorithms were written and simulated using GloMoSim, version 2.03. The
simulation environment can be summarized as follows:

■ Number of nodes — 50; 16 nodes were involved in constant bit
rate (CBR) connections, and the number of malicious nodes was
varied

■ Grid size — 2000 by 2000 m
■ Application traffic — 10 CBR connections generated simultaneously,

with four nodes serving as the source for two streams each and
two nodes as the source for a single stream each (destination nodes
receive only one CBR stream)

■ Mobility — Random Way-Point Model (maximum speed, 20 m/sec;
pause time, 15 sec)

■ Radio — No-fading radio model, with a range of 376 m
■ MAC layer — 802.11, peer-to-peer mode
■ Routing protocol — AODV or DSR
■ Simulation time — 200 sec
■ Neighbor “hello” period — 30 sec
■ Dropped packet time out — 10 sec
■ Dropped packet threshold — 10 packets
■ Clear delay (event expiration timer) — 100 sec (the amount of

time that a node considers an event without coming to a final
determination)

■ Misroute threshold — 5 events; detectable only in routing protocols
using source routes such as DSR

■ Modification threshold — 5 events

AU3833_C21.fm Page 536 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 537

Results were obtained by averaging 100 simulation runs for 200 sec each
[19,20]. The true positives, false positives, and successfully delivered
packets as a percentage of the number of bad nodes in the network for
DSR and AODV were measured (Figure 21.3).

The node density of both malicious and normal nodes was a significant
factor in the rate of true positives. For a malicious node to be detected,
it must act maliciously within the proximity of a good node. As expected,
the performance of both the passive and active response protocols
improved with respect to both true positives and false positives as the
density of the malicious nodes increased. Likewise, and also as expected,
the number of successfully delivered packets decreased as the density of
malicious nodes increased. This is attributable to the increased bandwidth
requirements for the voting mechanism. It became apparent through these
experiments that the voting scheme worked better in a denser environment
of network nodes as compared to a sparse environment.

Figure 21.3 Simulation results of the active and passive response protocols for
DSR (top) and AODV (bottom). (From Parker, J. et al., On intrusion detection in
mobile ad hoc networks, in Proc. of the 23rd IEEE Int. Performance Computing
and Communications Conf., ©2004 IEEE. With permission.)

AU3833_C21.fm Page 537 Wednesday, August 16, 2006 12:34 PM

538 ■ Mobile Middleware

During development, a number of issues were raised that require further
work. The first issue was security and privacy concerns with regard to
nodes snooping network traffic. Even though there is always the possibility
of malicious activity, users may tend to dislike the idea of their traffic being
monitored by all other nodes in their vicinity. Another issue was perfor-
mance while snooping and processing network traffic. Nodes such as PDAs
that cannot do anything else while performing malicious node detection
are of little use to their owners. Certainly there is a concern for malicious
nodes raising alarms and causing problems such as denial-of-service attacks
against accused nodes. The active response with cluster voting made such
attacks more difficult. Finally, reliably detecting and separating malicious
users from normal mobile node disconnection in a MANET is quite difficult.
Thresholds for the various parameters of malicious detection depend on
node density, average speed, etc. The idea of readmittance into the network
by falsely accused nodes is something that could be very important if
snooping schemes are to be used.

Cross-Layer Information Processing

Malicious node detection is an important step toward developing trust
relationships among MANET nodes. Nodes found to be acting maliciously
should definitely not be trusted; however, because MANET nodes can also
be malicious in other ways outside of the network layer, we decided to
start looking at observable events within other layers of the Open Source
Initiative (OSI) stack.

Perich et al. [23] developed a simulation for an application-layer query
processor in MANETs. Information is assumed to be probabilistically
distributed throughout the MANET, and nodes then query other nodes for
the information. Results are determined to be correct or incorrect to make
trust evaluations about the replying nodes. After a period of time, each
node maintains a table of nodes with whom it has interacted, along with
trust ratings reflecting reliable or unreliable.

We believe that, by combining network-layer malicious node detection
with the application layer query, a more robust approach to rating indi-
vidual trust can be achieved. Network-layer events are more numerous
but less specific than queried information gathered at the application layer.
The ultimate goal is to combine information from the two layers to obtain
a more accurate representation of trust. One of the results from Perich et
al. [23] showed that evolving trust is heavily based on the initial trust
rating. In our work, we are using the initial trust ratings from observation
information gathered at various layers of the OSI stack. Additionally, the
information value and subsequent risk were the same for all nodes in

AU3833_C21.fm Page 538 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 539

Perich et al. [23]. We are studying how trust can be evolved through first
using low-risk encounters with low-value exchanges and gradually pro-
gressing to higher risk situations; in this case, the overall metric of success
or failure would be a function of how much total value is lost over a
period of time.

To expand on the original idea for querying we have divided nodes
into classes; for example, a tourist on vacation may be more willing to
trust information provided by a local citizen than by another tourist. As
another example, a potential buyer might be unwilling to trust information
provided by someone having a vested interest in a sale, as compared to
information provided by an independent, experienced third party.

Throughout our research we have used a combination of simulation
and test-bed implementations to measure the time required for the
convergence of trust, accuracy in responses, malicious node detection
time, and true and false positives for malicious node accusations. Our
results are compared with test runs for malicious node detection and
trusted query applications separately to determine the relative contribu-
tion of each to the combined results. Evaluations are conducted with
scenarios for low, medium, and high mobility and with varying degrees
of malicious nodes.

The issue of resource management as it pertains to performance is very
important. As part of our research, we are trying to determine resource
usage at each node as related to scalability. Resource usage depends on
the number of nodes in the MANET, the number of node encounters during
some time period, and the number of new nodes entered into the MANET
during the interaction.

We believe that additional information can be used in the develop-
ment of trust from other OSI layers. We are exploring MAC layer
management and control messages (e.g., beacons, RTS, CTS) for patterns
indicating malicious use. Other approaches include exploring the phys-
ical layer to provide signature information associated with a particular
node’s physical address. Depending on the granularity of the attribute
measurement, nodes may be able to match indicator attributes and
sound an alarm when malicious nodes try to spoof existing trusted
node addresses.

There is also room for modification of the query model to reflect
certain real-world actions; for example, trusted nodes do make mistakes
and may not be as accurate as a particular situation requires. In the
case of malicious nodes, they may not always act maliciously but may
instead restrict their malicious behavior to specific situations or circum-
stances. We recognize that the development of trust is a difficult task
and would like to examine how to best judge trust within MANETs,
given these scenarios.

AU3833_C21.fm Page 539 Wednesday, August 16, 2006 12:34 PM

540 ■ Mobile Middleware

Discussion
Trustworthy data management in pervasive environments is a challenging
task. The trend of continuous improvements in the capabilities of embed-
ded devices and their widespread acceptance are indications of a highly
interconnected society where pervasive environments and portable devices
form integral parts of our daily lives, creating cultures of their own, and
unforeseen applications are emerging. Due to the inherent open, dynamic,
and distributed nature of these environments, they cannot be secured by
conventional security practices.

Our experience in trust management for pervasive computing has, thus
far, only been in the laboratory setting. We have made attempts to
anticipate user issues, as well as developer issues, in our simulations and
experiments. By implementing algorithms on actual handheld devices, we
have shown that such ideas can be viable with current technology, at
least in a limited capacity. What we do not know, and can only speculate
on, is how the devices will be used in a widespread pervasive network.

From our simulations and experiments, we have determined that nodes
must be expected to adhere to some predetermined sets of rules for each
layer (physical through application) that govern acceptable behavior, and
they must be capable of detecting anomalies and attributing misbehavior to
particular nodes. At the lower layers, the monitored data can be quite
overwhelming to process directly; however, such data can be filtered using
the rules of acceptable behavior and provided to higher layers for further
processing. Data acquired from across layers can be processed and subject
to reputation management. By aggregating the data from multiple layers,
application-layer protocols can use monitored behavior from lower layers to
report and react to overtly malicious acts. To protect the network from
malicious or faulty devices, observed misbehavior or noncompliance with
protocols can be used to penalize the guilty nodes by denying them access
to resources or excluding them from the network. To be successful, a majority
of the nodes must participate. Nodes failing to fully participate in information
routing or message storing and forwarding mechanisms can lead to disrup-
tions in the ad hoc network. Nodes failing to participate in monitoring for
malicious activity can also leave the network vulnerable to attack.

A difficult problem is how to overcome false alarms. Our experiments
have shown the importance of identifying one-hop neighbors to monitor
traffic effectively. Incorrect neighbor table information can lead to false
accusations or ignoring actual malicious activity. An increase in “hello”
packet rates can make neighbor tables more accurate over the short term
but also lead to increased traffic congestion. With congestion comes lower
data throughput and potential interference with nodes monitoring for
malicious activity.

AU3833_C21.fm Page 540 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 541

We believe social communities will play an important role in reputation
management and trust evolution. Our experiments with pack formation
and results from our preliminary work validate our approach. We have
experimented with a distributed reputation management system that uses
a mathematical model, enabling individual devices to compute the accuracy
of peer-provided information. These concepts can be used to reliably
determine and manage reputation and trust in a pervasive environment.

We recognize that trust management is not only a technical issue but
also one of social acceptance. Our experience has led us to believe that,
even though it may be technically possible to overcome the challenges of
trust and reputation management in pervasive computing, success or failure
will be determined by the willingness of people to purchase and use these
devices. To fully realize the potential of the mobile ad hoc paradigm there
must be an autonomous approach to mitigating risk and placing users in
control of risk evaluation and usage. We have presented techniques that
can be applied from the application layer to the lower-level networking
layers to help mitigate risks stemming from the open, dynamic nature of
pervasive environments; however, many challenges remain to be overcome.

References
[1] Google, http://www.google.com/technology/.
[2] Abdul-Rahman, A. and Hailes, S., A distributed trust model, in Proc. of New

Security Paradigms Workshop (NSPW’03), Escona, Switzerland, August 18–21,
2003.

[3] Balfanz, D., Smetters, D., Stewart, P., and Wong, H., Talking to strangers:
authentication in ad hoc wireless networks, in Proc. of Symp. on Network and
Distributed Systems Security (NDSS’02), San Diego, CA, February 6–8, 2002.

[4] Bharghavan, V., Demers, A., Shenker, S., and Zhang, L., MACAW: a media
access protocol for wireless LANs, in Proc. ACM SIGCOMM’94, London,
August 31–September 2, 1994, pp. 212–225.

[5] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A., The KeyNote
Trust Management System Version, Request for Comments 2704, Internet
Engineering Task Force (IETF), 1999 (http://www.ietf.org/rfc/rfc2704.txt).

[6] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A., The role of trust
management in distributed systems, in Security Issues for Mobile and Dis-
tributed Objects, Vitek, J. and Jensen, C., Eds., Springer-Verlag, New York,
1999.

[7] Blaze, M., Feigenbaum, J., and Lacy, J., Decentralized trust management,
in Proc. of IEEE Symp. on Privacy and Security, Oakland, CA, May 6–8, 1996.

[8] Bobba, R.B., Eschenauer, L., Gligor, V., and Arbaugh, W., Bootstrapping
Security Associations for Routing in Mobile Ad Hoc Networks, Technical
Report 2002-44, Institute for Systems Research, University of Maryland,
Baltimore, 2002.

AU3833_C21.fm Page 541 Wednesday, August 16, 2006 12:34 PM

542 ■ Mobile Middleware

[9] Buchegger, S. and Boudec, J.L., Nodes bearing grudges: towards routing
security, fairness, and robustness in mobile ad hoc networks, in Proc. of the
Tenth Euromicro Workshop on Parallel, Distributed, and Network-Based Pro-
cessing (PDP’2002), Canary Islands, Spain, January 9–11, 2002, pp. 403–410.

[10] Capkun, S., Buttyan, L., and Hubaux, J., Self-organized public-key manage-
ment for mobile ad hoc networks, in Proc. of the 8th ACM/IEEE Int. Conf.
on Mobile Computing and Networking (MOBICOM’02), ACM Workshop on
Wireless Security, Atlanta, GA, September, 2002.

[11] Cherniak, M., Franklin, M., and Zdonik, S., Expressing user profiles for data
recharging. IEEE Pers. Commun., July, 2001.

[12] Chu, Y.-H., Feigenbaum, J., Lamacchia, B., Resnick, P., and Strauss, M.,
REFEREE: trust management for Web applications, Comput. Networks ISDN
Syst., 29(8–13), 953–964, 1997.

[13] Ding, L., Zhou, L., and Finin, T., Trust-based knowledge outsourcing for
Semantic Web agents, in Proc. of the 2003 IEEE/WIC/ACM Int. Conf. on Web
Intelligence (WI’03), Halifax, Canada, October, 2003.

[14] IEEE, LAN/MAN Wireless LANs, Std. 801.11, Institute of Electrical and Elec-
tronics Engineers, Piscataway, NJ, 1999 (rev. 2003).

[15] Jonker, C.M. and Treur, J., Formal analysis of models for the dynamics of trust
based on experiences, in Proc. of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World: Multi-Agent System Engineering
(MAAMAW’99), Garijo, F.J. and Boman, M., Eds., Vol. 1647, Lecture Notes in
Artificial Intelligence, Springer-Verlag, Heidelberg, 1999, pp. 221–231.

[16] Kagal, L., Finin, T., and Joshi, A., A policy-based approach to security for
the Semantic Web, in Proc. of the 2nd Int. Semantic Web Conf. (ISWC2003),
Sanibel Island, FL, October 20–23, 2003.

[17] Kagal, L., Finin, T., and Peng, Y., A delegation based model for distributed
trust, in Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI’01),
Workshop on Autonomy, Delegation, and Control: Interacting with Auton-
omous Agents, Seattle, WA, August 4–10, 2001.

[18] Eschenauer, L., Gligor, V.D., and Baras, J.S., On trust establishment in mobile
ad hoc networks, in 10th Int. Security Protocols Workshop, Cambridge, U.K.,
April 2002, Christianson, B., Crispo, B., Malcolm, J.A., and Roe, M., Eds.,
Vol. 2845, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,
2004, pp. 47–66.

[19] Parker, J., Undercoffer, J.L., Pinkston, J., and Joshi, A., On intrusion detection
in mobile ad hoc networks, in Proc. of the 23rd IEEE Int. Performance
Computing and Communications Conf. (IPCCC’04), Workshop on Informa-
tion Assurance, Phoenix, AZ, April 14–17, 2004.

[20] Patwardhan, A., Parker, J., Joshi, A., Iorga, M., and Karygiannis, T., Secure
routing and intrusion detection in ad hoc networks, in Proc. of the 3rd Int.
Conf. on Pervasive Computing and Communications (PerCOM’05), Kauai
Island, Hawaii, March 8–12, 2005, pp. 191–199.

[21] Perich, F., MoGATU: Data Management in Pervasive Computing Environ-
ments, UMBC eBiquity Research Group, Department of Computer Science
and Electrical Engineering, University of Maryland, Baltimore County
(http://mogatu.umbc.edu/), 2001.

AU3833_C21.fm Page 542 Wednesday, August 16, 2006 12:34 PM

Trust in Pervasive Computing ■ 543

[22] Perich, F., Joshi, A., Finin, T., and Yesha, Y., On data management in
pervasive computing environments, IEEE Trans. Knowledge Data Eng.,
16(5), 621–634, 2004.

[23] Perich, F., Undercoffer, J.L., Kagal, L., Joshi, A., Finin, T., and Yesha, Y., In
reputation we believe: query processing in mobile ad hoc networks, in
Proc. of the First Int. Conf. on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous’04), Boston, MA, August 22–26, 2004.

[24] Richardson, M., Agrawal, R., and Domingos, P., Trust management for the
Semantic Web, in Proc. of the 2nd Int. Semantic Web Conf. (ISWC’03),
Sanibel Island, FL, October 20–23, 2003.

[25] Marti, T.J., Giuli, K.L., and Baker, M., Mitigating routing misbehavior in
mobile ad hoc networks, in Proc. of the 6th ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’00), Boston, MA, August, 2000.

[26] Zapata, M. and Asokan, N., Securing ad hoc routing protocols, in Proc. of
the 8th ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBI-
COM’02), ACM Workshop on Wireless Security, Atlanta, GA, September, 2002.

[27] Zeng, X., Bagrodia, R., and Gerla, M., GloMoSim: a library for parallel
simulation of large-scale wireless networks, in Proc. of the 12th Workshop
on Parallel and Distributed Simulation (PADS’98), Banff, Alberta, Canada,
May 26–29, 1998.

AU3833_C21.fm Page 543 Wednesday, August 16, 2006 12:34 PM

AU3833_C21.fm Page 544 Wednesday, August 16, 2006 12:34 PM

Section 4

MOBILE MIDDLEWARE
FOR SEAMLESS
CONNECTIVITY

AU3833_S04.fm Page 545 Wednesday, August 16, 2006 12:34 PM

AU3833_S04.fm Page 546 Wednesday, August 16, 2006 12:34 PM

547

Chapter 22

Seamless Connectivity
in Infrastructure-Based

Networks

Michael E. Kounavis and Andrew T. Campbell

CONTENTS

Introduction... 548
Principles for Seamless Connectivity... 550

Separation between Handoff Control and Mobility Management 551
Decomposition of the Handoff Control Process .. 552
Decomposition of the Mobility Management Process 553
Programmability of the Physical and Data Link Layers 554

Building a Prototype .. 555
Service Creation Environment.. 555
Multi-Handoff Access Network Service... 556
Reflective Handoff Service ... 558

Seamless Connectivity in the Future... 561
Future Wireless Access Networks.. 561
Seamless Connectivity via Metaradios and Metachannels 564
Challenges.. 565

Conclusions ... 566
References ... 566

AU3833_C22.fm Page 547 Wednesday, August 16, 2006 1:02 PM

548

■

Mobile Middleware

Introduction

As the wireless Internet rolls out over the next several years, there will
be an increasing demand for new mobile devices (e.g., new cellular
phones, PDAs, laptop and palmtop computers), services (e.g., m-com-
merce, wireless Web, high-quality wireless multimedia), and technologies
(e.g., W-CDMA, Wi-Fi, WiMax) that can meet the needs of mobile users.
Recent trends indicate that a wide variety of mobile devices will be
available, each requiring specialized services and protocols. Connectivity
between mobile devices and emerging diverse wireless service providers
is likely to hinge on the capability of each provider’s infrastructure to
support a variety of mobile devices as well as the capability of mobile
devices to connect to heterogeneous access networks. Today, the incom-
patibility of signaling systems and physical-layer radio technologies pre-
vents mobile devices from roaming between heterogeneous wireless
networks. Such factors limit the vision of seamless mobility. For example,
a CDMA-based cellular phone cannot be easily connected to an IEEE
802.11-based wireless local area network (WLAN). Although a variety of
handoff algorithms have been proposed and investigated in the past, these
algorithms are mostly tailored toward the needs of some specific type of
mobile device or access network. The diversity in signaling systems that
characterize wireless access network architectures poses a challenge in
realizing intersystem handoff. Furthermore, access network protocols make
specific assumptions about the capability of mobile devices; for example,
many Mobile IP-based approaches assume that handoff control is located
at the mobile device. Such mobile-controlled handoff schemes may not
be suitable for many low-power devices that are incapable of continuously
monitoring channel quality measurements.

In this chapter, we present solutions to the problem of seamless
connectivity where the implementation details of mobility management
algorithms are hidden from handoff control systems, allowing the handoff
detection state (i.e., the best candidate access point for a mobile device)
to be managed separately from the handoff execution state (i.e., mobile
registration information). The same detection algorithms operating in
mobile devices or access networks can interface with multiple types of
mobility management architectures, operating in heterogeneous access
networks. Handoff control systems issue a number of generic service
requests, which mobility management systems execute according to their
own programmable implementation. In one case, when the location of
the handoff control system is at the mobile device, different mobility
management protocols can be dynamically loaded into mobile devices,
allowing them to roam between heterogeneous access networks in a
seamless manner.

AU3833_C22.fm Page 548 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

549

Our approach to seamless connectivity requires mobile devices and
access networks to be programmable, thus supporting dynamic service
creation. Existing mobile and wireless networks have limited service
creation environments, however. Typically, service creation is a manual,

ad hoc

, and costly process in wireless networks. Mobile network services
and protocols cannot be easily extended or modified because they are
generally implemented using dedicated firmware or embedded software,
or they constitute part of the low-level operating system support. For
example, it is difficult to dynamically modify the handoff prioritization
strategy in PCS networks or to introduce new handoff control algorithms
(e.g., mobile-assisted handoff) in wireless LANs. We believe that these
observations call for new communication methodologies and software
technologies for mobile networks.

Software engineering has progressed to the point where systems and
standards can be used for implementing platform-independent, compo-
nent-based, distributed software. Such advances have enabled the devel-
opment of programmable [4] and active [5] network toolkits for the
deployment of new services. Programmable networks [4] separate the
communications hardware from the control software which allows the
modeling of hardware resources using open programmable interfaces. In
this manner, third-party software providers can enter the market for
telecommunications software.

Work on software radios [6,7] has shown that wireless physical layers
can be created dynamically by introducing code into programmable
base stations with wideband, tunable front ends. In this work, we focus
on control-plane compatibility between mobile devices and access net-
works and discuss how advances in modern software engineering, pro-
grammable networking, and mobile middleware can help with achieving
intersystem handoff.

The main results of our research are presented here. Our research was
conducted at the COMET networking laboratory at Columbia University
from 1996 to 2000 [9]. Our results include the following:

■

We designed, implemented, and evaluated a

reflective handoff

service that allows access networks to dynamically inject signaling
systems into mobile devices before handoff; thus, mobile devices
can seamlessly roam between wireless access networks that support
radically different mobility management systems.

■

We showed how a

multi-handoff

 access network service can simul-
taneously support different styles of handoff control over the same
wireless access network. This programmable approach can benefit
service providers who must satisfy the mobility management needs
of a wide range of mobile devices, from cellular phones to more

AU3833_C22.fm Page 549 Wednesday, August 16, 2006 1:02 PM

550

■

Mobile Middleware

sophisticated palmtop and laptop computers. To allow a range of
mobile devices to connect to programmable mobile networks, we
further decomposed the handoff control process into programmable
objects, separating the transmission of beacons from the collection
of wireless channel quality.

Principles for Seamless Connectivity

Principles for seamless connectivity in infrastructure-based networks
include the separation of handoff control from mobility management,
decomposition of the handoff control process, decomposition of the
mobility management process, and programmability of the physical and
data link layers. Such principles have been embodied in the design of a
binding model for programmable wireless networks, as shown in Figure
22.1. In the following text, we discuss each principle in detail.

Figure 22.1 Binding model and service creation environment for seamless
connectivity.

AU3833_C22.fm Page 550 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

551

Separation between Handoff Control
and Mobility Management

The most important principle for seamless connectivity is the separation
between the handoff control process (i.e., the mobility detection process)
and the mobility management process (i.e., the mobility execution pro-
cess). Handoff control is the process of deciding the most suitable points
of attachment for a mobile device. Handoff control is typically supported
on a per-mobile-device basis by collecting channel quality information
and by comparing the quality associated with alternative points of attach-
ment. Mobility management is the process of redirecting the flow of
information to and from mobile devices through new points of attachment
each time the handoff control process determines that the points of
attachment of mobile devices should change. By hiding the implementa-
tion details of mobility management algorithms from handoff control
systems, the handoff detection state (i.e., the best candidate access points
for a mobile device) can be managed separately from the handoff exe-
cution state (i.e., mobile registration information). This software approach
can be used to enable intersystem handoff between different types of
wireless access networks.

The basic idea behind realizing intersystem handoff is that the same
detection mechanisms operating in mobile devices and access networks
can interface with multiple types of mobility management architectures
that operate in heterogeneous access networks (such as the Mobile IP [2],
Cellular IP [13], Mobiware [12], and HAWAII [23] experimental wireless
access networks). Handoff control systems can issue a number of generic
service requests through a standard

handoff execution interface

 (shown
in Figure 22.1), which mobility management systems execute according
to their own programmable implementation. For example, a generic “pre-
bind” method call to a candidate access point would be executed by
establishing a signaling channel in an experimental Mobiware architecture
[12] or by joining a multicast group specific to a mobile device and
buffering packets in an experimental Daedalus/BARWAN [24] architecture.
In one extreme case, where the location of the handoff control system is
at the mobile device, different mobility management protocols can be
dynamically loaded into mobile devices, allowing them to roam between
heterogeneous access networks in a seamless manner.

 A handoff execution interface, illustrated in Figure 22.1, separates
handoff control from mobility management. Handoff control and mobility
management systems are implemented as separate programmable archi-
tectures. Examples of handoff execution methods include:

AU3833_C22.fm Page 551 Wednesday, August 16, 2006 1:02 PM

552

■

Mobile Middleware

■

Handoff

methods, which map down to mobility management ser-
vices that execute handoff (e.g., register the care-of address of a
mobile device with its home agent)

■

Pre-bind

methods, which initiate priming actions at candidate
access points associated with a mobile device (e.g., load an active
filter for transport adaptation [12], start buffering packets)

■

Configure

methods, which bind new signaling systems or delete
existing ones (e.g., replace the mobile Mobiware control plane of
the device with a Cellular IP one during reflective handoff)

It is difficult to consider a single handoff execution interface that is
capable of encompassing all existing and future wireless systems; rather,
it is more likely that standard handoff execution interfaces will support
particular families of wireless technologies. In this case, network architects
can select execution methods that satisfy sets of handoff control and
mobility management systems that they wish to program. Another essential
component of architectures that separate handoff control from mobility
management is a layer of

handoff adapters

, shown in Figure 22.1. Handoff
adapters represent a set of distributed objects that serve as the glue
between handoff control systems and mobility management services.
Handoff adapters and mobility management services collectively imple-
ment handoff execution algorithms.

Handoff adapters are an important part of any programmable handoff
architecture. First, handoff adapters control the handoff execution process.
Handoff adapters invoke mobility management services in an order that is
specific to the handoff style being programmed. Many different mobility
management services (e.g., session rerouting, wireless transport, mobile
registration, mobility state management services) can be invoked as part of
the handoff execution process. For example, in a forward, mobile-controlled
handoff, an adapter would invoke a radio link transfer service before session
rerouting. In the backward, mobile-assisted handoff, the order of this
execution would be reversed. Second, adapters distribute method invoca-
tions to the network nodes or hosts where mobility management services
are offered. Handoff is usually detected at a single host or network node
(e.g., a mobile device, access point, mobile capable router/switch). In
contrast, mobility management services can be offered at multiple hosts or
network nodes inside a wireless access network (e.g., at wireless access
points or by mobility agents in the network).

Decomposition of the Handoff Control Process

To further facilitate the customization of the handoff control process across
heterogeneous wireless access networks, we suggest that the handoff
control process should be decomposed into its basic building blocks using

AU3833_C22.fm Page 552 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

553

open and standard interfaces between these components. A handoff
control model that separates the algorithms that support beaconing, chan-
nel quality measurement, and handoff detection is illustrated in Figure
22.1. Typically, these functions are supported as a single, monolithic
software structure in existing mobile systems. By separating the handoff
detection from wireless channel quality measurements, we allow for new
detection algorithms to be dynamically introduced in access networks and
mobile devices. For example, detection algorithms specific to overlay
networks can be introduced into mobile devices to allow them to perform
vertical handoffs, or detection algorithms specific to microcellular networks
can be selected to compensate against the street-corner effect [20]. By
separating the collection of wireless channel quality measurements from
the beaconing system, mobile networks can support different styles of
handoff control over the same wireless infrastructure. For example, a
wireless service provider may want to offer a network-controlled handoff
service (e.g., supported in the Advanced Mobile Phone System, or AMPS
[21]) for simple mobile devices, a mobile-assisted handoff service (e.g.,
as in GSM [21]) for more sophisticated mobile devices involved in the
process of measuring channel quality, or a mobile-controlled handoff
service (e.g., the handoff scheme considered by the Mobile IP Working
Group) for more sophisticated laptop or palmtops mobile computers. The
following services comprise the handoff control model:

■

Detection algorithms

, which determine the most suitable access
points to which a mobile device should be attached. Wireless
access points can be selected based on such factors as channel
quality measurements, resource availability, and user-specific pol-
icies [22]. A mobile device can be attached to one or more access
points at any moment in time.

■

Measurement systems

, which

create and update handoff detection
state. By handoff detection state, we mean the data used by
detection algorithms to make decisions about handoff. Detection
algorithms and measurement systems use the same representation
for handoff detection state.

■

Beaconing systems

, which assist in the process of measuring wire-
less channel quality. Programmable beacons can be customized to
support service-specific protocols such as quality of service (QoS)-
aware beaconing [12] or reflective handoff.

Decomposition of the Mobility Management Process

We believe that, like the handoff control process, the mobility management
process should be decomposed into basic software building blocks to allow
rapid customization where and when needed. The mobility management

AU3833_C22.fm Page 553 Wednesday, August 16, 2006 1:02 PM

554

■

Mobile Middleware

model shown in Figure 22.1 reflects the decomposition of mobility man-
agement into basic services that execute handoff. We have adopted a
generalized architectural model that is capable of supporting the design space
of different mobile networking technologies. To program mobility manage-
ment systems, one needs to be able to introduce new forwarding functions
at mobile-capable routers/switches (e.g., Cellular IP [13] or HAWAII [23]

forwarding engines) as well as distributed controllers that manage mobility
(e.g., Mobile IP foreign agents). The mobility management model dis-
cussed in this chapter is limited to supporting handoff services only. Other
mobility management functionality (e.g., location, fault, and account man-
agement) typically found in mobile networks can be considered as future
work. We identify the following services as part of the handoff execution
process:

■

Session rerouting

mechanisms

 control the datapath in access
networks to forward data to or from mobile devices through new
points of attachment. Rerouting services may include admission
control and QoS adaptation for the management of wireless
bandwidth resources.

■

Wireless transport

objects

 interact with the physical and data link
layers in mobile devices and access points to transfer active
sessions between different wireless channels. A channel change
may be realized through a new time slot, frequency band, code
word, or logical identifier. Transport objects can provide value-
added QoS support, such as Transmission Control Protocol (TCP)
or snooping [24].

■

Mobile registration

 is associated with the state information a mobile
device exchanges with an access network when changing points
of attachment.

■

Mobility state

 can be expressed in terms of a connectivity, address-
ing and routing information, bandwidth, and name-space alloca-
tions of the mobile device, as well as user preferences.

Programmability of the Physical and Data Link Layers

The last principle for seamless connectivity is to implement the physical
and data link layers in software so as to allow their dynamic customization.
The software radio model shown in Figure 22.1 defines the composition
of physical and data link layer services. The software radio model supports
functions such as the dynamic assignment of channel locations and widths
and the selection of modulation and coding techniques used on each
channel. Software radios allow mobile devices to dynamically tune to the
appropriate air interface of the serving access network while roaming

AU3833_C22.fm Page 554 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

555

between heterogeneous wireless environments. Media Access Control
(MAC) layer protocols can be made programmable [8], allowing for services
that support different QoS requirements. Physical and data link layer
modules can be implemented in various ways [6,7,14,15]. Data link adapters
separate data link layer modules from the lower physical layer components;
for example, data link adapters allow programmable MAC protocols to
operate on top of any type of channel coding or modulation scheme, as
discussed in Kounavis et al. [9].

Building a Prototype

By applying the design principles presented above, we were able to build
a prototype system demonstrating seamless connectivity in two novel
wireless services: (1) a multi-handoff access network service allowing
diverse types of mobile devices to be connected to the same physical
network infrastructure; and (2) a reflective handoff service allowing mobile
devices to roam across heterogeneous wireless access networks. In what
follows, we describe the elements of our prototype system (i.e., our service
creation environment and services deployed), and we discuss our expe-
riences with building this prototype.

Service Creation Environment

To support the dynamic customization of handoff control and mobility
management services, we have implemented a service creation envi-
ronment that explicitly supports transportable code by dynamically
selecting, deploying, and binding distributed objects. The service cre-
ation environment shown in Figure 22.1 is implemented using Common
Object Request Broker Architecture (CORBA™) [26] middleware. The
service creation environment offers interfaces for the dynamic introduc-
tion and modification of network services through transportable code.
Programmable handoff services are implemented as collections of dis-
tributed objects. In our framework, middleware technologies enable
networkwide system programmability and interoperability, separating
the definition of programmable handoff objects from their implementation.
Programmable handoff objects expose control interfaces, thus allowing
the creation of bindings at runtime. Binding is the process through which
an object obtains a reference to another object to request its services. An
object reference can be described in many different ways; for example,
an object reference can be represented by a hostname where the object
is activated, and by a TCP/IP port number where the object listens for
service requests. Many software technologies support binding, including

AU3833_C22.fm Page 555 Wednesday, August 16, 2006 1:02 PM

556

■

Mobile Middleware

distributed systems platforms such as CORBA, Distributed Component
Object Model (DCOM), and Java Remote Method Invocation (RMI), as
well as localized mechanisms (e.g., dynamic link libraries).

The service creation environment is composed of a profiler and a set
of service controllers. The profiler drives the service creation process,
creating representations of programmable handoff services over a defined
access network topology. As illustrated in the figure, the profiler interacts
with a set of service controllers using a well-defined scripting language
to create or modify handoff services. Profiling scripts are blueprints of
network services. Service controllers compile profiling scripts, resolve
object bindings, and create handoff control and mobility management
systems. Modification of programmable handoff services takes place after
bindings are removed or objects are deleted. The service creation process
allows the network architect to create new objects using inheritance of
abstract classes (e.g., an abstract handoff detection algorithm class). Service
controllers activate objects, invoking binding calls on object control inter-
faces for the deployment of services.

The scripting language we used in our prototype is simple and supports
command, assignment, and exception handling statements. Command state-
ments can be used for declaring programmable handoff services; adding,
deleting, and customizing programmable handoff objects; and creating and
removing object bindings. Network architects can customize objects during
the profiling process. In this case, parameters characterizing the operation
of a service (e.g., user, service-specific, or environmental parameters) can
be passed in objects at runtime through the profiler and service controllers.

Multi-Handoff Access Network Service

Using this service creation environment, we designed and implemented
a multi-handoff access network service that simultaneously supports three
styles of handoff control over the same physical wireless access network:

network-controlled handoff

 (NCHO),

mobile-assisted handoff

 (MAHO),
and

mobile-controlled handoff

 (MCHO). Figure 22.2 shows the implemen-
tation of the handoff control model for the multi-handoff access network
service. Objects shown in Figure 22.2 are grouped into beaconing systems,
measurement systems, and detection algorithms, which are the compo-
nents of the handoff control model. Figure 22.2 also shows object inter-
actions and their invocation order (e.g., NCHO-1, NCHO-2). The handoff
control objects include:

■

Beacon producer

 (

BeaconProducer

) and

measurement producer

(

MeasurementProducer

) objects, which invoke low-level wire-
less LAN utility functions. Beacon producer objects transmit beacons

AU3833_C22.fm Page 556 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

557

Fi
gu

re
 2

2.
2

H
an

do
ff

 c
on

tr
ol

 i
n

a
m

ul
ti

-h
an

do
ff

 a
cc

es
s

ne
tw

or
k.

AU3833_C22.fm Page 557 Wednesday, August 16, 2006 1:02 PM

558

■

Mobile Middleware

at specified frequencies. Measurement producer objects generate
raw channel quality measurements. Measurement and beacon pro-
ducer objects can simultaneously participate in multiple styles on
handoff control.

■

Signal strength monitor

 (

*_APSNRMonitor

,

*_MDSNRMonitor

)
objects, which collect and average wireless signal strength mea-
surements. The signal-to-noise ratio (SNR) represents only one of
the many measurements that can be used for handoff decision
making.

■

Detection algorithm

 (

*_DetectionAlgorithm

) objects, which
make decisions for handoff based on signal strength measurements.
Each handoff style employs its own set of signal strength monitors
and detection algorithms in order to determine the best access
points that mobile devices should be attached to.

Our implementation of the mobility management model is based on
an extended Mobiware [12] architecture. Mobiware is programmable,
promoting the separation between signaling, transport, and state manage-
ment. Mobility management services are separated as discussed in the
previous section. All sessions that operate between a mobile device and
an associated Internet gateway are abstracted as a single state entity called
a

flow bundle

 in a Mobiware wireless access network. Flow bundles are
used during handoff to switch IP flows in Mobiware access networks and
provide general-purpose encapsulating and routing services similar to
Asynchronous Transfer Mode (ATM) virtual paths or IP tunnels. Open
programmable switches allow the establishment, removal, rerouting, and
adaptation of flow bundles; thus, the access network behaves as a pool
of resources allowing different handoff styles to operate in parallel. The
proof-of-concept implementation of the multi-handoff access network
service showed that wireless networks can be built that support seamless
connectivity not only for one type of mobile device but also for many
different types of devices. Further information about the handoff algo-
rithms developed as part of our multi-handoff access network service can
be found in Kounavis et al. [9].

Reflective Handoff Service

We have implemented reflective handoff as a mobile, controlled-handoff
scheme. Access points transmit beacons that additionally carry globally
unique identifiers designating specific access networks. A reflective detec-
tion algorithm uses access network identifiers to determine whether a
mobile device is likely to move to the coverage area of a new access
network. Each mobile device maintains a local cache of signaling system

AU3833_C22.fm Page 558 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■

559

modules. Signaling system modules are collections of objects supporting
mobility management services in mobile devices. Before a mobile device
performs a handoff to a new access network, it checks whether a signaling
module associated with the new candidate access network is cached. If
a signaling module is not cached, it is dynamically loaded. Access points
support module loaders deployed during the service creation process. A
signaling system is loaded from the old access network. A two-way
handshake mechanism is used for loading signaling modules, which are
loaded before reflective handoff, is executed. Access networks schedule
the transmission of signaling modules over the air interface, to avoid
flooding the wireless network.

Reflective handoff is managed by handoff adapters, which activate or
deactivate signaling modules on demand. The handoff execution interface
for the reflective handoff service includes a

configure

 method, which is
used for binding new signaling systems. Parameters associated with access
network state (e.g., the address of the gateway to the Mobile IP Internet)
are passed into signaling modules upon activation. Module loaders transmit
the access network state when loading signaling system support into
mobile devices. Reflective handoff may involve the loading of entire
mobility management protocol stacks or configuration scripts, which cus-
tomize objects already cached at mobile devices.

Two distinct types of access networks support reflective handoff in
our testbed, as shown in Figure 22.3: an experimental Mobiware and an
experimental Cellular IP access network. Cellular IP [13] delivers fast local
handoff control in datagram-oriented access networks. In addition, Cellular

Figure 22.3 Reflective handoff service.

AU3833_C22.fm Page 559 Wednesday, August 16, 2006 1:02 PM

560

■

Mobile Middleware

IP supports per-mobile host state, paging, routing, and handoff control in
a set of access networks interconnected to the Internet through gateways.
In Cellular IP, packets sent from mobile hosts create routing caches
pointing to the downlink path so packets destined to a mobile device can
be routed using the route cache. Mobiware and Cellular IP signaling
modules use the Internet Protocol to communicate with access networks.
Mobiware and Cellular IP access networks support the same wireless data
link and physical layers (WaveLAN) in our testbed but use different
mobility management systems.

In our testbed, a Mobile IP-enabled Internetwork connects the Mobi-
ware and Cellular IP wireless access networks via gateways. Mobile IP is
used for managing macro-level mobility between gateways, whereas the
Cellular IP and Mobiware wireless access supports fast local handoff
control. Hierarchical mobility management in IP-based mobile networks
has been widely reported in the literature [13,16,23,29]. A mobile device
attached to an access network uses the IP address of the gateway as its
care-of address. Access networks provide mechanisms for initiating Mobile
IP-based inter-gateway handoffs and for establishing datapaths between
gateways and access points where mobile devices are attached.

Signaling modules implement generic handoff execution functions as
dynamic link libraries. Three types of handoff are supported: (1)

internal
handoffs

, which take place between access points of the same access
network; (2)

entry handoffs

, which take place when a mobile device is
attached to a new access network; and (3)

exit handoffs

, which take place
when a mobile device leaves an access network. The handoff execution
interface method calls for internal, entry, and exit handoffs.

Reflective handoff requires that all the signaling modules associated
with the handoff process are loaded and activated. Reflective handoff has
been implemented as the process for invoking an exit handoff on the
signaling system of the old access network and an entry handoff on the
signaling system of the new wireless access network. Access networks
realize execution calls in different ways and support mechanisms for
registering the care-of address of mobile devices (i.e., gateway IP address)
with their corresponding home agents. Care-of address registration has
been realized as part of entry handoff or exit handoff. When an entry
handoff takes place, access networks check whether the care-of address
of a mobile device has been registered with its home agent. If the care-
of address is not registered, then the access network initiates registration.
Registration support during exit handoff is optional.

We have programmed our handoff control system to load signaling
modules as soon as the mobile device detects that it is inside the coverage
area of an access network where the signaling system is not cached. This
loading algorithm minimizes the probability of handoff failure due to the

AU3833_C22.fm Page 560 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks

■ 561

absence of a signaling module at the mobile device. A soft state mechanism
used for managing stored signaling modules is used to avoid having large
caches. A timer associated with a module is refreshed while a mobile
device remains inside the coverage area of an access network associated
with a particular module or set of modules. Mobile devices can perma-
nently cache signaling modules associated with access networks, however.

Seamless Connectivity in the Future

Future Wireless Access Networks

There is a growing consensus [34] that mobile networks will eventually be
capable of partitioning the wireless spectrum dynamically to support dif-
ferent wireless applications in the future. Today, the amount of wireless
spectrum, licensed for use by wireless applications, is fixed and cannot be
easily modified. Spectrum is allocated on a wireless application basis (e.g.,
broadcast television, cellular telephony) by regulatory bodies that enforce
regional and global harmonization. While this practice has proved to work
well, it has made spectrum a scarce resource, forcing engineers to build
communication systems on top of fixed and, in most cases, limited-
frequency bands. Furthermore, the need for backward compatibility in the
transition from one cellular technology to another has resulted in further
waste of radio resources because different wireless systems must be sup-
ported simultaneously in different frequency bands (e.g., 2G and 3G cellular
systems).

We suggest that with recent advances in distributed software, mobile
middleware, and software radios, spectrum allocations can be made on a
wireless service provider basis instead of a wireless application basis. Each
service provider can be the owner of a programmable mobile network. We
speculate that programmable mobile networks will be able to modify their
physical layers at runtime by controlling their radio devices (i.e., wideband
analog-to-digital converters [ADCs]). In this way, programmable mobile
networks will enable wireless service providers to negotiate the wireless
spectrum between each other, adjust the bands that support their wireless
and mobile services, or reprogram their access networks from the physical
to the application layer. When some amount of the spectrum is allocated
to a service provider, it will be negotiated according to technical factors,
user demands, or market strategies. Negotiation can take place between
spectrum brokers, as illustrated in Figure 22.4. We believe that programma-
bility and deregulation in the use of wireless spectrum will impact wireless
service providers, improving spectrum utilization and accelerating the migra-
tion to new wireless technologies. Deregulation does not necessarily exclude
national bodies from contributing to spectrum harmonization. Instead of

AU3833_C22.fm Page 561 Wednesday, August 16, 2006 1:02 PM

562 ■ Mobile Middleware

specifying the frequency bands used by wireless applications, harmonization
bodies can set the rules of a distributed game for buying and selling the
spectrum. The players of the game would be wireless service providers.
For example, in Figure 22.4, harmonization bodies are shown as being
responsible for initial spectrum allocations made to cellular wireless service
providers. When some amount of the spectrum has been bought by a
service provider, it can be programmed, sold to another provider, or returned
to its source.

Another possible feature of future wireless access networks is nested
radio etiquettes. Radio etiquettes are sets of radiofrequency bands, proto-
cols, and high-level interaction rules for sharing the wireless spectrum
among competing users. Radio etiquettes can also determine procedures
for buying and selling spectrum dynamically. We believe that radio eti-
quettes can be used for specifying spectrum-sharing protocols among
wireless service providers offering different types of applications (e.g., a
cellular telephony service provider, a wireless Web service provider).
Future mobile networks can use a hierarchy of nested etiquettes to utilize
the wireless spectrum in a stable manner. Nested etiquettes are shown in
Figure 22.5. A parent radio etiquette, shown in the figure, incorporates
protocols and high level rules for selling spectrum to child wireless service

Figure 22.4 Future wireless access networks.

AU3833_C22.fm Page 562 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks ■ 563

providers. A child wireless service provider obtains a piece of spectrum
over some specified geographical area and a set of software handlers to
program this band. Using software handlers, the service provider can
program its own mobile network architecture over the piece of spectrum
the service provider has bought. A child mobile network architecture can
be programmed in accordance with a child radio etiquette, which can be
different from the etiquette of the parent. Radio etiquettes may differ
among child service providers that have the same parent as well. Child
service providers will use the etiquette of the parent to negotiate spectrum
between each other.

Last, we speculate that future wireless access networks will be capable
of automating the creation, deployment, and management of other mobile
networks. In the future, mobile networks may be capable of spawning
other networks using dynamic code that implements physical layer, wire-
less transport, mobile signaling, control, and management algorithms.
Spawned mobile networks may be composed of multiple physical layers,
MAC protocols, or signaling systems. In one case, illustrated in Figure
22.4, a spawned mobile network can be an overlay system consisting of
multiple physical layers that support their own mobility management
architectures. When programmable mobile networks are spawned, their
structure can be observed, analyzed, or modified. During this architecting
phase, physical layer resource management may take place among wireless
service providers to adjust the amount of spectrum offered to mobile
users. Physical layer resource management may be carried out in accor-
dance with the hierarchy of nested radio etiquettes.

Figure 22.5 Nested radio etiquettes.

AU3833_C22.fm Page 563 Wednesday, August 16, 2006 1:02 PM

564 ■ Mobile Middleware

Seamless Connectivity via Metaradios
and Metachannels

The future wireless networking environment presented above is highly
heterogeneous. In such an environment, the incompatibility of signaling
systems and radios is likely to prevent mobile devices from roaming across
heterogeneous wireless environments. One approach to deal with this
heterogeneity is to allow mobile devices to reprogram their communication
protocol stacks to interact with different mobile network architectures. In
this section, we discuss how the reflective handoff service described earlier
can be extended to support seamless connectivity in future mobile net-
works that program the spectrum dynamically.

Our dynamic handoff approach is illustrated in Figure 22.6. A signaling
channel, or metachannel, is associated with each wireless service provider
and can be used for loading software components into mobile devices.
Each service provider has a different metachannel. A metachannel may
operate on a separate frequency band, time slot, code word, or logical
identifier; for example, a separate frequency band can be allocated for
dynamic handoff and programmed using software radios. Each mobile
device maintains a local cache of signaling systems and physical and data
link layer modules. Signaling modules are used for interacting with the
different mobility management architectures. Data link and physical layer
modules are used for composing different types of air interfaces dynamically.

Figure 22.6 Dynamic handoff.

AU3833_C22.fm Page 564 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks ■ 565

Dynamic handoff may involve the loading of all software components
required to compose new protocol stacks or just the loading of configuration
scripts, which bind modules together. Module and script loaders are deployed
into access networks as a part of the spawning process.

Mobile devices do not need to be aware of the metachannels of wireless
service providers in advance. Metachannels can be discovered dynamically
using a metaradio (shown in Figure 22.6). A metaradio is a separate
channel where programmable mobile networks transmit pilot signals, thus
allowing mobile devices to discover metachannels and tune their radios
accordingly. The information that pilot signals carry depends on the way
the metachannels are implemented. Different pilot signals can be associ-
ated with different wireless service providers and metachannels; for exam-
ple, a pilot signal could contain a globally unique identifier associated
with a wireless service provider and a code word identifying the provider’s
metachannel.

Challenges

Seamless connectivity via metaradios and metachannels seems to be an
exceedingly difficult task. Software radio base stations suffer today from
poor ADC and digital signaling processing (DSP) performance. In addition,
programmable mobile networks require large transmission and reception
bandwidth. Typically, the wider the band a software radio base station
supports, the higher the ADC resolution and DSP processing power the
base station requires. To accomplish dynamic spectrum partitioning, wire-
less service providers may have to control software radio base stations
with multiple tunable front ends and to program these base stations with
dynamic code; however, the cost of software radio base stations increases
with the number of front ends that the base stations support. Moreover,
the division of a large reception bandwidth into sub-bands limits the
number of air interfaces that can be programmed. We believe that new
hardware techniques must be investigated to allow programmable mobile
networks to manage the wireless spectrum dynamically.

Another middleware challenge is associated with the design of the
dynamic code that implements programmable mobile networking support.
Programmable mobile networks require a comprehensive architectural
model for binding distributed components to compose mobile network
services. The binding model should ideally specify interfaces for compos-
ing any mobile network algorithm. One can consider many dif ferent
combinations of application programming interfaces (APIs) constituting a
binding model for programmable mobile networks. Finding the optimal
binding model that reduces the programming labor associated with dif-
ferent mobile network architectures is an open problem.

AU3833_C22.fm Page 565 Wednesday, August 16, 2006 1:02 PM

566 ■ Mobile Middleware

A final challenge is related to physical layer resource management
between heterogeneous wireless access networks. Physical layer resource
management must take place over slow timescales; otherwise, it is unlikely
that programmable mobile networks will operate in a stable manner. Physical
layer resource management requires the design of a distributed game that
would maximize the revenue of a parent wireless service provider, taking
into account the incentives of its wireless service subscribers. An interesting
problem arises when wireless service subscribers are child mobile networks.
In this case, it is important that the parent wireless service provider is aware
of the architectural characteristics of its child mobile networks. Quantifying
the behavior of mobile network architectures during the spectrum negotia-
tion process represents a major resource management challenge.

Conclusions
In this chapter, we have presented a solution to the problem of seamless
connectivity in infrastructure-based networks where the implementation
details of mobility management algorithms are hidden from handoff control
systems, allowing the handoff detection state (i.e., the best candidate access
point for a mobile device) to be managed separately from the handoff
execution state (i.e., mobile registration information). The same detection
algorithms operating in mobile devices or access networks can interface with
multiple types of mobility management architectures operating in heteroge-
neous access networks. Handoff control systems issue a number of generic
service requests, which mobility management systems execute according to
their own programmable implementation. A framework for the programma-
bility of wireless access networks was described, and proof-of-concept design,
implementation, and evaluation of programmable handoff architecture pre-
sented. Two new services were designed and programmed using the pro-
grammable handoff architecture: multi-handoff access network and reflective
handoff services. Clearly, many new services that support seamless wireless
connectivity in wireless networks can be considered, and we have presented
only a small but interesting set in this chapter. The multi-handoff access
network service and reflective handoff service use the same profiling, service
creation, and programming environments. This indicates that our approach
is more generally applicable to the introduction of new in mobile networks.

References
[1] Buchanan, K., Fudge, R., McFarlane, D., Phillips, T., Sasaki, A., and Xia,

H., IMT-2000: service provider’s perspective, IEEE Pers. Commun. Mag., 4,
8–13, 1997.

[2] Bagwat, P., Perkins, C., and Tripathi, S., network layer mobility: an archi-
tecture, and survey, IEEE Pers. Commun. Mag., June, 1996.

AU3833_C22.fm Page 566 Wednesday, August 16, 2006 1:02 PM

Seamless Connectivity in Infrastructure-Based Networks ■ 567

[3] Raychaudhuri, D., Wireless ATM networks: architecture, system, design and
prototyping, IEEE Pers. Commun. Mag., 3, 42–49, 1996.

[4] Lazar, A.A., Programming telecommunications networks, IEEE Network,
11(5), 8–18, 1997.

[5] Tennehouse, A. and Wetherall, D., Towards an active network architecture,
in Proc. of Multimedia Computing and Networking, San Jose, CA, January,
1996.

[6] Mitola, J., Technical challenges in the globalization of software radio, IEEE
Commun. Mag., 37(2), 84–89, 1999.

[7] Bose, V., Ismert, M., Wellborn, W., and Guttag, J., Virtual radios, IEEE J.
Selected Areas Commun., 17(4), 591–601, 1999.

[8] Bianchi, G. and Campbell, A.T., A programmable medium access controller
for adaptive quality of service control, IEEE J. Selected Areas Commun.,
March, 2000 (special issue on intelligent techniques in high-speed net-
works).

[9] Kounavis, M.E., Campbell, A.T., Ito, G., and Bianchi, G., Design, implemen-
tation and evaluation of programmable handoff in mobile networks, in
Proc. of the Third Int. Conf. on Open Architectures and Network Program-
ming (OPENARCH’00), Tel-Aviv, Israel, March, 2000.

[10] Kounavis, M.E., Campbell, A.T., Ito, G., and Bianchi, G., Supporting pro-
grammable handoff in mobile networks, in Proc. of the Sixth Int. Workshop
on Mobile Multimedia Communications (MoMuC’99), San Diego, CA,
November, 1999.

[11] Chan, M.C. and Lazar, A.A., Designing a CORBA-based high performance
open programmable signaling system for ATM switching platforms, IEEE J.
Selected Areas Commun., 17(9), 1537–1548, 1999.

[12] Campbell, A.T., Kounavis, M.E., and Liao, R.R.-F., Programmable mobile
networks, Comput. Networks, 31(7), 741–765, 1999.

[13] Valko, A.G., Gomez, J., Kim, S., and Campbell, A.T., On the analysis of
cellular IP access networks, in Proc. of the Sixth IFIP Int. Workshop on
Protocols for High-Speed Networks, Salem, MA, August 25–27, 1999.

[14] Bose, V., Wetherall, D., and Guttag, J., Next century challenges: radioactive
networks, in Proc. of the Fifth ACM/IEEE Int. Conf. on Mobile Computing
and Networking (MOBICOM’99), Seattle, WA, August, 1999.

[15] Mitola, J., Cognitive radio for flexible mobile multimedia communications,
in Proc. of the Sixth Int. Workshop on Mobile Multimedia Communications
(MoMuC’99), San Diego, CA, November, 1999.

[16] Liao, R.R.-F. and Campbell, A.T., On programmable universal mobile chan-
nels in a cellular Internet, in Proc. of the Fourth ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MOBICOM’98), Dallas, TX, October,
1998.

[17] Liao, R.R.-F., Bocheck, P., Campbell, A.T., and Chang, S.-F., Utility-based
network adaptation in MPEG-4 systems, in Proc. of the Ninth Int. Workshop
on Network and Operating System Support for Digital Audio and Video
(NOSSDAV’99), Basking Ridge, NJ, June, 1999.

[18] Kulkarni, A.B. and Minden, G.J., Active networking services for wired/wire-
less networks, in Proc. IEEE INFOCOM’99, New York, March, 1999.

AU3833_C22.fm Page 567 Wednesday, August 16, 2006 1:02 PM

568 ■ Mobile Middleware

[19] ARRCANE Project, http://www.docs.uu.se/arrcane/.
[20] Tripathi, N.D., Reed, J.H., and Van Landingham, H.F., Handoff in cellular

systems, IEEE Pers. Commun. Mag., 5(6), 26–37, 1998.
[21] Goodman, D.J., Wireless Personal Communications Systems, Addison-Wes-

ley, Boston, MA, 1997.
[22] Wang, H.J., Katz, R.H., and Giese, J., Policy-enabled handoffs across het-

erogeneous wireless networks, in Proc. of the Second IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA’99), New Orleans, LA,
February, 1999.

[23] Ramjee, R., La Porta, T., Thuel, S., and Varadhan, K., HAWAII: a domain-
based approach for supporting mobility in wide-area wireless networks, in
Proc. of the Seventh Int. Conf. on Network Protocols, Toronto, Canada,
October 31–November 3, 1999.

[24] Seshan, S., Balakrishnan, H., and Katz, R.H., Handoffs in cellular networks:
the Daedalus implementation and experience, Wireless Pers. Commun., 4(2),
141–162, 1997.

[25] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Boston,
MA, 1995.

[26] Object Management Group, www.omg.org.
[27] Kounavis, M.E. and Campbell, A.T., The Metabus: Breaking the Monolith of

the Software Bus, Technical Report, Center for Telecommunications
Research, Columbia University, New York, 1999.

[28] Smith, B.C., Procedural Reflection in Programming Languages, Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1982.

[29] Caceres, R. and Padmanabhan, V., Fast and scalable wireless handoffs in
support of mobile Internet audio, ACM J. Mobile Networks Appl., 3(4),
351–363, 1998.

[30] Der Merwe, J., Rooney, S., Leslie, I., and Crosby, S., The Tempest: a practical
framework for network programmability, IEEE Network, 12(3), 2–10, 1998.

[31] Cellular IP source code distribution, comet.columbia.edu/cellularip.
[32] OMG, Minimum CORBA, joint revised submission, OMG Document

orbos/98-08-04 ed., Object Management Group, Needham, MA, 1998.
[33] Campbell, A.T., Kounavis, M.E., Villela, D., Vicente, J., De Meer, H. et al.,

Spawning networks, IEEE Network, 13(4), 16–29, 1999.
[34] Staple, G. and Werbach, K., The end of spectrum scarcity, IEEE Spectrum,

41(3), 41–44, 2004.

AU3833_C22.fm Page 568 Wednesday, August 16, 2006 1:02 PM

569

Chapter 23

Peer-to-Peer Computing
in Mobile

Ad Hoc

Networks

Marco Conti, Franca Delmastro,
and Giovanni Turi

CONTENTS

Introduction... 570
Performance of Peer-to-Peer Platforms in

Ad Hoc

 Environments...................... 571
The Gnutella Protocol .. 573

State Maintenance ... 574
Peer Discovery, Pong Caching, and Queries.................................... 575
Performance of Gnutella in Mobile

Ad Hoc

 Environments............. 577
The Pastry Protocol .. 579

Subject-Based Message Routing ... 580
State Representation.. 580
State Management ... 581
Performance of Pastry in Mobile

Ad Hoc

 Environments................. 586
Cross-Layering ... 587
Summary and Conclusions... 595
Acknowledgments... 597
References ... 597

AU3833_C23.fm Page 569 Wednesday, August 16, 2006 2:02 PM

570

■

Mobile Middleware

Introduction

Mobile

ad hoc

 networks (MANETs) represent complex distributed systems
composed of wireless mobile nodes that can freely and dynamically self-
organize into arbitrary and temporary

ad hoc

 network topologies. This
spontaneous form of networking allows people and devices to seamlessly
exchange information in areas with no preexisting communication infra-
structure (e.g., disaster recovery environments). Although the early MANET
applications and deployments have been military oriented, civilian appli-
cations have grown substantially. Especially in the past few years, due to
rapid advances in mobile

ad hoc

 networking research, mobile

ad hoc

networks have attracted considerable attention and interest from commer-
cial business industries, as well as the standards community. The intro-
duction of new technologies, such as Bluetooth

®

 and IEEE 802.11, greatly
facilitated the deployment of

ad hoc

 technology outside of the military
domain, generating a renewed and growing interest in the research and
development of MANETs.

While

ad hoc

 networking applications have appeared primarily in
specialized fields such as emergency services, disaster recovery, and
environment monitoring, the flexibility of MANETs makes this technology
attractive for several other scenarios, such as, for example, in personal
area and home networking, law enforcement, search-and-rescue opera-
tions, commercial and educational applications, and sensor networks.
Currently developed mobile

ad hoc

 systems adopt the approach of not
having middleware but instead relying on each application to handle all
the services it needs. This represents a major complexity and inefficiency
in the development of MANET applications. Indeed, most MANET research
has concentrated on the enabling technologies and on networking pro-
tocols (mainly routing [5]), and research on middleware platforms for
mobile

ad hoc

 networks is still in its infancy.
Recently, in research circles, some middleware proposals for mobile

ad hoc

 environments have appeared [4,16,19,21,22]. Their emphasis is
on supporting transient data sharing [21] between nodes within commu-
nication range or data replication for disconnected operations [4,20], or
both [15]. To achieve this, classical middleware technologies have been
adopted. These include tuple spaces, mobile agents, and reactive pro-
gramming through the usage of event publishing and subscribing
[1,20,22]. Although these technologies provide service abstractions that
highly simplify application development, their efficiency in

ad hoc

 envi-
ronments is still an open issue.

Ad hoc

 networking shares many concepts, such as distribution and
cooperation, with the peer-to-peer (P2P) computing model [24]. A defining
characteristic of P2P systems is their ability to provide efficient, reliable,

AU3833_C23.fm Page 570 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile

Ad Hoc

 Networks

■

571

and resilient message routing between their constituent nodes by forming
virtual

ad hoc

 topologies on top of a real network infrastructure. The
difference with traditional distributed computing systems is the lack of a
central authority that controls the various components; instead, nodes form
a dynamic and self-organizing system. The applications best suited for P2P
implementation are those where centralization is not possible, relations are
transient, and resources are highly distributed [22]. In particular, the range
of applications covered by the P2P model includes file sharing, distributed
search and indexing, resource storage, and collaborative work. The key
aspect of P2P systems is the ability to provide inexpensive but time-scalable,
fault tolerant, and robust platforms; for example, file sharing systems, such
as Gnutella [17], are distributed systems where the contribution of many
participants with small amounts of disk space results in a very large database
distributed among all participant nodes.

The distributed nature of

ad hoc

 networks fits well the P2P model of
computation. Systems based on the P2P model are those where central-
ization is not possible, relations are transient, and resources are highly
distributed. MANET environments have similar requirements and charac-
teristics, and this duality suggests that exploiting the P2P paradigm for
designing a middleware platform for MANETs would be a very promising
direction to take.

In this chapter, we investigate the efficiency of P2P middleware plat-
forms when implemented in mobile

ad hoc

 networks. Specifically, we
focus on two well-known platforms: Gnutella and Pastry. Through simu-
lations, we show the limitations and inefficiencies that these P2P systems
exhibit in MANET environments. Finally, the chapter ends by discussing
the potential of an innovative protocol stack architecture for

ad hoc

networks, where the emphasis is on cross-layering. The key idea here is
that the information collected by each protocol could be used inside the
stack to optimize the tasks of other protocols. The focus in this work is
on the cross-layer interaction between a proactive routing protocol and
a P2P platform that offers the same functionalities and semantics of Pastry
[13]. We provide perspectives on how costs and the complexity of building
and maintaining a Pastry-like overlay network can be reduced through
cross-layer interactions.

Performance of Peer-to-Peer
Platforms in

Ad Hoc

 Environments

A key challenge to the usability of a data-sharing, peer-to-peer system
is implementing efficient techniques for the search and retrieval of shared
data. The best search techniques for a system depend on the requirements

AU3833_C23.fm Page 571 Wednesday, August 16, 2006 2:02 PM

572

■

Mobile Middleware

of the distributed application; for example, applications such as group
multicasting, Web caches, or archival systems focus on availability and
require guarantees on content location (if such exists). These requirements
are usually met at the expense of flexibility — for example, organizing
search indexes by data

identifiers

, which allow quick lookup procedures
by limiting the subject space, by imposing strict rules on their format, and
by exactly controlling how the search index should be organized in the
distributed system.

In contrast, other kinds of applications, such as file sharing or publish–
subscribe systems, require the ability to issue rich queries, such as

regular
expressions

, meant for a wide range of users from autonomous organiza-
tions. Moreover, this second class of applications requires a greater respect
for the autonomy of individual peers and not requiring them to host parts
of the distributed search index. These requirements clearly relax assump-
tions and expectations on the performance of the P2P system. The afore-
mentioned differentiation regarding the requirements of distributed data-
sharing applications led to two P2P computational models:

structured

 and

unstructured

 platforms.
In

 structured

platforms, peers organize themselves in a distributed
search index (also called a

structured overlay network

) that usually con-
tains information on the exact location of each shared piece of data. In
these systems, each peer maintains only a partial knowledge of the index
and establishes key network relationships with other peers to allow almost
complete coverage of the search structure. The main idea is to map both
peers and data identifiers on the same logical space, assuming that a peer
with a logical identifier P gets relevant information about data logically
close to P. This approach allows for

subject-based

 lookup procedures,
where a peer with identifier D of the wanted data item (e.g., a file name
or a multicast group identifier) initiates a distributed search algorithm that
hop after hop in the structured overlay ends up on the peer logically
closest to D. Among the various proposals in the area of structured data
sharing, Pastry [13] and Chord [25] organize the overlay as a distributed
ring of identifiers, while a content-addressable network (CAN) [23] uses
the concept of a distributed quad-tree on an

n

-dimensional space. All of
these platforms achieve optimal lookup performance, guaranteeing the
retrieval of shared content information in a logarithmic number of hops
in the overlay and requiring each node to establish a small number of
relationships in the overlay.

In

unstructured

 platforms, peers do not self-organize in a distributed
search index and are not required to maintain relevant information
about shared content owned by other entities (e.g., a distributed search
index). Peers establish network relationships in a pseudo-random fash-
ion starting from a given entry point (i.e., a boot peer) and look for

AU3833_C23.fm Page 572 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile

Ad Hoc

 Networks

■

573

shared data, initiating flood search procedures. This approach does not
match availability guarantees, as in the case of structured platforms, but
it does allow for

content-based

 lookup procedures based on regular
expressions, to retrieve shared data. Content-based lookups are directly
applied on the published content and assume that a large number of
peers get hit by search requests (e.g., through query propagation schemes
based on flooding). Platforms such as Gnutella [17] or Kazaa [16] dem-
onstrate the flexibility offered by the unstructured approach in support-
ing very large-scale file-sharing applications on the Internet. Moreover,
the characteristics of open platforms, with their discussion and devel-
opment forums, have brought existing systems to maturity; available
protocol specifications make it easy to adopt and deploy these platforms
with new implementations, thus introducing innovative optimizations
directly in real testbeds.

Within the context of P2P computing for mobile

ad hoc

 networks, it
is advisable to consider both unstructured and structured approaches, as
they could better support distributed data sharing for particular applica-
tions. Furthermore, an initial evaluation of the capacity and performance
of existing data-sharing platforms in

ad hoc

 environments would provide
an important starting point for future discussions and new proposals. To
this end, in the following discussion we provide algorithmic details regard-
ing Gnutella and Pastry, representatives of unstructured and structured
approaches, respectively. Through simulation and experimental results,
we demonstrate their capacity and performance when employed in

ad
hoc

 scenarios.

The Gnutella Protocol

In this section, we describe the Gnutella protocol for overlay maintenance
and data lookup. For more details, please refer to the latest specification
[17]. Some of the information in this section is not part of the original
protocol (e.g., the behavior of a peer according to its connectivity in the
overlay) but represents details added for clarity. Note that the Gnutella
specification makes a distinction between

ordinary

 and

super

 peers. Super
peers make up the overlay and provide the search infrastructure, and they
are usually represented by nodes with a permanent Internet connection.
In contrast, ordinary (or

leaf

) peers have intermittent connectivity, so they
are not part of the overlay formation but simply attach themselves to an
arbitrary number of super peers, proxying queries through them. In the
context of this chapter, we are interested in the general properties of the
overlay formation protocol, so we do not consider ordinary peers in the
following discussion.

AU3833_C23.fm Page 573 Wednesday, August 16, 2006 2:02 PM

574

■

Mobile Middleware

State Maintenance

Gnutella operations rely on the existence of an unstructured overlay
network. Peers open and maintain application-layer connections among
them, forming logical links in the overlay. Messages dedicated to peer
discovery, link control, and data lookup are then sent exclusively along
the overlay. As each peer is allowed to open only a limited number of
connections and establish direct relationships with only a few other peers,
message forwarding is a cooperative task necessary to achieve broad
coverage of the overlay. The message lifespan is controlled by assigning
a bounded time to live (TTL) at the application layer which decrements
at each logical hop.

To establish a connection, as shown in Figure 23.1, a peer (P

1

) initiates
a handshaking procedure with another peer (P

2

) by sending a request
message (C-request). Peer P

2

 could then reply sending either a connection
accept (C-accept), to signal its willingness to link with P

1

, or a connection
reject (C-reject), to signal that it has no more available connection slots.
The handshaking is a successful one for P

1

 when it receives a C-accept
message and for P

2

 when it receives a confirm message (C-confirm) from
P

1

. These events trigger an update of the connection tables, and both
peers will then behave according to their internal status. This mechanism
assumes that each peer is given a

boot server

 to establish its entry point
(or first connection) in the overlay. In real Gnutella networks, this infor-
mation comes directly from the user or through a lookup against a Gnutella
Web cache (see www.gnucleus.com/gwebcache/ for an example), where
peers that are already part of the overlay publish their addresses.

Figure 23.1 Gnutella handshaking procedure.

AU3833_C23.fm Page 574 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile

Ad Hoc

 Networks

■

575

Gnutella peers usually store information on the state of active connec-
tions in a dedicated table, which we refer to as

connection table

. The
size of the connection table is expected to range inside a lower and an
upper bound (LB and UB). These bounds are not directly reported in the
Gnutella specification [17] but provide a systematic way of modeling the
behavior of Gnutella peers [7]. In particular, they guarantee that each peer
opens a minimal amount of links (at least the LB), without overdoing the
overall connectivity (exceeding the UB) and consequently abusing network
resources. These two limits influence peer behavior by leading to three
operational states. When the table size is smaller than the LB, the peer
remains in a

connecting

 state, where it (1) performs peer discovery, (2)
initiates connections toward discovered peers, and (3) accepts incoming
connection requests from foreign peers. As the table size reaches the LB,
the peer enters a

connected

 state, where it stops doing peer discovery
and does not initiate connection requests anymore. In this state, it still
accepts incoming connection requests from remote peers, as long as its
table has free slots available. Clearly, if the table size falls back down
under the LB, the peer transits back to the connecting state. Finally, when
the table size reaches the UB, the peer enters a

full

 state, where it also
stops accepting incoming connection requests. Again, as the table size
drops down under the UB, the peer returns to a

connected

 state.
In each of the above states, the system performs data lookup on

demand (i.e., driven by the user) and periodically probes its active
connections using one-hop probe Ping messages. A connection becomes
inactive when peers are not able to probe-Ping each other for more than
a specified amount of time. Finally, a peer can intentionally drop active
connections by issuing “bye” messages.

Peer Discovery, Pong Caching, and Queries

We now briefly describe how peers discover each other (see Table 23.1
for a detailed pseudo-code description). After having established their first
connection, peers discover other agents by sending over the connection
multi-hop discovery Ping messages with a TTL equal to seven [17]. At each
hop in the overlay, the TTL fields of the discovery Pings are

decremented
before being forwarded over each active connection listed by the current
peer (except the one where the Ping came from). This bounds the horizon
of the application-layer broadcast to seven hops; at the edge, discovery
Pings are discarded due to TTL expiration. Peers receiving a valid discovery
Ping reply back with a Pong message containing credentials for future
connections (i.e., network address and port number). Note that this last
step is executed only if the peer is not in the full state. In fact, in this
state the peer could not even accept incoming connection requests. Pong

AU3833_C23.fm Page 575 Wednesday, August 16, 2006 2:02 PM

576

■

Mobile Middleware

Ta
bl

e
23

.1

Ps
eu

do
-C

od
e

fo
r

G
nu

te
lla

 P
ee

r
D

is
co

ve
ry

 a
nd

 P
on

g
C

ac
hi

ng

Sy
m

b
o

ls
 a

n
d

 C
o

n
st

an
ts

PT
 (

Po
n

g
th

re
sh

o
ld

)
Th

e
m

in
im

u
m

 n
u

m
b

er
 o

f v
al

id
 e

n
tr

ie
s

in
 th

e
Po

n
g

ca
ch

e
th

at

a
p

ee
r

sh
o

u
ld

 h
av

e
to

 d
ir

ec
tl

y
an

sw
er

 a
 q

u
er

y;
 th

e
G

n
u

te
lla

sp

ec
ifi

ca
ti

o
n

 s
u

gg
es

ts
 1

0
as

 a
 f

ai
r

va
lu

e.

FU
LL

Th
is

 i
n

d
ic

at
es

 t
h

e
fu

ll
st

at
e

o
f

th
e

p
ee

r
b

eh
av

io
r.

TT
L

m
ax

Th
is

 i
s

th
e

m
ax

im
u

m
 T

TL
 v

al
u

e
th

at
 c

an
 b

e
as

si
gn

ed
 t

o
 a

m

es
sa

ge
; t

h
e

G
n

u
te

lla
 s

p
ec

ifi
ca

ti
o

n
 s

u
gg

es
ts

 7
 a

s
a

va
lu

e.

O
b

je
ct

s

N
am

e
Fi

el
d

 o
r

M
et

h
o

d

Pi
n

gM
sg

 o
r

Po
n

gM
sg

tt
l

=
 m

es
sa

ge
 t

im
e

to
 l

iv
e

Pi
n

gM
sg

 o
r

Po
n

gM
sg

h
o

p
s

=
 n

u
m

b
er

 o
f

h
o

p
s

in
 t

h
e

o
ve

rl
ay

 p
er

fo
rm

ed
 b

y
th

e
m

es
sa

ge

Pi
n

gM
sg

 o
r

Po
n

gM
sg

m
sg

ID
 =

 u
n

iq
u

e
m

es
sa

ge
 i

d
en

ti
fi

er

Pi
n

gM
sg

Is
Pr

o
b

eP
in

g(
)

=
 c

h
ec

ks
 w

h
et

h
er

 t
h

is
 P

in
g

is
 a

 P
ro

b
e

Pi
n

g
(i

.e
.,

tt
l

=
 1

 a
n

d
 h

o
p

s
=

 0
)

Pi
n

gM
sg

Is
D

is
co

ve
ry

Pi
n

g(
)

=
 c

h
ec

ks
 w

h
et

h
er

 t
h

is
 P

in
g

is
 a

 v
al

id

d
is

co
ve

ry
 P

in
g

(t
tl

 +
 h

o
p

s
<

=
 T

TL

M
A

X

)

Pe
er

Ta
b

le
R

ep
re

se
n

ts
 t

h
e

co
n

n
ec

ti
o

n
 t

ab
le

Pe
er

Ta
b

le
st

at
e

=
 c

u
rr

en
t

p
ee

r
b

eh
av

io
r

AU3833_C23.fm Page 576 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile

Ad Hoc

 Networks

■

577

replies are given enough TTL so they are able to reach the Ping originator,
which can then use the embedded credentials to open new connections.
Note that each Pong reply is back propagated along the overlay path of
the related Ping. In fact, the originators of discovery Pings associate unique
identifiers with the messages, making it possible for intermediate peers
to remember where Pong replies should be forwarded.

The standard discovery procedure can be enhanced with Pong caching.
Upon receiving Pong messages, a peer stores the embedded credentials
in a local cache. Incoming Ping messages could then be directly answered
if the local cache contains enough items (i.e., up to a predefined threshold),
without further forwarding the discovery Ping. In this case, a certain number
of items are selected from the Pong cache and returned all together in a
series of replies to the originator; otherwise, if the cache does not contain
enough items, the peer performs the standard Ping forwarding procedure.
This caching scheme significantly reduces the discovery overhead.

Queries are handled similarly to discovery Pings. Upon receiving a
query message, a peer looks up the locally shared content using the
constraints contained in the query. If one or more matches are found, the
peer replies back with a query hit, providing pointers to local results. In
any case, the peer decrements the TTL field and forwards the query
message to its neighbors. Subsequent data downloads are carried out
outside the overlay through direct file transfers.

Performance of Gnutella in Mobile Ad Hoc Environments

To better understand the capacity and limitations of Gnutella when
employed in mobile

ad hoc

 environments, we performed a set of simula-
tions to subject the platform to typical ad hoc scenarios using the Network
Simulator (ns2, version 2.27). In this chapter, we report only results related
to (1) scenarios with mobile nodes moving with different patterns, and (2)
scenarios where we recreated partitioning of the physical network (refer
to Conti et al. [9] for a complete analysis and a detailed discussion). In
these scenarios, we analyzed the overhead of the protocol as the amount
of network traffic generated in a particular time unit and its capacity for
building the overlay, measured as the average number of per-peer con-
nections (i.e., average peer degree).

The plots in Figure 23.2 show the average degree achieved by Gnutella
peers under three different mobility patterns. This study revealed that
node mobility severely impacts the overlay formation capacity of Gnutella.
Only in static scenarios were the peers able to reach (on average) the
minimum amount of connectivity (LB), fixed at four connections per peer
[8,18]. When we introduced mobility patterns based on the random way-
point mobility model, the average peer degree fell to 3.7 connections per

AU3833_C23.fm Page 577 Wednesday, August 16, 2006 2:02 PM

578 ■ Mobile Middleware

peer in a slow configuration, where nodes moved up to 5 m/sec, and
down to 2 connections per peer in fast configuration, where nodes moved
up to 15 m/sec. These conditions resulted in high rates of overlay parti-
tioning and, consequently, low rates of information discovery.

Figure 23.3 highlights the reaction of Gnutella peers under network
partitioning situations. These experiments were carried out for a simulation
time of 600 sec; an overlay of 30 peers stabilized network activity in the
first 200 sec, network partitioning was introduced around time 270, and,
finally, the original network was resumed around time 430. This was
achieved by placing the 30 mutually visible nodes on a static grid and
letting those in the center move in opposite directions so as to divide the
network into two halves. The plots report the reactions (in term of the
amount of network traffic generated [kB/sec]) of Gnutella peers with
regard to the network partitioning and rejoining events (see vertical lines).
We could observe bursts of networking activity corresponding with the
beginning and termination of network partitioning — up to 300 percent
increase in traffic at the beginning of the network partitioning, and up to
200 percent at the termination. The straightforward explanation for this
behavior is that peers transit back to the connecting state when the
network is divided into two halves and perform even broader discovery
procedures when the connectivity is restored at the physical layer. The
plots also show that Gnutella behavior is independent of which routing

Figure 23.2 Average Gnutella peer degree under increasing node mobility with
the OLSR routing protocol.

AU3833_C23.fm Page 578 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 579

algorithm — Optimized Link State Routing (OLSR) or Ad Hoc On-Demand
Distance Vector (AODV) — is in use at the network layer; however,
implementation of OLSR in these simulations provided routes of better
quality. The overhead generated by Gnutella on top of AODV results in
a bigger factor, ranging between 10 and 20 percent.

From these simulations, we could verify that, although Gnutella meets
important requirements for the management of data-sharing overlay net-
works, it was not designed for ad hoc networks and suffers from node
mobility, causing peers not to achieve minimum connectivity requirements.
Moreover, upon network partitioning, the protocol generates traffic bursts
in response to the topological reconfigurations. This is clearly not desirable
in mobile ad hoc situations, where the network partitions frequently or
where groups of nodes enter and leave the network.

The Pastry Protocol

The overlay network defined by Pastry [13] is represented by a large
circular space of 2128-1 logical identifiers, also called a ring overlay. Each
Pastry node chooses a 128-bit identifier (nodeId), which represents a
logical position in the ring. The nodeId is calculated at join time, when
the node hashes one of its physical identifiers (e.g., IP address, hostname,

Figure 23.3 Effects of network partitioning on the overhead generated by Gnu-
tella peers, with both OLSR and AODV.

Partition

AU3833_C23.fm Page 579 Wednesday, August 16, 2006 2:02 PM

580 ■ Mobile Middleware

public key) through a strong hash function (H), which uniformly distributes
inputs in the ring space and reduces the chances of two different physical
identifiers being mapped on the same nodeId and increases the chances
of scattering nodes with closer nodeIds far apart in the ring.

Subject-Based Message Routing
The fundamental service offered by a Pastry ring is that peers exchange
messages through a subject-based mechanism. The idea is to associate a
logical subject (or a key) with an application-layer message and route it
hop-by-hop in the ring until it arrives at a peer with a nodeId that is
closest to the subject of the message. This final peer is considered the
root for the message and is responsible for handling the message content
at the application layer. The association between messages and subjects
occurs through the same hash function used for mapping nodes to logical
addresses, which guarantees the same aforementioned distribution prop-
erties. To give an example, consider a file-sharing application where each
file is represented by its name. Typically, with Pastry, two types of
messages would be created, one to publish in the ring the sharing of a
file associated with a given name and another to lookup the node (or the
nodes) sharing a file with a given name. In this scenario, publish and
lookup messages get routed through the same logical identifiers, and the
corresponding root peers associate them at the application layer.

The subject-based routing policy used by Pastry is based on a numerical
proximity metric between message subjects and nodeIds. From the algo-
rithmic standpoint, consider logical identifiers to be represented as a
sequence of digits with base 2b, where parameter b is defined a priori.
At each step of a routing procedure, a Pastry peer (P) forwards the message
with subject K to another peer (Q), whose nodeId shares with K a prefix
that is at least one digit (b bits) longer than the prefix shared with P. If
no such node is known, P tries to forward the message to peer L, which
has the same common prefix with K but is numerically closer to K with
respect to P (this can be easily identified by looking at the digit after the
common prefix). The expected maximum number of hops in the overlay
between a source and a destination peers is equal to log2

b N in an
overlay of N nodes [13].

State Representation
To support this routing procedure, each peer maintains information related
to other peers in the overlay, using the following data structures:

■ Routing table. This structure is organized into log2
b N rows with

2b – 1 entries each. Each entry at row n of the routing table

AU3833_C23.fm Page 580 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 581

refers to a node whose nodeId shares with the local nodeId the
first n digits, but whose (n + 1)th digit differs (it has the same
value of the column index). If there are no nodeIds with this
characteristic, the entry is left empty. In practice, a destination
node is chosen among those known by the local node based on
the proximity of its logical identifier to the value of the key. This
choice provides good locality properties but only in the logical
space. In fact, nodes that are logically neighbors have a high
probability of being physically distant. In addition, the choice of
parameter b represents a tradeoff between the size of this data
structure and the maximum number of hops in subject-based
routing procedures that is expected to be equal to log2

b N, and
simulations results confirmed this [13].

■ Neighborhood set. This structure represents the set of nodes that
are physically close to the local node. The neighborhood set is
not normally used in routing messages but could be useful for
maintaining physical locality properties among nodes.

■ Leaf set. This structure represents the set of nodes with the closest
logical identifiers to the current node. The leaf set is centered on
local node P, with half of the identifiers larger than P and the other
half smaller than P. The leaf set represents the perfect knowledge
that each peer has of its logical contour.

In routing a given message, the node first checks to see if the related
subject falls within the range of nodeIds covered by its leaf set. If so, the
message is directly forwarded to the destination node — namely, the leaf
set entry whose nodeId is logically closest to the message subject. If the
subject is not covered by the leaf set, then the routing table is used, and
the message is forwarded to a node that shares a common prefix at least
one digit longer than the local nodeId. Sometimes, it is possible that the
appropriate entry in the routing table is empty or that the associated node
is currently disconnected from the network, but the overlay is still not
updated; in this case, the message is forwarded to a node (if any exists)
that shares the same prefix as the local node but is numerically closer to
the subject. Each Pastry data structure entry maintains a correspondence
between the logical identifier of each node and its credentials (IP address
and port number) to allow the establishment of direct peer connections
driven by application needs.

State Management
The main procedures used by Pastry to establish and maintain the overlay
network (i.e., the previously presented data structures) consist of join and
disjoin operations. First, when a new node (say, X) decides to join the

AU3833_C23.fm Page 581 Wednesday, August 16, 2006 2:02 PM

582 ■ Mobile Middleware

overlay, it must initialize its internal data structures and then inform other
nodes of its presence. It is assumed that the new node knows at least
one of its physical neighbors (say, A) which already is part of the overlay.
Typically, this bootstrap node can be located automatically (by sending
“expanding ring” queries) or can be obtained by the system administrator
through outside channels. Node X then asks A to route a special “join”
message with the key equal to X. Like any message, Pastry routes the
join message to the existing node Z whose ID is numerically closest to
X, passing through some intermediate nodes. In response to the “join”
request, nodes A, Z, and all the intermediate peers send the contents of
their tables to X. At this point, the new node X processes the received
information and initializes its own structures in the following way:

■ The neighborhood set is initialized with the contents of node A,
as it is a physical neighbor of X.

■ The leaf set is initialized with node Z, which has the closest existing
nodeId to X.

■ The ith row of the routing table is initialized with the corresponding
row of the routing table of the ith node (Bi) encountered in the
routing path from A to Z (as it shares a prefix of length i with X).

At the end, X informs all the newly known nodes about its arrival,
transmitting a copy of its resulting state. This procedure ensures that X
initializes its state with appropriate values and that the states in all other
involved nodes are updated.

The management of departure nodes is another important feature of
Pastry. In Druschel and Rowston [13], it is assumed that Pastry nodes may
fail or depart without warning. In particular, a node is considered failed
when its logical neighbors can no longer communicate with it. To this aim,
nodes in the leaf set are periodically probed with User Datagram Protocol
(UDP) Ping messages. Leaf entries that do not reply to probe Pings are
considered failed and get replaced by entries of the leaf set relative to the
live node with the largest index on the side of the failed node. In this
way, each node can easily repair its leaf set, and the delay with which it
becomes aware of logical neighbor failure depends on the probing fre-
quency. A similar probing mechanism is used to maintain a consistent
neighbor set. In this case, a node realizes that an entry in its routing table
has failed only when it attempts to connect to it to forward an application
message. This event does not normally delay message routing, as another
destination node could be selected. In any event, the failed routing table
entry has to be replaced. To this end, the peer contacts the entries belonging
to the same row of the failed one, asking for a nodeId that can replace
it. If none of them has a pointer to a live node with the appropriate prefix,

AU3833_C23.fm Page 582 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 583

the local node has to contact nodes belonging to successive rows of the
routing table. In this way, many remote connections could be required to
manage single entries of the routing table.

The maintenance procedures explained above highlight the complexity
associated with the management of a structured overlay network. The many
remote connections required to check the validity of table entries consid-
erably increase the overhead introduced on the underlying network. In
addition, peers that are considered failed have no way to get back into the
ring apart from performing once again a join procedure; for example, if a
node temporarily loses its network connection, it has to reboot the system
and join the overlay again. This limitation represents a major problem in
mobile ad hoc networks, where frequent topology reconfigurations could
cause situations of intermittent connectivity that are not compatible with
the low tolerance offered by Pastry maintenance procedures.

To better understand the overhead introduced by ring-maintenance
operations in Pastry, we analyzed its behavior in a small real testbed.
Specifically, we evaluated an open-source implementation of Pastry called
FreePastry [14]. During our study, we focused on both reactive and
proactive solutions for the routing protocol at the network layer, using
AODV in the former case and OLSR in the latter. A complete analysis of
the results obtained from our real testbed has been presented in Borgia
et al. [2].

For our study, we set up a real ad hoc network of eight nodes inside
the CNR campus in Pisa, where the structural characteristics of the building
and the nearby presence of access points and measurement instrumentations
limit the transmission capabilities of nodes, thus forcing the establishment
of a multi-hop ad hoc network. The network topology configuration used
for the experiments related to FreePastry is shown in Figure 23.4, where
all nodes ran one of the routing protocols and only six ran a distributed
application on top of FreePastry. In particular, nodes B and G worked just
as routers, allowing packet forwarding from the source to the destination
through the optimal path.

From our experimental results we noticed that, due to the limited
number of peers participating in the FreePastry ring, the overlay data
structures maintained the logical identifiers of almost all peers. For this
reason, there were rare generations of multi-hop subject-based routing
procedures; however, the operations required to create and maintain the
overlay imposed high overheads on the underlying ad hoc networks,
causing errors depending on the routing protocol used. In fact, FreePastry
implements maintenance operations using both UDP and Transmission
Control Protocol (TCP) connections to remote peers, introducing further
overhead on the network as overlay relationships do not take into account
neighborhood information.

AU3833_C23.fm Page 583 Wednesday, August 16, 2006 2:02 PM

584 ■ Mobile Middleware

To obtain a performance evaluation of Pastry, we calculated the traffic
generated to maintain the overlay, in addition to the traffic produced by
the routing protocol at the network layer. Figure 23.5 and Figure 23.6
show the amount of traffic observed by some nodes of the network
running OLSR and AODV, respectively. In both cases, the amount of traffic
generated by node B and G, which just worked as routers, was negligible.
In fact, the proactive protocol does not introduce a high overhead on the

Figure 23.4 Experimental network topology.

Figure 23.5 Pastry on OLSR: traffic related to main nodes.

AU3833_C23.fm Page 584 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 585

network, as it encapsulates different routing messages (Hello and Topology
Control) into single routing packets. By configuring an incremental ring
formation, UDP and TCP connections used by FreePastry peers to collect
initial overlay information generate evident traffic peaks. Even if the total
amount of traffic is not so high, relative to the WiFi bandwidth, those
peaks can negatively influence the additional transmission of application
data. Furthermore, we could observe that the successful creation of the
overlay depends on the reliability of the path discovery process imple-
mented by the routing protocol. In the case of AODV, a high number of
TCP retransmissions and connection failures occurred, primarily due to
the delay introduced by discovering routes toward a destination and the
use of unidirectional links as valid routes.

To summarize, experimentations carried out with FreePastry showed
the generation of heavy overheads related to overlay management pro-
cedures, due to a high number of remote connections opened between
peers. The lack of attention to the usage of network resources greatly
reduces the overall system performance in ad hoc networks. In order to
improve the system, Pastry nodes should become aware of the underlying
network topology, maintaining a tight correspondence between physical
and logical address space. The work in Castro et al. [8] presents a

Figure 23.6 Pastry on AODV: traffic related to main nodes.

AU3833_C23.fm Page 585 Wednesday, August 16, 2006 2:02 PM

586 ■ Mobile Middleware

reorganization of the overlay in Pastry that exploits network proximity
information to improve application performance and network usage. This
solution, based on an additional location discovery protocol that estimates
physical distances between nodes, shows the potential improvement intro-
duced by proximity information at the expense of running another protocol
in conjunction with the P2P platform. The last section of this chapter
discusses an alternative solution based on a full cross-layer protocol stack
architecture, which allowed us to greatly optimize ring management
procedures by exploiting interactions between the P2P platform and
routing protocols at the network layer.

Performance of Pastry in Mobile Ad Hoc Environments

As in the case of Gnutella, we performed ns2 simulations to understand
the capacity of the platform in typical ad hoc scenarios. By putting Pastry
through the same mobility scenarios used for Gnutella, we were able to
study the capacity for building the overlay, measured as the average number
of entries in Pastry routing tables, and the rate of unsuccessful subject-
based message routing procedure. For the latter, we created a simple
subject distribution model in which each Pastry peer was configured to be
the root for one subject, and we performed a route procedure toward the
subject maintained by other peers. We considered a route procedure for
a subject k to be successful if it terminated at the peer responsible for k.

In our simulation models, we configured a network of 30 mobile nodes
and then varied the density of Pastry peers to be exactly 100 and 50 percent
of the network size (30 and 15 Pastry peers, respectively). The plots
reported in Figure 23.7 show the average number of routing table entries
collected by Pastry peers under patterns of increasing node mobility. The
Pastry protocol [13] defines a logarithmic lower bound (i.e., log2

b (n), where
n is the size of the overlay) on the number of entries that each peer should
collect in internal tables to guarantee high rates of successful subject-based
routing procedures (the original Pastry paper [13] reports a maximum of
about 5 percent failed routing procedures as acceptable values). The
horizontal lines in Figure 23.7 indicate the lower bounds relative to the
two overlay sizes (log2

2 (30) and log2
2 (15), respectively). As already observed

in the case of Gnutella, node mobility has a big negative impact on the
protocol capacity of building the overlay. The scenarios with mobile nodes
(in both slow and fast configurations) exhibited a sharp reduction in the
amount of ring overlay knowledge that each Pastry peer was able to collect
(1.5 for the slow scenario and 1.2 for the fast scenario) in the case of a
one-to-one node–peer correspondence.

The above results were confirmed by a study on the failure rate of
subject-based routing procedures. As applications based on structured

AU3833_C23.fm Page 586 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 587

platforms focus on availability, subject-based routing procedures should
maintain very low failure rates — for example, below 20 percent in the
case of mobile ad hoc environments. Medium or higher failure rates
suggest that the platform is not usable. The results reported in Figure 23.8
show that the performance of a straightforward implementation of the
Pastry protocol quickly degrades under patterns of increasing node mobil-
ity, from around 5 to 10 percent in the case of static network to 70 to 80
percent and more in the case of slow and fast mobility patterns.

Cross-Layering
From the results illustrated in the previous sections, we can conclude that
the two analyzed P2P platforms result in significant performance degra-
dation when operating over an ad hoc network. Specifically, the simulation
results indicate that only in static configurations are the protocols we
analyzed able to construct overlays that meet necessary quality criteria
and guarantee good performance. Furthermore, experiments with real
testbeds indicate that, in static configurations, when the FreePastry imple-
mentation has correctly operated on top of our multi-hop ad hoc network
severe problems can be identified from the performance standpoint. These

Figure 23.7 Average number of Pastry routing table entries collected by peers
under pattern of increasing node mobility.

AU3833_C23.fm Page 587 Wednesday, August 16, 2006 2:02 PM

588 ■ Mobile Middleware

are mainly due to several factors that affect MANET behavior in a real
environment. IEEE 802.11 operates in the industrial, scientific, and medical
(ISM) spectrum and hence experiences a lot of noise from external sources.
The quality of the wireless links is therefore highly variable, and this
affects the higher layer protocols (e.g., routing, forwarding, transport)
behavior. In the end, this affects the overlay construction and management;
for example, because FreePastry maintenance operations are also based
on TCP services, the platform performance is negatively affected by poor
TCP performances. In addition, because Pastry operates its own subject-
based routing ring independently from the underlying ad hoc network, it
introduces a significant and bursty overhead on the ad hoc network.

Both simulation results and experiences with a real implementation
provided us with some indications of how to solve the performance
problems in MANET environments. Specifically, results related to FreePastry
indicate that significant performance benefits can be expected by exploiting
routing information (extended with services information) at the middleware
layer. This allows realizing ring overlay maintenance operations and avoid-
ing the big overheads connected with implementations via middleware
operations. Similar indications have been obtained for Gnutella [9].

These results provide strong arguments for exploiting, in a MANET,
cross-layer interactions according to the reference architecture proposed

Figure 23.8 Effects of patterns of increasing node mobility on the rate of unsuc-
cessful subject-based routing procedures.

AU3833_C23.fm Page 588 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 589

in Conti et al. [6,10]. In this architecture, as shown in Figure 23.9, a vertical
component, called the Network Status (NeSt), is introduced to enable
indirect interactions between protocols belonging to different layers of
the stack. This approach combines the flexibility of a layered architecture
(protocols at different layers are designed and maintained independently)
with the performance optimizations of a full cross-layer design.

The legacy TCP/IP architecture allows interactions only between adja-
cent layers, and each protocol knows only its own data structures. In the
cross-layer architecture, protocols use the state information flowing
throughout the stack to adapt their behavior accordingly. In this way, the
overall network performance is optimized. Data sharing among the proto-
cols is mediated by the NeSt, which maintains an abstraction of selected
information required to be shared among some protocols belonging to
different layers. Additionally, each protocol can subscribe its interests to
the NeSt, such that it will be notified every time an associated event occurs.
Producer protocols must notify the NeSt of their agreement to share their
contents and provide timely updates.

One of the main advantages of the cross-layer architecture is making
protocols aware of the current state of the network from the point of view
of the local node. This facilitates higher level tasks, such as middleware
and applications, where knowledge of the network topology can potentially
improve system performances. Both reactive and proactive routing protocols
can be used, but a proactive routing protocol guarantees better support to
higher layer protocols by periodically flooding topology updates. In this
way, each node has a complete and updated knowledge of the current
state of the network; however, in the case of overlay platforms, network
routing table contents are not sufficient to simplify management procedures,

Figure 23.9 Cross-layer architecture.

AU3833_C23.fm Page 589 Wednesday, August 16, 2006 2:02 PM

590 ■ Mobile Middleware

as each overlay has to be associated with a specific service, and only nodes
providing that service are a part of the overlay. For this reason, a service
discovery (SD) protocol is necessary to identify all nodes providing the
same service. To avoid the introduction of an additional protocol sending
service information over the network (causing an increase of the total
overhead), we defined an embedded solution that exploits the proactive
approach of sending periodic topology updates. To this aim, service infor-
mation is added as optional fields to routing packets and automatically sent
as link-state update (LSU) messages. In addition, the service information is
associated with each IP address in the NeSt abstraction of the network
routing table such that the middleware layer can directly access this infor-
mation and autonomously build its overlay. A detailed definition of a
possible cross-layer service discovery protocol is presented in Reference 12.

To verify the effectiveness of this cross-layer approach, we have
designed and implemented CrossROAD (Cross-Layer Ring Overlay for Ad
Hoc Networks) [11], a ring overlay platform with Pastry-like semantics that
is optimized through cross-layer interactions for operating in ad hoc
networks. CrossROAD exploits the cross-layer architecture shown in Figure
23.9 to directly interact with a proactive routing protocol that guarantees
a complete knowledge of the network topology. In this way, it exploits
routing information to optimize the construction and management of the
overlay. Following Pastry basic principles, CrossROAD assigns to each
node a logical address. Then, by exploiting the service discovery protocol,
the local node knows the IP addresses of the others taking part to the
same service, directly accessing the related NeSt data structures. For this
reason, CrossROAD defines the logical identifier of each node as the result
of the hash function applied to its IP address. In this way, at the startup,
CrossROAD can autonomously build the complete overlay, simply hashing
the IP addresses of all participants.

This is only the first step toward realizing an optimized solution for
ad hoc networks — that is, avoiding initial remote connections to establish
the ring and collect routing information. To do this, when a node running
CrossROAD wants to join the ring, the system has to subscribe the
associated service to the NeSt and consequently recover the IP addresses
of all the other participants. Naturally, to maintain a consistent view of
the network topology, the routing protocol has to update the NeSt abstrac-
tion with the same frequency as it manages a link-state update packet.
At this point, CrossROAD locally computes the logical identifiers of the
other nodes and stores this information in its local data structures. The
overlay management is highly simplified, as CrossROAD does not require
any remote connection. In addition, the routing protocol, periodically
sending its LSU packets, collects all the topology changes and directly
updates its own routing table and the related abstraction in the NeSt.

AU3833_C23.fm Page 590 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 591

Figure 23.10 shows an example of two nodes, A and B, connected to
the same network. Let assume that node B is already connected to the
overlay and that node A tries to participate by starting the same service.
The CrossROAD agent on node A recognizes the provided service and
sends this information to the NeSt, which will notify the routing protocol
of that event. At this point, the proactive protocol encapsulates the service
information in the next LSU packet to be sent through the network. Then,
when node B, or any other, receives the LSU, it updates the network
topology and the related NeSt abstraction, taking into consideration the
additional service information. At this point, when the application running
on node B has to send a message, CrossROAD first verifies if the content
of its routing table is consistent with the current network topology, updating
it before sending the message if necessary. In this way, CrossROAD updates
its view of the overlay every time it has to send a message, thus reducing
the possibility of considering wrong destinations. With this solution, the
overlay management is enormously simplified and no additional overhead
is imposed on the ad hoc network functionalities. Finally, CrossROAD further
optimizes the subject-based routing protocol defined by Pastry. Generally,
Pastry implements this message forwarding, following the proximity logic,
as a multi-hop routing, mainly due to the high number of nodes taking
part to the service and to the limited dimensions of its data structures.
CrossROAD turns this multi-hop routing into a direct peer-to-peer connec-
tion, maintaining the same algorithm. In fact, because each node knows

Figure 23.10 Middleware routing interactions in the cross-layer architecture.

CrossROAD CrossROAD

LSU routing pkt
containing services,

publications, and
topology updates

AU3833_C23.fm Page 591 Wednesday, August 16, 2006 2:02 PM

592 ■ Mobile Middleware

the others, the sender of a specified message can directly identify the closest
destination for the selected key and send the message through a simple
peer-to-peer connection. Subsequently, the forwarding protocol at the net-
work layer delivers the message through the shortest path.

To analyze CrossROAD performances on top of a real multi-hop ad
hoc network, we exploited OLSR, version 0.4.8 [26]. This implementation
allows the development of an internal plug-in for the definition of
additional information to be sent on the network through the routing
protocol. This represents a subset of the NeSt aimed at implementing
interactions between the middleware and routing layers. The plug-in we
developed (XL-plugin) consists of a dynamic library loaded by the
routing daemon at startup. To implement the cross-layer interaction, an
exchange protocol between the middleware and the routing of a message
has been defined.

Figure 23.11 represents a simple example of how cross-layer interac-
tions can be exploited in the creation of the overlay between two nodes
(A and B). The interaction between CrossROAD and the plug-in begins
when application A1, running on node A, registers the related service
identifier, creating a new instance of CrossROAD. In this way, the local
node joins the overlay in sending to the plug-in a message of Publish-
Service containing its IP address and the service identifier associated with
the specific application. When the plug-in receives this message, it encap-
sulates that information in the first routing packet that will be sent on the
network, and it stores this content in the local services table, which
maintains a list of services provided by the local node. In contrast, when
this message is received by another node (e.g., B), the plug-in processes

Figure 23.11 Cross-layer architecture implementation.

XL plug-in

AU3833_C23.fm Page 592 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 593

the additional information and stores it in the global services table, selecting
all services currently provided by every node of the network. At this point,
when the application decides to send a message on the overlay, first
CrossROAD checks the consistency of its internal data structures with the
plug-in. It then selects the optimal destination for that message among
nodes currently running the overlay and contacts that node through a
simple P2P connection. In this way, all remote connections required by
Pastry to build and maintain the overlay data structures are eliminated,
and every node of the overlay knows all the other participants, thus
avoiding the multi-hop middleware routing introduced by the subject-
based policy of Pastry. To compare and contrast the Pastry model with
its cross-layer enhancement, in our prototype we integrated on top of
CrossROAD a simple application of distributed messaging (DM). Nodes
running DM set up and maintain an overlay network related to this service.
When a node has created or joined the overlay, the application provides
the possibility of creating or deleting one or more mailboxes distributed
on the other nodes and to send messages to them. The physical location
of a mailbox is randomly selected by applying the hash function to the
associated identifier, which is used as the key value of the related mes-
sages. CrossROAD evaluation has been performed under the same con-
ditions with which we evaluated FreePastry. Specifically, we considered
the same eight-node network shown in Figure 23.4. In the first set of
experiments, we measured the overhead introduced by CrossROAD to
maintain the overlay (Figure 23.12) to compare it with that of FreePastry
(see Figure 23.5 and Figure 23.6).

The figure illustrates that the overhead traffic for all nodes is less than
100 B/sec, which is much lower than that observed with FreePastry. In
addition, traffic peaks introduced by FreePastry, corresponding to TCP
and UDP connections used to initialize and maintain the overlay data
structures, completely disappear in CrossROAD. Another important feature
of CrossROAD is the timeliness with which every node becomes aware
of the other participants [3]. This is an important property to guarantee
appropriate behavior of the overlay when network partitioning and rejoin-
ing occur.

To highlight this, we analyzed a possible network partitioning and the
consequent reaction of CrossROAD in the overlay management. To do
this, a new network topology, shown in Figure 23.13, has been set up.
The network consists of five nodes, and only nodes in adjacent positions
are in the transmission range of each other. All nodes run OLSR enhanced
with XL-plugin and CrossROAD. When all nodes are correctly connected
to the overlay, node C begins periodically sending an application message
with a specified key value (period equal to 1 sec). Initially, the key value
results are logically closest to the node identifier of B, hence node C

AU3833_C23.fm Page 593 Wednesday, August 16, 2006 2:02 PM

594 ■ Mobile Middleware

sends those messages directly to B. Then, after about 30 sec, node C
begins moving toward position X at a speed of about 1 m/sec, generating
network partitioning, and nodes A and B create an independent ad hoc
network as well as nodes C, D, and E. Because the direct link from B to
C is lost, the cross-layer interaction between CrossROAD and the routing
protocol allows node C to become aware of the network partitioning and
the consequent removal of nodes A and B from the overlay. Hence, the

Figure 23.12 CrossROAD throughput related to main nodes.

Figure 23.13 Network partitioning topology.

AU3833_C23.fm Page 594 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 595

successive messages sent by node C on the overlay with the same key
value are directly sent to the new best destination: node D. After 2 minutes,
node C begins coming back to the initial position, reestablishing a single
ad hoc network. At this point, subsequent messages are sent again to
node B. As shown in Figure 23.14, CrossROAD correctly manages data
distribution in the case of overlay and network partitioning. Specifically,
the figure shows that (1) during the first phase (a single ad hoc network),
node C data is stored on node B; (2) when the partition occurs, after a
transient, node C data is delivered to node D; and (3) when the network
is again connected, C data is again stored on node B.

Summary and Conclusions
Ad hoc networks are distributed systems composed of self-organized
wireless nodes. As these systems cannot benefit from any centralized
infrastructure, networking functionalities, such as packet forwarding, rout-
ing, and network management, as well as application services, should be
distributed among user devices. The distributed nature of ad hoc network-
ing finds in the peer-to-peer (P2P) interaction its natural model of com-
putation. Recently, several self-organizing overlay platforms have been

Figure 23.14 CrossROAD data distribution during network partitioning.

AU3833_C23.fm Page 595 Wednesday, August 16, 2006 2:02 PM

596 ■ Mobile Middleware

proposed for building decentralized and distributed applications for the
Internet. The variety of applications and services realizable on top of these
overlays also suits ad hoc scenarios; thus, having them work in ad hoc
environments would be an advantage for the MANET technology. How-
ever, it is not clear how these overlays should be ported and how they
will perform on ad hoc networks.

In this chapter, we focused both on structured and unstructured P2P
platforms by investigating their effectiveness when operating on top of
a mobile ad hoc network. Specifically, we investigated via simulation
the performance of Pastry and Gnutella, as representatives of the
structured and the unstructured classes. Our results indicated that only
in static scenarios are these platforms able to construct effective overlays.
Furthermore, evaluations of the performance of FreePastry (an open-
source implementation of Pastry) on a real testbed suggested that overlay
management procedures may introduce a significant overhead on ad hoc
networks.

To summarize, our results indicated that in MANET environments,
implementing an overlay that is completely independent from the physical
topology of the network results in poor system performance. To avoid
this, we explored an innovative protocol stack architecture for ad hoc
networks that exploits cross-layering. The idea behind cross-layering is
that the information collected at each layer could be used by the rest of
the stack to optimize the overall functioning of single nodes and conse-
quently the entire network. To maintain the flexibility of legacy layered
architectures, cross-layer interactions are implemented via a shared mem-
ory (the Network Status, or NeSt), through which protocols share their
internal information. In this chapter, we showed how a Pastry-like platform
could be efficiently ported on ad hoc environments by exploiting the
cross-layer architecture. Specifically, to verify the effectiveness of this cross-
layer approach, we designed and implemented CrossROAD, a ring overlay
platform with Pastry-like semantics that is optimized through cross-layer
interactions for operating in ad hoc networks. CrossROAD exploits the
cross-layer architecture to directly interact with a proactive routing protocol
that guarantees complete knowledge of the network topology. In this
way, it exploits routing information to optimize construction and manage-
ment of the overlay.

A comparison between the performance of Pastry and CrossROAD in
a real testbed indicated that, by exploiting cross-layer interactions with
routing agents, peers become completely autonomous, and applications
experience and optimize data distribution and lookup services without
the introduction of additional network overhead. In addition, by exploiting
routing updates, the resulting platform is able to quickly react to network
partitioning and consolidation.

AU3833_C23.fm Page 596 Wednesday, August 16, 2006 2:02 PM

Peer-to-Peer Computing in Mobile Ad Hoc Networks ■ 597

Acknowledgments
This work was partially funded by the Information Society Technologies
program of the European Commission, Future and Emerging Technologies,
under the IST-2001-38113 MOBILEMAN project, and by the Italian Ministry
for Education and Scientific Research in the framework of the FIRB-VICOM
project.

References
[1] Anceaume, E., Datta, A.K., Gradinariu, M., and Simon, G., Publish/subscribe

scheme for mobile networks, in Proc. of the First ACM Int. Workshop on
Principles of Mobile Computing (POMC 2002), Toulouse, France, October
30–31, 2002, pp. 74–81.

[2] Borgia, E., Conti, M., Delmastro, F., and Pelusi, L., Lessons from an ad hoc
network test-bed: middleware and routing issues, Ad Hoc Sensor Wireless
Networks, 1(1–2), 125–157, 2005.

[3] Borgia, E., Conti, M., Delmastro, F., and Gregori, E., Experimental compar-
ison of routing and middleware solutions for mobile ad hoc networks:
legacy vs. cross-layer approach, in Proc. of SIGCOMM Workshop on Exper-
imental Approaches to Wireless Network Design and Analysis, Philadelphia,
PA, August 22, 2005.

[4] Bellavista, P., Corradi, A., and Magistretti, E., Lightweight replication mid-
dleware for data and service components in dense MANETs, in Proc. of the
6th IEEE Symp. on a World of Wireless Mobile and Multimedia Networks
(WoWMoM 2005), Taormina, Italy, June 13–16, 2005.

[5] Chlamtac, I., Conti, M., and Liu, J., Mobile ad hoc networking: imperatives
and challenges, Ad Hoc Networks, 1(1), 13–64, 2003.

[6] Conti, M., Crowcroft, J., Maselli, G., and Turi, G., A modular cross-layer
architecture for ad hoc networks, in Handbook on Theoretical and Algo-
rithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks, Wu,
J., Ed., CRC Press, Boca Raton, FL, 2005.

[7] Castro, M., Costa, M., and Rowstron, A., Peer-to-Peer Overlays: Structured,
Unstructured, or Both?, Technical Report MSR-TR-2004-73, Microsoft
Research, Cambridge, U.K., 2004.

[8] Castro, M., Druschel, P., Hu, Y.C., and Rowstron, A., Exploiting Network
Proximity in Peer-to-Peer Overlay Networks, Technical Report, http://free-
pastry.rice.edu/PAST.

[9] Conti, M., Gregori, E., and Turi, G., A cross-layer optimization of Gnutella
for mobile ad hoc networks, in Proc. of the Sixth ACM Symp. on Mobile Ad
Hoc Networking and Computing (MobiHoc 2005), Urbana-Champaign, IL,
May, 2005.

[10] Conti, M., Maselli, G., Turi, G., and Giordano, S., Cross-layering in mobile
ad hoc network design, IEEE Computer, 37(2), 48–51, 2004 (special issue
on ad hoc networks).

AU3833_C23.fm Page 597 Wednesday, August 16, 2006 2:02 PM

598 ■ Mobile Middleware

[11] Delmastro, F., From Pastry to CrossROAD: cross-layer ring overlay for ad
hoc networks, in Proc. of IEEE PerCom 2005 Workshop on Mobile Peer-to-
Peer, Kauai Island, HI, March, 2005.

[12] MobileMAN Deliverable 13, http://cnd.iit.cnr.it/mobileMAN.
[13] Druschel, P. and Rowston, A., Pastry: scalable, distributed object location

and routing for large-scale peer-to-peer systems, in Proc. of IFIP/ACM Int.
Conf. on Distributed Systems Platforms (Middleware), Heidelberg, Germany,
November, 2001.

[14] FreePastry, www.cs.rice.edu/CS/Systems/Pastry/FreePastry.
[15] Hermann, K., MESHMdl: a middleware for self-organization in ad hoc

networks, in Proc. IEEE Workshop on Mobile and Distributed Computing
(MDC 2003)/ICDCS’03, Providence, RI, May, 2003.

[16] Kazaa, http://www.kazaa.com.
[17] Klinberg, T. and Manfredi, R., Gnutella Protocol Specification v0.6, Network

Working Group, 2002 (http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.
html).

[18] Meier, R. and Cahill, V., STEAM: event-based middleware for wireless ad
hoc networks, in Proc. IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’02), Vienna, Austria, July, 2002.

[19] Mascolo, C., Capra, L., and Emmerich, W., Middleware for mobile computing
(a survey), in Advanced Lectures in Networking, Gregori, E., Anastasi, G.,
and Basagni, S., Eds., Vol. 2497, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 2002.

[20] Mascolo, C., Capra, L., Zachariadis, S., and Emmerich, W., XMIDDLE: a
data-sharing middleware for mobile computing, Wireless Pers. Commun.,
21, 77–103, 2002.

[21] Murphy, A.L., Picco, G.P., and Roman, G.-C., Lime: a middleware for physical
and logical mobility, in Proc. IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’01), Phoenix, AZ, April, 2001, pp. 524–233.

[22] Pratt, I. and Crowcroft, G., Peer-to-peer systems: architectures and perfor-
mance (tutorial session), in Proc. of Networking 2002, Pisa, Italy, May, 2002.

[23] Ratsanami, S., Francis, P., Handley, M., Karp, R., and Schenker, S., A scalable
content-addressable network, in Proc. ACM SIGCOMM’01, San Diego, CA,
August, 2001, pp. 161–172.

[24] Schollmeier, R., Gruber, I., and Finkenzeller, M., Routing in mobile ad hoc
and peer-to-peer networks: a comparison, in Proc. of Networking 2002,
Pisa, Italy, May, 2002.

[25] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., and Balakrishnan, H.,
Chord: a scalable peer-to-peer lookup service for internet applications, in
Proc. ACM SIGCOMM’01, San Diego, CA, August, 2001, pp. 149–160.

[26] Tonnesen, A., OLSR: Optimized Link State Routing Protocol, Institute for
Informatics at the University of Oslo, Norway (http://www.olsr.org).

AU3833_C23.fm Page 598 Wednesday, August 16, 2006 2:02 PM

599

Chapter 24

Supporting Continuous
Services to

Roaming Clients

Ashutosh Dutta, Henning Schulzrinne,
and K. Daniel Wong

CONTENTS

Introduction... 600
Wireless Internet Roaming Scenario ... 601
Mobility Management Taxonomy .. 603
Application-Layer Mobility Management Framework .. 607

Signaling .. 607
Registration .. 607
Mobility Binding.. 608
Authentication, Authorization, and Accounting.. 609
Security .. 609

SIP-Based Terminal Mobility.. 609
Inter-Domain Secured Terminal Mobility.. 611
SIP-Based Mobility Across Heterogeneous Networks................................ 614
SIP Mobility over IPv6.. 616
SIP-Based Mobility with Quality of Service.. 617

SIP-Based Fast-Handoff Mechanism .. 618

AU3833_C24.fm Page 599 Wednesday, August 16, 2006 2:40 PM

600

■

Mobile Middleware

Proactive Handoff Using Preconfiguration and Preauthentication 622
SIP-Based Simultaneous Mobility... 623

Integrated Mobility Management ... 626
Mobile Content Distribution over Multicast ... 627

Mobility Support for Multicast ... 628
Fast Handoff in MarconiNet... 630

Postregistration .. 631
Preregistration.. 632
During Registration ... 632

Conclusions ... 634
Acknowledgment .. 634
References ... 634

Introduction

Lately, streaming real-time multimedia content over the Internet has been
gaining momentum in the communications, entertainment, music, and
interactive game industries. Real-time applications include interactive ser-
vices such as IP telephony, multiplayer games, and streaming services
such as broadcasting multimedia content, multiparty conferences, and
collaborations. Multimedia streaming applications are far more demanding
in terms of bandwidth, latency, and reliability than traditional TCP/IP-
based applications and are thus ideal drivers for the next-generation
Internet. In addition, they may require multicast support to provide flex-
ibility and take care of bandwidth bottlenecks. As personal communication
and ubiquitous access become more important, it is necessary to come
up with flexible network technologies that can support multiple applica-
tions such as Mobile IP telephony, multimedia, and other streaming
applications over a wireless IP network. To support multimedia applica-
tions for roaming users over the wireless Internet one has to consider
several factors such as signaling, registration, configuration, quality of
service, bandwidth management, mobility management, and authentica-
tion, among others. Thus, it is desirable to design a mobility management
framework that can take care of location management, quality of service,
and end-to-end security while providing personal, session, service, and

terminal mobility features to the end users. In this chapter, we highlight
some of the mobility management mechanisms and describe an application-

layer framework that helps provide the desired roaming features over a
heterogeneous access network. We also provide some experimental results
obtained while prototyping this application-layer framework in a mobile
multimedia testbed.

AU3833_C24.fm Page 600 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

601

Wireless Internet Roaming Scenario

Wireless Internet roaming involves movement between different types of
networks while the mobile device is subjected to cell, subnet, and domain
mobility. Figure 24.1 shows an example of how a roaming user moves
out of a personal area network (PAN) and then makes a transition to a
local area network (LAN) and wide area network (WAN). During the
roaming process, the mobile device transitions between different cells,
subnets, and domains and traverses different types of access networks
(e.g., Bluetooth

®

, 802.11, CDMA, WiMAX). It is important to identify the
issues and requirements with regard to building an application-layer
framework to support roaming users. This application-layer framework
can use a set of standard Internet Engineering Task Force (IETF) protocols
that can help support real-time and non-real-time multimedia applications
on the mobile terminals of next-generation (3G/4G) wireless networks.
We summarize below the essential requirements and issues that must be
addressed with regard to supporting roaming users on the wireless Internet
in a ubiquitous way. While designing any architecture, wireless service
providers should keep these factors in mind. In general, a mobility
management scheme for wireless IP networks should fulfill the following
requirements:

■

It must support personal, service session, and terminal mobility.

■

It must support global roaming, independent of the underlying
wireless technology (e.g., W-CDMA, CDMA2000, 802.11b, TDMA).

■

It must support both real-time and non-real-time services such as
mobile telephony and mobile Web access. To achieve this, the
mobility management scheme should interact effectively with the
quality of service (QoS) management and authentication, authori-
zation, and accounting (AAA) schemes to verify the user’s identities
and rights, as well as to ensure that the QoS requirements and
applications are satisfied and maintained as users roam.

■

It must transparently support both Transmission Control Protocol
(TCP)- and Real-Time Transport Protocol (RTP)/User Datagram
Protocol (UDP)-based application. It should support the TCP as is,
without requiring any changes to the TCP or TCP-based application.

■

It must support multicast services efficiently as mobile stations and
users move around.

■

To be able to support wireless Internet telephony, it must address
many important issues, such as registration, configuration, dynamic
binding, and location management on a need basis.

AU3833_C24.fm Page 601 Wednesday, August 16, 2006 2:40 PM

602

■

Mobile Middleware

Handoff is the most important factor for supporting wireless Internet tele-
phony. Handoff, often referred to as

handover

, is a process that allows an
established call/session to continue when a mobile station (MS) moves from
one cell to another without interruptions in the call/session. This handoff
process can be either hard or soft. In the hard handoff case, the mobile
device receives and accepts only one radio signal from a radio channel or
base station within a single cell; as the mobile device moves into a new cell,
its signal is abruptly and rapidly handed over from its current cell (or base
station) to the new one, within a few seconds. With soft handoff [1], the MS
continues to receive and accept radio signals from base stations within its
previous as well as its new cell for a limited period of time. The MS signal
is also received at multiple base stations. To ensure the layer-two indepen-
dence requirement of a mobility management scheme, a maximum acceptable
handoff time (MAHT) of 2 to 3 seconds is required. In the end-to-end wireless
IP paradigm, three logical levels of handoff procedure can be defined:

■

Cell handoff,

 which allows an MS to move from one cell to another
in a subnet within an administrative domain; one subnet may
consist of multiple cells, in which case the IP address of the mobile
host remains the same

■

Subnet handoff

, which allows an MS to move from a cell within
a subnet to an adjacent cell within another subnet that belongs to
the same administrative domain

■

Domain handoff

, which allows an MS to move from one subnet
within an administrative domain to another in a different admin-
istrative domain

The handoff process is built upon the registration, configuration,
dynamic address binding, and location management functions. The handoff
process is transparent to users and should satisfy the following requirements
so it can ensure the integrity, privacy, and confidentiality of the user’s
location and perform the necessary AAA process to verify users’ identities.
It should ensure the service mobility as the MS roams around by making
sure that it maintains the QoS of the ongoing sessions through minimizing
the loss of transient data during the handoff, as well as satisfying the delay
requirements of real-time applications. Registration and configuration
involves registering with the network and configuring the endpoint itself.
The IETF developed the Dynamic Host Configuration Protocol (DHCP) [2]
and Point-to-Point Protocol (PPP) [2], and Mobile IP [2] for both IPv4 and
IPv6 networks provide several standard ways of registration for the end
clients; however, several variations of DHCP (such as Dynamic Rapid
Configuration Protocol, or DRCP [3]) and other extensions of DHCP [4–6]
can take care of configuring IP addresses much more quickly while making
efficient use of scarce wireless bandwidth.

AU3833_C24.fm Page 602 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

603

Mobility Management Taxonomy

Supporting mobility on the Internet is primarily intended to allow a mobile
device to move between different cells, subnets, and domains while
maintaining an ongoing multimedia session independent of the point of
attachment of the device. Several protocols and mechanisms have been
developed to support intra-domain and inter-domain mobility on the
Internet. Dutta et al. [7] provide a short survey of mobility management
techniques currently available. Here, we provide a brief description of
these mobility protocols. Current mobility management techniques can be
implemented at several layers of the protocol stack, such as the networking
layer, transport layer, and application layer. Depending on the type of
movement, it can be considered either micro- and macromobility. Mobile
IP (MIP) is a mechanism developed for the network layer to support
mobility [6]; however Mobile IPv4 introduces network elements such as
home agents and foreign agents and suffers from triangular routing and
extra IP–IP encapsulation of 8 or 20 bytes, thus causing performance
degradation. Mobile IPv4 usually works in two different modes, foreign
agent mode and colocated mode. In colocated mode, a new address in
the foreign network is obtained via services such as DHCP or its faster
variants, such as DHCP with a rapid commit option [4], DRCP [3] in a
LAN, or PPP in a wide area scenario.

Figure 24.1 Wireless Internet roaming scenario.

AU3833_C24.fm Page 603 Wednesday, August 16, 2006 2:40 PM

604

■

Mobile Middleware

Several proposals could help take care of the triangular routing problem
by means of direct binding update, regional registration, and other smooth
handoff techniques [8,9], but many of these solutions require kernel mod-
ification, making it difficult to deploy them. The Cellular IP approach [10]
and the Handoff Aware Wireless Access Internet Infrastructure (HAWAII)
[11] are network layer micromobility management protocols. These take
care of the inefficiency of Mobile IP by supporting intra-domain mobility
and host-based routing. Both of these approaches separate local and wide-
area mobility (i.e., adopt a domain-based approach) and use Mobile IP for
inter-domain (wide area) mobility.

Mobile IP with Location Registers (MIP-LR) is another network layer
scheme developed to avoid encapsulation of packets [12] and to provide
survivability in an

ad hoc

 network such as military networks. It does so
by replicating multiple location registers (LRs). Address management is
carried out by DHCP servers, and home location registers (HLRs) provide
the location updates to each corresponding host wishing to communicate
with any mobile user in the beginning. MIP-LR can be implemented at
both the network layer and application layer, thus avoiding kernel
independence.

Telecommunications-Enhanced Mobile IP (TeleMIP) is an intra-domain
mobility framework that uses two layers of scoping within a domain and
is based on the Intra-Domain Mobility Management Protocol (IDMP) [13].
By specifying an intra-domain termination point — a mobility agent (MA)
— this protocol helps to reduce the signaling updates due to movement
within a domain and thus reduces the loss of transient traffic due to
frequent handoffs within a domain. Mobile IPv6 [2] provides a network-
layer mobility framework for IPv6. Because address autoconfiguration is
a standard part of MIPv6, the mobile host (MH) will always obtain a care-
of address (COA) that is routable to the foreign network; thus, it is not
necessary to have a foreign agent (FA) in the MIPv6 framework. When
the mobile node moves to a new foreign network, it acquires a temporary
COA using stateless autoconfiguration [2] or DHCPv6 [2].

Among the few transport-layer mobility solutions, the TCP-Migrate
approach [14] proposes a new set of migrating options for TCP that provide
a pure end-system alternative to network-layer solutions. With this exten-
sion, established TCP connections can be suspended by a TCP peer and
reactivated from another IP address without a third party (except for the
involvement of dynamic Domain Name System updates). This approach,
however, requires modifying the transport protocol at the end terminals.
MSOCKS [15] is another transport-layer solution that introduces proxy in
the middle of a network and is built on the top of the SOCKS protocol
for firewall traversal. Upon movement of the mobile device and its address
change, the intermediary proxy helps splice the TCP connection. The

AU3833_C24.fm Page 604 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

605

recently developed Stream Control Transmission Protocol (SCTP) [16] has
a built-in add-IP feature that helps support continuity when the IP address
of the mobile device changes.

Application-layer mobility uses the Session Initiation Protocol (SIP)
as the signaling mechanism [17]. This mechanism does not depend on
the home agent or foreign agent in the middle of the network nor does
it require schanges in the end hosts; thus, it will provide easier deploy-
ment of mobility management solutions for the wireless Internet. Table
24.1 provides a qualitative comparison of some of the available mobility
management protocols described above. Figure 24.2 provides a latency
comparison between SIP-based and MIP-based terminal mobility during
the subnet handoff. The curves illustrate the relative performance
improvement of SIP over MIP for different packet sizes, as analyzed
from both Network Simulator 2 (ns2)-based simulation and laboratory
experiments. By using SIP for mobility management, one can expect to
achieve 50 percent latency improvement in real-time (RTP/UDP) traffic,
thus providing a reduction in latency from a baseline of ~27 msec to
~16 msec for large packets and a 35 percent utilization increase of 60
bytes/packet size compared with a baseline of 80 bytes/packet size with
IP-in-IP encapsulation in Mobile IP.

Figure 24.2 Quantitative comparison of SIP and MIP.

AU3833_C24.fm Page 605 Wednesday, August 16, 2006 2:40 PM

606

■

Mobile Middleware

Ta
bl

e
24

.1

Q
ua

lit
at

iv
e

C
om

pa
ri

so
n

of
 M

ob
ili

ty
 M

an
ag

em
en

t
Pr

ot
oc

ol
s

M
o

b
ili

ty
 P

ro
to

co
l

In
tr

a-
D

o
m

ai
n

En

ca
p

su
la

ti
o

n
In

te
r-

D
o

m
ai

n

En
ca

p
su

la
ti

o
n

C
h

an
ge

s
to

 E
n

d

Sy
st

em
s

Tr
ia

n
gu

la
r

Ro
u

ti
n

g
In

fr
as

tr
u

ct
u

re

C
h

an
ge

Fa
st

H

an
d

o
ff

La
ye

r
M

o
b

ili
ty

Ty

p
e

M
o

b
ile

 I
Pv

4
Ye

s
Ye

s
Ye

s
Ye

s
N

o
N

o
N

et
w

o
rk

M
ac

ro

M
IP

v6
N

o
N

o
Ye

s
N

o
N

o
Ye

s
N

et
w

o
rk

M
ac

ro

M
IP

-R
O

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

N
et

w
o

rk
M

ac
ro

M
IP

-R
R

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

N
et

w
o

rk
M

ac
ro

M
IP

, F
A

 a
ss

is
te

d
Ye

s
Ye

s
N

o
Ye

s
Ye

s
Ye

s
N

et
w

o
rk

M
ac

ro

Te
le

M
IP

Ye
s

Ye
s

N
o

Ye
s

Ye
s

Ye
s

N
et

w
o

rk
M

ac
ro

M
IP

 w
it

h
 L

R
s

N
o

N
o

Ye
s

N
o

N
o

Ye
s

N
et

w
o

rk
M

ac
ro

C
el

lu
la

r
IP

N
o

Ye
s

N
o

Ye
s

N
o

Ye
s

N
et

w
o

rk
M

ic
ro

H
A

W
A

II
N

o
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
N

et
w

o
rk

M
ic

ro

M
SO

C
K

S
N

o
N

o
Ye

s
N

o
Ye

s
N

o
Tr

an
sp

o
rt

M
ac

ro

TC
P

M
ig

ra
te

N
o

N
o

Ye
s

N
o

Ye
s

N
o

Tr
an

sp
o

rt
M

ac
ro

SI
P

N
o

N
o

N
o

N
o

N
o

Ye
s

A
p

p
lic

at
io

n
M

ac
ro

N
o

te
:

 M
IP

v6
, M

o
b

ile
 I

P
ve

rs
io

n
 6

; M
IP

-R
O

, M
o

b
ile

 I
P

ro
u

te
 o

p
ti

m
iz

at
io

n
; M

IP
-R

R
, M

o
b

ile
 I

P
w

it
h

 R
eg

io
n

al
 R

eg
is

tr
at

io
n

; F
A

, f
o

re
ig

n
ag

en
t;

Te
le

M
IP

, T
el

ec
o

m
m

u
n

ic
at

io
n

s-
En

h
an

ce
d

 M
o

b
ile

 IP
; L

R
s,

 lo
ca

ti
o

n
 r

eg
is

te
rs

; H
A

W
A

II
, H

an
d

o
ff

-A
w

ar
e

W
ir

el
es

s
A

cc
es

s
In

te
rn

et
In

fr
as

tr
u

ct
u

re
; T

C
P,

 T
ra

n
sm

is
si

o
n

 C
o

n
tr

o
l

Pr
o

to
co

l;
SI

P,
 S

es
si

o
n

 I
n

it
ia

ti
o

n
 P

ro
to

co
l.

AU3833_C24.fm Page 606 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

607

Application-Layer Mobility
Management Framework

Some of the functional components that are needed to support wireless
Voice-over-IP (VoIP) in a SIP-based environment are presented below.
These logical components are used to provide different atomic functions
such as network detection, IP address configuration, registration, authen-
tication, and accounting. We describe briefly some of these functional
components.

Signaling

The application-layer mobility management framework is based on a vision
of a fourth-generation (4G) network where the end systems are assumed
to be IP endpoints, although a possible transition from a second-generation
(2G) to a third-generation (3G) network can also be devised with inter-
action between IP and non-IP endpoints by implementing a soft switch.
Because of the distributed nature of these networks, SIP [18] has been
used to perform session management, including initiation and termination
of a multimedia call, between clients. The SIP server and SIP user agent
are part of the signaling architecture, although the SIP server functionality
can easily be integrated into the softswitch for demonstrating IP-Public
Switched Telephone Network (IP-PSTN) call features. SIP handles the
signaling of multimedia calls among multiple parties. Numerous proposals
have been made to extend SIP so it can take care of mobility for mid-
session calls. SIP-based mobility techniques as defined in Dutta et al.
[19,20] provide an alternative approach to Mobile IP for maintaining mid-
session mobility and can also take care of pre-session mobility by means
of unique Uniform Resource Identifier (URI) registration. The Host Mobility
Management Protocol (HMMP) is a framework based on an extension of
SIP that provides mechanisms to support a TCP-based application using
SIP signaling [19].

Registration

Registration is a process by which a network is made aware of the
existence and location of an MS and its associated user. When an MS
becomes active or roams into a network for the first time, it registers with
the network. This process involves such steps as the MS sending a
registration request to the network and the network performing an AAA
process and sending appropriate responses to the MS, as well as location
management entities to ensure that the network is aware of the current
location of the MS. Depending on the extent of registration, it can be

AU3833_C24.fm Page 607 Wednesday, August 16, 2006 2:40 PM

608

■

Mobile Middleware

categorized as complete, expedited, or partial registration. Complete reg-
istration usually takes more time than the expedited registration. Variants
of AAA protocols [2] help take care of the security association between
the mobile station and home AAA server when a client moves between
the subnets within a domain. The home AAA server or an intermediate
broker agent such as an SIP central point of contact is contacted when
the user moves into a new domain for the first time to establish the
credentials. It is important to complete the registration process in a timely
manner during the handoff process.

Mobility Binding

Wireless Internet roaming must take care of several kinds of mobility,
such as service mobility, personal mobility, session mobility, and terminal
mobility.

Service mobility

 refers to the end user’s ability to maintain
ongoing sessions and obtain services in a transparent manner regardless
of the end user’s point of attachment.

Personal

mobility

 refers to the ability
of end users to originate and receive calls and access the subscribed
network services on any terminal in any location in a transparent manner
and the ability of the network to identify end users as they move across
administrative domains. This is achieved by personal mobility features
inherent in SIP; its URI scheme, registration mechanism, and dynamic DNS
[2] are some of the main components of SIP that help provide personal
mobility.

Mid-session mobility

 is the same as

terminal mobility

 and requires
that smooth handoff is achieved as the mobile device moves among several
heterogeneous networks. It requires maintaining proper binding between
the mobile device and new points of attachment without affecting the
end-to-end communication.

Binding allows continuous connectivity of TCP and UDP streams when
the communicating end nodes are moving around. Binding between the
mobile host and corresponding host when the mobile host is moving is
typically taken care of by Mobile IP [2], although Mobile IP in its original
form suffers from some drawbacks such as triangular routing and encap-
sulation. Variants of Mobile IP, such as IDMP, MIP-RO, and other micro-
mobility management protocols (e.g., Cellular IP and HAWAII), have
addressed the shortcomings associated with Mobile IP. MIPv6 also takes
care of drawbacks associated with MIPv4. An application-layer technique
using SIP-based mobility management provides another approach to han-
dle personal and terminal mobility. Schulzrinne and Wedlund [17] and
Dutta et al. [19,20] have proposed some extension of SIP whereby the
mobility of multimedia calls (RTP/UDP-based stream) and the TCP appli-
cation can be addressed without using underlying Mobile IP and any
network components in the middle of the network.

AU3833_C24.fm Page 608 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

609

Authentication, Authorization, and Accounting

An application-layer mobility management scheme can use Diameter [21]
or RADIUS [22] as an AAA protocol running on Network Access Servers
(NASs) and AAA servers to provide AAA-related services such as profile
verification and charging. A new authentication protocol called PANA
(acronym for Protocol for Carrying Authentication for Network Access)
[23] is a lightweight protocol used between mobile hosts and NASs as a
user front end of Diameter or RADIUS. PANA is implemented as an
application-layer protocol to enable a flexible access control that works
independent of any layer-two technology (e.g., 802.11, ADSL, cable), on
both IPv4 and IPv6, and with any configuration protocol such as DHCP
or PPP.

Security

Although it is important to maintain the mobility binding and optimize
the handoff during movement of the mobile device between different
subnets and networks, it is also important to encrypt the signaling and
media and authenticate the user as it moves around. A multilayered
security scheme helps protect both the signaling and data at various parts
of the network, including the last-hop wireless access. SIP clients may
use several authentication schemes (e.g., Digest) when registering with
SIP servers. PANA provides a user-level authentication procedure between
the mobile client and the first-hop access router and works in conjunction
with the AAA server in the back end while providing access control.
Packet-based encryption can be applied to provide over-the-air wireless
security between the mobile client and edge router or end-to-end security
between the communicating nodes. Internet Protocol Security (IPsec) has
been considered a candidate for providing packet-based encryption over
the last hop at the IP layer. Secured RTP (SRTP) [24] can be deployed
to provide end-to-end encryption for real-time traffic (media) in a mobile
environment. SRTP also helps avoid the problem of the IPsec tunnel
setup associated with an IP address change. SIP signaling between the end
points can be protected by using Secure/Multipurpose Internet Mail Exten-
sions (S/MIME) [25].

SIP-Based Terminal Mobility

Primarily, terminal mobility can be categorized as pre-session and mid-
session. Pre-session mobility generally does not contribute to the delay
for media delivery associated with the ongoing session but may add delay
to any new session. Mid-session terminal mobility provides a means of

AU3833_C24.fm Page 609 Wednesday, August 16, 2006 2:40 PM

610

■

Mobile Middleware

cell, subnet, and domain handoff while the session is in progress. Tradi-
tionally, terminal mobility is taken care of by network-layer mechanisms
such as Mobile IP and its variants. The application-layer mobility man-
agement framework enhances SIP-based terminal mobility for RTP/UDP
traffic to support roaming users on the wireless Internet.

According to the International Telecommunication Union (ITU)-T and
ITU-E standards, real-time multimedia applications such as RTP/UDP-based
traffic typically have a significant delay and loss budget (e.g., 500-msec
round-trip delay; up to 3 percent packet loss) to support reliable commu-
nication. Thus, it is advisable to avoid the triangular routing and any kind
of encapsulation mechanism that may contribute to performance degrada-
tion. As part of our proof-of-concept effort, we have implemented SIP-
based terminal mobility in a comprehensive wireless multimedia testbed
[26] and have added support for various types of mobility (e.g., cell, subnet,
domain), heterogeneous access, fast handoff, QoS, and security. SIP sig-
naling can support subnet and domain handoff, and cell handoff is com-
pletely taken care of by the link-layer mechanism. SIP-based terminal
mobility will, however, benefit from a layer-two triggering mechanism using
cross-layer optimization techniques. We augment SIP-based terminal mobil-
ity with a complete handoff process that is supported by a combination
of the network detection, registration, configuration, dynamic address bind-
ing, security, and location management functions described earlier. Figure
24.3 shows several logical components associated with the multimedia
testbed based on the application-layer mobility management framework.
The figure shows the interaction of the logical components that provide
such functionalities as configuration, registration, security, mobility binding,
QoS, and AAA services during a mobile device’s trajectory, covering cell,
subnet, and domain mobility. Schulzrinne and Wedlund [17] describe how
SIP can be used to provide terminal-mobility solutions during subnet
handoff for real-time traffic such as RTP/UDP traffic. Dutta et al. [19,20]
have proposed several mechanisms to address mobility for TCP traffic using
SIP signaling.

Subnet handoff delay includes a layer-two association delay and a
delay due to IP address acquisition and binding update. In the case of
subnet movement, the typical time for acquiring an IP address will depend
on the protocol being used. DHCPv4 in a LAN environment takes about
5 to 15 sec [27]. On the other hand, PPP takes about 15 sec to complete
the negotiation. Address acquisition by means of MIP, DHCPv6, or stateless
autoconfiguration takes less time. Table 24.2 provides a survey of IP
address discovery methods under the Linux™ operating system; however,
the time required for IP address discovery will depend on the operating
system and processing power of the end hosts. Domain handoff involves
movement between administrative domains and requires additional steps

AU3833_C24.fm Page 610 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

611

such as local authentication and profile verification, thus it will contribute
to the additional delay. In the case of domain handoff, a complete
registration takes place where there is an interaction between the AAA
servers in each domain.

The SIP URI scheme, registration mechanism, and dynamic DNS have
been implemented in a testbed to determine the pre-session mobility and
location management features. The registration process includes sending
a registration request from the MS to the SIP server with the new IP
address after the mobile device has moved. But, before a registration is
successful, it will be subjected to local access authentication based on
PANA and will be subjected to AAA verification by the network. A
successful registration updates the current location of the mobile device
for any new upcoming session.

Inter-Domain Secured Terminal Mobility

In a wireless Internet roaming scenario, it is important to preserve the
continuity of the session while maintaining the security association
between the communicating entities. Very often when a mobile device
moves among different heterogeneous networks, it is subjected to different
layer-two security mechanisms; thus, it is desirable to have a multilayer

Figure 24.3 SIP-based wireless Internet roaming.

AU3833_C24.fm Page 611 Wednesday, August 16, 2006 2:40 PM

612

■

Mobile Middleware

Ta
bl

e
24

.2

Su
rv

ey
 o

f
IP

 A
dd

re
ss

 A
cq

ui
si

ti
on

 T
im

e

A
cq

u
is

it
io

n
 M

et
h

o
d

D
H

C
P/

A

R
P

D
H

C
P

(w
/o

)
D

H
C

Pv
6

(S
ta

te
le

ss
)

D
H

C
P

v6

(S
ta

te
fu

l)

PP
P

FA
 C

O
A

A
u

to
 I

P
St

at
ic

Pr
o

ac
ti

ve

IP

Ti
m

e
(

∆

2)
4–

5
se

c
30

0–
40

0
m

se
c

16
0

m
se

c
50

0
m

se
c

7–
8

se
c

1–
2

se
c

4–
5

se
c

10
0

m
se

c
L2

 d
el

ay

N
o

te
:

D
H

C
P/

A
R

P,
 D

yn
am

ic
 H

o
st

 C
o

n
fi

gu
ra

ti
o

n
 P

ro
to

co
l

(D
H

C
P)

/A
d

d
re

ss
 R

es
o

lu
ti

o
n

 P
ro

to
co

l
(A

R
P)

; P
PP

, P
o

in
t-

to
-P

o
in

t
Pr

o
to

co
l;

FA
 C

O
A

, f
o

re
ig

n
 a

ge
n

t
ca

re
-o

f
ad

d
re

ss
; I

P,
 I

n
te

rn
et

 P
ro

to
co

l.

AU3833_C24.fm Page 612 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

613

security mechanism to make sure that both signaling and media are
protected throughout the process and interruptions due to mobility and
new security associations are minimized. A multilayer security framework
based on an SIP-centric architecture has been designed and implemented
that provides an end-to-end secured mobile multimedia communication.
It provides access control to the network using PANA, profile verification
using Diameter, and last-hop over the air protection using packet-based
encryption such as IPsec. End-to-end security for multimedia traffic (e.g.,
audio, video) is provided by SRTP. SRTP avoids the periodic setting up
of end-to-end IPsec tunnels between the endpoints during movement of
the mobile device. The SRTP key is distributed securely using an INVITE
exchange, and S/MIME takes care of securing the MIME bodies of SIP
signaling.

Mobile multimedia communication supporting inter-domain mobility
has been emulated by creating two different AAA domains. According to
the SIP–AAA model defined in the testbed, when the SIP server receives
an SIP register message from the mobile host, it consults with the home
AAA server for authentication and authorization by using Diameter as the
back-end protocol. Basilier et al. [28] describe the entire scenario of SIP–
AAA interaction in detail. We also use PANA for distributing Internet Key
Exchange (IKE) credentials to an authorized host. The credentials are then
used for establishing an IPsec tunnel between a host and the first-hop
access router that provides a secure communication channel in the access
network. The dynamic distribution of the IKE credentials enables hosts to
roam among different administrative domains as it is not necessary for a
host to preconfigure the credentials.

Dutta et al. [26] have provided their experimental results involving
inter-domain secure mobility. Domain handoff delay is composed of
several components, such as delay due to 802.11b channel change, subnet
and domain discovery, IP address acquisition, local authentication by
means of PANA, profile verification using AAA Diameter, and delay due
to binding updates such as SIP reINVITE or MIP registration. It is note-
worthy to mention that the delay parameters strongly depend on the
media used, number of routers in the path, background traffic, number
of hops, authentication methods, and processing speed of the correspon-
dent and mobile hosts. Timing associated with SIP signaling depends on
the processing power of the end hosts and specific SIP stack implemen-
tation (e.g., JAVA, C, Tcl/Tk). Table 24.3 shows the timing associated with
the execution of different protocols during subnet and domain handoff.
As expected, inter-domain handoff requires more time than inter-subnet
handoff because of the additional steps associated with profile verification
in the visited domain.

AU3833_C24.fm Page 613 Wednesday, August 16, 2006 2:40 PM

614

■

Mobile Middleware

Figure 24.4 shows the sequence of protocols including RTP packets
received on the mobile device during inter-domain handoff using an SIP-
based mobility scheme. These protocol sequences represent the execution
of each operation as the mobile device makes subnet and domain hand-
offs. A comparison of inter-domain secure mobility while using MIP as
the binding protocol shows that the mobile device loses fewer packets
when SIP is used as the binding protocol. In the case of MIP with IPsec,
additional time is spent due to the registration of the mobile device with
the home agent during the subnet change.

SIP-Based Mobility Across Heterogeneous Networks

Secure and seamless universal roaming requires mobility support that
involves movement between heterogeneous access networks. We describe
experiments involving both Mobile IP and SIP-based mobility schemes to
provide secure and seamless universal roaming involving heterogeneous
access, such as 802.11 and CDMA1XRTT. Dutta et al. [29] provide an
overview of how SIP-based mobility management can work over hetero-
geneous networks (e.g., 802.11b, W-CDMA, GPRS). They have also looked
into various key issues such as network detection, active interface iden-
tification, registration, retransmission of signaling in the event of rapid
handoff, SIP support with network address translations (NATs), session
continuity, fast handoff, and asymmetry of data delivery. In an experiment
involving mobility across heterogeneous access networks, 3G connectivity
was provided by Verizon Wireless’s CDMA1XRTT access network. During
the experiment, it was observed that the time taken to obtain an IP address
over PPP using CDMA1XRTT access over a WAN environment takes more
time (about 15 sec) than obtaining the address using DHCP without the
ARP option (less than 1 sec) in a LAN environment. It was found that the
average throughput is about 8 kbps over a cellular digital packet data

Table 24.3

Timing for Inter-Domain, Inter-Subnet Handoff

Operation

DRCP PANA SIP Media RTP

Subnet handoff (msec) 79 2 228 1490
Domain handoff (msec) 81 45 289 1656

Note:

 DRCP, Dynamic Registration and Configuration Protocol; PANA, Protocol
for Carrying Authentication for Network Access; SIP, Session Initiation Protocol;
RTP, Real-Time Transport Protocol.

AU3833_C24.fm Page 614 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

615

(CDPD) network and about 60 kbps over the CDMA1XRTT network. But,
newer technologies such as CDMA1XEVDO can provide data rates up to
384 kbps.

To reduce the packet loss due to a delay in IP address acquisition, we
have implemented a make-before-break algorithm that sets up a PPP
connection while the mobile device is still communicating with 802.11 in
LAN. A policy-based approach is used to define the trigger that determines
the active interface that the client would use to communicate with the
corresponding host. This handover policy can be based on the link con-
dition, QoS of the received traffic, or other server-based advertisement. In
addition, we have also designed and tested a secured multiple-interface
mobility management scheme where a mobile device with a dual interface
moves among an enterprise network (e.g., 802.11), cellular network (e.g.,
CDMA, GPRS), and hotspot (e.g., 802.11). This scheme provides secured
seamless roaming support without the need to tear down IPsec tunnels
during each subnet move. Dutta et al. [30] described the details of the
implementation using both MIP- and SIP-based approaches. Both constant
bit rate (CBR) traffic (audio) and variable bit rate (VBR) traffic (video) have
been tested, and we have analyzed the packet loss, delay, and inter-packet
gap during the handoff. Figure 24.5 shows the results of an experiment
involving secured mobility across heterogeneous networks. The low gra-
dient in the graph indicates the low speed within a cellular network. The
mobile device received few out-of-order packets during its movement from
the cellular network to the 802.11 network because of the transient packets
in the path that arrived in the WAN interface at a later point. Dutta et al.
[30] also have described a mechanism where SIP-based mobility manage-
ment can be used with the recently proposed Mobile Internet Key Exchange
Protocol (MOBIKE) [31] for real-time traffic.

Figure 24.4 Secured inter-domain mobility protocol sequence.

AU3833_C24.fm Page 615 Wednesday, August 16, 2006 2:40 PM

616

■

Mobile Middleware

SIP Mobility over IPv6

Next-generation networks based on 3GPP and 3GPP2 standards have
adopted IPv6; thus, it is quite important to consider mobility management
for IPv6 networks. SIP-based terminal mobility has a lot of similarities
with Mobile IPv6, as both of these mechanisms provide direct binding
updates to the communicating hosts without depending much on elements
within the network, such as home agents or foreign agents. We have
tested mobility binding for wireless telephony over an IPv6 network using
both Mobile IPv6 and SIP-based terminal mobility. We used Linux kernel
2.4.9 with a patch from the USAGI projects and MIPL Mobile IPv6 for the
experimental testbed. Several experiments were carried out for real-time
voice traffic to analyze the effect of Duplicate Address Detection (DAD)
in the disruption of SIP-based multimedia calls. An experimental handoff
analysis of SIP mobility with IPv6 and MIPv6 involving signaling and
media redirection is shown in Table 24.4. The SIP mobility timing was
measured for both DAD and no-DAD cases, whereas only the no-DAD

Figure 24.5 RTP sequence during heterogeneous handoff.

Table 24.4 Effect of Duplicate Address Detection (DAD)

on SIP and MIPv6

Signaling (msec)

Media (msec)

Handoff
Case

SIP
(DAD)

SIP
(No-DAD)

MIPv6
(No-DAD)

SIP
(DAD)

SIP
(NDAD)

MIPv6
(No-DAD)

H12 3829 171.4 1.5 3854 420.8 21.1
H23 3932 161.6 2.0 4187.7 418.6 30.3

AU3833_C24.fm Page 616 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients

■

617

case is shown for Mobile IPv6. The aggressive router selection (ARS)
method was also added to the no-DAD case. The ARS procedure forces
a mobile device to bind to the new router quickly enough to avoid a
neighbor-unreachability detection [2].

Details of the experimental comparison between MIPv6 and SIP-based
mobility and IPv6 can be found in Nakajima et al. [32]. To summarize,
however, we found that by eliminating DAD and adopting an aggressive
router selection process we were able to minimize the signaling delays
to 200 msec and media delays to less than 500 msec.

SIP-Based Mobility with Quality of Service

To make sure that the SIP-based media sessions, such as audio and video
streaming traffic, maintain the same level of quality of service during the
movement of a mobile device between two subnets, we integrated SIP-based
terminal mobility with Dynamic SLS Negotiation Protocols (DSNP) [33]. DSNP
uses a combination of Integrated Service and Diffserv techniques to make
reservations in the target access router before movement of the mobile device
into the target network. Dutta et al. [26] have described the details of how
the quality of service is achieved as the mobile device moves between
subnets. Figure 24.6 illustrates how the QoS for multimedia traffic is handled
during the subnet handoff. Results show the throughput at the mobile during
its movement between subnets. Slight fluctuation in bandwidth is observed
as soon as the mobile device switches to a new subnet.

Figure 24.6 SIP mobility with QoS.

AU3833_C24.fm Page 617 Wednesday, August 16, 2006 2:40 PM

618 ■ Mobile Middleware

SIP-Based Fast-Handoff Mechanism

Several factors at different layers contribute to handoff delays resulting in
transient data loss during mid-session mobility. Figure 24.7 shows the
latency factors associated with different layers during a handoff. These
factors include layer-two access point handoff, as well as layer-three
triggering time, time required to obtain an IP address (using methods such
as DHCP, PPP, or MIP COA), and time required for media redirection. The
times are denoted by ∆1, ∆2, and ∆3, respectively. Fast-handoff techniques
can be deployed at different layers to help reduce the transient data loss
due to the delay-associated latency with the macro handover. The IETF is
currently considering several alternative approaches for supporting fast
handoff within the Mobile IPv4 and MIPv6 context. Layer-three-based, intra-
domain mobility management solutions, such as the Hierarchical Mobile
Internet Protocol (HMIP) [8,33,34], help reduce the transient data loss when
a mobile host moves between subnets within a domain. Similar fast-handoff
mechanisms have also been proposed for Mobile IPv6. Soliman et al. [36]
introduced an agent called Mobility Anchor Point (MAP) to localize the
intra-domain mobility management. Cellular IP [10] and HAWAII [11] provide
mechanisms to make handoffs faster in an intra-domain scenario. Park et
al. [5] and Han et al. [6] described some of the techniques required to carry
out DAD optimization for IPv6 clients.

Vakil et al. [37] developed a virtual soft-handoff approach for code-
division multiple access (CDMA)-based wireless IP networks. It takes into
account the fact that both the access points receive the stream during

Figure 24.7 Handoff latency factors.

AU3833_C24.fm Page 618 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 619

movement of the mobile device; however, this scheme does not provide
a generalized solution suitable for other type of access network such as
802.11. It is important, then, to design a generic framework that can
provide fast handoff for both real-time and non-real-time sessions. We
describe below different SIP-based fast-handoff mechanisms supporting
secured inter-domain mobility (see Figure 24.8). These mechanisms help
reduce the delay associated with media redirection when the mobile device
is far away from the corresponding host and is subjected to frequent
handoff. We also describe the benefits of having a proactive configuration
and preauthentication mechanism to help speed up the handover by
acquiring an IP address ahead of time.

When the corresponding host is very far from the mobile device,
transient packets would be lost because of the large delays associated
with the SIP reINVITE; thus, it is necessary to retrieve the transient packets.
Each visited domain may consist of several subnets. Every move to a new
subnet causes the mobile host to send a reINVITE to the corresponding
host containing its new COA. If the reINVITE request gets delayed due
to path length or congestion, transient media packets will continue to be
directed to the old address. We assume that the visited network has an
outbound proxy. We enhance this proxy with the ability to temporarily
register visitors. The visitor obtains a temporary, random identity from the

Figure 24.8 SIP-based fast-handoff scenario.

AU3833_C24.fm Page 619 Wednesday, August 16, 2006 2:40 PM

620 ■ Mobile Middleware

visited network and uses it as its address-of-record to register with the
registrar in the visited network. The mobile host informs the home registrar
of this temporary address. It then only updates that registration with its
current local IP address. This speeds up registration but does not address
the delayed binding update issue raised by the reINVITE feature of SIP.
We have considered several ways to achieve fast handoff using SIP —
namely, using a SIP registrar and RTP translator or NATs or using the
outbound proxy and a back-to-back user agent (B2BUA) as a mobility
agent. In-transit packets can be redirected to a unicast or multicast address
based on the movement pattern of the mobiles and usage scenario. These
proposed methods help alleviate transient data loss related to continuous
handoffs within a domain, thus minimizing the delay contributed by ∆3.
Dutta et al. [38] provide more details about the fast-handoff mechanism.

In our first approach, each subnet within a domain is equipped with
an RTP translator [2] that provides application-layer forwarding of RTP
packets for a given address and UDP port to a given network destination.
The visited-network registrar described earlier receives the registration
updates from the mobile host that has just moved and immediately sends
a request to the RTP translator in the network that the mobile host just
left. The request causes the RTP translator to bind to the old IP address
used by the mobile host and forward any incoming packets to the new
mobile host address. After a set interval or after no media packets have
been received by the RTP translator, the RTP translator relinquishes this
old address and removes the forwarding table entry, assuming that the
reINVITE has reached the corresponding host.

The second approach uses an SIP outbound proxy. SIP requests
typically traverse a SIP proxy in the visited network, the outbound proxy.
This outbound proxy can also support fast handoff by using the data in
the mobile host-to-corresponding host reINVITE to configure the RTP
translator or NAT. The advantage of this approach is that the outbound
proxy usually has access to the Session Description Protocol (SDP) infor-
mation containing the mobile host media address and port, thus simplifying
the configuration of the translator or NATs. On the other hand, this
outbound proxy has to remember the INVITE information for an
unbounded amount of time and become call stateful, as it requires the
old information when a new reINVITE is issued by the mobile host.

Another way of providing fast-handoff is by using a back-to-back SIP
user agent. A B2BUA consists of two SIP user agents; one user agent
receives a SIP request, possibly transforms it, and then has the other part
of the B2BUA reissue the request. A B2BUA in each domain has to be
addressed by the mobile host in the visited domain. The B2BUA issues
a new request to the corresponding host containing its own address as
the media destination and then forwards the packets, via RTP translation

AU3833_C24.fm Page 620 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 621

or NAT, to the mobile host. Locally scoped multicasts may also help avoid
packet losses if the mobile host can predict that it is about to move to a
new subnet shortly. In that case, it informs the visited registrar or B2BUA
of a temporary multicast address as its contact or media address. When
the mobile host has arrived in its new subnet, it updates the registrar or
B2BUA with its new unicast address, while continuing to listen to multicast
addresses. The use of scoped multicast is only effective if the mobile host
can quickly acquire a multicast address and there is an inherent multicast
infrastructure.

In Figure 24.9, RT1, RT2, and RT3 are RTP translators in the respective
subnets. These RTP translators forward the traffic associated with one IP
address/port number to another IP address/port number. RTP translators
in each of these subnets intercept the traffic meant for the mobile host
and send it to the new address of the mobile host after capturing it. This
message can be sent via SIP Common Gateway Interface (CGI). In our
tests, the reINVITE signal was delayed to simulate network congestion or
distance between the corresponding host and mobile host. The Videocon-
ferencing Tool (VIC) and Robust Audio Tools (RATs) were used to measure
the performance of the audio and video streaming traffic, respectively.

Two methods such as rtptrans and NAT-based iptables were used to
direct the transient traffic from the previous subnet to the new one. In
some test runs, we delayed the reINVITE signals by 100 msec, 200 msec,
500 msec, 1 sec, 2 sec, and 3 sec to study how RTP translators improve

Figure 24.9 SIP-based fast-handoff method.

AU3833_C24.fm Page 621 Wednesday, August 16, 2006 2:40 PM

622 ■ Mobile Middleware

the delivery of RTP packets and enhance the smooth handoff mechanism
during movement of a mobile device. We found that the packet-forwarding
delay due to redirection at the registrar was less than 1 msec when the
iptables-based NAT approach was used, whereas the rtptrans approach
added 4 msec of delay. Figure 24.10 shows the effect of a SIP-optimized
handoff compared to a regular SIP-based handoff. SIP-based fast handoff
looks promising when the distance between the corresponding host and
mobile host becomes greater.

Proactive Handoff Using Preconfiguration
and Preauthentication

The fast-handoff approaches described earlier help reduce the effect of
delay associated with media redirection after the mobile device has been
configured with the new IP address. A mobile device can also benefit
from faster handoff if the IP address configuration and authentication
mechanisms are carried out in an efficient manner. We have looked into
expediting the handoff process by considering proactive IP address acqui-
sition methodologies and preauthenticating a mobile device while it is
still in the previous network. This specific approach takes advantage of
network discovery and selection methods, where the client discovers the
neighboring elements (e.g., routers, DHCP servers, SIP servers) and com-
municates with these entities before it actually moves into these networks.
This will help expedite the authentication and IP address acquisition part

Figure 24.10 Packet gain for optimized SIP handoff.

Packet gain for SIP
optimized handoff

AU3833_C24.fm Page 622 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 623

of the handoff process that usually takes place after the mobile device
has moved into the new network. This specific method actually reduces
the delay due to IP address acquisition and binding update. Details of
proactive handoff schemes and associated results are described in Dutta
et al. [39].

SIP-Based Simultaneous Mobility

In a roaming scenario, it is highly likely that both the communicating hosts
may be moving at the same time. In a purely ad hoc environment, mobility
is addressed by the proposed IETF ad hoc routing protocols, such as
Dynamic Source Routing (DSR) and Ad Hoc On-Demand Distance Vector
(AODV) routing; thus, the ad hoc routing protocols have the inherent
ability to take care of the simultaneous mobility problem. But, in an
infrastructure environment, ad hoc routing protocols are not used and a
mobile user may be affected if the corresponding user is also moving at
the same time. Both signaling and media transport will be affected because
of simultaneous movement of both of the communicating parties. MIP does
not have a problem with simultaneous mobility, as corresponding hosts
are unaware of the mobility of mobile hosts. The mobile host’s home agent
functions as an anchor point for the mobile host. No matter where the
mobile host moves, packets intended for the mobile host always go first
to its home network for interception and tunneling by its home agent;
however, mobility protocols that use direct binding updates between the
mobile and corresponding hosts are prone to simultaneous mobility prob-
lems. MIP-RO-, MIPv6-, and SIP-based mobility are mobility protocols that
fall into this category.

Wong et al. discuss the problems associated with simultaneous mobility
for SIP and MIP-LR-based mobility [40] and for Mobile IPv6 in [41]. We
highlight here certain basic problems associated with simultaneous mobil-
ity of the end users and provide some of the solutions associated with
an SIP-based mobility scheme. Communicating hosts may be subjected to
simultaneous mobility problems both during pre-session and mid-session
mobility. During pre-session mobility, the communicating hosts may have
trouble establishing a session because the signal may get lost, and during
mid-session mobility ongoing data may be lost due to the loss of binding
updates. If both the clients A and B are subjected to handoff pre-session
or mid-session, the vulnerability interval for the simultaneous mobility will
be determined in the following manner: A mobile host loses contact with
the previous point of attachment at a specific time (e) and cannot be
reached with the old IP address. It also takes a certain amount of time
(say, γ) before it configures its interface and gets connected to the new
network. Depending on the path it traverses, the binding update may take

AU3833_C24.fm Page 623 Wednesday, August 16, 2006 2:40 PM

624 ■ Mobile Middleware

a different amount of time in either direction. If it takes α amount of time
for the binding update to reach from A to B, and β amount of time to
reach from B to A, then the vulnerability interval is (α + β). If the inter-
handoff interval has a Poisson distribution with a mean value of λ, then
the probability that one of the mobiles is subjected to simultaneous
mobility problem can be denoted as:

and the probability that one out of N handoffs is subjected to simultaneous
mobility problem is denoted as:

From the equations above it is evident that the probability of a simulta-
neous mobility problem is greater when the average handoff rate is greater
(i.e., the inter-handoff arrival time is less) and the latency associated with
the binding update is also greater.

Figure 24.11 shows a failed-call scenario for SIP-based mid-session
simultaneous mobility. When the client is subjected to a simultaneous

Figure 24.11 SIP-based call flow scenario.

P
E

0 ≈
+[]α β

λ

P PN

N
= − −()1 1 0

AU3833_C24.fm Page 624 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 625

mobility problem during SIP-based mid-session mobility, the existing RTP
media is also affected. As a result, the endpoints do not get to communicate
properly.

Similarly, SIP-based pre-session mobility can also be affected such that
the initial session may never get set up because the initial signaling
messages never reach the endpoints. Mobile-originated retransmission and
the use of a forwarding mechanism from the previous networks are two
proposed ways for handling simultaneous mobility associated with SIP
(see Wong et al. [40] for alternative solutions). SIP has an inbuilt retrans-
mission mechanism where signaling messages are retransmitted after a
timeout if the acknowledgment is not received. These retransmissions can
be originated from the inbound servers closer to the mobile device. One
problem with the timer-based retransmissions is that significant latency
could be added to the handoff when messages are lost, such as when
simultaneous mobility occurs. The forwarding agent-based solution pro-
poses forwarding agents, similar to rtptrans as described earlier. These
agents capture the signals and forward them to the new location via the
proxy in the current network. Figure 24.12 and Figure 24.13 illustrate
these two mechanisms for handling simultaneous mobility associated with
SIP mobility.

Figure 24.12 Successful mid-session mobility flow with server-assisted retrans-
mission.

AU3833_C24.fm Page 625 Wednesday, August 16, 2006 2:40 PM

626 ■ Mobile Middleware

Integrated Mobility Management
Each of the mobility management schemes described earlier has certain
shortcomings associated with it. Some mobility management schemes are
suitable for real-time communication, some are suitable for inter-domain
mobility, and some are more suited for a micromobility environment; thus,
it may be desirable to design an integrated mobility management scheme
that is policy driven. We have designed a multilayer integrated mobility
management architecture and have prototyped several components in the
testbed. Our architecture consists of three mobility protocols — SIP, MIP-LR,
and Micromobility Protocol (MMP; a variation of Cellular IP) — that work
in conjunction with a policy manager and provide the desired functionality
based on the type of application and mode of movement. SIP-based mobility
management is used for real-time communication, and application-layer MIP-
LR is used for non-real-time traffic during movement of a node between two
different domains, while MMP takes care of the movement within a domain.
Figure 24.14 shows a testbed illustrating how these three mobility protocols
interact with each other in an integrated fashion.

We evaluated the performance of our integrated mobility management
approach under a simulated ad hoc environment while the mobility pro-
tocols interact with the dynamic DNS, DRCP/DCDP protocol suite. Refer
to Dutta et al. [42] for further details about how the integrated mobility
management scheme was realized in our testbed. In this approach, when

Figure 24.13 Successful completion of session initiation signaling.

INVITE

AU3833_C24.fm Page 626 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 627

the mobile node moves to a new domain for the first time, it obtains a
new IP address and registers with the SIP server or Visiting Location Register
(VLR). This registration gets propagated to other SIP servers or home
location registers (HLRs) spread across the network. The corresponding
host obtains the new IP address of the mobile host from the SIP redirect
server or HLRs. To support real-time communication (RTP/UDP) traffic
during movement of the mobile device between the domains, a reINVITE
is sent to the corresponding host to keep the session active; similarly, an
MIP-LR update message is sent to the corresponding host for the TCP/IP
traffic. But, for any subsequent move within the new domain, reINVITE
or update messages are not sent, because MMP takes care of routing the
packets properly within that domain. Figure 24.15 illustrates the integrated
mobility management scenario and interaction of all three protocols.

Mobile Content Distribution over Multicast
Content distribution to end users may include both mobile and non-mobile
clients over wired and wireless media. Because multimedia streaming
applications are bandwidth intensive, it is desirable to add multicast
support to the framework as well. Proposed IETF protocols that provide
native IP multicast routing over a wide area network include Protocol

Figure 24.14 Integrated mobility management.

AU3833_C24.fm Page 627 Wednesday, August 16, 2006 2:40 PM

628 ■ Mobile Middleware

Independent Multicast (PIM), Multicast Open Shortest Path First (MOSPF),
Distance Vector Multicast Routing Protocol (DVMRP), Core Base Tree
(CBT), and Border Gateway Multicast Protocol (BGMP). Explicit Multicast
and Source-Specific Multicast (SSM) are some of the recently developed
protocols ideal for broadcast application. Explicit multicast is useful for
maintaining many multicast groups when the membership in each group
is small, unlike traditional multicast, which supports a limited number of
large multicast sessions. SSM is ideal for Internet broadcast applications
because a specific content can be identified as the source address (S) and
the multicast group address (G). Recently developed techniques such as
the UDP Multicast Tunneling Protocol (UMTP) [43] and Agent Message
Transport (AMT) [44] provide mechanisms to support multicast in non-
multicast-enabled networks.

Mobility Support for Multicast

Multicasting to mobile users has primarily been divided into two categories:
home-subscription-based solutions and remote-subscription-based solutions.
Romdhani et al. [45] discussed some of the challenges associated with
multicasting to mobile users and have provided a comparison of available

Figure 24.15 Interaction of several components within integrated mobility man-
agement.

AU3833_C24.fm Page 628 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 629

protocols that can support mobile multicast using both the approaches.
Xylomenos and Polyzos [46], Varshney and Chatterjee [47], and Acharya et
al. [48] describe many of the architectural issues associated with mobile hosts
in a multicast environment. To provide fast handoff of the multicast streams
to a mobile client moving between subnets, Wu [49] proposed handover
with preregistration by deploying mobility support agents. McAuley et al. [50]
proposed a multicast proxy approach to reduce the transient data loss of
multicast communication during handoff; in this situation, the proxy’s clients
do not themselves directly participate in the multicast tree. Figure 24.16
shows a very basic scenario for multicast mobility.

The MIP-based bidirectional tunneling solution puts the multicasting
burden on the home agent (HA) by creating tunnels between the HA and
the mobile device using the Internet Group Management Protocol (IGMP);
however, tunneling multiple multicast packets to the foreign network is
inefficient. Mobile Multicast (MoM) [53] proposes to reduce the explosion
problem in bidirectional tunneling by electing one designated HA. Range-
based MoM [54] takes the MoM approach one step further and elects a
multicast agent close to the foreign agent to tunnel multicast packets to
the foreign network. The remote subscription approach takes the burden

Figure 24.16 General scenario for multicast mobility.

AU3833_C24.fm Page 629 Wednesday, August 16, 2006 2:40 PM

630 ■ Mobile Middleware

off the home agent and eliminates tunneling by avoiding the duplication
of multicast packets being tunneled to foreign networks; however, this
requires that after each handoff the user must rejoin a multicast group.
In addition, the multicast trees used to route multicast packets will be
updated after every handoff to track the multicast group members. To
limit the tree updates or limit duplication of multicast packets, proxy- or
agent-based solutions have been proposed [51,52].

Commercial content distribution networks are already using multicasting
as the core technology. Most recently, Packet Video in conjunction with
DoCoMo has begun providing wireless multicast streaming services to end
users, but it has not taken into account the subnet mobility factor. Also,
iBEAM’s product, ActiveCast, has been used to distribute streaming appli-
cation over the Internet; however, it lacks in being able to take care of
user mobility, uses geosynchronous orbit (GEO) satellites for content
distribution, and does not provide flexible methods for advertisement
insertion or a variety of local and global content. As an alternative to a
wired core network, companies such as Inktomi and Coolcast are already
providing multicast services through satellite to reach a wide range of users.

Similar to the unicast scheme, latency associated with receiving a
continuous multicast stream from a single source while the client moves
to the next cell consists of several components, such as detection of a
new cell/subnet/domain (∆1), address acquisition and network configu-
ration (∆2), triggering of the multimedia stream to be delivered in the
new subnet (∆3), and actual delivery of the multimedia stream (∆4).
Because the multicast communication is receiver initiated, triggering tech-
niques play an important role for multimedia stream delivery. To minimize
loss and latency during the client’s movement it is desirable to minimize
the handoff time and to provide almost instantaneous flow of the multicast
stream by adopting some proactive triggering mechanism. Similarly, it may
be desirable to avoid the waste of bandwidth in a wireless environment
due to continuity of the multicast traffic associated with the leave latency
during a mobile’s movement.

Fast Handoff in MarconiNet

In this section, we describe several methods associated with faster stream
delivery under a MarconiNet [55] environment. MarconiNet proposes an
integrated streaming architecture to support multimedia applications such
as broadcasting streaming content over the Internet using both wired and
wireless access. It makes use of extensions of IETF-based protocols such
as the Session Announcement Protocol (SAP), Real-Time Streaming Pro-
tocol (RTSP), and Session Description Protocol (SDP). Mobility and stream
delivery in MarconiNet take advantage of localized IP multicast and uses

AU3833_C24.fm Page 630 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 631

application-layer techniques to provide flexible services such as localized
advertisements, news broadcasts, location-specific information, QoS guar-
antees, and optimized intra-domain handoff for mobile users. Figure 24.17
shows a laboratory implementation of MarconiNet that uses hierarchical
scope-based multicast and multicast proxy to provide streaming services
to the mobile users. Following are methods for providing fast handoff for
multicast streaming in a MarconiNet environment.

Postregistration

In a postregistration scenario, when a client moves to a new subnet it obtains
the new IP address and then sends the join query via the IGMP method. In
some cases, IGMP could be modified to provide an aggregated group report
to minimize the join latency, but in the MarconiNet environment we propose
a new mechanism where the client uses an application-layer triggering
mechanism based on the Real-Time Transport Control Protocol (RTCP) to
facilitate the join and leave. Triggering at the lower hierarchy is accomplished
by an RTCP feedback mechanism, but the local server may trigger the
multicast flow from the upstream router using the IGMP method. Using an
RTCP-based triggering technique offers a solution in the user space and thus
is best suitable when the kernel of the end client is not multicast enabled.

Figure 24.17 Multicast mobility in MarconiNet.

AU3833_C24.fm Page 631 Wednesday, August 16, 2006 2:40 PM

632 ■ Mobile Middleware

Preregistration

The preregistration method has the advantage over postregistration of
reducing the join latency for an impending client at the expense of extra
flows of the multicast stream in the adjacent cell for a certain time. Two
kinds of preregistration schemes have been described. In the first approach,
for each of neighboring stations sharing an overlapping area with another
station, we provision an associated multicast announcement (address). Each
local station can find out what program (group address) the impending
mobile host is subscribed to by looking at the common multicast address.
Just before a mobile node leaves the cell, a local policy decision (e.g.,
signal-to-noise ratio) will trigger an RTCP message to the local announce-
ment address. The server in turn announces that message to the admin-
scoped shared multicast addresses to which the neighboring stations are
listening. The neighboring stations (servers) look up the multicast address
and check it against their own databases to determine the group association
of this multicast stream. In the absence of this specific subscription, the
server sends an IGMP “join” message to the upstream router and passes
the stream to the local cells using a locally scoped multicast address even
before the client has moved to the new cell, thus minimizing the interrup-
tion. Similarly, the client sends an RTCP “bye” message to the server as it
moves away from the previous server.

Another approach is to deploy proxy agents in each subnet. These
proxy agents join the upstream multicast tree on behalf of the servers,
even before the clients move into the cell. The neighboring proxy servers
then listen to a common multicast address to figure out the impending
host’s subscribed multicast address. In this case, the multicast proxy sends
the IGMP query messages beforehand on behalf of the local servers.
Similarly, a multicast proxy agent within each upstream router can help
forward the global stream to the respective global multicast addresses
(e.g., for areas where these clients are intending to move) in each subnet
for a specific period of time that is determined by the client’s entry to
the cell. Thus, each neighboring server can receive the stream regardless
of whether the mobile node is moving into that cell or not. In either case,
as soon as the mobile node moves into the new cell it notifies the proxy
agent to leave the tree and the multicast proxy agent stops forwarding
the traffic. The preregistration method helps reduce the join latency and
the cost of bandwidth in the previous cell or subnet.

During Registration

Group membership information can also be passed along during the
client’s registration to the new network. During the movement of a node
between subnets, it can send a request for a particular multicast address

AU3833_C24.fm Page 632 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 633

in its DHCP discover option or PPP server option message about the local
multicast address it has been listening to in the previous subnet. During
the process of obtaining the IP address from the DHCP server, the client
can send the unsolicited “join” request for the desired locally scoped
multicast address to the server; thus, the server can join the desired group
during the time the client is in the process of being configured. Figure
24.18 shows how the join latency during the movement of a mobile device
between subnets can be minimized by using a proxy-assisted handoff
approach. A normal join latency of 60 sec is reduced to almost 0. Similarly,
a proxy-based approach can also reduce the leave latency associated with
mobility.

Figure 24.18 Effect of proxy-based handoff on multicast join latency.

AU3833_C24.fm Page 633 Wednesday, August 16, 2006 2:40 PM

634 ■ Mobile Middleware

Conclusions
We have discussed several issues associated with wireless Internet roam-
ing. We identified the functional elements that can help make such roaming
possible, described various mobility management protocols at different
layers, and provided an application-layer mobility framework that uses
SIP as the base signaling protocol. Experimental results from a mobile
multimedia testbed were presented that demonstrated the proof-of-concept
of several functional components, such as seamless mobility, security,
configuration, and quality of service, including IPv6 features. Also pre-
sented were several fast-handoff approaches for SIP-based terminal mobil-
ity, including a simultaneous mobility scenario. An integrated mobility
management framework was introduced that uses a policy-based mobility
management approach and invokes a different mobility protocol based
on the type of traffic and movement involved. We provided an overview
of the available mobility protocols for multicast streaming that help support
mobile content distribution on the wireless Internet. Finally, we described
a hierarchical scope-based streaming architecture and its fast-handoff
techniques.

Acknowledgment
The authors would like to acknowledge other colleagues, namely Prathima
Agrawal, Subir Das, Moncef Elaoud, Dave Famolari, Tony McAuley, Sunil
Madhani, Yoshihiro Ohba, Kenichi Taniuchi, Faramak Vakil, Ken Young,
and Tao Zhang, for their useful feedback during numerous mobility-related
discussions over the years.

References
[1] Wong, D. and Lim, T.J., Soft handoffs in CDMA mobile systems, IEEE Pers.

Commun. Mag., 4(6), 6–17, 1997.
[2] Internet Engineering Task Force, www.ietf.org.
[3] McAuley, A., Das, S., Madhani, S., Baba, S., and Shobatake, Y., Dynamic

Registration and Configuration Protocol (DRCP), Internet Draft, Internet
Engineering Task Force (IETF), 2000.

[4] Park, S.K., Rapid commit option for DHCPv4, Internet Draft, Internet Engi-
neering Task Force (IETF), 2003.

[5] Park, S.K. and Han, Y.W., IPv6 DAD Optimization Goals and Requirements,
Internet Draft, Internet Engineering Task Force (IETF), 2003.

[6] Han, Y. et al., Advance Duplicate Address Detection, Internet Draft, Internet
Engineering Task Force (IETF), 2003.

AU3833_C24.fm Page 634 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 635

[7] Dutta, A., Altintas, O., Chen, W., and Schulzrinne, H., Mobility approaches
for all IP wireless networks, in Proc. of the 6th World Multi-Conference on
Systemics, Cybernetics, and Informatics (SCI’02), Orlando, FL, July, 2002.

[8] Calhoun, P., Montenegro, G., and Perkins, C.E., Mobile IPv4 Regional Reg-
istration, Internet Draft, Internet Engineering Task Force (IETF), 2003.

[9] Perkins, C. and Wang, K.-Y., Optimized smooth handoffs in Mobile IP, in
Proc. of the Fourth IEEE Symp. on Computers and Communications
(ISCC’99), Red Sea, Egypt, July, 1999, pp. 340–346.

[10] Campbell, A., Gomez, J., Kim, S., Valk, A.G., Wan, C.-Y., and Turnyi, Z.R.,
Design, implementation, and evaluation of cellular IP, IEEE Pers. Commun.
Mag., 7, 42–49, 2000.

[11] Ramjee, R., LaPorta, T.F., Salgarelli, L., Thuel, S., Varadhan, K., and Li, L.,
IP-based access network infrastructure for next-generation wireless net-
works, IEEE Pers. Commun. Mag., 7, 34–41, 2000.

[12] Jain, R., Raleigh, T., Yang, D., Chang, L.F., Graff, C.J., Bereschinsky, M., and
Patel, M., Enhancing survivability of mobile Internet access using Mobile
IP with location registers, in Proc. IEEE INFOCOM’99, New York, March,
1999.

[13] Das, S., Dutta, A., McAuley, A., Misra, A., and Das, S.K., IDMP: an intra-
domain mobility management protocol for next generation, wireless net-
works, IEEE Wireless Commun., 9(3), 38–45, 2002.

[14] Snoeren, A.C. and Balakrishnan, H., An end-to-end approach to host mobil-
ity, in Proc. of the 6th ACM/IEEE Int. Conf. on Mobile Computing and
Networking (MOBICOM’00), Boston, MA, August, 2000, pp. 155–166.

[15] Maltz, D.A. and Bhagwat, P., MSOCKS: an architecture for transport layer
mobility, in Proc. IEEE INFOCOM’98, San Francisco, CA, March, 1998, p.
1037.

[16] Koh, S.N. et al., Use of SCTP for Seamless Handover, Internet Draft, Internet
Engineering Task Force (IETF), 2003.

[17] Schulzrinne, H. and Wedlund, E., Application-layer mobility using SIP,
Mobile Comput. Commun. Rev., 4, 47–57, 2000.

[18] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.R., Peterson, J. et
al., SIP: Session Initiation Protocol, Request for Comments 3261, Internet
Engineering Task Force (IETF), 2002 (http://www.ietf.org/rfc/rfc3261.txt).

[19] Dutta, A., Vakil, F., Chen, J., Tauil, M., Baba, S., and Schulzrinne, H.,
Application layer mobility management scheme for wireless Internet, in
Proc. of IEEE 3G Wireless, San Francisco, CA, May, 2001, p. 7.

[20] Hsieh, P.-Y., Dutta, A., and Schulzrinne, H., Application layer mobility proxy
for real-time application, in Proc. of IEEE 3G Wireless, San Francisco, CA,
May, 2003

[21] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and Arkko, J., Diameter
Base Protocol, Request for Comments 3588, Internet Engineering Task Force
(IETF), 2003 (http://www.ietf.org/rfc/rfc3588.txt).

[22] Rigney, C. et al., Remote Authentication Dial-In User Service (RADIUS),
Request for Comments 2138, Internet Engineering Task Force (IETF), 1997
(http://www.ietf.org/rfc/rfc2138.txt)

AU3833_C24.fm Page 635 Wednesday, August 16, 2006 2:40 PM

636 ■ Mobile Middleware

[23] Forsberg, D., Protocol for Carrying Authentication for Network Access
(PANA), Internet Draft, Internet Engineering Task Force (IETF), 2004.

[24] Baugher, M. et al., The Secure Real-Time Transport Protocol, Internet Draft,
Internet Engineering Task Force (IETF), 2003.

[25] Dusse, S., Hoffman, P., Ramsdell, B., Lundblade, L., and Repka, L., S/MIME
Version 2 Message Specification, Request for Comments 2311, Internet Engi-
neering Task Force (IETF), 1998 (http://www.ietf.org/rfc/rfc2311.txt).

[26] Dutta, A., Agrawal, P., Chen, J.-C., Das, S., Famolari, D. et al., Realizing
wireless Internet telephony and streaming, Comput. Commun., 27, 725–738,
2005.

[27] Vatn, J.-O. and Maguire, G.C., The effect of using co-located care-of
addresses on macro handover latency, in Proc. of the 14th Nordic Teletraffic
Seminar, Technical University of Denmark, Lyngby, Denmark, August, 1998,
p. 32.

[28] Basilier, H., Calhoun, P., Holdrege, M., Johansson, T., Kempf, J., and
Rajaniemi, J., AAA Requirements for IP Telephony/Multimedia, Internet Draft,
Internet Engineering Task Force (IETF), 2002.

[29] Dutta, A., Altintas, O., Schulzrinne, H., and Chen, W., Multimedia SIP
sessions in a heterogeneous access environment, in Proc. of IEEE 3G
Wireless, San Francisco, CA, May, 2002.

[30] Dutta, A., Zhang, T., Madhani, S., Taniuchi, K., Fujimoto, K. et al., Secure
universal mobility for wireless Internet, in Proc. of the Second ACM Int.
Workshop on Wireless Mobile Applications and Services on WLAN Hotspots
(WMASH 2004), Philadelphia, PA, October, 2004.

[31] Kivinen, T. et al., Design of the MOBIKE Protocol, Internet Draft, Internet
Engineering Task Force (IETF), 2005.

[32] Nakajima, N., Dutta, A., Das, S., and Schulzrinne, H., Handoff delay analysis
and measurement for SIP based mobility in IPv6, in Proc. of the 8th IEEE
Int. Symp. on Computers and Communications (ISCC’03), Kemer-Antalya,
Turkey, June, 2003.

[33] Chen, J. et al., Dynamic Service Negotiation Protocol (DSNP), Internet Draft,
Internet Engineering Task Force (IETF), 2002.

[34] Malki, K., Low Latency Handoffs in Mobile IPv4, Internet Draft, Internet
Engineering Task Force (IETF), 2004.

[35] Calhoun, P., Hiller, T., Kempf, J., McCann, P., Pairla, C., Singh, A., and
Thalanany, S., Foreign Agent Assisted Handoff, Internet Draft, Internet Engi-
neering Task Force (IETF), 2000.

[36] Soliman, H., Castelluccia, C., Malki, K., and Bellier, L., Hierarchical Mobile
IPv6 Mobility Management (HMIPv6), Internet Draft, Internet Engineering
Task Force (IETF), 2003.

[37] Vakil, F., Famolari, D., Baba, S., and Famolari, D., Virtual soft handoff in
IP-Centric wireless CDMA networks, in Proc. of IEEE 3G Wireless, San
Francisco, CA, May, 2001.

[38] Dutta, A., Madhani, S., Chen, W., Altintas, O., and Schulzrinne, H., Optimized
fast-handoff schemes for application layer mobility management, Mobile
Comput. Commun. Rev., 7(1), 17–19, 2003.

AU3833_C24.fm Page 636 Wednesday, August 16, 2006 2:40 PM

Supporting Continuous Services to Roaming Clients ■ 637

[39] Dutta, A., Zhang, T., Taniuchi, K., Ohba, Y., and Schulzrinne, H., MPA
assisted optimized proactive handoff scheme, in Proc. of MobiQuitous, San
Diego, CA, July, 2005.

[40] Wong, K.D., Dutta, A., Young, K., and Schulzrinne, H., Managing simulta-
neous mobility of IP hosts, in Proc. of IEEE Military Communications Conf.
(MILCOM’03), Boston, MA, October, 2003.

[41] Wong, D. and Dutta, A., Simultaneous mobility in MIPv6, in Proc. of the
IEEE Electro/Information Technology Conf. (EIT 2005), Lincoln, NE, May,
2005.

[42] Dutta, A., Wong, D., Burns, J., Jain, R., Young, K. et al., Realization of
integrated mobility management for ad hoc networks, in Proc. of IEEE
Military Communications Conf. (MILCOM’02), Anaheim, CA, October, 2002.

[43] Finlayson, R., The UDP Multicast Tunneling Protocol, Internet Draft, Internet
Engineering Task Force (IETF), 2003.

[44] Thaler, D. et al., IPv4 Automatic Multicast without Explicit Tunnels (AMT),
Internet Draft, Internet Engineering Task Force (IETF), 2002.

[45] Romdhani, I., Kellil, M., Lach, H.-Y., Bouabdallah, A., and Bettaher, H., IP
Mobile Multicast: Challenges, Solutions and Open Issues, Technical Report,
Motorola Labs, Paris, France, 2002.

[46] Xylomenos, G. and Polyzos, G.C., IP multicast for mobile hosts, IEEE
Commun. Mag., 35, 54–58, 1997.

[47] Varshney, U. and Chatterjee, S., Architectural issues in IP multicast over
wireless networks, in Proc. of the IEEE Int. Wireless Communications Net-
working Conf. (WCNC’99), New Orleans, LA, September, 1999.

[48] Acharya, A., Bakre, A., and Badrinath, B.R., IP Multicast Extensions for
Mobile Internetworking, Technical Report LCSR-TR-243, Department of Com-
puter Science, Rutgers University, New Brunswick, NJ, 1995.

[49] Wu, J.-L.C., An IP mobility support architecture for 4GW wireless infrastruc-
ture, in Proc. of the 1999 Personal Computing and Communication Work-
shop (PCC’99), Lund, Sweden, November, 1999.

[50] McAuley, A., Bommaiah, E., Misra, A., Talpade, R.R., Thomson, S., and
Young, K.C., Mobile multicast proxy, in Proc. of IEEE Military Communi-
cations Conf. (MILCOM’99), Atlantic City, NJ, November, 1999.

[51] Tan, C.L. and Pink, S., Mobicast: a multicast scheme for wireless networks,
Mobile Networks Appl., 5, 259–271, 2000.

[52] Mysore, J. and Bharghavan, V., A new multicasting-based architecture for
Internet host mobility, in Proc. of the 3rd ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’97), Budapest, Hungary, Septem-
ber, 1997.

[53] Williamson, C., Harrison, T., Mackrell, W.L., and Bunt, R.B., Performance
evaluation of the MoM mobile multicast protocol, ACM Mobile Networks
Appl. J., 3, 189–201, 1998.

[54] Lin, C. and Wang, K.-M., Mobile multicast support in IP networks, in Proc.
IEEE INFOCOM’00, Tel Aviv, Israel, March, 2002.

[55] Dutta, A. and Schulzrinne, H., MarconiNet: overlay mobile content distri-
bution network, IEEE Commun. Mag., 42(2), 64–75, 2004.

AU3833_C24.fm Page 637 Wednesday, August 16, 2006 2:40 PM

AU3833_C24.fm Page 638 Wednesday, August 16, 2006 2:40 PM

639

Chapter 25

Impact of Mobility on
Resource Management

in Wireless Networks

Majid Ghaderi and Raouf Boutaba

CONTENTS

Introduction... 640
Wireless Communications .. 640
Resource Management Challenges .. 642
Call Admission Control... 643

Prioritization Schemes .. 644
Channel Borrowing Schemes... 644
Call Queuing Schemes ... 644
Reservation Schemes... 645

Dynamic Reservation Schemes .. 647
Local Schemes ... 648

Reactive Approaches... 648
Predictive Approaches .. 648

Distributed Schemes ... 648
Classification of Distributed Schemes.. 651

Mobility Modeling... 653
Geography ... 654
Mobility Scale .. 654

AU3833_C25.fm Page 639 Wednesday, August 16, 2006 3:21 PM

640

■

Mobile Middleware

User Individuality.. 655
Mobility Prediction.. 655

Mobility Prediction Mechanisms .. 656
Presence of Infrastructure... 657
Extent of Prediction .. 657
User–Mobile Terminal Relationship ... 657
Per-User Versus Aggregate Knowledge ... 657
Measurement Versus Pattern Matching.. 658

Conclusion... 658
References ... 660

Introduction

Wireless Communications

The coverage area in an infrastructure-based wireless network is divided
into small regions called

cells

. Each cell in a cellular network is equipped
with a base station (BS), and the number of radio channels is assigned
according to the transmission power constraints and availability of spec-
trum. A channel can be a frequency, a time slot, or a code sequence. Any
mobile terminal (MT) residing in a cell can communicate through a radio
link with the base station located in the cell, which in turn is connected
to the core of the network through a base station controller, as shown in
Figure 25.1. A group of base stations is controlled by a base station
controller. The core network consists of circuit-switched (CS) and packet-
switched (PS) domains. The former basically provides voice service over
a circuit-based infrastructure that has evolved from analog technologies
to more advanced digital technologies. The latter has recently been added
to the infrastructure to provide packet-based data services. Both voice
calls and data packets follow the same path until reaching the base station
controller. In the core, voice calls are handled by the CS domain, which
is also connected to the Public-Switched Telephone Network (PSTN), and
data packets are transmitted through the PS domain, which is connected
to external data networks such as the Internet.

The rapid expansion of wireless networks and proliferation of wireless
devices are the deriving forces behind research and development activities
in the field of wireless communications. User mobility is a distinguishing
characteristic of wireless communications and, certainly, the primary factor
contributing to their success. In a wireless network, mobile users are free
to roam the coverage area of the network while receiving the same service
regardless of their location in the network. This seamless mobility is the
result of careful network planning and design that applies

radio resource
management

 (RRM) mechanisms capable of anticipating and dealing with
user mobility.

AU3833_C25.fm Page 640 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks

■

641

When an MT requests service, it may either be granted or denied service.
The latter is known as

call blocking

, and its probability is known as the

call
blocking probability

. An active MT in a network may move from one cell
to another. The continuity of service to the MT in the new cell requires a
successful

handoff

 from the previous cell to the new cell. A handoff is
successful if the required resources are available and allocated to the MT.
The probability of a handoff failure is the

handoff failure probability

. During
the life of a call,* an MT may cross several cell boundaries and hence may
require several successful handoffs. Failure to get a successful handoff at
any cell in the path forces the network to discontinue service to the MT.
This is known as

call dropping

 or

forced termination

 of the call, and the
probability of such an event is known as

call dropping probability

.
In general, dropping a call in progress is considered to have a more

negative impact from the user’s perspective than blocking a newly requested
call; therefore, handoff calls are typically given higher priority than new calls
with regard to access to the wireless resources. This preferential treatment
of handoffs increases the blocking of new calls which has an adverse effect
on bandwidth utilization [1]. The most popular approach to prioritize handoff
calls over new calls is by reserving a portion of available bandwidth in each
cell to be used exclusively for handoffs. Fundamental issues are how many
resources must be reserved and when the reservation must be made to
support seamless mobility and avoid forced termination of handoff calls
while maximizing network resource utilization. Solving this resource man-
agement problem is extremely challenging and has been subject to significant
research effort. The goals of this chapter are to (1) present the challenges
in radio resource management, (2) review and discuss proposed solutions,
and (3) give possible research directions.

Figure 25.1 A wireless cellular system.

* In this chapter, the terms “call”, “connection,” and “flow” are used interchangeably.

External data network
(e.g., Internet)

AU3833_C25.fm Page 641 Wednesday, August 16, 2006 3:21 PM

642

■

Mobile Middleware

Resource Management Challenges

In general, resource management (RM) is a challenging problem due to
the stochastic nature of resource demands in a network. In wireless
networks, RM is even more challenging due to additional sources of
uncertainty — namely, randomness in user movement and wireless chan-
nel behavior. In addition, radio resources are limited and expensive; hence,
efficient RRM is vital for service providers as well. In particular, the most
important factors contributing to the complexity of radio resource man-
agement are as follows:

■

Radio resources (i.e., radio channels) are limited and subject to
time-varying and location-dependent errors. Due to the variable
signal-to-noise ratio (SNR), wireless channels have variable bit-error
rates (BERs). To provide quality of service (QoS), sophisticated
resource management mechanisms that take into consideration the
nature of wireless channels are needed.

■

Users in a wireless network are free to roam in the network
coverage area. A cell may become congested due to excessive
handoffs from neighboring cells and fail to accommodate some
handoffs, which results in premature call termination. In partic-
ular, the current trend in cellular communications is to reduce
the cell size to achieve higher capacity by reusing radio frequen-
cies more effectively. The smaller the cell size, the higher the
volume of handoffs, which consequently increases the probabil-
ity of premature call termination. To avoid network performance
degradation due to excessive call termination, resource manage-
ment schemes must account for user mobility by advance resource
reservation or other appropriate means such as queuing handoff
calls temporarily.

■

Mobile devices have limited battery life, memory, and processing
capabilities. Although memory and processing capabilities have
witnessed exponential advances during the past few years, as
predicted by Moore’s law, battery technology has remained roughly
the same over a decade. Power-aware resource management mech-
anisms are generally more complicated.

Among the above factors, in this chapter our primary focus is on the
mobility of users and its impact on resource management. In particular,
we will emphasize

call admission control

 (CAC) as a core component of
resource management in wireless networks.

AU3833_C25.fm Page 642 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks

■

643

Call Admission Control

Call admission control restricts the access to the network based on resource
availability to prevent network congestion and service degradation for
already supported users. A new call request is accepted if there are enough
idle resources to meet the QoS requirements of the new call without
violating the QoS for already accepted calls. Although reserving resources
for handoffs can prevent handoff dropping, over-reservation will degrade
the radio resource utilization. Typically, the goal of a CAC scheme is to
maintain a prespecified target call dropping probability while minimizing
the call blocking probability. Let us assume that the available bandwidth
in each cell is channelized. Let us also focus on call-level QoS measures.
Therefore, the call blocking probability (

p

b

) and the call dropping prob-
ability (

p

d

) are the QoS parameters highlighted in this chapter. Three CAC-
related problems can be identified based on these two QoS parameters [2]:

■

MINO

 — Minimizing a linear objective function of the two prob-
abilities (

p

b

 and

p

d

)

■

MINB

 — For a given number of channels, minimizing the new call
blocking probability subject to a hard constraint on the handoff
dropping probability

■

MINC

 — Minimizing the number of channels subject to hard con-
straints on the new and handoff call blocking/dropping probabilities

As mentioned before, channels could be frequencies, time slots, or codes,
depending on the radio technology used. Each base station is assigned a
set of channels, and this assignment can be static or dynamic [3].

Because MINO aims at minimizing penalties associated with blocking
new and handoff calls, it appeals to the network provider, as minimizing
penalties results in maximizing net revenue. MINB places a hard constraint
on handoff call dropping, thereby guaranteeing a particular level of service
to already admitted users while trying to maximize the net revenue. MINC
is more of a network design problem, where resources must be allocated

a priori

, based on, for example, traffic and mobility characteristics [2].
In general, the two categories of CAC schemes in cellular networks are:

■

Deterministic CAC

 — QoS parameters are guaranteed with 100 per-
cent confidence [4,5]. Typically, these schemes require extensive
knowledge of the system parameters such as user mobility, which
is not practical, or they sacrifice the scarce radio resources to satisfy
the deterministic QoS bounds.

AU3833_C25.fm Page 643 Wednesday, August 16, 2006 3:21 PM

644

■

Mobile Middleware

■

Stochastic CAC

 — QoS parameters are guaranteed with some
probabilistic confidence [2,6,7]. By relaxing QoS guarantees,
these schemes can achieve a higher utilization than deterministic
approaches can.

Most of the CAC schemes investigated in this chapter fall into the stochastic
category.

Prioritization Schemes

In this section, we discuss various handoff prioritization schemes, focusing
on reservation schemes. Channel borrowing, call queuing, and reservation
are studied as the most common techniques.

Channel Borrowing Schemes

In a channel borrowing scheme, a cell (an acceptor) that has used all its
assigned channels can borrow free channels from its neighboring cells
(donors) to accommodate handoffs [3]. A channel can be borrowed by a
cell if the borrowed channel does not interfere with existing calls. When
a channel is borrowed, several other cells are prohibited from using it.
This is called

channel locking

 and has a great impact on the performance
of channel borrowing schemes [8]. The number of such cells depends on
the cell layout and the initial channel allocation. The proposed channel
borrowing schemes differ in the way a free channel is selected from a
donor cell to be borrowed by an acceptor cell. A survey on channel
borrowing schemes is provided by Katzela and Naghshineh [3].

Call Queuing Schemes

Queuing of handoff requests when no channel is available can reduce
the dropping probability at the expense of higher new call blocking. If
the handoff attempt finds all the channels in the target cell occupied it
can be queued. If any channel is released, it is assigned to the next
handoff call waiting in the queue. Queuing can be done for any combi-
nation of new and handoff calls. The queue itself can be finite or infinite.
Although finite queue systems are more realistic, systems with infinite
queue are more convenient for analysis. Figure 25.2 depicts a classification
of call queuing schemes.

Hong and Rappaport [6] analyzed the performance of the simple

guard
channel

 (GC) scheme with queuing of handoffs, where handoff attempts

AU3833_C25.fm Page 644 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks

■

645

can be queued for the time duration in which a mobile dwells in the
handoff area between cells. They used a first-in/first-out (FIFO) queuing
strategy and showed that queuing improves the performance of the pure
guard channel scheme; that is,

p

d

 is lower for this scheme, but there is
essentially no difference for

p

b

.
The tolerable waiting time in queues is an important parameter. The

performance of queuing schemes is affected by the reneging of queued
new calls due to caller impatience and the dropping of queued handoff
calls as they move out of the handoff area before the handoff is accom-
plished successfully. Chang et al. [9] analyzed a priority-based queuing
scheme in which handoff calls waiting in queue have priority over new
calls waiting in queue to gain access to available channels. They simply
assumed that those calls waiting in the queue cannot handoff to another
cell. Recently, Li and Chao [10] investigated a general modeling framework
that can capture call queuing as well. They proved that the steady-state
distribution of the equivalent queuing model has a product form solution.
Queuing schemes have been proposed primarily for circuit-switched voice
traffic. Their generalization to multiple classes of traffic is a challenging
problem. Lin and Lin [11] analyzed several channel allocation schemes,
including queuing of new and handoff calls. They concluded that the
scheme with new and handoff call queuing has the best performance.

Reservation Schemes

The notion of guard channels was introduced in the mid-1980s as a
call admission control mechanism to give priority to handoff calls over
new calls. In this policy, a set of channels, called the

guard channels

,

is permanently reserved for handoff calls. Hong and Rappaport [6] showed

that this scheme reduces handoff dropping probability significantly

Figure 25.2 Call queuing schemes.

Call queuing schemes

Hybrid queuing

AU3833_C25.fm Page 645 Wednesday, August 16, 2006 3:21 PM

646

■

Mobile Middleware

compared to the nonprioritized case. They found that

p

d

 decreases by a
significantly larger order of magnitude compared to the increase of

p

b

when more priority is given to handoff calls by increasing the number of
handoff channels.

Consider a cellular network with

C

 channels in a given cell. The guard
channel (GC) scheme reserves a subset of these channels (say,

C

 –

T

) for
handoff calls. Whenever the channel occupancy exceeds a certain thresh-
old

T

, the GC rejects new calls until the channel occupancy falls below
the threshold. Assume that the arrival process of new and handoff calls
is Poisson with rates

λ

 and

ν

, respectively. The call holding time and cell
residency for both types of call are exponentially distributed with means
1/

µ

 and 1/

η

, respectively. Let p = (

λ

 +

ν

)/(

µ

 +

η

) denote the traffic
intensity. Further assume that the cellular network is homogeneous, so a
single cell in isolation is representative of the network.

Let us define the state of a cell as the number of occupied channels
in the cell; therefore, the cell channel occupancy can be modeled by a
continuous-time Markov chain with

C

 states. The state transition diagram
of a cell with

C

 channels and

C

 –

T

 guard channels is shown in Figure
25.3. Given this, it is straightforward to derive the steady-state probability
(

P

n

) that

n

 channels are busy:

(25.1)

where:

(25.2)

Figure 25.3 State transition diagram of the guard channel scheme.

P
n

P n T

n
P T n C

n

n

T
n T

=

≤ ≤

≤ ≤

−

ρ

ρ ν
!

!

0

0

0

P
n n

n

n

T
T

n T

n T

C

0

0 1

1

=

+

=

−

= +

−

∑ ∑ρ ρ ν
! !

AU3833_C25.fm Page 646 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks

■

647

and then:

However, Fang and Zhang [12] showed that when the mean cell
residency times for new calls and handoff calls are significantly different
(as is the case for nonexponential channel holding times), the traditional
one-dimensional Markov chain model may not be suitable and a two-
dimensional Markov model, which is more complicated, must be applied.

A critical parameter in this basic scheme is the optimal number of
guard channels. There is a tradeoff between minimizing

p

d

 and minimizing

p

b

. If the number of guard channels is conservatively chosen, then admis-
sion control fails to satisfy the specified

pd. A static reservation typically
results in poor resource utilization. To deal with this problem, several
dynamic reservation schemes [7,13–16] were proposed in which the opti-
mal number of guard channels is adjusted dynamically based on the
observed traffic load and dropping rate in a control time window. If the
observed dropping rate is above the guaranteed pd, then the number of
reserved channels is increased. On the other hand, if the current dropping
rate is far below the target pd, then the number of reserved channels is
decreased. The next section investigates dynamic reservation schemes.

A different variation of the basic GC scheme is known as the fractional
guard channel (FGC) [2]. Whenever the channel occupancy exceeds
threshold T, the GC policy is to reject new calls until the channel occupancy
falls below the threshold. In the fractional GC policy, new calls are
accepted with a certain probability that depends on the current channel
occupancy; thus, we have a randomization parameter that determines the
probability of acceptance of a new call. Note that both GC and FGC
policies accept handoff calls as long as some channels are free. One
advantage of FGC over GC is that it distributes the newly accepted calls
evenly over time, which leads to a more stable control [17].

Dynamic Reservation Schemes
The two approaches in dynamic reservation schemes are local and dis-
tributed (collaborative), depending on whether the scheme uses local
information or gathers information from neighbors to adjust the reservation
threshold. In local schemes, each cell estimates the state of the network
using local information only, and in distributed schemes each cell gathers
network state information from its neighboring cells.

p P p Pb n

n T

C

f C= =
= +
∑

1

and

AU3833_C25.fm Page 647 Wednesday, August 16, 2006 3:21 PM

648 ■ Mobile Middleware

Local Schemes

We categorize local admission control schemes into reactive and predictive
schemes. By reactive approaches we refer to those admission policies that
adjust their decision parameters (i.e., threshold and reservation level) as
a result of an event such as call arrival, completion, or rejection. Predictive
approaches refer to those policies that predict future events and adjust
their parameters in advance to prevent undesirable QoS degradations.

Reactive Approaches

The well-known guard channel (cell threshold, cut-off priority, or trunk
reservation) scheme is the first one in this category. GC has a reservation
threshold, and when the number of occupied channels reaches this
threshold no new call requests are accepted. One natural extension of
this basic scheme is to use more than one threshold (e.g., two thresholds
[13]) to have more control over the number of accepted calls. It has been
shown that the simple guard channel scheme performs remarkably well
[18], often better than more complex schemes during periods in which
the load does not differ from the expected level. For a discussion on
various reservation strategies, refer to Epstein and Schwartz [19].

Predictive Approaches

Local admission control schemes are very simple, but they suffer from the
lack of global information about changes in network traffic. In turn,
distributed admission control schemes have access to global traffic infor-
mation at the expense of increased computational complexity and signal-
ing overhead induced by information exchange between cells. To
overcome the complexity and overhead associated with distributed
schemes and benefit from the simplicity of local admission schemes,
predictive admission control schemes were proposed. These schemes try
to estimate the global state of the network by using some modeling or
prediction techniques based on information available locally; for example,
the prediction-based scheme proposed in Ghaderi et al. [20] uses online
measurements to forecast future bandwidth demands using a minimum
mean square error predictor.

Distributed Schemes

The main idea behind all distributed schemes [7,14–17,21] is that every
mobile terminal with an active wireless connection exerts an influence

AU3833_C25.fm Page 648 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 649

upon the cells in the vicinity of its current location and along its direction
of travel [14]. Cells that are geographically or logically close together form
a cluster, as shown in Figure 25.4. Either each mobile terminal has its
own cluster independent of other terminals or all the terminals in a cell
share the same cluster. Typically, the admission decision for a connection
request is made in cooperation with other cells of the cluster associated
with the mobile terminal asking for admission. In Figure 25.4a, a cluster
is defined assuming that a terminal affects all the cells in the vicinity of
its current location and along its trajectory, and in Figure 25.4b it is
assumed that those cells that form a sector in the direction of the trajectory
of the mobile terminal are most likely to be affected (visited) by the
terminal. Figure 25.4c shows a static cluster that is fixed regardless of the
terminal mobility.

Each user currently in the system may either remain in the cell it is
in or move to a neighboring cell; hence, the system can be modeled
using a binomial random variable. We approximate the joint behavior
of binomial distributions with a normal distribution, and the number
of active calls in a cell at any time follows a Gaussian distribution. Also,
we neglect the possibility of users having moved a distance of two or
more cells and of a user arriving or completing a call during a time
interval of length T.

Now, consider a hexagonal cellular system similar to those depicted
in Figure 25.4. Assume that at time t = t0 a new call has arrived. New
calls are admitted into the system provided that the predicted handoff
failure probability of any user in the home and neighboring cells at time
t = t0 + T is below the target threshold PQoS. Let ni(t) denote the number
of active calls in cell i at time t. Assuming that handoff failure in each
cell can be approximated by the overload probability, we obtain:

pf = P{n(t0 + T) > c} (25.3)

Figure 25.4 Three examples of cluster definition.

AU3833_C25.fm Page 649 Wednesday, August 16, 2006 3:21 PM

650 ■ Mobile Middleware

Therefore, the handoff failure in cell i is given by:

(25.4)

where ci is the capacity of cell I, and erfc(x) is the complementary error
function defined as:

(25.5)

and the expected and variance in the number of calls at time t0 + T in
cell i are given by:

(25.6)

where ps is the probability of staying in the current cell, and ph is the
probability of handing off to another cell during time period T, given by:

(25.7)

Similarly, νs and νh are, respectively, the variances of the binomial processes
of stay and handoff with parameters ps and ph, which are expressed as:

(25.8)

The idea of distributed admission control was originally proposed by
Naghshineh and Schwartz [7]. They proposed a collaborative admission
control known as distributed call admission control (DCAC). DCAC peri-
odically gathers some information (namely, the number of active calls)
from the adjacent cells of the local cell to make the admission decision
in combination with the local information. The analysis we presented
earlier is slightly different from the original DCAC and is based on the

Pf

i i

i

i
c E n t T

n t T
() =

− +()[]
+()[]

1

2 2

0

0

erfc
Var

erfc()x e dtt

x
= −

∞

∫2 2

π

E

Var

n t T n t p p n t

n t T n t v v n t

i i s h j

j

i i s h j

j

0 0

1

6

0

0 0

1

6

0

+()[] = () + ()

+()[] = () + ()

=

=

∑

∑

p e p es
h T

h
hT= = −()− + −() ,µ 1

6
1

v p p v p ps s s h h h= −() = −()1 1,

AU3833_C25.fm Page 650 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 651

work by Epstein and Schwartz [16]. DCAC is very restrictive in the sense
that it takes into consideration information from direct neighbors only and
assumes at most one handoff during the control period.

It has been shown that DCAC is not stable and violates the required
dropping probability as the load increases [17]. Levin et al. [14] proposed
a more complicated version of the original DCAC based on the shadow
cluster concept, which uses dynamic clusters for each user based on its
mobility pattern instead of restricting itself (as does DCAC) to direct
neighbors only. A practical limitation of the shadow cluster scheme in
addition to its complexity and overhead is that it requires a precise
knowledge of the mobile trajectory. The so-called active mobile probabil-
ities and their characterization are very crucial to the CAC algorithm. Active
mobile probabilities for each user give the projected probability of being
active in a particular cell at a particular instance of time.

Wu et al. [17] proposed a dynamic, distributed, and stable CAC scheme
referred to as SDCA (stable dynamic call admission), which extends the
basic DCAC [7] in several ways, such as by using a diffusion equation to
describe the evolution of the time-dependent occupancy distribution in a
cell instead of the widely used Gaussian approximation. SDCA is a
distributed version of the fractional guard channel in that it computes an
acceptance ratio ai for each cell i to be used for the current control period.

Classification of Distributed Schemes

Distributed CACs can be classified according to two criteria:

■ Cluster definition
■ Information exchange and processing

A cluster can be either static or dynamic. In the static approach, the size
and shape of the cluster are the same regardless of the network situation.
In the dynamic approach, however, the shape or size of the cluster changes
according to the congestion level and traffic characteristics. The virtual
connection tree in Acampora and Naghshineh [22] is an example of a
static cluster, and the shadow cluster introduced in Levine et al. [14] is a
dynamic cluster. A shadow cluster is defined for each individual mobile
terminal based on its mobility information (e.g., trajectory) and changes
as the terminal moves. Table 25.1 shows a tradeoff between the cluster
type and the corresponding CAC performance. Typically, dynamic clusters
have a better performance at the expense of increased complexity.

In general, distributed CACs can be categorized as partially distributed
or completely distributed based on the decision-making process:

AU3833_C25.fm Page 651 Wednesday, August 16, 2006 3:21 PM

652 ■ Mobile Middleware

■ Partially distributed — In this approach, the necessary information
is gathered from the neighboring cells, but the processing is cen-
tralized. The virtual connection tree concept introduced in Acam-
pora and Naghshineh [22] is an example of a partially distributed
scheme. In this scheme, each connection tree consists of a specific
set of base stations where each tree has a network controller. The
network controller is responsible for keeping track of the users
and resources. Despite the fact that information is gathered from
a set of neighboring cells, the final decision is made locally in the
network controller.

■ Completely distributed — In this approach, not only is information
gathered from the neighboring cells but the neighboring cells also
collaborate in the decision-making process. The shadow cluster
concept introduced in Levine et al. [14] is an example of a com-
pletely distributed scheme. In this scheme, a cluster of cells, the
shadow cluster, is associated with each mobile terminal in a cell.
Upon admitting a new call, all the cells in the corresponding cluster
calculate a preliminary response which after processing by the
original cell will form the final decision.

Although it is theoretically possible to involve all the network cells in
the admission control process, it is expensive and sometimes useless in
practice. To consider the effect of all the cells, analytical approaches
involve large matrix exponentiations. In Wu et al. [17] and Mitchell and
Sohraby [23], two different approximation techniques have been proposed
to compute these effects with a lower computational complexity. Table
25.2 provides a comparison of the different classes of dynamic CAC
schemes. In general, there is a tradeoff between the efficiency and the
complexity of local and distributed schemes.

Recall that the fundamental questions a CAC algorithm faces are how
many resources must be reserved and when the reservation must be made
to support seamless mobility. Clearly, if the CAC algorithm has complete
knowledge about the mobility of the users, it can answer these questions

Table 25.1 Cluster Type Versus Call Admission
Control Performance

Cluster Type CAC Efficiency CAC Complexity

Static Moderate Moderate
Dynamic High High

AU3833_C25.fm Page 652 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 653

in an optimal manner; however, in practice, it is difficult or even impossible
to accurately predict the future location of a mobile user. In other words,
such global knowledge is not available. Nevertheless, it is still possible to
use some partial knowledge in probabilistic form about the mobility of
users which can be helpful in making the correct admission decision. This
can be achieved using mobility modeling and prediction techniques. In
the following sections, we discuss the issues involved in mobility modeling
and prediction while reviewing some related literature.

Mobility Modeling
A mobility model is a representation of a certain real or abstract world
that contains moving entities (i.e., mobile users). The world is said to
exist for some finite amount of time during which each moving entity has
one unique but changing location of presence as defined in the location
granularity of the world [24]. In essence, the location of some mobile
entities is a function of time and some heuristics are inherent to the
mobility model. These inherent heuristics differentiate mobility models
from one another. A number of various mobility models have been
proposed in the literature [25–27].

A growing concern in the research community is that the simplistic
random walk and random way point models are no longer suitable for
obtaining meaningful results from simulations for several reasons [28], one
of which is the fact that certain features of random mobility are particularly
difficult to justify. These would include the lack of geographic dependen-
cies in the simulated environment and the purposelessness of the user
motion.

It may be possible to exploit these properties and improve existing
wireless systems, but any such potential improvements will not be visible
when testing with a simulator that uses a random motion model. The

Table 25.2 Comparison of Dynamic Call Admission Control Schemes

Scheme Efficiency Overhead Complexity Adaptivity

Local Reactive Low Low Low Moderate
Predictive Moderate Low Moderate Moderate

Distributed Partially
distributed

High High High High

Completely
distributed

High Very high Very high High

AU3833_C25.fm Page 653 Wednesday, August 16, 2006 3:21 PM

654 ■ Mobile Middleware

properties spoken of are mainly expected to be some regularities in user
movement; thus, various mobility models have been presented, each with
a specific goal and suitable for a specific scenario. The following discussion
attempts a brief overview of the various scenarios for which mobility
models have been developed and presents a few examples of existing
models.

Geography

Mobility models fall into one of two classes when geography is concerned.
What is meant by geography is the underlying geographic constraints that
any mobile user in the real world has to deal with, such as roads, rivers,
and walls. The two classes are those that include geography and those
that do not. While this seems obvious, it is important to keep the distinction
in mind. A number of complex mobility models exist that have no notion
of any geography [29] and may be quite incomplete for the validation of
certain studies.

Mobility Scale

One of the main classification mechanisms for mobility models is the scale
for which they are designed to function. The smallest scale mobility models
are designed for the indoor environment. Although the indoor environment
is often labeled as the most appropriate environment to be modeled by
a random model, other models such as the picocellular model presented
in Voigt and Fettweis [30] are specifically designed to handle such small-
scale mobility. The next scale up is the street unit model, such as that
presented in Markoulidakis et al. [24]. This model allows for modeling
streets with such a level of detail that stop signs and traffic lights are
included. The next scale up includes models that deal with area zones;
these models are primarily concerned with the idea that certain mobility,
such as vehicular mobility, only happens on streets and certain areas are
more densely populated than others [24,31]. The last scale is the city area
type of model. This model is concerned with the different parts of a city
area and the mobility of users between these parts. Much variation exists
among models of this scale, due to the many simplifications or compli-
cations a particular model may involve. Most mobility models fall into this
category [24,26,32]. The scale of the model is important to note because
different problem studies require different granularities of mobility; for
example, studies that deal with location management often deal with
sections of the network as opposed to individual base stations and thus
require no more detail than that provided by a city area scale model.

AU3833_C25.fm Page 654 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 655

User Individuality

Another main classifier when making distinctions between mobility models
is the treatment of users, or mobile terminals. The simplest user treatment
consists of aggregating the users into a density function that defines how
many users are in a given location at a given time. The next step involves
the definition of multiple user classes. Each class differs from the others
in some way, such as the speed at which the users in that class travel.
This approach can be seen in the work involving poles of gravity [26,28],
where the users are modeled as a flow from one location to another. Users
are still represented by a density function; however, a number of different
density functions each represent a user class. The next step is to make
each user an individual entity. This increases the complexity of the model
considerably, as each user has an individual state. An example of this can
be seen in Nousiainen et al. [32], where individual users move around
various world maps. When individual users exist, each user can differ from
the others in a number of ways. Most models still classify users such that
each one belongs to one of a small number of classes (e.g., highly mobile
users, business users, residential users) [25,27]. Each of these users, how-
ever, can have a different behavior that is unique to that user by some
randomization of that user’s properties, such as speed of motion or the
location the user considers home. These are the most complex user models.

Mobility Prediction
Intuitively, mobility prediction would be the determining of the future
location of a mobile terminal. Although this is the general idea, many
details must be specified to truly understand what is being described. The
first item that requires further definition is location. The location of the
user carrying the mobile terminal is primarily considered to be its geo-
graphic coordinates. It has been noted, however, that problems arise when
associating the location of the MT directly with the user’s geographic
location [33,34]. It is better to consider the motion of the MT through the
network as the successive list of connections that the MT experiences.
What this means exactly is that the MT location is always one of a finite
set of locations representing one of the possible base stations in the
network. This is illustrated in Figure 25.5, where the dashed line represents
the user mobility, and the location of the MT changes as the connection
to the network changes from one base station to another. In this particular
example, the MT starts at BS 3, moves through BSs 7, 8, and 9, and ends
up at BS 6. It is evident that the idea of the location of a mobile terminal
is greatly simplified by adopting this abstraction from the user’s location.
The main issue to note here is that a wireless network is concerned not

AU3833_C25.fm Page 655 Wednesday, August 16, 2006 3:21 PM

656 ■ Mobile Middleware

with the location of a user of this network but with the base stations that
this user is and will be using to connect to this network.

The second item worth mentioning is the notion that a prediction is
usually based on some previous knowledge. The exact specification of
what knowledge is used to make a prediction is very crucial in determining
the appropriateness of that prediction scheme. If a prediction is based on
data that is simply not available in a given situation, then that prediction
scheme is useless in that scenario regardless of how well it performs in
other scenarios. An example of this is a requirement of privacy. The data
it requires may be present in the system but simply not accessible.

The last item requiring discussion is the scale of the prediction. If the
prediction mechanism is predicting the time of an event, to what accuracy
is the time predicted (seconds, minutes, etc.)? If the prediction mechanism
is, on the other hand, predicting the event at a time, this event is most likely
defined at least in part by a location and thus the granularity of the location
requires discussion. This means that a location can be specified in geograph-
ical coordinates, as a single base station, as a group of base stations, etc.

Mobility Prediction Mechanisms

The many approaches to solving the problem of mobility prediction have
resulted in many prediction mechanisms. Each is unique and developed
to solve a specific problem or specific type of problem but they are all
related and many can be used in scenarios other than those for which

Figure 25.5 Mobile location.

AU3833_C25.fm Page 656 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 657

they are proposed. Some of them are heuristic based [15,21], some are
based on the geometrical modeling of user movements [29] and street
layouts [35], and still others are based on artificial intelligence techniques
[36]. The following provides a general overview of attempts to solve the
problem of mobility prediction based on fundamental features found in
most prediction mechanisms.

Presence of Infrastructure

Mobility is important in two main types of wireless networks: (1) a system
supported by infrastructure, such as a cellular system supported by base
stations, and (2) a system that has no supportive infrastructure, such as
ad hoc networks. The main difference is that an infrastructure-supported
system can refer to a fixed base station for location but an infrastructure-
less system requires an abstract location reference.

Extent of Prediction

Mobility prediction research has mainly focused on supporting the next
expected handoff. In reality, MTs will be able to move throughout the
network and experience multiple handoffs during the lifetime of a call.
It may therefore be necessary to predict more than just the next location
the MT will visit or the next event the MT will experience.

User–Mobile Terminal Relationship

A large portion of recent research still assumes that user mobility and the
connection trace for a mobile terminal are strongly dependent. A large
number of prediction systems have been proposed that attempt to measure
or capture some regularity of the user’s mobility to extrapolate from this
knowledge about the future behavior of the user’s MT. Real-life mobility
traces have shown that this assumption of user mobility and the connection
trace of the MT is not as valid as most researchers believe [33,34]. This raises
the issue that it may not be possible to accurately predict the behavior of
an MT by studying the behavior of the user. It will most likely be necessary
to study the behavior of the MT and its interaction with the network directly.

Per-User Versus Aggregate Knowledge

Another main distinction between prediction systems is whether data is
stored on a per-user basis or aggregated into some structure. One of the
most common per-user types of prediction mechanisms is based on the

AU3833_C25.fm Page 657 Wednesday, August 16, 2006 3:21 PM

658 ■ Mobile Middleware

idea of path recognition [21]. The general argument when using a per-user
prediction system is that, although the mobility patterns seen in the network
as a whole are complex, these patterns become much simpler and more
regular when viewed on a per-user basis and can thus be exploited more
easily. Prediction schemes that use aggregation [35] argue that user mobility
is subject to geographical constraints at the place of each BS so all users
will exhibit similar behavior at a given BS; therefore, it is possible to predict
the future location of such a user knowing the aggregate behavior of all
or similar users at that BS.

Measurement Versus Pattern Matching

Another difference in the approaches to solving the problem of mobility
prediction seen in current work is whether the prediction produced is
based on measurement of user or mobile terminal behavior or on matching
the pattern of this behavior with previous behavior. A measurement-based
approach will typically compute a probability of events occurring, depend-
ing on the value of some parameters. In Aljadhai and Znati [21], the direction
of an MT is measured and used in combination with previous direction
measurements to forecast the future motion of the MT. Pattern-matching
techniques, on the other hand, attempt to match the observed user behavior
with some previously observed behavior and forecast the future based on
the observed patterns. Erbas et al. [37] and Kim [38] provide an example
of pattern-matching prediction mechanisms — specifically, a path-matching
mechanism. This distinction is most evident in the per-user type of pre-
diction mechanisms, as most of the schemes that use aggregation will
attempt to capture patterns in an overall sense but perform each individual
prediction using a measurement of some kind.

Conclusion
Due to the unique characteristics of wireless networks, mainly mobility
and limited resources, resource management has received tremendous
attention. As a result, a large body of work has been done extending earlier
work in fixed networks as well as introducing new techniques tailored for
wireless networks. A large portion of this research has been in the area
of call admission control. In this chapter, we have discussed several issues
related to mobility and its impact on admission control schemes. In the
first part, we presented several CAC schemes proposed to support seamless
mobility in a cellular network. We concluded that mobility information is
essential to assist CAC in making the best admission decision; therefore,

AU3833_C25.fm Page 658 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 659

in the second part of the chapter, we focused on mobility modeling and
prediction techniques applicable in cellular networks.

One of the interesting observations stemming from such research, as
illustrated in Gao and Acampora [39], is how comparable the performance
of simple reservation-based CAC schemes (e.g., GC) are to more complex
ones. This is particularly true when the traffic conditions are known a
priori [18]. Yet, a large body of research in this area has focused on
designing more and more sophisticated schemes in the hope of improving
the CAC performance. Many assumptions about mobility and traffic char-
acteristics made in CAC-related research are often not practical, and most
of the schemes proposed in the literature are difficult to deploy in current
and future cellular systems.

Some of the lessons learned from surveying and analyzing the literature
and from which recommendations can be drawn are as follows:

■ Use more realistic (nonexponential) mobility [40] and traffic
(packet-based) models in designing and analyzing CAC schemes.
New mobility models may not necessarily preserve the Markovian
property. Meanwhile, new traffic modeling and engineering tech-
niques are aiming at a more accurate description of traffic dynamics
not only at the call level but also at the packet level. From this
perspective, recent findings in traffic analysis such as self-similarity
must be taken into consideration. To avoid complex schemes and
eliminate impractical assumptions about traffic and mobility, mea-
surement-based CAC schemes must be further studied for wireless
networks.

■ Apply cross-layer design to improve the performance of CAC
schemes and achieve bit-level, packet-level, and call-level QoS; in
particular, scheduling mechanisms at the packet level and control
mechanisms at the call level can benefit from information about
the state of the wireless channel to achieve superior performance.

■ Wireless links are unpredictable and behave randomly due to
physical-layer factors such as interferences, shadowing, multipath
fading, etc.; therefore, it is extremely challenging for CAC algo-
rithms to provide fine-grained, per-connection QoS guarantees such
as those offered in wireline networks without sacrificing the radio
resource utilization. A practical CAC scheme in wireless environ-
ments should provide only a coarse-grained, aggregate QoS guar-
antee and shift the burden of per-connection QoS all the way up
to the application layer. For such a design approach to be suc-
cessful, adaptive applications that can adjust their resource require-
ments according to network condition should be considered.

AU3833_C25.fm Page 659 Wednesday, August 16, 2006 3:21 PM

660 ■ Mobile Middleware

We believe that the most challenging problems to be solved are mobility
and wireless channel effects, particularly when considering multiservice
networks. Existing mobility models cannot reflect real user mobility pat-
terns. They commonly make assumptions that are not realistic and have
a significant influence on the performance of mobility prediction mecha-
nisms. One common assumption is that wireless users move randomly,
which is a scenario that presents no mobility patterns and would thus
make the pattern-based mobility predictors and CAC mechanisms based
on such predictors questionable.

References
[1] Valko, A.G. and Campbell, A.T., An efficiency limit of cellular mobile

systems, Comput. Commun. J., 23(5-6), 441–451, 2000.
[2] Ramjee, R., Towsley, D., and Nagarajan, R., On optimal call admission

control in cellular networks, ACM/Kluwer Wireless Networks, 3(1), 29–41,
1997.

[3] Katzela, I. and Naghshineh, M., Channel assignment schemes for cellular
mobile telecommunication systems: a comprehensive survey, IEEE Pers.
Commun. Mag., 3(3), 10–31, 1996.

[4] Talukdar, A.K., Badrinath, B., and Acharya, A., Integrated services packet
networks with mobile hosts: architecture and performance, ACM/Kluwer
Wireless Networks, 5(2), 111–124, 1999.

[5] Lu, S. and Bharghavan, V., Adaptive resource management algorithms for
indoor mobile computing environments, in Proc. ACM SIGCOMM’96, Palo
Alto, CA, August, 1996, pp. 231–242.

[6] Hong, D. and Rappaport, S.S., Traffic model and performance analysis for
cellular mobile radio telephone systems with prioritized and nonprioritized
handoff procedures, IEEE Trans. Veh. Technol., 35(3), 77–92, 1986. (See
also CEAS Technical Report No. 773, College of Engineering and Applied
Sciences, State University of New York, 1999.)

[7] Naghshineh, M. and Schwartz, M., Distributed call admission control in
mobile/wireless networks, IEEE J. Select. Areas Commun., 14(4), 711–717, 1996.

[8] Chu, T.-P. and Rappaport, S.S., Generalized fixed channel assignment in
microcellular communication systems, IEEE Trans. Veh. Technol., 43(3),
713–721, 1994.

[9] Chang, C.-J., Su, T.-T., and Chiang, Y.-Y., Analysis of a cutoff priority cellular
radio system with finite queuing and reneging/dropping, IEEE/ACM Trans.
Networking, 2(2), 166–175, 1994.

[10] Li, W. and Chao, X., Modeling and performance evaluation of a cellular
mobile network, IEEE/ACM Trans. Networking, 12(1), 131–145, 2004.

[11] Lin, P. and Lin, Y.-B., Channel allocation for GPRS, IEEE Trans. Veh. Technol.,
50(2), 375–384, 2001.

AU3833_C25.fm Page 660 Wednesday, August 16, 2006 3:21 PM

Impact of Mobility on Resource Management in Wireless Networks ■ 661

[12] Fang, Y. and Zhang, Y., Call admission control schemes and performance
analysis in wireless mobile networks, IEEE Trans. Veh. Technol., 51(2),
371–382, 2002.

[13] Moorman, J.R. and Lockwood, J.W., Wireless call admission control using
threshold access sharing, in Proc. IEEE GLOBECOM’01, San Antonio, TX,
November, 2001, pp. 3698–3703.

[14] Levine, D., Akyildiz, I., and Naghshineh, M., A resource estimation and call
admission algorithm for wireless multimedia networks using the shadow
cluster concept, IEEE/ACM Trans. Networking, 5(1), 1–12, 1997.

[15] Choi, S. and Shin, K.G., Predictive and adaptive bandwidth reservation for
handoffs in QoS-sensitive cellular networks, in Proc. ACM SIGCOMM’98,
Vancouver, Canada, October, 1998, pp. 155–166.

[16] Epstein, B.M. and Schwartz, M., Predictive QoS-based admission control for
multiclass traffic in cellular wireless networks, IEEE J. Select. Areas Commun.,
18(3), 523–534, 2000.

[17] Wu, S., Wong, K.Y.M., and Li, B., A dynamic call admission policy with
precision QoS guarantee using stochastic control for mobile wireless net-
works, IEEE/ACM Trans. Networking, 10(2), 257–271, 2002.

[18] Peha, J.M. and Sutivong, A., Admission control algorithms for cellular
systems, ACM/Kluwer Wireless Networks, 7(2), 117–125, 2001.

[19] Epstein, B. and Schwartz, M., Reservation strategies for multi-media traffic
in a wireless environment, in Proc. IEEE Vehicular Technology Conf.
(VTC’95), Chicago, IL, July, 1995, pp. 165–169.

[20] Ghaderi, M., Capka, J., and Boutaba, R., Prediction-based admission control
for DiffServ wireless Internet, in Proc. IEEE Vehicular Technology Conf.
(VTC’03), Orlando, FL, October, 2003, pp. 1974–1978.

[21] Aljadhai, A. and Znati, T.F., Predictive mobility support for QoS provisioning
in mobile wireless networks, IEEE J. Select. Areas Commun., 19(10),
1915–1930, 2001.

[22] Acampora, A. and Naghshineh, M., An architecture and methodology for
mobile-executed handoff in cellular ATM networks, IEEE J. Select. Areas
Commun., 12(8), 1365–1375, 1994.

[23] Mitchell, K. and Sohraby, K., An analysis of the ef fects of mobility on
bandwidth allocation strategies in multi-class cellular wireless networks, in
Proc. IEEE INFOCOM’01, 2, Anchorage, AK, April, 2001, pp. 1005–1011.

[24] Markoulidakis, J.G., Lyberopoulos, G.L., Tsirkas, D.F., and Sykas, E.D.,
Mobility modeling in third-generation mobile telecommunications systems,
IEEE Pers. Commun. Mag., 4(4), 41–56, 1997.

[25] Cavalcanti, D.A., Kelner, J., Cunha, P.R., and Sadok, D.H., A simulation
environment for analyses of quality of service in mobile cellular networks,
in Proc. IEEE Vehicular Technology Conf. (VTC’01), Atlantic City, NJ, Octo-
ber, 2001, pp. 2183–2187.

[26] Basgeet, D.R., Irvine, J., Munro, A., Dugenie, P., and Kaleshi, D., SMMT:
scalable mobility modeling tool, in Proc. IEEE Vehicular Technology Conf.
(VTC’02), Vancouver, Canada, September, 2002, pp. 102–106.

AU3833_C25.fm Page 661 Wednesday, August 16, 2006 3:21 PM

662 ■ Mobile Middleware

[27] Scourias, J. and Kunz, T., An activity-based mobility model and location
management simulation framework, in Proc. of ACM Int. Workshop on
Modeling, Analysis, and Simulation of Wireless and Mobile Systems (MSWiM),
Seattle, WA, August, 1999, pp. 61–68.

[28] Basgeet, D.R., Irvine, J., Munro, A., and Barton, M.H., Importance of accurate
mobility modeling in teletraffic analysis of the mobile environment, in Proc.
IEEE Vehicular Technology Conf. (VTC’03), Seoul, Korea, April, 2003, pp.
1836–1840.

[29] Zonoozi, M.M. and Dassanayake, P., User mobility modeling and charac-
terization of mobility patterns, IEEE J. Select. Areas Commun., 15(7),
1239–1252, 1997.

[30] Voigt, J. and Fettweis, G.P., Influence of user mobility and simulcast-handoff
on the system capacity on picocellular environments, in Proc. of IEEE Wireless
Communications and Networking Conf. (WCNC 1999), New Orleans, LA,
September, 1999, pp. 712–716.

[31] Tugcu, T. and Ersoy, C., Application of a realistic mobility model to call
admissions in DS-CDMA cellular systems, in Proc. IEEE Vehicular Technology
Conf. (VTC’01), Rhodes, Greece, May, 2001, pp. 1047–1051.

[32] Nousiainen, S., Kordybach, K., and Kempi, P., User distribution and mobility
model for cellular network simulations, in Proc. of IST Mobile & Wireless
Telecommunications Summit, June, 2002, pp. 518–522.

[33] Chan, J. and Seneviratne, A., A practical user mobility algorithm for sup-
porting adaptive QoS in wireless networks, in Proc. of IEEE Int. Conf. on
Networks (ICON’99), Brisbane, Australia, September, 1999, pp. 104–111.

[34] Chan, J., Landfeldt, B., Seneviratne, A., and Sookavatana, P., Integrating
mobility prediction pre-allocation into a home-proxy based wireless internet
framework, in Proc. of IEEE Int. Conf. on Networks (ICON’00), Singapore,
September, 2000, pp. 18–23.

[35] Soh, W.-S. and Kim, H.S., QoS provisioning in cellular networks based on
mobility prediction techniques, IEEE Commun. Mag., 41(1), 86–92, 2003.

[36] Capka, J. and Boutaba, R., Mobility prediction in wireless networks using
neural networks, in Proc. of IFIP/IEEE 7th Int. Conf. on Management of
Multimedia Networks and Services (MMNS’04), San Diego, CA, October, 2004.

[37] Erbas, F., Steuer, J., Eggesieker, D., Kyamakya, K., and Jobmann, K., A
regular path recognition method and prediction of user movements in
wireless networks, in Proc. IEEE Vehicular Technology Conf. (VTC’01),
Atlantic City, NJ, October, 2001, pp. 2183–2187.

[38] Kim, H. and Jung, J., A mobility prediction handover algorithm for effective
channel assignment in wireless ATM, in Proc. IEEE GLOBECOM’01, San
Antonio, TX, November, 2001, pp. 3673–3680.

[39] Gao, Q. and Acampora, A., Performance comparisons of admission control
strategies for future wireless networks, in Proc. of IEEE Wireless Communi-
cations and Networking Conference (WCNC 2002), Orlando, FL, March,
2002, pp. 317–321.

[40] Capka, J. and Boutaba, R., A mobility management tool: the realistic mobility
model, in Proc. of IEEE Int. Conf. on Wireless and Mobile Computing, Net-
working, and Communications (WiMob’05), Montreal, Canada, August, 2005.

AU3833_C25.fm Page 662 Wednesday, August 16, 2006 3:21 PM

663

Chapter 26

Seamless Consistency

Evaggelia Pitoura, George Samaras,
and Can Türker

CONTENTS

Introduction... 664
Consistency in Mobile Computing .. 665

System Architecture and Limitations ... 665
Maintaining Consistency ... 667

Consistency and Disconnected Operation.. 668
Data Hoarding... 669
Disconnection.. 670
Reintegration.. 671

Consistency and Weak Connectivity ... 672
Cache-Related Consistency... 673
Transaction-Oriented Consistency.. 674

Consistency in Hybrid Environments.. 676
Cache-Related Consistency... 677

Pushing Control Information.. 677
Reading from the Broadcast... 679

Transaction-Oriented Consistency.. 679
Pushing Control Information.. 679
Reading from the Broadcast... 680

Consistency Support in Commercial Mobile Database Systems 681
SyncML and HotSync.. 681

AU3833_C26.fm Page 663 Wednesday, August 16, 2006 4:40 PM

664

■

Mobile Middleware

IBM DB2 Everyplace .. 684
Oracle Lite ... 687
Microsoft SQL Server CE .. 690
Sybase Anywhere.. 692

Conclusions ... 694
References ... 695

Introduction

Mobile devices such as laptops, palmtops, and smart phones have now-
adays become more widespread than desktop computers. The possibilities
that they offer for accessing and processing information on the move,
everywhere and at any time, account for their broad acceptance. The need
for information access and processing in mobile computing environments
presents great challenges to database researchers. Apart from advances in
wireless communications and device technology, special data management
techniques are necessary to provide a transparent interaction between
fixed and mobile devices in global information systems.

Data management must hide the constraints of mobile wireless com-
puting to make access to data appear seamless. Such constraints include
limitations imposed by wireless network connectivity such as disconnec-
tions, variable connectivity, and limited bandwidth, as well as such resource
constraints as battery and computational power. Furthermore, handling
mobility introduces additional challenges. The focus of this chapter is on
the central data management aspect of providing a flexible and powerful
consistency management infrastructure that takes into account the pecu-
liarities of mobile computing.

We present an overview of the main issues related to consistency in
terms of three different settings. First, we present research problems and
solutions related to supporting disconnections. Often, mobile hosts operate
autonomously due to disconnections from the network. In this case, any
data updates performed either locally at the mobile host or at other sites
must be reconciled so consistency is achieved. Second, we consider
consistency management in the case of mobile hosts operating with less
than full connectivity. In this case, consistency management must take
into consideration such connectivity limitations. Finally, we consider con-
sistency in the case where servers are provided with a broadcast facility
and use it to broadcast (push) data to their clients. This is the case for a
number of wireless technologies.

We also describe the model and protocols for consistency provided by
four state-of-the-art commercial mobile database systems: IBM DB2

®

 Every-
place

®

, Oracle

®

 Lite™, Microsoft

®

 SQL Server CE, and Sybase

®

 Anywhere™.

AU3833_C26.fm Page 664 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency

■

665

Although, many research efforts have focused on weak connectivity and
hybrid delivery, such research has not yet been adapted by the major
commercial products. Thus, we present how each of these products handles
consistency in the case of disconnections, focusing on synchronization and
conflict resolution.

Consistency in Mobile Computing

In this section, we present our reference architecture for mobile computing
and introduce the issue of consistency maintenance. We also highlight
those characteristics of mobile computing that affect the enforcement of
seamless consistency.

System Architecture and Limitations

Figure 26.1 depicts our reference model for mobile computing environ-
ments. Desktop computers, workstations, and servers are the fixed hosts
(FHs) that are interconnected by means of a fixed network. Large databases
run on such FHs that guarantee efficient processing and reliable storage
of data. Mobile hosts (MHs) such as palmtops, laptops, notebooks, or
cellular phones are not always connected to the fixed network. They may
be disconnected for different reasons. Furthermore, mobile hosts may

Figure 26.1 Reference model of a mobile computing architecture.

AU3833_C26.fm Page 665 Wednesday, August 16, 2006 4:40 PM

666

■

Mobile Middleware

differ in their capabilities with respect to computing power and storage
space. Although notebook computers can run databases as desktop com-
puters, other mobile devices have more limited computational resources;
for example, palmtops have much less memory than a notebook computer.
Still, it is possible to use small-footprint databases that allow data pro-
cessing even on mobile devices with very restricted resources. After having
uploaded data from an FH to their MHs, mobile users can disconnect
from the fixed network. While moving (physically) they might want to
run some queries and update their local data copies. The connection
between the mobile and fixed hosts is performed by means of mobile
support stations (MSSs), which are dedicated fixed hosts that provide the
link between an MH and any FH via wireless local area network (LAN)
connections (using protocols such as Bluetooth

®

), cells (as in the Global
System for Mobile Communications [GSM] cellular phone system), or
connections to the network using standard modems.

Wireless communication technology offers users the possibility of
reconnecting to the fixed network anytime and anywhere to share the
results of their work; however, some difficulties relevant to this task
include:

■

Bandwidth variability occurs as the MH changes location (e.g., due
to different traffic loads or changing networks that interface with
the MH).

■

Unreliability can be introduced by local interruptions in signal
strength or by MH hardware failures or switch-offs that cause the
MH to be disconnected from the network.

■

Tariff policies can make it uneconomical to be connected at certain
times or in certain locations.

■

MHs tend to have fewer computational and storage resources than
FHs.

■

Battery life is limited, causing devices to restrict their connections.

■

MHs are inherently less secure and reliable due to the possibility
of being damaged or even stolen.

Such limitations often result in MHs operating while disconnected from
the network or connected with less than full connectivity. In addition to
disconnections and weak connectivity due to power limitations, it is less
expensive to receive than transmit; also, the transmission bandwidth of
the mobile device tends to be lower than the transmission bandwidth of
the MSSs. This situation is often referred to as

communication asymmetry

.
Protocols addressed later in this chapter exploit these characteristics with
regard to maintaining consistency.

AU3833_C26.fm Page 666 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency

■

667

Maintaining Consistency

In the simplest mode, the MH simply sends requests for data to the server;
the MH has no local data, and there is no local processing. This model
induces large response times and makes the operation of the MH fully
dependent on the existence of a stable network connection. In this chapter,
we assume that local data exists at the MH and that transaction execution
is possible at both the MH and the FH. This introduces consistency issues,
as updates at the various sites must be integrated to produce a single
consistent database state.

A

transaction

 is a unit of operations that changes a database from a
consistent state into another consistent state. A database is in a

consistent
state

 if it satisfies all defined semantic integrity constraints and all (previous
and current) database states are achieved by performing correct database
transitions. A transaction model defines the framework for the definition and
execution of transactions. A traditional flat transaction satisfies the well-
known atomicity, consistency, isolation, durability (ACID) properties, mean-
ing that a transaction is an atomic, a consistent, and a recoverable unit that
does not interfere with other transactions that are executed concurrently.
Database consistency is ensured through

serializability

, which ensures that
the concurrent execution of a number of transactions is equivalent to some
serial execution of these transactions; however, for performance reasons, in
some application scenarios the ACID properties must be relaxed.

To be able to process information on the MH in the disconnected
mode, data must be replicated on the MH.

Data replication

 is the process
of maintaining a defined set of data in more than one location. It involves
copying designated changes from one location (source or master) to
another (target or remote) and synchronizing the data in both locations.
An MH has its own complete or partial copy of the master database (that
resides on the FH) so it can process data locally. In general, data replication
provides increased data availability and faster response times.

The increased flexibility permitted by replication introduces several
challenges. Whenever an update is performed on any of the databases,
the update must be propagated to the other databases to maintain a
consistent state in all databases. A strategy to propagate the update can be:

■

Eager

 — All replicas are updated synchronously as part of the
originating transaction. This approach is often also called

synchronous
replication

.

■

Lazy

 — A replica is updated by the originating transaction, and
propagation to other replicas is asynchronous, typically as a separate
transaction for each replica. This approach is often also referred to
as

asynchronous replication

.

AU3833_C26.fm Page 667 Wednesday, August 16, 2006 4:40 PM

668

■

Mobile Middleware

Update propagation can also be controlled by means of data ownership:

■

Master

 — Each data object has a master site; only the master can
update the primary copy of the data object on its local and remote
databases.

■

Group

 — Any site with a copy of a data item can update it.

In this chapter, we focus on consistency at both the transaction level
(i.e., maintaining database integrity constraints) and the single-item level
(i.e., replica coherency, or ensuring that all copies of an item converge
to a single value). We do not, however, delve into issues related to
advanced transaction models and their treatment; recent surveys on this
topic include Bernard et al. [6] and Serrano-Alvarado et al. [30].

Consistency and Disconnected Operation

Disconnected operation

 refers to the autonomous operation of an MH when
network connectivity becomes unavailable or undesirable. Prior to a discon-
nection, data items are preloaded to the MH to allow operation during
disconnection. Data preloading or prefetching to sustain a forthcoming
disconnection is termed

hoarding

. During the time the MH is disconnected
from the network, data may be created, modified, or deleted at either the
MH or the FH. After reconnection, any operations performed by the MH
should be integrated with relevant operations at other sites to achieve
seamless consistency. In general, disconnected operation can be described
as a transition between three states: (1) hoarding, (2) disconnected operation,
and (3) reintegration or synchronization [15] (see Figure 26.2a). In terms of
database systems, synchronization can be performed in basically two ways:

■

Session-based

 — An MH database directly connects to the FH
database. During connection, synchronization takes place. Only
when synchronization is complete can the MH and the FH discon-
nect. When disconnecting, both MH and FH have a consistent
database state. This approach is also referred to as

connection-
based

 synchronization.

■

Message-based

 — A messaging system (such as e-mail) transfers
the information required to perform the reconciliation. Synchroni-
zation is performed when the MH and the FH are disconnected.
This strategy is also known as

store-and-forward

 or

file-based

synchronization.

In general, synchronization may be either

one way

, in which case the
MH communicates its operations to the FH (or

vice versa

), or

two way

,

AU3833_C26.fm Page 668 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency

■

669

in which case both the MH and the FH exchange information about their
operations.

Data Hoarding

In the

data hoarding state

, in anticipation of a disconnection, data items
required for operation are either cached (replicated) or moved (partitioned)
at the MH to allow the MH to operate while disconnected. For foreseeable
disconnections (for example, when a user enters a region with expensive
communication prices and decides to operate disconnected), data hoarding
may be performed just before the disconnection. To sustain less predictable
disconnections, hoarding may have to be deployed on a regular basis (e.g.,
periodically); for example, the Coda file system [15] runs a process called

hoard walk

 periodically to ensure that critical files are in the cache of the
MH. The granularity of hoarding varies. As an example, in the case of file
systems the data items prefetched may be files, directories, or volumes,
but in the case of database management systems they may be relations
(tables) or views. Additional information such as a set of allowable oper-
ations or a characterization of data fidelity may also be cached along with
the data. Figure 26.2b depicts some of the issues related to each of the
three states of disconnected operation, which we will now explore further.

Figure 26.2 Disconnected operation: (a) states and (b) related issues.

Data
hoarding

Reintegration Disconnected
operation

Hoarding

Disconnected
operation

Reintegration

(a) (b)

Raise an exception/error

AU3833_C26.fm Page 669 Wednesday, August 16, 2006 4:40 PM

670

■

Mobile Middleware

An important issue is determining which items to hoard. This decision
may be either (1) assisted by instructions explicitly given by the user, or (2)
made automatically by the system by utilizing implicit information, which is
most often based on the past history of data references. Maintaining consis-
tency in the case of shared resources adds to the complexity of hoarding.
Taking into consideration the probability of conflicting operations when
deciding which items to hoard may improve the effectiveness of disconnected
operation. In the case of databases, a logical approach would be to hoard
by issuing queries (i.e., by prefetching the data items that constitute the
answer to a given query, as in semantic caching) [28]. This, in a sense,
corresponds to loading on the MH materialized views. Operation during
disconnection is then supported by posing queries against these views.

Badrinath and Phatak [3] proposed an extended database organization
to efficiently handle hoarding queries from MHs. Under the proposed
organization, the database designer can specify a set of

hoard keys

 along
with the primary and secondary keys for each relation. Hoard keys are
supposed to capture typical access patterns of MHs. Each hoard key
partitions the relation into a set of disjoint logical horizontal fragments.
Hoard fragments constitute the hoard granularity; that is, MHs can hoard
and reintegrate within the scope of these fragments. Finally, in

profile-
driven data prefetching

 [8], a simple profile language is introduced to
allow users to specify the items of interest to be prefetched along with
their relative importance through weighting.

Disconnection

While

disconnected

, an MH uses only local data. Operations performed
at the MH during disconnection are reported in a system log. A related
issue is what information to keep in the log. The type of information
affects the effectiveness of reintegration of updates upon reconnection as
well as the effectiveness of log optimizations. Optimizing the log by
keeping its size small is important for at least two reasons: (1) to save
local memory at the MH, and (2) reduce the time for update propagation
and reintegration during reconnection.

Consistent operation during disconnected operation has been extensively
addressed in the context of

network partitioning

. In this context, a network
failure partitions the sites of a distributed database system into disconnected
clusters. Various approaches have been proposed and are excellently
reviewed in Davidson et al. [9]. In general, such approaches can be classified
along two orthogonal dimensions. The first concerns the tradeoff between
consistency and availability, for which two general approaches have been
devised. In the

pessimistic approach

, updates are performed only at one
site using locking or some form of check-in/check-out. In the

optimistic

AU3833_C26.fm Page 670 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency

■

671

approach

, updates are allowed at more than one site with the possible
danger of conflicting operations. The second dimension concerns the level
of semantic knowledge used in determining correctness. Network partition-
ing is usually concerned with peer-to-peer models where transactions exe-
cuted in any partition are of equal importance; however, in mobile
computing, transactions at the mobile host are most often considered second
class. Furthermore, network partitions correspond to failure behavior,
whereas disconnections in mobile computing are common. Finally, most
disconnections in mobile computing can be considered foreseeable.

Reintegration

Upon reconnection, the MH enters the

 reintegration state

. In this state,
operations performed at the mobile host are reintegrated with updates
performed at other sites. Update reintegration is usually performed by re-
executing the log at the FH. Whether or not the operations performed at
the disconnected sites are accepted depends on the consistency semantics
adopted by the particular system. Such consistency semantics vary from
enforcing transaction serializability to resolving only concurrent updates
of the same object.

In the case of files systems, the only conflicts detected are write/write
conflicts because they produce divergent copies; read/write conflicts are
not considered. Such conflicts occur, for example, when the value of a
file read by a disconnected MH is not the most recent one, because the
file has been updated at the FH after disconnection of the MH. In Coda,
the system log is executed as a single transaction [16]. All objects referenced
in the log are locked. File resolution is based on

application-specific
resolvers

 (ASRs) per file. An ASR is a program that encapsulates the
knowledge necessary for file resolution and is invoked at the MH when
divergence among copies is detected.

In transaction-oriented systems, a common trend is to tentatively commit
transactions executed at the disconnected MH and make their results visible
to subsequent transactions in the same MH. Upon reconnection, a certifi-
cation process takes place, during which the execution of any tentatively
committed transaction is validated against an application- or system-defined
correctness criterion. If the criterion is met, the transaction is committed;
otherwise, the execution of the transaction must be aborted, reconciled,
or compensated. Such actions may have cascading effects on other tenta-
tively committed transactions that have seen the results of the transaction.

Isolation-only

transactions

 (IOTs) [18] provide support for transactions
in file systems. An IOT is a sequence of file access operations. Transaction
execution is performed entirely on the MH, and no partial result is visible
on the FHs. A transaction (

T

) is considered a

first-class transaction

 if it

AU3833_C26.fm Page 671 Wednesday, August 16, 2006 4:40 PM

672

■

Mobile Middleware

does not have any partitioned file access (i.e., the MH maintains a
connection for every file it has accessed); otherwise,

T

 is considered a

second-class transaction

. Whereas the result of a first-class transaction is
immediately committed to the FHs, a second-class transaction remains in
the pending state until connectivity is restored. The result of a second-
class transaction is held within the local cache of the MH and visible only
to subsequent accesses on the same MH. Second-class transactions are
guaranteed to be locally serializable among themselves. A first-class trans-
action is guaranteed to be serializable with all transactions that were
previously resolved or committed at the FH. Upon reconnection, a second-
class transaction

T

 is validated against one of two proposed serialization
constraints. The first is global serializability, which means that, if the local
result of a pending transaction was written to the FH as is, it would be
serializable with all previously committed or resolved transactions. The
second is a stronger consistency criterion referred to as

global certifiability

,
which requires that a pending transaction be globally serializable not only
with but also after all previously committed or resolved transactions.

In the

two-tier replication

 [11], replicated data has two versions at
mobile nodes: master or tentative. A master version records the most
recent value received while the site was connected. A tentative version
records local updates. There are two types of transactions analogous to
second- and first- class IOTs: tentative transactions and base transactions.
A

tentative transaction

 works on local tentative data and produces ten-
tative data. A

base transaction works only on master data and produce
master data. Base transactions involve only connected sites. Upon recon-
nection, tentative transactions are reprocessed as base transactions. If they
fail to meet the application-specific acceptance criteria, they are aborted.

In promotion [36,37], the unit of caching and replication is a compact.
When an MH requires data, it sends a request to the FH database. The
FH sends a compact as a reply. A compact is an object that encapsulates
the cached data, operations for accessing the cached data, state information
(such as the number of accesses to the object), consistency rules that must
be followed to guarantee consistency, and obligations (such as deadlines).
Compacts provide flexibility in choosing consistency methods from simple
check-in/check-out pessimistic schemes to complex optimistic criteria.

Consistency and Weak Connectivity
Mobile hosts often operate with less than full connectivity; in particular,
wireless network connectivity may be slow or expensive. In addition,
connectivity is often lost for short periods of time or varies in the
bandwidth provided or reliability level offered. Disconnections correspond
to the extreme case of total lack of connectivity. Connectivity constraints

AU3833_C26.fm Page 672 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 673

affect the protocols for enforcing consistency. The majority of such pro-
tocols are also asynchronous, as in the case of disconnections; however,
they are more general, because in handling disconnections the focus is
mainly on synchronizing data upon reconnection. Here, update propaga-
tion may be lazy or based on epidemic propagation, and the replication
protocols used are not necessarily based on primary copy schemes. We
discuss weak connectivity in the context of both cache and transaction-
oriented consistency.

Cache-Related Consistency

In file systems, weak connectivity is handled by appropriately revising
those operations whose deployment involves the network. In particular,
for caching, approaches to weak connectivity are centered around the
following three topics that affect bandwidth consumption: (1) handling
cache misses, (2) the frequency of propagation to the server of updates
performed at the MH cache, and (3) the validity of the value of cached
items. Several design choices must be made with regard to these issues.
We discuss them in the context of caching, but the discussion is directly
applicable to replication as well.

Servicing a cache miss may incur very long delays in slow networks
or excessive costs in expensive ones; thus, cache misses may be serviced
selectively based on how critical the required item is and on the quality
of the current network connection. Determining when to propagate cache
updates and integrate them at the server requires an interplay among
various factors. Aggressive reintegration reduces the effectiveness of log
optimizations, because records are propagated to the server early; thus,
they have less opportunity to be eliminated at the MH. Short-lived tem-
porary files, for example, are usually eliminated if they stay in the log
long enough. Early reintegration can also affect the response times of
other traffic, especially in slow networks. On the other hand, it achieves
consistent cache management and timely propagation of updates and
reduces the probability of conflicting operations. Furthermore, early rein-
tegration keeps the log in the memory of the MH short, thus saving space.
In addition, lazy reintegration may overflow the MH cache, because cached
data that has been updated cannot be discarded before being committed
at the server. Regarding the validity of cached items, notifying the MH
each time an item is changed at the server may be too expensive in terms
of bandwidth. Postponing the notification results in cache items having
obsolete values and affects the value returned by read operations. Another
possibility is to update cache items on demand (i.e., each time an MH
issues a read operation on an item). Alternatively, a read operation may
explicitly contact the server to attain the most recent value.

AU3833_C26.fm Page 673 Wednesday, August 16, 2006 4:40 PM

674 ■ Mobile Middleware

In Coda, cache misses are serviced selectively [20]; in particular, a file
is fetched only if the service time for the cache miss (which depends,
among other things, on bandwidth) is below the user’s patience threshold
for this file (e.g., the time the user is willing to wait to get the fi le).
Reintegration of updates to the servers is done through trickle reintegra-
tion, an ongoing background process that propagates updates to servers
asynchronously. A record becomes eligible for reintegration only after
spending a minimal amount of time (called the aging window) in the log.
Because transferring the log in one chunk may saturate a slow network
for an extended period, the reintegration chunk size is made adaptive,
thus bounding the duration of communication degradation.

The variable-consistency approach [34] deploys a client–server architec-
ture with replicated servers that follow a primary/secondary schema mainly
to avoid global communication but also to handle weak connectivity. The
client communicates with the primary server only. The primary server
makes periodic pickups from its clients and propagates updates back to
the secondaries asynchronously. When some number N of secondaries
have acknowledged receipt of an update, the primary informs the client
that the associated cached update has been successfully propagated and
can be discarded. The traditional read interface is split into strict and loose
reads. Loose read returns the value of the cache copy, if such a copy
exists; otherwise, loose read returns the value of the copy at the primary
or any secondary, whichever it finds. In contrast, the strict read call returns
the most consistent value by contacting the necessary number of servers
and clients to guarantee retrieving the most up-to-date copy.

Ficus and its descendant Rumor [23] are examples of file systems
following a peer-to-peer architecture. No distinction is made between
copies at the mobile and copies at the fixed host; all sites store peer copies
of the files they replicate. Updates are applied to any single copy. The file
system is organized as a directed acyclic graph of volumes. A volume is
a logical collection of files that are managed collectively. A pair-wise
reconciliation algorithm is executed periodically and concurrently with
respect to normal file activity. The state of the local replicated volume is
compared to that of a single remote replica of the volume to determine
which files must have updates propagated. The procedure continues until
updates are propagated to all sites storing replicas of the volume.

Transaction-Oriented Consistency

Similar to cache-based approaches, the approaches to ensure transaction-
oriented consistency under weak connectivity aim at minimizing the
communication cost and surviving short disconnections; however, due to
the complicated dependencies among database items, the problem is more

AU3833_C26.fm Page 674 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 675

complex. Again as in the case of disconnected operation, the focus is on
asynchronous replication protocols that allow data updates to be propa-
gated outside transaction boundaries.

The two-layered transaction model [38] distinguishes between transac-
tions running at the MH and the FH. Transactions that run solely at the
mobile host are weak, and the rest are strict. A distinction is drawn between
weak copies and strict copies. In contrast to strict copies, weak copies
are only tentatively committed and hold possibly obsolete values. Weak
transactions update weak copies, and strict transactions access strict copies
located at any site. Weak copies are integrated with strict copies either
when connectivity improves or when an application-defined limit to the
allowable deviation among weak and strict copies is passed. Before
reconciliation, the results of weak transactions are visible only to weak
transactions at the same site. Strict transactions are slower than weak
transactions because they involve the wireless link but guarantee perma-
nence of updates and currency of reads. During disconnection, applica-
tions can use only weak transactions. In this case, weak transactions have
similar semantics with second-class IOTs [18] and tentative transactions [11].
Adaptability is achieved by restricting the number of strict transactions
depending on the available connectivity and by adjusting the application-
defined degree of divergence among copies.

The Bayou system [10,35] does not support full-fledged transactions.
Bayou is built on a peer-to-peer architecture with a number of replicated
servers weakly connected to each other. In this schema, a user application
can read any and write any available copy. Writes are propagated to other
servers during pair-wise contracts called anti-entropy sessions. When a write
is accepted by a Bayou server, it is initially deemed tentative. As in two-
tier replication [11], each server maintains two views of the database: a copy
that reflects only committed data and another full copy that also reflects
the tentative writes currently known to the server. Eventually, each write is
committed using a primary-commit schema; that is, one server designated
as the primary takes responsibility for committing updates. Because servers
may receive writes from clients and other servers in different orders, servers
may have to undo the effects of some previous tentative execution of a
write operation and reapply it. The Bayou system provides dependency
checks for automatic conflict detection and merge procedures for resolution.
Instead of transactions, Bayou supports sessions. A session is an abstraction
for a sequence of read and write operations performed during the execution
of an application. Session guarantees are enforced to avoid inconsistencies
when accessing copies at different servers; for example, a session guarantee
may be that read operations reflect previous writes or that writes are
propagated after writes that logically precede them. Different degrees of
connectivity are supported by individually selectable session guarantees, by

AU3833_C26.fm Page 675 Wednesday, August 16, 2006 4:40 PM

676 ■ Mobile Middleware

choices of committed or tentative data, and by placing an age parameter
on reads. Arbitrary disconnections among Bayou’s servers are also sup-
ported because Bayou relies only on pair-wise communication; thus,
groups of servers may be disconnected from the rest of the system yet
remain connected to each other.

Deno [7] extends Bayou in that no primary server owns an item and
serializes the updates on that item. This is achieved through a combination
of weighted voting and epidemic propagation. The use of voting allows
the system to have better availability than primary copy schemes. Weighted
voting improves performance by adapting currency distribution to site
availabilities, update activities, or other parameters. Deno supports both
weak and strong consistency in the following sense. A read-only transac-
tion sees weak consistency if it is serialized with respect to all update
transactions, but possibly not with other read-only transactions. A read-
only transaction sees strong consistency if it is serialized with respect to
both read-only and update transactions.

Consistency in Hybrid Environments
In traditional client–server systems, data is delivered on a demand basis.
A client explicitly requests data items from the server. When a data request
is received at a server, the server locates the information of interest and
returns it to the client. This form of data delivery is referred to as pull-
based. In wireless computing, the stationary server machines are provided
with a relative high-bandwidth channel that supports broadcast delivery
to MHs in their cell. This facility provides the infrastructure for push-based
data delivery. In push-based data delivery, the server sends data to a client
population without a specific request. Clients monitor the broadcast and
retrieve the data items they require as they arrive. Data of interest may
also be cached locally at the client. Push-based delivery is important for
a wide range of applications that involve dissemination of information to
a large number of clients. We consider a hybrid (push and pull) environ-
ment in which each MH reads data from (1) the broadcast channel, (2)
its local cache or database, or (3) directly from the FH (database) server
through pull requests (Figure 26.3). Data broadcast is often periodic.

When the value of the broadcast data is allowed to be updated, the
need for consistency control protocols arises. Such protocols vary depend-
ing on various parameters. First, protocols depend on the assumptions
made about data delivery — for example, the existence of a backchannel
for on-demand data delivery or the cache capability of clients. We focus
on maintaining both cache- and transaction-oriented consistency. We
distinguish two cases based on whether clients are allowed to read data

AU3833_C26.fm Page 676 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 677

directly from the broadcast or the broadcast is used only to communicate
consistency-related information to clients.

Cache-Related Consistency

We next present protocols that aim at ensuring that the data values read
by the MHs are kept up to date with respect to the values of the items at
the server. We first discuss the case in which the server at the FHs uses the
broadcast channel to push control information to its clients, then we discuss
the case where the MHs also read data items from the broadcast channel.

Pushing Control Information

The server can use the broadcast to inform its clients of updates of items
in their cache. Invalidation of cache entries may be performed either
asynchronously or synchronously [5]. In asynchronous methods, the server
broadcasts an invalidation report for a given item as soon as this item
changes its value. In synchronous methods, the server broadcasts an
invalidation report periodically. A client has to listen for the report first
to decide whether its cache is valid or not; thus, each client is confident
of the validity of its cache only as of the last invalidation report. This
adds some latency to query processing, because to answer a query a
client has to wait for the next invalidation report.

Figure 26.3 Hybrid data delivery.

AU3833_C26.fm Page 677 Wednesday, August 16, 2006 4:40 PM

678 ■ Mobile Middleware

Invalidation reports vary in the type of information they convey to the
clients; for example, the reports may contain the values of the items that
have been updated or just their identity and the time stamps of their last
updates. Including in the report the updated values can be wasteful of
bandwidth, especially when the corresponding items are cached at only
a few clients. On the other hand, if the values are not included, the client
must either discard the item from its cache or communicate with the server
to receive the updated value. The reports can provide information for
individual items or aggregate information for sets of items.

Cache invalidation protocols make different assumptions about whether
or not the server maintains any information about which clients it is
serving, what the contents of their cache are, and when their cache was
last validated. Servers that hold such information are stateful, and servers
that do not are stateless.

Three synchronous strategies for stateless servers are proposed in
Barbará and Imielinski [5]. In the broadcasting time stamps (TS) strategy,
the invalidation report contains the time stamps of the latest change for
items that have had updates in the last w seconds. In the amnestic
terminals (AT) strategy, the server only broadcasts the identifiers of the
items that changed since the last invalidation report. In the signatures
strategy, signatures are broadcast. A signature is a checksum computed
over the value of a number of items by applying data compression
techniques similar to those used for file comparison. Each of these strat-
egies is shown to be effective for different types of clients. Clients that
are often connected are workaholics, and clients that are often discon-
nected are sleepers. Signatures are best for long sleepers — that is, when
the period of disconnection is long and difficult to predict. The AT method
is best for workaholics. Finally, TS is shown to be advantageous when
the rate of queries is greater than the rate of updates, provided that the
clients are not workaholic.

An asynchronous method based on bit sequences is proposed in Jing
et al. [14]. In this method, the invalidation report is organized as a set of
bit sequences with an associated set of time stamps. Each bit in the
sequence represents a data item in the database. A bit “1” indicates that
the corresponding item has been updated since the time specified by the
associated time stamp, and a bit “0” indicates that the item has not changed.
The set of bit sequences is organized in a hierarchical structure. It is
shown that the algorithm performs consistently well under conditions of
variable update rate and client disconnection times. A scalable version of
the algorithm is also presented. In this version, rather than increasing the
number of bits in the report for large databases, the granularity of each
bit is increased so it represents groups of rarely changed items, instead
of just one item.

AU3833_C26.fm Page 678 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 679

Care must be taken so disconnected clients that miss invalidation
reports can reuse part of their cache. A client may miss cache invalidation
reports because it is disconnected. Synchronous methods surpass asyn-
chronous ones in that clients must only periodically tune in to read the
invalidation report instead of continuously listening to the channel; how-
ever, if the client remains inactive longer than the period of the broadcast,
the entire cache must be discarded, unless special checking is deployed.

Reading from the Broadcast
When, besides invalidation reports, clients also read data items from the
broadcast, several different data consistency models are reasonable [1].
For example, if clients do not cache data, if the server always broadcasts
the most recent values, and if there is no backchannel for on-demand
data delivery, then the latest value model [1] is a model that arise naturally.
In this model, clients read the most recent value of a data item. This
model is weaker than serializability because there is no notion of trans-
actions; that is, operations are not grouped into atomic units. When clients
cache data but are not allowed to perform any updates, an appropriate
consistency model is quasi-caching [2]. In this model, although the value
of the cached data may not be the most recent one, this value is guaranteed
to be within an allowable deviation as specified through per-client coher-
ency conditions. Quasi-caching is a reasonable choice in the case of long
disconnections or weak connectivity.

Transaction-Oriented Consistency

Whereas cache consistency protocols focus on ensuring the currency (or
temporal coherency) of the data read by the clients, the protocols presented
next seek to ensure in addition some form of serializability among trans-
actions executed at the clients and transactions executed at the server.

Pushing Control Information
The broadcast facility can be exploited in various algorithms for concur-
rency control. Using the broadcast facility in optimistic concurrency control
protocols to invalidate some of the client transactions is suggested in
Barbará [4]. In optimistic concurrency control, the transaction scheduler at
the server checks at commit time whether or not the execution that includes
the client’s transaction to be committed is serializable. If it is, it accepts
the transaction; otherwise, it aborts it. In the proposed enhancement of
the protocol, the server periodically broadcasts to its clients a certification
report (CR) that includes the readset and writeset of active transactions

AU3833_C26.fm Page 679 Wednesday, August 16, 2006 4:40 PM

680 ■ Mobile Middleware

that have declared their intentions to commit to the server during the
previous period and have successfully been certified. The MH uses this
information to abort from its transactions those transactions whose readsets
and writesets intersect with the current CR; thus, part of the verification is
performed at the MH. Only when the MH cannot detect any conflict is the
server involved in completing the verification. If the transaction can commit,
the server will install the values in the central database and notify the MHs
via broadcast.

Reading from the Broadcast

In this case, clients perform transactions that involve data items at their
local cache, the server, and the broadcast channel. Protocols in this
category differ on whether clients are allowed to perform updates. In this
case, updates at the client are performed at local copies. Client transactions
are subsequently validated at the server. Read-only client transactions are
often allowed to commit locally.

A characterization of currency (temporal coherency) and consistency
(semantic coherency) of broadcast data as well as general techniques for
enforcing them are given in Pitoura et al. [27]. Currency characterizes the
freshness of the values seen by the clients with regard to the values at
the server as well as the temporal discrepancy among the values read by
the same transaction. Five different forms of consistency are presented
based on relaxing serializability. Similar isolation levels for read-only
transactions are proposed in Seifert and Scholl [29].

Different methods for enforcing the currency and consistency of client
read-only transactions are evaluated in Pitoura et al. [25]. With the inval-
idation method, the server broadcasts an invalidation report with the data
items that have been updated since the broadcast of the previous report.
Transactions that read obsolete items are aborted. With the serialization
graph testing (SGT) method, the server broadcasts control information
related to conflicting operations. Clients use this information to ensure that
their read-only transactions are serializable with the server transactions.
With multiversion broadcast [24,26], multiple versions of each item are
broadcast, so client transactions always read a consistent database snapshot.
Multiple versions of data items are also explored in Seifert and Scholl [29]
for supporting read-only transactions with varying degrees of isolation.

The approach reported by Shanmugasundaram et al. [31] allows updates
at the client. It enforces a weaker form of serializability called update
consistency. Update consistency requires that (1) all update transactions
are serializable, and (2) each read-only transaction is serializable with
respect to the subset of update transactions it (directly or indirectly) reads
from. The values read are current as of the beginning of the broadcast

AU3833_C26.fm Page 680 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 681

cycle. To ensure update consistency, besides serializing all transactions
submitted to it (including those possibly originated at the clients), the
server transmits a control matrix to its clients. The control matrix includes
information about conflict operations and is used by the client to determine
whether a read operation can proceed. To minimize the size of the control
matrix, two approximations are proposed: the F-matrix and the R-matrix.
When compared to the SGT method, besides supporting client updates,
the control matrix differs in that conflict information is broadcast per pair
of data items, whereas with SGT conflict information is represented in the
form of a serialization graph.

To support partial validation of client transactions locally at the clients,
an approach based on time-stamp ordering is proposed in Lee et al. [17].
The server broadcasts along with the data items their read and write time
stamps, so clients can partially validate their transactions locally before
sending them to the server for final validation.

Consistency Support in Commercial
Mobile Database Systems
Commercial mobile database systems focus mainly on handling discon-
nected operation. All commercially available mobile databases employ a
similar data replication approach: one or more remote databases on the
mobile hosts have replicas of the master database stored in the fixed host.
Changes are captured locally to each database. When reconnected to the
fixed network, the MH may initiate a synchronization that reconciles the
copies of the databases by creating a unique consistent database state on
remote and master databases. This section provides an overview of the
following current commercial mobile database solutions: SyncML® and
HotSync®, IBM DB2® Everyplace®, Oracle Lite™, Microsoft SQL Server CE,
and Sybase Anywhere™. We briefly describe these systems with respect
to data synchronization, conflict resolution, and transaction execution.Table
6.1 summarizes briefly the approach taken by each system.

SyncML and HotSync

Due to the great importance of synchronization in mobile computing, and
especially on palm-like devices, an industry consortium of several major
software firms has defined a standard synchronization protocol called
SyncML [33]. This protocol specifies cross-format and cross-platform syn-
chronization capabilities. SyncML works with a standard set of messages
represented as eXtensible Markup Language (XML) documents and defines
seven different synchronization modes:

AU3833_C26.fm Page 681 Wednesday, August 16, 2006 4:40 PM

682 ■ Mobile Middleware

Ta
bl

e
26

.1
C

on
ne

ct
iv

it
y

an
d

C
om

m
er

ci
al

 M
ob

ile
 D

at
ab

as
e

Sy
st

em
s

C
o

m
m

er
ci

al
 M

o
b

ile

D
B

H
o

ar
d

in
g

U
n

it
U

p
d

at
es

 a
t

th
e

C
lie

n
t

Sy
n

ch
ro

n
iz

at
io

n
;

Pr
o

to
co

l
C

o
n

fl
ic

t
Re

so
lu

ti
o

n

IB
M

 D
B

2
Ev

er
yp

la
ce

Sy
n

ch
ro

n
iz

at
io

n

o
b

je
ct

s;
 s

in
gl

e
ta

b
le

s,
 o

r
u

n
io

n
s

an
d

 jo
in

s
o

f t
ab

le
s

O
n

ly
 o

n
 u

p
d

at
ab

le

sy
n

ch
ro

n
iz

at
io

n
 o

b
je

ct
s

d
efi

n
ed

 o
n

 a
 s

in
gl

e
ta

b
le

 w
it

h

n
ei

th
er

 a
gg

re
ga

te
 f

u
n

ct
io

n
s

n
o

r
d

u
p

lic
at

e
el

im
in

at
io

n

Tw
o

-w
ay

;
m

es
sa

ge
-b

as
ed

Tr
an

sa
ct

io
n

 l
ev

el

O
ra

cl
e

Li
te

Sn
ap

sh
o

ts
(m

at
er

ia
liz

ed

vi
ew

s)

O
n

ly
 o

n
 u

p
d

at
ab

le
 s

n
ap

sh
o

ts

th
at

 c
o

rr
es

p
o

n
d

 t
o

 s
im

p
le

sn

ap
sh

o
ts

 th
at

 d
o

 n
o

t c
o

n
ta

in

ag
gr

eg
at

e
fu

n
ct

io
n

s,

gr
o

u
p

in
g

el
em

en
ts

, d
u

p
lic

at
e

el
im

in
at

io
n

, s
u

b
q

u
er

ie
s,

jo

in
s,

 a
n

d
 s

et
 o

p
er

at
io

n
s

Tw
o

-w
ay

; c
o

m
p

le
te

an

d
 i

n
cr

em
en

ta
l

U
p

d
at

e,
 u

n
iq

u
en

es
s,

an

d
 d

el
et

e
co

n
fl

ic
ts

(e

it
h

er
 t

h
e

M
H

o

r
th

e
FH

 w
in

s)

M
ic

ro
so

ft
 S

Q
L

Se
rv

er
 C

E
Ta

b
le

s
an

d
 s

u
b

se
ts

o

f
ro

w
s

an
d

co

lu
m

n
s

Pe
rm

it
te

d
O

n
e-

 a
n

d
 t

w
o

-w
ay

;
m

es
sa

ge
-b

as
ed

Pr
io

ri
ty

-b
as

ed

Sy
b

as
e

A
n

yw
h

er
e

A
n

y
(S

Q
L

q
u

er
ie

s)
Pe

rm
it

te
d

Tw
o

-w
ay

;
m

es
sa

ge
-b

as
ed

an

d
 s

es
si

o
n

-b
as

ed

B
u

si
n

es
s

ru
le

s

AU3833_C26.fm Page 682 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 683

■ Two-way sync — The MH and FH exchange information about
modified data in these devices. The MH sends the modifications first.

■ Slow sync — All items are compared with each other on a field-
by-field basis. In practice, this means that the MH sends all its data
to the FH and the FH does the sync analysis (field by field).

■ One-way sync from MH only — The MH sends its modifications to
the FH, but the FH does not send its modifications back to the MH.

■ Refresh sync from MH only — The sends all its data from a database
to the FH (i.e., exports). The FH is expected to replace all data in
the target database with the data sent by the MH.

■ One-way sync from FH only — The MH gets all modifications from
the FH, but the MH does not send its modifications to the FH.

■ Refresh sync from FH only — The FH sends all its data from a
database to the MH. The MH is expected to replace all data in the
target database with the data sent by the FH.

■ FH-alerted sync — The FH triggers the MH to start a synchronization.

Palm’s HotSync is an example of a widely used synchronization pro-
tocol. HotSync supports a two-way synchronization that enables updates
to be performed on the MH and the FH. Every data record on the MH
has a set of status bits that indicate whether the record has been created,
modified, or deleted after the last synchronization. The FH maintains a
copy of each MH that connected to that FH to perform synchronization.
The synchronization process is initiated by the MH. Two synchronization
modes are distinguished:

■ Fast, if the MH was last synchronized with the FH. The MH sends
to the FH only the records that have changed from the last
synchronization depending on the value of the status bits. The FH
updates its copy and sends updates to the MH.

■ Slow, if the last synchronization times of the MH and FH do not
match. In this case, the synchronization software performs a field-
by-field comparison to capture the changes.

Depending on the status bit values, HotSync determines which actions to
perform (see Table 26.2).

When updates are in conflict, conflict resolution is performed. For
example, a row in a database table, present in the master and some remote
databases, could be modified by two different users, one working on its
MH copy and another working on the master copy residing on the FH.
The two users would request a modification to the master database, thus
causing a dilemma: Which of the two updates is the one that should be
saved to the FH and propagated to the other database replicas? Several

AU3833_C26.fm Page 683 Wednesday, August 16, 2006 4:40 PM

684 ■ Mobile Middleware

conflict-resolution techniques can be devised; for example, Intellisync®

for PalmPilot™ by Pumatech implements five options:

■ All conflicting items are added; this option creates entirely new
records on both the MH and the FH for the conflicting fields.

■ All conflicting items are ignored; this option ignores any differences
between fields in the MH and the FH.

■ A user notification is sent.
■ MH wins and overrides data on the FH.
■ FH wins and overrides data on the MH.

Note that the choice of the conflict-resolution strategy is application
dependent.

IBM DB2 Everyplace

IBM’s solution [12,13] for mobile computing relies on a three-tier archi-
tecture, as depicted in Figure 26.4. The following components of this
architecture are relevant for mobile usage:

■ DB2 Everyplace is a small-footprint relational database for mobile
and embedded devices. It provides a Structure Query Language
(SQL) interface to create, manipulate, and query tables; however,
stored procedures, user-defined functions, triggers, views, and sub-
queries are not supported. An additional graphical user interface
(GUI) supports querying by example (QBE).

■ Sync Client is an application residing on the MH that triggers
synchronization between the DB2 Everyplace and the master data-
base; for that, it communicates with the Sync Server. The synchro-
nization follows the specification of SyncML.

Table 26.2 HotSync Logic

Status on MH Status on FH Action

Created Not present Send to FH
Not present Created Send to MH
Deleted No change Delete from FH
Deleted Updated Send to MH
No change Updated Send to MH
Updated Updated Conflict resolution

AU3833_C26.fm Page 684 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 685

■ Sync Server is a middle-tier application that coordinates synchro-
nization between the mobile user and the master database. It
authenticates the mobile user and propagates all changes of the
mobile database to the master database and vice versa.

DB2 Everyplace allows synchronization objects to be defined that repre-
sent the part of the master database to be replicated. Synchronization
objects can correspond to single tables or unions and joins of tables. Filter
rows and columns can be selected. Two types of synchronization objects
are distinguished:

■ Updatable synchronization objects rely on a single table and neither
contains aggregate functions nor duplicates elimination. Also, integ-
rity constraints defined on the master tables cannot be replicated
on the MH.

■ Read-only synchronization objects allow arbitrary (materialized)
views on the master database.

The updates on updatable synchronization objects are performed within
the frame of transactions. DB2 Everyplace supports savepoints but no trans-
action nesting; however, transactions can be executed on the MH during
disconnections. The consistency between the mobile and the master database
is ensured by a synchronization process. DB2 Everyplace allows a two-way
synchronization using a message-based protocol. Replication is asynchro-
nous. It is possible to control how frequently the changes are applied to the
target by specifying time intervals, events, or both. But, for mobile environ-
ments that have occasionally connected clients, data is replicated on demand.

Figure 26.4 IBM DB2 Everyplace architecture.

DB2 Everyplace
DBMS

DB2 Everyplace
database

AU3833_C26.fm Page 685 Wednesday, August 16, 2006 4:40 PM

686 ■ Mobile Middleware

The propagation of the changes of the mobile database to the master
database can be initiated either by the mobile user or the mobile appli-
cation using the Sync Client. Figure 26.5 depicts the data synchronization
flow when the MH database submits changes to the FH database. After
a change has been made to the MH database, the user selects synchro-
nization from the device display. The synchronization request (holding
the data to be synchronized) is saved in an input queue on the FH, waiting
for a reply from the FH database. After the request is acknowledged, the
request data is written in a staging table, where the data waits for other
updates to be completed. The data is then copied in the mirror table,
where potential conflicts are resolved. Changes to the mirror table are
recorded in the DB2 log files. The DataPropagator capture program
records all the changes in the mirror table and sends them to a change
data table, where the FH database collects its updates. The administration
control database checks the authentication and subscriptions.

Figure 26.6 illustrates the reverse process — the synchronization flow
when the FH database submits its changes to the MH databases. We do
not describe again here all the steps involved. It is worth pointing out,
though, that the synchronization server sends to an MH database only the
data to which the MH is subscribed.

Conflicts are handled by the Sync Server running on the FH. This
component logs and checks the version of each record in each table in
the replication subscription for the FH and MH databases. The Sync Server

Figure 26.5 Sync from MH to FH.

DB2 Everyplace
table

AU3833_C26.fm Page 686 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 687

can therefore determine whether or not an MH is trying to update a row
based on an obsolete version of the data for that row. In such cases, the
update is rejected. The conflict resolution is performed when data is staged
to the mirror table.

Oracle Lite

Oracle Lite is a small-footprint, Java-enabled database that can run on mobile
clients. Currently, it is available as Oracle Database Lite 10g [21,22]. As
illustrated in Figure 26.7, Oracle Lite relies on a three-tier architecture. In
the following, we present Oracle Lite in cooperation with an Oracle 10g
master database on the server side. The following components of the Oracle
Lite architecture are relevant with respect to mobility and consistency issues:

■ Mobile SQL provides an interactive SQL interface to an Oracle Lite
database. This interface allows the execution of SQL commands
on the mobile database (e.g., tables and views can be created,
queried, and manipulated).

■ Mobile Sync is a small-footprint application that runs on the
mobile client. It enables a synchronization between the Oracle
Lite and the master database based on materialized views (also
called snapshots).

■ Mobile Server is a middleware application that maintains the mate-
rialized views. These materialized views are created for each user.
When a synchronization is triggered, it coordinates the synchroni-

Figure 26.6 Sync from FH to MH.

DB2 Everyplace
table

AU3833_C26.fm Page 687 Wednesday, August 16, 2006 4:40 PM

688 ■ Mobile Middleware

zation process. In particular, it authenticates the user and propa-
gates all relevant changes from Oracle Lite to the master database
and vice versa.

■ Mobile Server Repository contains all the information required to
run the Mobile Server (e.g., the user profiles and definitions of the
materialized views). The information is usually stored in the master
database.

Data on a mobile database is replicated from the master database. The
replication takes place in the form of snapshots that are created by the
Mobile Server as part of the application installation. Snapshots allow the
specification of parameterized SQL queries. In this way, it is possible to
replicate entire tables, subsets of columns, and subsets of rows, as demanded.
A snapshot is simple if it does not contain aggregate functions, grouping
elements, duplicate elimination, subqueries, joins, and set operations; other-
wise, it is complex. Oracle Lite distinguishes two types of snapshots:

■ Read-only snapshots are used when only local queries will run on
the mobile database. In this case, no changes can be done by local
processing. Only changes on the master database can be written to
the snapshot. This approach implements a unidirectional replication.

■ Updatable snapshots are used when both queries and updates will
be supported on the mobile database. Changes to these snapshots
are propagated to the master database and vice versa. This approach
hence represents a two-way or bidirectional replication. An updat-
able snapshot is restricted to a simple one.

Figure 26.7 Oracle Lite architecture.

Oracle Lite
database

Oracle Lite
DBMS

Mobile Sync
module

Mobile
Server

Mobile Server
respository

AU3833_C26.fm Page 688 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 689

Users can make changes in a mobile database while the MH is
disconnected and can synchronize them with the master database. In
other words, transactions can be executed on the MH while the MH is
disconnected. Oracle Lite has built-in Java components that support
savepoints but no nested transactions. Consistency between client and
server is ensured by a snapshot refresh process which propagates and
applies the relevant changes to the corresponding databases. This
process involves three steps:

■ Changes to updatable snapshots are sent to the master database.
■ The valid transactions of the mobile client are applied on the

master database (in the same sequence as they were performed
at the snapshot).

■ Snapshots are synchronized with the data in the master database.

Three modes of refreshes are supported:

■ Fast refresh transmits only the changes (deltas); this option is viable
only for simple snapshots.

■ Complete refresh completely replaces the last snapshot by a new
one.

■ Optimum refresh attempts to perform a fast refresh; if this is not
possible (e.g., due to a snapshot being complex), a complete
refresh is executed.

During synchronization, conflicts are detected by the master database
server. The following types of conflicts are handled:

■ Update, when the snapshot old row values do not match the current
FH row values

■ Uniqueness, detected if a unique constraint is violated during an
insert or update of a replicated row

■ Delete, when a row is deleted from an updatable snapshot, and
the old values of the deleted row do not match the current values
at the master database

The Mobile Server uses winning rules to automatically resolve conflicts;
either the client or the server wins. When the client wins, the Mobile
Server automatically applies client changes to the server. When the server
wins, the Mobile Server automatically composes changes for the client.
The conflict-resolution mechanism can be changed by the user by setting
the winning rule to “client wins” and attaching before triggers to the
corresponding database tables. The triggers compare old and new row
values and resolve client changes as specified.

AU3833_C26.fm Page 689 Wednesday, August 16, 2006 4:40 PM

690 ■ Mobile Middleware

Microsoft SQL Server CE
Microsoft relies on a two-tier approach. As depicted in Figure 26.8, a
Microsoft SQL Server CE [19] database is running on the mobile client. On
the server side, a usual Microsoft SQL Server maintains the master database.
The architecture of Microsoft SQL Server CE consists of the following
components that are relevant for supporting consistent replication:

■ SQL Server CE is a small-footprint SQL database for mobile and
embedded devices that supports the creation and manipulation of
tables. Stored procedures, user-defined functions, triggers, views,
and subqueries are not supported.

■ Client Agent is an application residing on the mobile client. Using
ActiveSync®, it triggers synchronization between the mobile and
the master database. For that, it connects through the Hypertext
Transfer Protocol (HTTP) to the Internet Information Server (IIS)
residing on the FH.

■ ActiveSync is an application that is used to perform communication
between the mobile client and database server. ActiveSync is respon-
sible for the synchronization between the mobile and the master
databases.

■ Server Agent is a module of IIS on the FH. It receives the database
statements from the mobile clients and unpacks and propagates
them to the corresponding master database. For database queries,
it sends back the results to the corresponding mobile clients.

Figure 26.8 Microsoft SQL Server CE architecture.

Active
Sync

Client
Agent

Server
Agent

Replication
Provider

AU3833_C26.fm Page 690 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 691

■ Replication Provider defines the publications that specify the tables
of the master database to be replicated on the mobile clients. SQL
Server CE allows the replication of entire tables and subset of rows
and columns, as well; however, views cannot be replicated.

The SQL Server CE allows two types of replication: (1) message-
based replication and (2) merge replication. The former relies on a one-
way synchronization from the FH to the MH, and the latter allows two-
way synchronization. In both cases, the synchronization between the
mobile and the master databases is initiated and controlled by the
Windows CE application. For merge replication, changes on the mobile
database occur under transactional control. These transactions can be
executed on the mobile client even when the MH is disconnected. SQL
Server CE supports savepoints and nested transactions. Transactions can
be nested up to a depth of five levels. Updates made within the nested
transaction are not visible to the top-level transaction. Results become
visible to the parent subtransaction after the nested subtransaction has
committed. Changes are not visible outside the top-level transaction
until that transaction commits.

Data synchronization is performed through a message-based commu-
nication protocol. An application on an MH subscribes to the publication
through the replication object. Updates from the subscribers are sent to
the publisher that merges these updates with the updates from all the
other subscribers. Eventually, the publisher sends the updates back to the
subscribers to achieve consistency in the MH replicated databases. Pub-
lications are tailored to specific groups of users, so an MH will receive
only the updates to which it is subscribed.

When synchronization occurs, the client agent extracts all modifications
to data records and sends them to the server agent through HTTP.
Conversely, when the server agent propagates data changes at the pub-
lishing FH database back to the subscribing MH, it is the client agent that
applies these changes to the subscribing database. When synchronization
occurs, the server agent creates a new input message file on the IIS server
and writes the data modification requests sent by the client agent. When
the input message file has been written, the server agent initiates a
reconciler process. The reconciler detects and resolves conflicts. Conflict
resolution can be devised to behave with simple strategies. The default
conflict resolver is priority based. A subscriber can be set to have priorities.
The reconciler then checks update priorities and chooses the update with
the highest priority. Other strategies consider that the first change to
propagate to the publisher software always wins the conflict. More com-
plex conflict-resolution rules can be customized by the application pro-
grammer. In addition, an interactive resolver is also supplied.

AU3833_C26.fm Page 691 Wednesday, August 16, 2006 4:40 PM

692 ■ Mobile Middleware

Sybase Anywhere

Adaptive Server Anywhere (ASA) [32] is a small-footprint relational data-
base. The architecture of Sybase Anywhere relies on a two-tier client-
server model. On the mobile client side, an instance of Adaptive Server
Anywhere is running. On the server side, the master database can be a
Sybase Enterprise Edition database. Sybase Anywhere supports three types
of replication between server and client:

■ SQL Remote is intended for a two-way, message-based replication
involving a consolidated database server and large number of
remote databases.

■ Mobilink® is intended for a two-way, session-based replication. It
also supports non-Sybase databases. It is designed for replication
between a central consolidated database and a large number of
remote databases. At the end of each synchronization session, the
databases are consistent.

■ Replication Server is intended for a two-way, connection-based
replication. It is suited to replicating data between a small number
of enterprise databases connected by a high-speed network.

The Replication Server is not suited for occasionally connected devices.
In contrast, Mobilink and SQL Remote provide more flexible solutions in
environments where the remote machines are mobile or are only occa-
sionally connected. For these reasons, we will discuss only SQL Remote
and Mobilink because they are more suited to mobile computing needs.
In both replication technologies, the replicated data can be tables, subsets
of rows and subsets of columns, joins, and SQL queries.

SQL Remote uses a publish and subscribe process. Synchronization
data is saved in publications at the FH database, where the administrator
subscribes the MH databases to the publications they require. The publi-
cations are sent to the relevant MHs. The MHs in turn send their synchro-
nization data to the FH to be incorporated in the FH database. The
synchronization is message based, as shown in Figure 26.9. The synchro-
nization process in SQL Remote consists of the following steps:

■ At the MH and FH database side, a message agent coordinates the
synchronization using a transaction log. The transaction log tracks
all committed changes to the corresponding database.

■ Periodically, the message agent on the FH database scans the
transaction log and sends the relevant changes to MH databases
that are subscribed to those publications.

■ The message agent at the MH accepts the messages sent from the
FH and applies the transactions to its own database.

AU3833_C26.fm Page 692 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 693

■ At any time, the MH can run the message agent to collect and
send to the FH database the transactions made locally.

■ The message agent at the FH processes the messages received
from the MH and applies the transactions to its own database.

Conflict resolution is performed at the FH through the use of conflict triggers.
Mobilink supports a session-based synchronization. The logic required

to keep track of changes to the database, to prepare data to send to the
server, and to incorporate data that it receives in reply can be injected
either into the mobile application or into the ASA database management
system (DBMS). As indicated in Figure 26.10, the synchronization is then
coordinated either by the mobile application or the mobile database.
Mobilink’s session-based synchronization performs the following steps:

■ The MH application prepares and transmits to the FH a list of all
rows that have been modified since the last synchronization.

■ The synchronization server, running on the FH, prepares and
transmits data changes from the FH database to the MH application.

■ The MH application then sends a confirmation message to the
synchronization server confirming that the changes have been
made to the data. The transaction is recorded in the FH database.

■ The synchronization server sends the MH application a message
confirming that synchronization is complete. The connection between
the MH application and the FH is shut down.

Figure 26.9 Sybase SQL remote architecture.

Sybase Anywhere
DBMS

Sybase Anywhere
database

AU3833_C26.fm Page 693 Wednesday, August 16, 2006 4:40 PM

694 ■ Mobile Middleware

In situations where the data rarely changes, Mobilink uses a time-stamp
technique to synchronize only data that has changed since the last syn-
chronization. It uses a snapshot technique when many changes are fre-
quently carried out on the data. In that case, the software synchronizes all
the data in the database.

To resolve conflicts, business rules must be implemented to determine
which data is correct. Conflict resolution is performed on the FH database,
and then conflict-resolution actions are replicated to the remote databases.
Transactions can use savepoints. All savepoints are released when a
transaction ends. Transactions can be nested. Changes to the database are
permanent only after the uppermost transaction is committed. The trans-
actions can run on the mobile clients even when the MH is disconnected.
In this case, savepoints are not considered.

Conclusions
In this chapter, we discussed consistency management in mobile com-
puting. Our focus was on both file-based and transaction-oriented
consistency. An important issue that requires further investigation is
building applications and experimenting with the various consistency
models because performance results are lacking. In particular, while
research in consistency maintenance related to disconnected operation
has already been integrated in a number of commercial products,
research in weak connectivity and hybrid delivery are still not part of
current practice. An interesting direction for future work also includes
seamless consistency in the case of ad hoc network architectures with

Figure 26.10 Sybase Mobilink architecture.

Sybase Anywhere
DBMS

Sybase Anywhere
database

Mobilink
sync server

AU3833_C26.fm Page 694 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 695

no fixed hosts. In this case, most of the consistency models and
protocols presented in this chapter must be revised. Finally, another
important new direction is the study of seamless consistency in the
case of very small devices, such as in sensor networks.

References
[1] Acharya, S., Franklin, M.J., and Zdonik, S., Disseminating updates on broadcast

disks, in Proc. of the 22nd Int. Conf. on Very Large Data Bases (VLDB’96),
Bombay, India, September 1996.

[2] Alonso, R., Barbará, D., and Garcia-Molina, H., Data caching issues in an
information retrieval system, ACM Trans. Database Syst., 15(3), 359–384,
1990.

[3] Badrinath, B.R. and Phatak, S., Data partitioning for disconnected client
server databases, in Proc. of the 1st Int. Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE’99), Seattle, WA, August, 1999.

[4] Barbará, D., Certification reports: supporting transactions in wireless sys-
tems, in Proc. of the IEEE 17th Int. Conf. on Distributed Computing Systems
(ICDCS’97), Baltimore, MD, May, 1997.

[5] Barbará, D. and Imielinski, T., Sleepers and workaholics: caching strategies
in mobile environments, VLDB J., 4(4), 567–602, 1995.

[6] Bernard, G. et al., Mobile databases: a selection of open issues and research
directions, SIGMOD Rec., 33(2), 78–83, 2004.

[7] Cetintemel, U., Keleher, P.J., Bhattacharjee, B., and Franklin, M.J., Deno: a
decentralized, peer-to-peer object-replication system for weakly connected
environments, IEEE Trans. Comput., 52(7), 943–959, 2003.

[8] Cherniack, M., Galvez, E.F., Franklin, M.J., and Zdonik, S.B., Profile-driven
cache management, in Proc. of the 19th Int. Conf. on Data Engineering
(ICDE’03), Bangalore, India, March, 2003, pp. 645–656.

[9] Davidson, S.B., Garcia-Molina, H., and Skeen, D., Consistency in partitioned
networks, ACM Comput. Surv., 17(3), 341–370, 1985.

[10] Demers, A., Petersen, K., Spreitzer, M., Terry, D., Theimer, M., and Welch,
B., The Bayou architecture: support for data sharing among mobile users,
in Proc. of IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’94), Santa Cruz, CA, December, 1994, pp. 2–7.

[11] Gray, J., Helland, P., O’ Neil, P., and Shasha, D., The dangers of replication
and a solution, in Proc. of the ACM SIGMOD Int. Conf. on Management of
Data, Montreal, Canada, June, 1996, pp. 173–182.

[12] IBM, IBM DB2 Everyplace Application and Development Guide Version 8.2,
IBM Corporation, Armonk, NY, 2004.

[13] IBM, IBM DB2 Everyplace Sync Server Administration Guide Version 8.2,
IBM Corporation, Armonk, NY, 2004.

[14] Jing, J., Elmagarmid, A.K., Helal, A., and Alonso, R., Bit-sequences: an
adaptive cache invalidation method in mobile client/server environments,
MONET, 2(2), 115–127, 1997.

AU3833_C26.fm Page 695 Wednesday, August 16, 2006 4:40 PM

696 ■ Mobile Middleware

[15] Kistler, J.J. and Satyanarayanan, M., Disconnected operation in the Coda
file system, ACM Trans. Comput. Syst., 10(1), 213–225, 1992.

[16] Kumar, P. and Satyanarayanan, M., Flexible and safe resolution of file
conflicts, in Proc. of the USENIX Winter Conf. on Unix and Advanced
Computing Systems, New Orleans, LA, January, 1995.

[17] Lee, V.C.S., Lam, K.-W., Son, S.H., and Chan, E.Y.M., On transaction pro-
cessing with partial validation and timestamp ordering in mobile broadcast
environments, IEEE Trans. Comput., 51(10), 1196–1211, 2002.

[18] Lu, Q. and Satyanarayanan, M., Improving data consistency in mobile
computing using isolation-only transactions, in Proc. of the 5th Workshop
on Hot Topics in Operating Systems (HotOS), Orcas Island, WA, May, 1995.

[19] Microsoft Corporation, http://msdn.microsoft.com/library/.
[20] Mummert, L.B., Ebling, M.R., and Satyanarayanan, M., Exploiting weak

connectivity for mobile file access, in Proc. of the 15th ACM Symp. on
Operating System Principles, Copper Mountain, CO, December, 1995.

[21] Oracle, Oracle Database Lite, Administration and Deployment Guide 10g
(10.0.0), Oracle Corporation, Redwood Shores, CA, 2004.

[22] Oracle, Oracle Database Lite, Developer’s Guide 10g (10.0.0), Oracle Cor-
poration, Redwood Shores, CA, 2004.

[23] Page, T.W., Guy, R.G., Heidemann, J.S., Ratner, D.H., Reiher, P.L. et al.,
Perspectives on optimistically replicated peer-to-peer filing, Software Pract.
Exper., 28(2), 155–180, 1998.

[24] Pitoura, E. and Crysanthis, P.K., Exploiting versions for handling updates
in broadcast disks, in Proc. 25th Int. Conf. on Very Large Data Bases
(VLDB’99), Edinburgh, Scotland, September, 1999.

[25] Pitoura, E. and Crysanthis, P.K., Scalable processing of read-only transactions
in broadcast push, in Proc. of the IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’99), Austin, TX, May, 1999.

[26] Pitoura, E. and Crysanthis, P.K., Multiversion data broadcast, IEEE Trans.
Comput., 51(10), 1224–1230, 2002.

[27] Pitoura, E., Crysanthis, P.K., and Ramamritham, K., Characterizing the tem-
poral and semantic coherency of broadcast-based data dissemination, in
Proc. of the 9th Int. Conf. on Database Theory (ICDT’03), Siena, Italy,
January, 2003.

[28] Dunham, M.H., Ren, Q., and Kumar, V., Semantic caching and querying,
IEEE Trans. Knowl. Data Eng., 15(1), 192–210, 2003.

[29] Seifert, A. and Scholl, M.H., Processing read-only transactions in hybrid data
delivery environments with consistency and currency guarantees, Mobile
Networks Appl., 8(4), 327–342, 2003.

[30] Serrano-Alvarado, P., Roncancio, C., and Adiba, M.E., A survey of mobile
transactions, Distributed Parallel Databases, 16(2), 193–230, 2004.

[31] Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R.M., and Ramam-
ritham, K., Efficient concurrency control for broadcast environments, in
Proc. of the ACM SIGMOD Int. Conf. on Management of Data, Philadelphia,
PA, June, 1999.

[32] Sybase, Sybase Adaptive Server Anywhere Reference, Version 6.0.3, Sybase,
Inc., Boulder, CO, 2000.

AU3833_C26.fm Page 696 Wednesday, August 16, 2006 4:40 PM

Seamless Consistency ■ 697

[33] SyncML Consortium, SyncML Sync Protocol, 1999–2000, http://www.open-
mobilealliance.org/tech/affiliates/syncml/syncmlindex.html.

[34] Tait, C.D. and Duchamp, D., An efficient variable-consistency replicated file
service, in Proc. of USENIX File Systems Workshop, Ann Arbor, MI, May,
1992, pp. 111–126.

[35] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., and
Hauser, C.H., Managing update conflicts in Bayou, a weakly connected
replicated storage system, in Proc. of the 15th ACM Symp. on Operating
System Principles, Copper Mountain, CO, December, 1995.

[36] Walborn, G. and Chrysanthis, P.K., PRO-MOTION: support for mobile
database access, Pers. Ubiquitous Comput., 1(3), 171–181, 1997.

[37] Walborn, G. and Chrysanthis, P.K., Transaction processing in PRO-MOTION,
in Proc. of the 14th ACM Symp. on Applied Computing (SAC’99), San Anto-
nio, TX, March, 1999.

[38] Pitoura, E. and Bhargava, B.K., Data consistency in intermittently connected
distributed systems, IEEE Trans. Knowl. Data Eng., 11(6), 896–915, 1999.

AU3833_C26.fm Page 697 Wednesday, August 16, 2006 4:40 PM

AU3833_C26.fm Page 698 Wednesday, August 16, 2006 4:40 PM

699

Chapter 27

Seamless Service Access

via Resource Replication

Paulo Ferreira and Luís Veiga

CONTENTS

Introduction ...700
Programming Models ..701
Architecture ..702
Replica Management ...706

How To Replicate..706
Object Model ...707
File Model ..709

What To Replicate ...711
Object Model ...711

File Model .. 712

Memory Management..713
Distributed Garbage Collection of Replicated Objects.................................715

DGC Correctness with Replication...717
Scalability Issues ..718
Other Memory Management Techniques ..720

Garbage Collection of Replicated Files ...720
Adaptability ..721

Replication Policies..722
Conclusion ...723
Acknowledgments ...724
References ..724

AU3833_C27.fm Page 699 Wednesday, August 16, 2006 5:23 PM

700

■

Mobile Middleware

Introduction

Replication is a well-known technique for improving data availability and
application performance as it allows the collocation of data and code. Data
availability is ensured because, even in the presence of network failures,
data remains locally available; in addition, application performance is
potentially better (when compared to a remote invocation approach), as
all accesses to data are local. Several significant issues must be addressed
to take full advantage of replication. In this chapter, we address the
following: (1) replica management, (2) memory management, and (3)
adaptability. Note that many other issues are equally important [1], such
as how to merge or reconcile replicas that have diverged due to updates
being performed independently, but such issues are considered elsewhere
in this book.

Replica management is related to the fundamental issues of knowing
which data and how the data should be replicated. Memory management
addresses the need to ensure that the memory of mobile devices (e.g.,
PDAs, laptops) is occupied with useful data, which involves: (1) freeing
the memory occupied by useless replicas, which can be achieved by
garbage collecting such replicas, and (2) swapping out useful data to disk
or to remote computers. In addition, for object-based applications, memory
management is responsible for ensuring the referential integrity of the
objects graph. Adaptability is the capability applications have to control
and adapt to the resources that they use (e.g., memory, network) to better
deal with the variability of mobile environments; such variability affects
network bandwidth, network connection or disconnection, amount of
available memory, etc.

The above-mentioned issues are becoming more and more relevant as
we move from a traditional wired network of desktop computers to an
environment formed by mobile devices able to wirelessly connect to the
fixed network or take part in

ad hoc

networks. As a matter of fact, mobile
devices, when compared to desktop computers, are much more resource
constrained in terms of memory, network availability and bandwidth,
battery, etc. Also, applications running on such devices face a much more
dynamic environment given the natural movement of users and devices.

The fact that mobile devices impose severe constraints in terms of
such resources emphasizes the importance of the following: (1) The data
to be replicated should be data that is really needed, so memory is not
wasted; (2) replicated data that is no longer needed must be automatically
detected and garbage collected, thus releasing the memory occupied; and
(3) the underlying middleware must support flexible mechanisms so
applications can react and adapt to the dynamics of mobile environments
(e.g., variable network availability, amount of free memory on the device).

AU3833_C27.fm Page 700 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

701

Finally, portability and programmability are also relevant aspects that
must be taken into account by the mobile middleware. Mobile environ-
ments are characterized by the heterogeneity of devices, operating systems,
virtual machines, etc., so, the mobile middleware should be, as much as
possible, independent from such differences to be portable to a wide
range of platforms. Programmability means that the middleware should
release applications programmers from having to deal with system-level
issues and should provide a familiar application programming interface
(API); thus, the mobile middleware should not imply modification of either
the operating systems or the virtual machines and should not impose
radically new APIs.

In the remainder of this chapter, we first clarify the programming model
being considered, then we present the archetypical architecture for mobile
middleware that is used in this chapter, the mechanisms supporting how
and which data is replicated (for both object and file models), the
algorithms for the garbage collection (GC) of replicas, and the policies
allowing applications to control objects replication.

Programming Models

In general, applications can be developed according to several different
programming paradigms. These depend on the different abstractions sup-
ported by the underlying mobile middleware that, accordingly, provides
the corresponding API. For example, the middleware may simply provide
a file system API, or it may support more complex abstractions such as
tuples, objects, or relational entities. With regard to the issues addressed
in this chapter, the relevant characteristic of such paradigms is their ability,
or lack of it, to support arbitrary graphs of data. In fact, as explained
later, the existence of data graphs has a strong impact on deciding which
and how data must be replicated.

The object-oriented paradigm naturally supports the notion of data
graphs; the same applies to structured files whose contents include
references to other files (e.g., graphs of HTML files connected by URLs).
In this chapter, we consider two cases: (1) applications using arbitrary
graphs of data, and (2) applications that simply use plain unstructured
data (i.e., without containing references that allow data graphs to be
built). In the first case, we use the term

object

 to designate a datum that
can be an instance of a class, a Hypertext Markup Language (HTML) file,
etc.; thus, an object is simply a set of bytes that may contain references
to other objects. In the second case, we use the term

file

 to designate a
datum that is a set of unstructured bytes (thus, without the notion of
reference).

AU3833_C27.fm Page 701 Wednesday, August 16, 2006 5:23 PM

702

■

Mobile Middleware

Given that the programming model in which applications handle
arbitrary data graphs is the most widely used and is highly flexible, in
this chapter we focus our attention on this latter case, which we refer to
as the

object model

; however, we do also consider the file model, because
file system support is widespread and is well known both by users and
applications programmers. In this model, the mobile middleware offers a
file-based API (possibly extended with replication-specific functions) in
which there are no references between files.

The object model is arguably the most widely adopted programming
model. Object replication has been addressed by several projects, such as
Thor [2,3], OceanStore [4], Deno [5], OBIWAN [6,7], M-OBIWAN [8,9], DERMI
[10], Javanaise [11,12], Gold-Rush [13], Alice [14], and replicated CORBA™
[15], among others. Not all of these, however, have addressed with the same
level of concern the challenges raised by mobility environments.

Relevant projects supporting file replication include Coda [16,17], which
was the first to address the issue of disconnected work in distributed file
systems; also, Ficus [18], Rumor [19], and Roam [20,21] represent a line of
very interesting work regarding distributed file systems with growing
concerns of mobility, leading to the concept of

selective replication

, which
is a mechanism by which only the files that applications really need to
access are replicated, rather than a whole volume.

We do not consider the programming paradigm based on relational
databases given that applications developed according to this paradigm
are primarily query oriented, instead of navigation based (on a graph).
Operations on data are declaratively defined by SQL queries for insertion,
update, and removal of records. Data on different tables can be joined by
matching field values. Several queries can be composed into transactions
guaranteeing the properties of atomicity, consistency, isolation, and dura-
bility (ACID) [22]. In mobile computing, such ACID properties are relaxed
to provide acceptable consistency requirements while allowing concurrent
update on replicas placed in different nodes. One influential work regarding
database replication is the Bayou project [23–25], in which the merging of
replicas is specially considered. Replication of relational databases in mobile
computing has also been addressed in Mobisnap [26].

Architecture

Replication can be used in either client–server (CS) [27] or peer-to-peer
(P2P) [28] distributed systems. In CS systems, data is replicated from a
server into the mobile client device, where it is accessed, then, if needed,
data is sent back to the server. The servers have the fundamental purpose
of storing data persistently. In a CS architecture, data is shared among

AU3833_C27.fm Page 702 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

703

mobile clients always by intermediation of a server. With a P2P architec-
ture, any computer may behave either as a client or as a server at any
moment. In particular, for concerning replication, this means that a process
(P) running on a mobile device can either request the local creation of
replicas of remote data (P acting as a client) or be asked by another
process to provide data to be replicated (P acting as a server). Hybrid
architectures consider the coexistence of both approaches.

The P2P approach is generally more flexible than a CS architecture,
given that mobile devices are free to replicate data among them (e.g.,
epidemically [29]); this raises further problems in terms of consistency that
are considered elsewhere in this book. For CS and P2P architectures, the
issues of replica management, memory management, and adaptability are
equally relevant. Figure 27.1, presents an archetypical architecture illus-
trating the most important data structures with regard to the replication
of an objects graph. Objects X, Y, A, B, and C are created by the
application; their replicas (A’, B’, etc.) are created either upon the pro-
grammer’s request or automatically by the middleware, without having
been explicitly required by the application code but resulting from its
execution. Proxies-in and proxies-out, as well as references pointing to
them, are part of the middleware and are transparent to the programmer.

Without loss of generality, we assume that processes P1 and P2 run
in two different computers, and the initial situation is the following: (1)
P2 holds a graph of objects Y, A, B, and C; (2) object A has been replicated
from P2 to P1, thus we have A’ in P1; (3) A’ holds a reference to AproxyIn
(for reasons that will be made clear later); (4) given that B has not been
replicated yet, A’ points to BproxyOut instead (note that object A does
not distinguish B’ from B as they offer the same interface); and (5) object
X (created in P1) points to Y.

The most relevant data structures are the following:

■

Proxy-out/proxy-in pairs

 — A proxy-out stands in for an object
that is not yet locally replicated (e.g., BproxyOut stands for B’ in
P1). For each proxy-out there is a corresponding proxy-in [30].

■

GC-stubs and GC-scions

 — A GC-stub describes an outgoing inter-
process reference, from a source process to a target process (e.g.,
from object X in P1 to object Y in P2). A GC-scion describes an
incoming interprocess reference from a source process to a target
process (e.g., to object Y in P2 from object X in P1).

GC-stubs and GC-scions do not impose any indirection on the native
reference mechanism. In other words, they do not interfere with either the
underlying structure of references or the invocation mechanism. They are
simply GC-specific auxiliary data structures. Thus, GC-stubs and GC-scions

AU3833_C27.fm Page 703 Wednesday, August 16, 2006 5:23 PM

704

■

Mobile Middleware

should not be confused with (virtual machine) native stubs and scions (or
skeletons) used for Remote Method Invocation (RMI).

■

InPropList and OutPropList

 — These lists indicate the process from
which each object has been replicated, and the processes to which
each object has been replicated, respectively. Thus, each entry of
the InPropList/OutPropList contains the following information: prop-
Obj is the reference of the object that has been replicated into/to
a process; propProc is the process from/to which the object propObj
has been replicated; sentUmess/recUmess is a bit indicating if an
“unreachable” message (for distributed GC purposes) has been sent
or received (more details later).

Figure 27.1 Archetypical architecture for mobile middleware supporting object
replication.

AU3833_C27.fm Page 704 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

705

Another important aspect of this archetypical architecture is the func-
tionality supported by the above-mentioned data structures as well as the
interfaces they implement. In particular, proxies-out, being one of the
main entities of the mobile middleware responsible for the replication
mechanism, have to implement the same interface of the object they are
replacing. In addition, for reasons that will be made clearer later, appli-
cation objects also have to implement a few methods that are, in fact,
middleware code; however, these methods are not written by the appli-
cation programmer but are automatically generated either at compilation
or at runtime.

The interfaces implemented by each object and proxy-out/proxy-in
pairs are the following:

■

IA

,

IB

, and

IC

 are the remote interfaces of objects A, B, and C,
respectively, designed by the programmer; they define the methods
that can be invoked on these objects. (The same reasoning applies
to objects X and Y; however, given that they are not involved in
the replication scenario, we do not consider them.)

■

IProvider

 is an interface with methods

get

 and

put

 that supports
the creation and update of replicas; method

get

 results in the
creation of a replica and method

put

 is invoked when a replica
is sent back to another process (possibly to the process where it
came from to update its master replica).

■

IDemander

 and

IDemandee

 are interfaces that support the incre-
mental replication of an objects graph.

■

IProviderRemote

 is a remote interface that inherits from IProvider
so its methods can be invoked remotely.

In addition to the data structures already presented are five other
modules in the archetypical architecture (addressed in the following sec-
tions): (1)

object replication management

, which provides the mechanisms
supporting data replication; (2)

memory management

, which is responsible
for the distributed garbage collection of replicas; (3) the

policy engine

,
which triggers or mediates responses to events occurring in the system;
(4)

event handling

, which registers the relevant events occurring in the
system; and (5)

context management

, which abstracts resources and man-
ages the corresponding properties whose values vary during applications
execution.

When considering a file model (i.e., mobile middleware that provides
a possibly extended, well-known, traditional, file-based API), the arche-
typical architecture does not contain some of the data structures men-
tioned, for obvious reasons. In particular, the GC-stubs/GC-scions are not
required. Figure 27.1 is still valid, though; for example, the lists InPropList/

AU3833_C27.fm Page 705 Wednesday, August 16, 2006 5:23 PM

706

■

Mobile Middleware

OutPropList are still needed so the system keeps track of which files were
replicated into or from which process, and the policy engine still allows
the application to deal with mobile environment dynamics.

Replica Management

A fundamental issue concerning data replication is the impact of this
mechanism on the API. In other words, it is crucial that applications
programmers are not forced to deal with system details concerning
which and how data is effectively replicated. Such system issues (e.g.,
object faulting and resolving) must be handled transparently by the
underlying middleware when data gets replicated from one computer
to another. For example, when considering the object model, in which
distributed applications access a data graph, the referential integrity of
the graph must be ensured to avoid dangling references. In this section,
we address the following issues: (1) the mechanisms supporting objects
and files replication, and (2) how objects and files are chosen to be
replicated. These issues are analyzed taking into account the fact that
mobile devices impose strong constraints in terms of available memory
and network bandwidth.

How To Replicate

Object replication differs significantly from file replication. The difference
results from the fact that, with the object model, applications access data
by navigating on objects graphs. Such navigation does not occur when
applications access plain unstructured files. This difference has an impor-
tant impact on deciding how and which data should be replicated.

When an application running on a mobile device navigates on an
objects graph, its execution proceeds normally as long as all objects are
local. When the target object is not yet locally replicated, however, this
generates an object fault that must be resolved by the middleware;
therefore, the above-mentioned aspects regarding the replication of objects
(how and which) are strongly dependent on the navigation performed by
the application.

Regarding the file model, in which files are plain unstructured streams
of bytes, applications do not navigate on a graph while executing (in
contrast to the case where the object model is used); thus, applications
access local files by means of traditional system calls, such as “open,”
“read,” or “write,” which are offered by most operating systems and
possibly extended by the mobile middleware with replication-specific
capabilities. Among other functionalities, these extensions improve the

AU3833_C27.fm Page 706 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

707

memory usage in mobile devices by compressing file contents or repli-
cating just the blocks that are really necessary, for example. An interesting
situation in which files are replicated, possibly resulting from an explicit
request from the user, is the moving of files from a desktop computer
into a laptop or PDA.

Object Model

Given the memory restrictions imposed by mobile devices (when com-
pared to desktop computers), the replication of objects cannot be done
simply by serializing all the objects graphs in the originating computer
and sending them to another one. Such an approach (which is available
when using Java [31] or .NET™ [32] platforms) is clearly inappropriate due
to the high level of computing, communication, and memory resources
required; thus, the mobile middleware must handle incremental replication
(i.e., the partial replication of an objects graph). The incremental replica-
tion of an objects graph has two clear advantages when compared to the
replication of the whole reachability graph in one step: (1) the latency
imposed on the application is lower because it can immediately invoke
the new replica without waiting for the whole graph to be available, and
(2) only those objects that are really needed are replicated, thus reducing
the memory and network bandwidth required.

Situations when an application does not have to invoke every object
of a graph or when the computer on which the application is running
has limited memory or network bandwidth available are those in which
incremental replication is most useful. In some situations, however, it may
be better to replicate the whole graph; for example, if all objects are really
required for the application to work, if there is enough memory, and the
network connection will not be available in the future, then it is better
to replicate the transitive closure of the graph. The mobile middleware
must allow the application to easily make this decision at runtime (i.e.,
choosing between incremental or transitive closure replication mode).

Taking into account the archetypical architecture presented in Figure
27.1, we now describe how objects can be incrementally replicated from
process P2 into another process (P1). (Note that, in the initial situation,
A’ was replicated the same way that B will be, as explained later.) Starting
with the initial situation, the code in A’ may invoke any method that is
part of interface IB, exported by B, on BProxyOut (which A’ sees as being
B’). For transparency, this requires the system to detect and resolve the
corresponding object fault. All IB methods in BProxyOut simply invoke
on itself a method (which is part of the mobile middleware) called
BProxyOut.demand (belonging to interface IDemandee); this method runs
as follows (see Figure 27.2, in which the numbers refer to the items below):

AU3833_C27.fm Page 707 Wednesday, August 16, 2006 5:23 PM

708

■

Mobile Middleware

1. It invokes (remotely) method BProxyIn.get in P2.
2. BProxyIn.get invokes method B.get, thus creating B’, CProxyOut,

and CProxyIn and setting the references between them. Once this
method terminates, B’, BProxyOut, and CProxyOut are serialized
and sent to P1 (CProxyIn remains in P2). Note that A’ still points
to BProxyOut (and

vice versa

).
3. BProxyOut invokes B’.setProvider(this.provider) so B’ also points

to BProxyIn; this is necessary because the application can later
decide to update replica B (by invoking method B’.put, which in
turn will invoke BProxyIn.put) or to refresh replica B’ (method
BProxyIn.get).

4. BProxyOut invokes A’.updateMember (B’,this) so A’ replaces its
reference to BProxyOut with a reference to B’.

5. Finally, BProxyOut invokes the same method on B’ that was
invoked initially by A’ (which triggered this whole process) and
returns accordingly to the application code.

6. From this moment on, BProxyOut is no longer reachable in P1
and will be reclaimed by the garbage collector of the underlying
virtual machine.

It is worth noting that, when B gets replicated in P1, as described
above, further invocations from A’ on B’ will be normal direct invocations
with no indirection at all. Later, if and when B’ invokes a method on
CProxyOut (standing in for C’, which is not yet replicated in P1), an object
fault occurs; this fault will be resolved with a set of steps similar to those

Figure 27.2 Incremental object replication.

AU3833_C27.fm Page 708 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

709

previously described. In addition, note that this mechanism does not imply
modification of the underlying virtual machine. This fact is key to the
portability of the mobile middleware supporting incremental replication.

The replication mechanism just described is very flexible in the sense
that it allows each object to be individually replicated; however, this
process has a cost, resulting from the creation and transfer of the associated
data structures (i.e., proxies). To minimize this cost, the mobile middleware
must allow an application to replicate a set of objects as a whole (i.e., a
cluster of objects having only a proxy-in/proxy-out pair).

A cluster is a set of reachable objects that are part of a reachability
graph; for example, if an application holds a list of 1000 objects, it is
possible to replicate part of the list so only 100 objects are replicated and
a single proxy-in/proxy-out pair is effectively created and transferred
between processes. Thus, the middleware must allow the amount of objects
in the cluster to be determined at runtime by the application. The appli-
cation specifies the depth of the partial reachability graph that it wants to
replicate as a whole. This is an intermediate solution between incrementally
replicating each individual object and replicating the whole graph.

File Model

Concerning file replication, the previously mentioned memory and net-
work bandwidth restrictions of mobile devices are obviously equally valid;
thus, the mobile middleware, possibly with cooperation from the operating
system, must minimize both the space occupied by replicated files and
network usage. This has been done in previous distributed file systems
for fixed networks, either by compressing file contents or by replicating
just the needed blocks (instead of whole files) [33].

A very interesting and promising approach aimed at reducing the
amount of memory consumed by replicated files explores replica content
similarities [34–36]. The idea consists of applying the SHA-1 hash function
[37] to portions of the contents of each replica; each portion is called a

chunk

. The probability of two distinct inputs to SHA-1 producing the
same hash value is far lower than the probability of hardware bit errors.
Relying on this fact, the obtained hash values can be used to univocally
identify their corresponding chunk contents. From this assumption, if two
chunks produce the same output upon application of the SHA-1 hash
function, then they are considered to have the same contents. If both
chunks are to be stored locally at the same computer, then only the
contents of one of them must be effectively stored. Note that, in a similar
way, if one of the chunks is to be sent to a remote machine that is holding
the other chunk, then the actual transference of the contents over the
network can be avoided.

AU3833_C27.fm Page 709 Wednesday, August 16, 2006 5:23 PM

710

■

Mobile Middleware

A content-based approach is employed to divide replica contents into
a set of nonoverlapping chunks, based on Rabin’s fingerprints [38]. As a
result, chunks may have variable sizes, depending on their contents. An
important property of such a chunk division approach is that it minimizes
the consequences of insert-and-shift operations in the global chunk struc-
ture of a replica. The expected average chunk size may, however, be
parameterized by controlling the number of low-order bits from the output
of the fingerprint that are considered by the chunk division algorithm.
Moreover, to prevent cases where abnormally sized chunks might be
identified, a minimum and maximum chunk dimension is imposed.

On each file system peer is a common chunk repository that stores
all data chunks, indexed by their hash value, that comprise the contents
of the files that are locally replicated (see Figure 27.3). The data structures
associated with the content of locally replicated files simply store pointers
to chunks in the chunk repository. Hence, the contents of an update to
a replica, or the whole replica, consists of a sequence of data chunks
stored in the chunk repository.

When a file replica is written, a data chunk is either created or modified,
then its hash value is calculated and the chunk repository is examined to
determine if an equally hashed chunk is already stored. If not, a new
entry corresponding to the new chunk is inserted in the repository. If a
similar chunk already exists, a new pointer to that chunk is used. So, if
different file replicas or versions of the same file replica contain data
chunks with similar contents, they share pointers to the same entry in the
chunk repository, thus reducing memory usage by the file system.

Replicating a file from one computer to another also makes use of the
chunk repositories at each peer. When a chunk has to be sent across the
network to another peer, only its hash value is sent initially. The receiving

Figure 27.3 A file replica contents, the corresponding list of chunks, and the
repository including them.

h2

AU3833_C27.fm Page 710 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

711

peer then looks up its chunk repository to see if that chunk is already
stored locally. If so, it avoids the transference of the contents of that chunk
and simply stores a pointer to the already existing chunk; otherwise, the
chunk contents are sent and a new chunk is added to the repository. To
deal with the deletion of unused chunks from a repository, each chunk
maintains a counter that is incremented each time a new pointer is set to
that chunk. Conversely, that counter is decremented when a pointer to it
is removed from the structures of the system. This can occur when a
previously replicated file is removed from the set of replicated files.

What To Replicate

Previous research done on replication has primarily focused on reducing
the latency perceived by applications or utilizing replication as a means
to increase the fault tolerance of servers; however, in a mobile environ-
ment, the main goal of replication is to allow applications to keep on
doing useful work in disconnected mode or when the network bandwidth
is rather small. At the same time, the mobile middleware must optimize
memory usage; thus, deciding which data should be replicated is an
important issue, as replicating data that will not be needed by applications
means that memory and network are being wasted.

Object Model

For the object model, in which applications access objects by navigating
on the graph, replication arises naturally when resolving an object fault.
In other words, when the application running in a mobile device invokes
an object that is not yet locally mapped, it generates an object fault that
is automatically resolved by the underlying middleware. The resolution
of the object fault involves requesting the faulted object from another
computer, as described earlier. This computer answers with the object
faulted and possibly a few more that are anticipated to be needed shortly.
This anticipation (i.e., replication in advance of some objects) is based
on the fact that objects are accessed by means of graph navigation. The
objects that must be replicated, then, are those that can be accessed from
the ones already replicated. An important aspect is the level of control
and flexibility that the middleware supports with regard to the number
of objects that are replicated in advance — for example, allowing an
application to specify at runtime which branch of a graph and how many
objects should be replicated (discussed further later in this chapter).

The particular values of such options (i.e., branch and depth of the
graph to be replicated) depend on many factors. Such a decision can be

AU3833_C27.fm Page 711 Wednesday, August 16, 2006 5:23 PM

712

■

Mobile Middleware

made manually by the programmer or automatically by the middleware
(or both combined). In the first case, the programmer may annotate the
code with hints that the middleware will use accordingly; in the second
case, the middleware bases its decisions on the past behavior of applica-
tions. On the one hand, programmer annotations can be difficult to
construct and are error prone; on the other hand, past behavior may not
be available and it is not necessarily a good indicator of future application
behavior. This issue is out of the scope of this chapter; however, an
interesting possibility is to base the above-mentioned values on context
information [39].

File Model

With regard to the file model, the issue of deciding which files to replicate
is equally important; however, given that there is no graph in which
applications navigate, deciding which files to replicate must be done
differently. In particular, the lack of a data graph means that no path
exists on which the middleware can rely to predict which files will be
accessed in the future by an application.

Solutions to this replication problem (also known as hoarding) can be
grouped as follows: (1) solutions based on actions explicitly performed
by the user stating which files should be replicated, or (2) solutions
provided by the middleware, which may take advantage of user-provided
hints. The first case is concerned with a scenario in which, before dis-
connecting a PDA or a laptop from the network, a user explicitly replicates
a set of files (from a desktop computer or a server), so he can still do
his work while disconnected. Note that this explicit replication can also
be done using specific information provided by the user describing the
files to be hoarded; based on this information, the system automatically
replicates such files. Systems such as Coda [17] and SPY [40], for example,
require users to explicitly specify their hoarding set. So, user actions are
decisive with respect to both aspects of file replication: grouping files
together given that they are strongly related and deciding which files (or
groups of files) should be replicated given that they will certainly be used
in the future. We will not consider this case further, as it relies mostly on
the explicit actions of the user. In the second case, the middleware takes
on a much more active role, and the following approaches can be used:

■

While working, the user provides the middleware with specific
intervals of time during which a specific task is being performed;
the middleware, during each interval, detects which files are
accessed and assumes that they are all strongly related and needed
for the task under consideration.

AU3833_C27.fm Page 712 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

713

■

The middleware performs file replication based on the notion of
semantic distance [41], with no help from the user. This notion
relies on the temporal data usage patterns of file accesses; basically,
those files that are accessed during a certain time interval are
assumed to be strongly semantically related. (Note that the access
patterns are, in fact, more sophisticated than this; for example,
spatial storage locality can be used, as well.) For this purpose, the
middleware continuously monitors file accesses and clusters files
accordingly.

Using file accesses to group related files is difficult because often it is
not clear whether or not a sequence of file accesses is related. Furthermore,
files that are related but are not accessed, at least for some time, may
lose their privileged relation with other files.

Note that these two approaches mainly address the problem of finding
which files are strongly related so they should be replicated together;
however, the problem remains of predicting which files (or groups of
files) will be used in the future (in particular, while the mobile device is
completely disconnected or has severe network bandwidth limitations).
Such forecasting can be done assuming that recently used files will
certainly be accessed in the near future. This is, in fact, a least recently
used (LRU) approach that has been used extensively in the past for virtual
memory support and has been adopted by a hoarding system [42] with
some refinements (e.g., by allowing the user to bound the time interval
under consideration by the LRU). Such enhancement of the LRU approach
requires user intervention; it basically consists of a user-provided hoarding
profile that requires intensive user intervention. Users, however, should
not have to worry about issues other than their work, so a replication
system should minimize user intervention and especially the amount of
user attention required.

Memory Management

In this section, we address the issue of memory management, particularly:
(1) how the mobile middleware detects and deletes useless replicas, and
(2) how to move useful data to disk or to remote computers. This is a very
relevant issue because memory is a scarce resource in mobile devices. In
addition, when considering the object model in which applications navigate
on a graph of objects, it is fundamental that the mobile middleware ensures
the referential integrity of the objects graph. As described in this section,
this is ensured by means of automatic memory management, also known
as garbage collection (GC), which also detects and deletes useless replicas.

AU3833_C27.fm Page 713 Wednesday, August 16, 2006 5:23 PM

714

■

Mobile Middleware

It is widely recognized that manual memory management (explicit
allocation and freeing of memory by the programmer) is extremely error
prone, leading to memory leaks and dangling references. Memory leaks
consist of data that is unreachable to applications but still occupies memory
because its memory was not properly released. Dangling references are
references to data whose memory has already been (erroneously) freed;
later, if an application tries to access such data by following the reference
to it, it fails. Such failure occurs because the data no longer exists or,
even worse, the application unknowingly accesses other data (that has
replaced the data erroneously deleted).

Memory leaks in servers and desktop computers are known to cause
serious performance degradation. In addition, memory exhaustion arises
if applications run for a reasonable amount of time. In mobile devices,
such memory leaks are even more serious given the limited amount of
memory available when compared to desktop computers.

Dangling references are well known to occur in centralized applications
when manual memory management is used. Such errors are even more
common in a classical distributed environment (i.e., in a fixed network
of computers with no data replication). In a mobile environment support-
ing distributed applications accessing replicated objects, correct manual
memory management is certainly more difficult. In conclusion, manual
memory management leads not only to application performance degra-
dation and fatal errors but also to reduced programmer productivity; thus,
distributed garbage collection must be provided by mobile middleware.

Current middleware (e.g., Java and .NET) does not support distributed
garbage collection. In fact, the approach taken is a simplified one, based
on leases that favor liveness at the expense of safety. Objects still reachable
remotely from other objects (possibly replicated) in other processes may
be discarded (reclaimed, in GC terms) if they are not invoked for a certain
period of time. This is clearly incorrect, as leases may expire too soon
and cause dangling references; thus, applications will fail later when trying
to access such objects. In addition, defining the leasing time is left to the
application programmer, possibly leading to errors that could compromise
the referential integrity of the objects graph.

When considering mobile middleware supporting data replication, the
challenging requirements that mobile computing pose on distributed gar-
bage collection (DGC) include the following: (1) safety and completeness
of the DGC algorithms used (i.e., real distributed GC algorithms, not just
lease mechanisms); (2) support for correct handling of replicated objects,
for both local and distributed GC, notwithstanding data inconsistency; and
(3) adaptation of local garbage collection (LGC) algorithms to resource-
constrained devices used in mobile computing. We now address the
distributed garbage collection of replicated objects and files.

AU3833_C27.fm Page 714 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication

■

715

Distributed Garbage Collection
of Replicated Objects

Several of the classical DGC algorithms, designed for function-shipping-
based distributed systems (i.e., with no support for replication), build
upon some common elements found in algorithms such as indirect refer-
ence counting (IRC) [43] or stub–scion pair (SSP) chains [44] (in particular,
GC-stubs and GC-scions). Most of these solutions [45,46] are hybrids, as
each process has two components: a local tracing collector and a distrib-
uted collector. Each process does its local tracing independently from any
other process. The local tracing can be done by any mark-and-sweep-
based collector. The distributed collectors, based on reference listing, work
together by changing asynchronous messages.

The local and distributed collectors depend on each other to perform
their job in the following way. A local collector running inside a process
traces the local objects graph starting from that process’s local root (stack
and static variables) and set of GC-scions. A local tracing generates a new
set of GC-stubs; that is, for each outgoing interprocess reference it creates
a GC-stub in the new set of GC-stubs. From time to time, possibly after
a local collection, the distributed collector sends a message called

New-
SetStubs

; this message contains the new set of GC-stubs that resulted from
the local collection and is sent to the processes holding the GC-scions
corresponding to the GC-stubs in the previous GC-stub set. In each of
the receiving processes, the distributed collector matches the just-received
set of GC-stubs with its set of GC-scions; those GC-scions that no longer
have the corresponding GC-stub are deleted.

As described earlier, GC-scions and GC-stubs represent incoming and
outgoing remote references, respectively, among objects residing in different
processes (i.e., interprocess references). GC-scions and GC-stubs are created
as a result of the export and import of references. A reference to an object
in process P1 is said to be exported by P1 when it is sent on a message
to process P2. A reference is said to be imported by a process P2 when it
is received as the contents of a message delivered at P2. Note that the
message just mentioned may carry one or more objects to be replicated.

Every time an object reference is exported by process P1 to process
P2, the corresponding GC-scion and GC-stub must be created in P1 and
P2, respectively. As long as an object is targeted by (at least) a GC-scion
in a process, it must be preserved even when it is locally unreachable
(from the local process stack and static variables). This is due to the fact
that such an object may still be invoked from other processes through an
interprocess reference.

Due to the activity of the mutator (i.e., the application in GC terms)
in the referring process, some remote references may disappear (and their

AU3833_C27.fm Page 715 Wednesday, August 16, 2006 5:23 PM

716 ■ Mobile Middleware

corresponding GC-stubs) because the objects enclosing them are no longer
reachable (either locally in that process or via other remote references).
Therefore, the processes holding the objects targeted by those remote
references (and, correspondingly, their GC-scions) are informed that the
GC-stubs no longer exist so they can delete their counterpart GC-scions.
This ensures liveness, in the sense that objects that are no longer refer-
enced remotely cease to be protected by the distributed GC component
running in the process. Such objects are, from this moment on, at the
mercy of the local GC. If they are also unreachable locally, then they will
be reclaimed when the next LGC occurs.

Note that, to avoid competition regarding GC-scion creation and dele-
tion between processes, there should be no explicit messages to delete
GC-scions; instead, a particular type of message, the NewSetStubs message,
is sent periodically by processes. The receiving processes may then detect
the GC-scions for which the corresponding GC-stubs are no longer included
in the message received and delete them accordingly. The algorithm
operation is summarized in Table 27.1 and Table 27.2.

Table 27.1 GC-Related Messages

Message Sent/Received by Sent When

NewSetStubs DGC/DGC A new set of GC-stubs is available

Table 27.2 GC-Related Events

Event Occurs When Action Taken

Reference
exported

Replicate an object
from a process

Create GC-scion.

Reference
imported

Replicate an object
into a process

Create GC-stub.

New set of
GC-stubs
available

Local GC runs Send NewSetStubs message to the
processes holding the GC-scions
corresponding to the previous set
of GC-stubs.

NewSetStubs
message
received

NewSetStubs
message sent

Compare GC-stubs with set of GC-scions;
delete GC-scions with no corresponding
GC-stubs.

AU3833_C27.fm Page 716 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 717

DGC Correctness with Replication

In the previous section, we described how DGC algorithms work in
distributed systems with no replication support; however, algorithms
designed for function-shipping-based systems are not correct when applied
to replicated objects. This affects all the classical DGC algorithms that were
designed for function-shipping-based systems, such as IRC or SSP chains.
These algorithms are not safe in the presence of replicated data, as
explained next.

Consider Figure 27.4 in which object X is replicated in processes P1
and P2; each replica of X is denoted as X1 and X2, respectively. Now,
suppose that X1 contains a reference to object Z in another process P3,
X2 points to no other object, X1 is locally unreachable, and X2 is locally
reachable. Then, the question is should Z be considered garbage? Classical
DGC algorithms (designed for function-shipping systems) consider that Z
is effectively garbage; however, this is wrong because, in a middleware
object-replication system, it is possible for an application in P2 to acquire
a replica of X from some other process, in particular, X1. The fact that X1

is locally unreachable in process P1 does not mean that X is globally
unreachable; as a matter of fact, the contents of X1 can be accessed by
an application in process P2 by invoking method get on the correspond-
ing proxy-in.

Figure 27.4 Safety problem of current DGC algorithms that do not handle
replicated data: Z is erroneously considered unreachable.

AU3833_C27.fm Page 717 Wednesday, August 16, 2006 5:23 PM

718 ■ Mobile Middleware

In a middleware object replication system, target object Z is considered
unreachable only if the union of all the replicas of the source object (X
in this example) do not refer to it. This is the Union Rule, introduced in
Larchant [47,48] and implemented by resorting to a union message. This
message is exchanged among processes and ensures the correct order of
GC-scion creation and deletion, when objects are replicated through a
number of processes. The causal delivery of such messages is required
to ensure the safety of the algorithm with respect to races between the
creation and deletion of GC-scions.

The Larchant algorithm is the first to correctly take into account GC-
stubs, GC-scions, and the lists InPropList and OutPropList (with informa-
tion about objects replicated from and to different processes). As described
later, this prevents replicas from being prematurely discarded (as would
happen with a non-replication-aware DGC algorithm).

Scalability Issues

Unfortunately, the previous solution imposes rather severe constraints on
scalability. The Larchant algorithm is not scalable because it requires the
underlying communication layer to support causal delivery [49]; therefore,
DGC algorithms specific to object replication systems, such as Larchant,
successfully address replication but lack scalability. To address this limita-
tion on scalability, the requirement of causal message delivery must be
dropped while still enforcing the Union Rule presented earlier. This is the
approach introduced in DGC for wide area replicated memory (WARM) [50].

In this algorithm, the Union Rule is preserved but is enforced differently
by making use of the special bits sentUmess and recUmess present in
InPropList and OutPropList, as shown in Table 27.3. Whenever a replica
located in a process becomes unreachable, except by an entry in the
InPropList of the process, an “unreachable” message is sent to the process
holding the corresponding OutPropList entry. The sending process regis-
ters this fact by setting the sentUmess bit present in the InPropList. This

Table 27.3 GC Messages Related to Replication

Message Sent/Received by Sent When

Unreachable LGC/DGC Object replica is reachable only from the
InPropList.

Reclaim LGC/DGC Object replica is reachable only from the
OutPropList (with all recUmess bits set).

AU3833_C27.fm Page 718 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 719

prevents this message from being sent after every LGC in the process.
Conversely, the receiving process registers this fact by setting the recUmess
bit present in the corresponding OutPropList.

Whenever an object is reachable solely from entries in the OutPropList
of the process and all the corresponding “unreachable” messages have
been received, it is determined that none of the replicas is still reachable,
and it is now safe to delete all of them (as a union). This is performed
by sending “reclaim” messages to every process holding the replicas,
followed by deletion of the OutPropList entries. Upon reception of the
“reclaim” messages, the processes delete the corresponding InPropList
entries. Finally, this enables the reclamation of all the replicas, when the
next LGC takes place in each process. Table 27.3 and Table 27.4 present
all the events related to GC replication and the corresponding actions
taken. These four tables, then, summarize the way GC is performed by
middleware supporting object replication.

A particularly interesting case in which the DGC just presented is useful
is Web-content replication [51] with referential integrity ensured by the
underlying middleware. The middleware supports HTML files (residing at
Web servers) that can be incrementally replicated to other computers during
browsing sessions. Replicated files can be subject to editing (e.g., translation,
composition with other content) and further replicated. The DGC algorithm
ensures referential integrity of the Web content still of interest to users, such
as files that are reachable from a root (may include bookmarks, subscription
lists, etc.). Therefore, the system correctly deals with possible inconsistencies
among replicas and enforces the Union Rule already presented.

Table 27.4 GC Events Related to Replication

Event Occurs When Action Taken

Object replica
reachable only
from the
InPropList

LGC runs Send “unreachable” message to the
process with the corresponding
OutPropList entry; set the sentUmess bit
accordingly.

“Unreachable”
message
received

“Unreachable”
message sent

Set the recUmess bit accordingly; if all
recUmess bits for a particular object are
set, then send the corresponding
“reclaim” messages and delete the
OutPropList entry.

“Reclaim”
message
received

“Reclaim”
message sent

Delete corresponding InPropList entry.

AU3833_C27.fm Page 719 Wednesday, August 16, 2006 5:23 PM

720 ■ Mobile Middleware

Other Memory Management Techniques

Mobile devices are so memory constrained that, in some circumstances,
even the memory occupied by useful reachable objects must be freed.
This may occur because, at a particular instant, there are other more
relevant replicas for which no memory is available. Freeing the memory
occupied by useful objects is a delicate process. Given that such objects
can be accessed by applications through navigation of the objects graph,
the middleware must still ensure the referential integrity while freeing
such memory. This can be achieved as follows: Some object replicas
(namely, all of those belonging to the same class) are migrated to a nearby
machine (called a surrogate) [52]; later, if needed, such objects are remotely
invoked. To provide transparency to applications, the underlying virtual
machine transforms object accesses into remote invocations. This off-loads
processing demands as well as memory occupation at the extra cost of
frequent remote invocations.

An alternative approach proposed in Chen et al. [53] and Veiga and
Ferreira [54] consists of swapping-out replicas to other computers with
more resources available, particularly free memory; such replicas can be
refetched later, if needed, and are always invoked locally. In Chen et al.
[53], a modified virtual machine manages object location and records
information to assess spatial and temporal locality for each object. Taking
into account the management of replicas described earlier, object clusters
are natural candidates to be swapped-out (and later swapped-in, if needed),
as they have previously been incrementally replicated to the mobile device
as a whole. This approach is adopted in Veiga and Ferreira [54] with small
overhead, because information is kept only for clusters (which contain
several objects) instead of individual objects. Unlike the previous
approaches, it does not require the use of a specially modified virtual
machine, making it rather portable.

Finally, Chen et al. [55] have proposed a mechanism to perform
compression of the Java Virtual Machine heap. To minimize application
disruption, large objects (greater than 1.5 kB) are compressed and decom-
pressed; in addition, large array objects are broken down into smaller
subobjects, each being “lazily” allocated upon its first write access.

Garbage Collection of Replicated Files

Distributed algorithms for garbage collection have also been applied in
the context of replicated file systems (e.g., Ficus [18,56], Rumor [19]);
however, when compared to the case in which the middleware supports
the object model, DGC is not as relevant, the reason being that no
referential integrity is maintained in the file model. In Ficus and Rumor, a

AU3833_C27.fm Page 720 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 721

GC algorithm is used to reclaim disk space occupied by replicas of files
found to have been deleted. When a process deletes a file replica, it initiates
a two-phase, distributed-consensus algorithm to determine the global inac-
cessibility of all of the file replicas. Special care must be taken to resolve
ambiguities between the creation and deletion of different replicas of the
same file (due to race conditions regarding the order of these operations).

Adaptability
Due to their intrinsic nature, execution environments in mobile computing
suffer from great and diverse variations during application execution.
These variations can be qualitative (e.g., network connection or discon-
nection, specific devices such as printers present in the device neighbor-
hood, consistency and security constraints) or can be related to quantitative
aspects (e.g., amount of usable bandwidth or memory available). Appli-
cations should be able to deal with this variability; however, applications
programmers should not be forced to account for every possible scenario
in their coding, as this approach is inefficient, error prone, and limited to
situations accounted for a priori.

Dealing with such variability can be achieved through automatic adaptation
of applications; thus, the middleware must provide flexibility for application
development and runtime adaptability. Applications can then cope with the
multiple requirements and usage diversity encountered in mobile settings.

Adaptability is provided through the enforcement of declaratively
defined policies supported by the mobile middleware [54]. In this way,
policies do not have to be hard-coded in applications and can be deployed,
enforced, and updated at any time. Mobile middleware relies strongly on
the following features: (1) the extensible capability to support the speci-
fication and enforcement of runtime management policies, (2) a pluggable
set of basic mechanisms supporting object replication, and (3) a set of
predefined policies to control the mechanisms previously mentioned.

The policy engine (see Figure 27.1) is the inference component that
triggers or mediates responses to events occurring in the system, and it
holds a variable set of policies to be enforced in the system. The policy
engine receives events generated by middleware modules and applica-
tions, evaluates policy rules, and triggers events, which are handled by
actions taken based on results of these evaluations; in particular, object
replication is performed according to specified policies.

The context management module (see Figure 27.1) performs resource
abstraction and manages properties whose values vary during execution.
Resource abstraction enables the representation of physical computer
resources as sets of primitive context properties. Examples include memory,

AU3833_C27.fm Page 721 Wednesday, August 16, 2006 5:23 PM

722 ■ Mobile Middleware

connectivity, and bandwidth available. The actual mappings between basic
or primitive resources and resource designations is performed by the
context manager. Each of these resources implies an architecture-dependent
type of measuring. This heterogeneity is masked, to the rest of the system,
by a low-level component in the context manager.

Situations such as appearing devices, discovering remote resources, or
application counterparts are also handled by the context manager. Detecting
these situations allows the middleware and the applications to decide
whether to replicate data from different sources, swap out some data, etc.
In general terms, any change to the properties considered (resources, mid-
dleware state, or user-defined properties) managed by the context manager
can potentially trigger associated events defined by the policies loaded.

Replication Policies
A set of predefined policies and policy-driven modules is provided to
manage specific execution mechanisms. In particular, the mobile middle-
ware must support the specification and enforcement of policies concern-
ing the replication of objects. Object replication is incremental and
adaptive. Unless otherwise specified, it is performed transparently to
applications but can also be flexibly configured. In particular, the mobile
middleware must allow specification of the following: (1) the best moment
to create a replica, (2) when to merge two or more replicas of the same
object, (3) the number of objects to replicate at a given time (a cluster
of objects), (4) which branch of a graph should be further replicated, and
(5) which objects should be swapped-out (i.e., dynamically replaced by
a proxy-out, transferring the remaining objects to a neighboring device).

In addition, the middleware must also support the definition and
enforcement of consistency-related policies. Although addressed else-
where in this book, maintaining the consistency of replicas must take into
account the variability of mobile environments. This allows applications
to deal, for example, with situations in which it is impossible to access
the most up-to-date replica of an object but it is possible to obtain a
slightly out-of-date replica that is still adequate enough for the application
to proceed. Thus, regarding object replication and consistency, the adapt-
ability supported by the mobile middleware support enables specification
of the following: (1) alternative sources from which to replicate objects;
(2) whether specific objects, clusters, or graphs, should be replicated from
their authoritative home nodes or from other peers with outdated replicas,
or should not be required at all for the application to proceed; (3) whether
to cache changes made locally to the data; and (4) how failures are
handled (e.g., automatically weaken some of the requirements to be able
to replicate back some of the work performed).

AU3833_C27.fm Page 722 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 723

Conclusion
In this chapter, we addressed several fundamental challenges concerning
the support for replica management, memory management, and adapt-
ability that must be considered by mobile middleware aiming at providing
seamless service access via resource replication. Among the several pro-
gramming paradigms available, we focused on two: object model and file
model. The first is widely used and is highly flexible; the second is well
known by both users and applications programmers and is supported by
most operating systems. Although the object model allows applications to
navigate on a graph of objects, the file model does not support such a
concept. As explained in this chapter, this difference has important con-
sequences on replica management and memory management.

With regard to mobile middleware supporting the object model, we
presented an archetypical architecture and described how object replica-
tion can be achieved taking into account the limited amount of memory
available in mobile devices (when compared to desktop computers). The
mechanism of incremental replication provides the necessary flexibility
for applications to deal with the variability of network availability and
bandwidth and the amount of free memory.

With regard to the file model, we addressed how files can be replicated
while minimizing the space occupied by taking advantage of similarities
in the contents of the replicas. This mechanism also contributes to reducing
the amount of network communication required for replica creation and
updating. Deciding which and when files must be replicated is a difficult
problem that still raises interesting research issues. We mentioned some
relevant work in the area of file hoarding, but too much intervention is
required from the user. Ideally, mobile middleware should automatically
discover which files should be replicated and when, so users are never
prevented from doing their work.

Concerning distributed garbage collection, this chapter has presented
the most relevant algorithms that are able to deal correctly with replicated
objects; however, they all lack the capability to reclaim distributed cycles
of garbage replicas (i.e., the algorithms are not complete). This is a
significant problem on which more research is needed. Lessons may be
learned from recent complete DGC algorithms [57–60] developed for
function-shipping systems (without replication support). The garbage col-
lection in middleware supporting the file model aims at reclaiming disk
space occupied by deleted files; thus, the relevant problem that must be
solved is that of disk space management. The object model does not
require the middleware to ensure referential integrity, as it happens with
the object model.

Finally, we addressed the issue of adaptability (i.e., how the mobile
middleware allows applications to control the resources they use). In

AU3833_C27.fm Page 723 Wednesday, August 16, 2006 5:23 PM

724 ■ Mobile Middleware

particular, we focus on replication policies whose relevance results from
the high variability of mobile environments in terms of network quality
and memory available. A basic aspect is the need to clearly separate
policies from mechanisms and allowing such policies to be dynamically
instantiated. Although some solutions have been proposed by several
projects, much research remains to be done so applications programmers
can focus on the application logic without having to bother with system-
level issues.

A successful mobile middleware platform has to deal with many other
aspects besides those addressed in this chapter; however, we believe that
replica management, memory management, and adaptability are among
those that are most crucial. This chapter has provided potential solutions
to such problems and has highlighted some research topics deserving
additional attention.

Acknowledgments
We thank the institutions that have supported the authors: FCT (Fundação
para a Ciência e a Tecnologia, Portugal) and Microsoft Research.

References
[1] Satyanarayanan, M., Fundamental challenges in mobile computing, in Proc.

of the 16th Int. Conf. on Distributed Computing Systems (ICDCS’96), Hong
Kong, May, 1996, pp. 1–7.

[2] Liskov, B., Day, M., and Shrira, L., Distributed object management in Thor,
in Proc. of Int. Workshop on Distributed Object Management (IWDOM’92),
Edmonton, Canada, August, 1992, pp. 1–15.

[3] Gruber, R., Kaashoek, F., Liskov, B., and Shrira, L., Disconnected operation
in Thor object-oriented database system, in Proc. of IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA’94), Santa Cruz, CA, December,
1994.

[4] Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P. et al., Ocean-
Store: an architecture for global-scale persistent storage, in Proc. of the Ninth
Int. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS’00), Cambridge, MA, November, 2000, pp. 190–201.

[5] Çetintemel, U., Keleher, P.J., Bhattacharjee, B., and Franklin, M.J., Deno: a
decentralized, peer-to-peer object-replication system for weakly connected
environments, IEEE Trans. Comput., 52(7), 943–959, 2003.

[6] Veiga, L. and Ferreira, P., Incremental replication for mobility support in
OBIWAN, in Proc. of IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’02), Vienna, Austria, July, 2002, pp. 249–256.

AU3833_C27.fm Page 724 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 725

[7] Ferreira, P., Veiga, L., and Ribeiro, C., OBIWAN: design and implementation
of a middleware platform, IEEE Trans. Parallel Distributed Syst., 14(11),
1086–1099, 2003.

[8] Veiga, L., Santos, N., Lebre, R., and Ferreira, P., Loosely coupled, mobile
replication of objects with transactions, in Proc. of Workshop on QoS and
Dynamic Systems, Tenth Int. Conf. on Parallel and Distributed Systems
(ICPADS’04), Newport Beach, CA, July, 2004.

[9] Santos, N., Veiga, L., and Ferreira, P., Transaction policies for mobile
networks, in Proc. of the 5th IEEE Workshop on Policies for Distributed
Systems and Networks (Policy 2004), Yorktown Heights, NY, June, 2004.

[10] Pairot, C., García, P., and Skarmeta, A.F.G., Dermi: a decentralized peer-to-
peer event-based object middleware, in Proc. of IEEE Int. Conf. on Distributed
Computing Systems (ICDCS’04), Tokyo, Japan, March, 2003, pp. 236–243.

[11] Caughey, S.J., Hagimont, D., and Ingham, D.B., Deploying distributed
objects on the Internet, in Recent Advances in Distributed Systems, Krakow-
iak, S. and Shrivastava, S.K., Eds., Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 2000.

[12] Hagimont, D. and Boyer, F., A configurable RMI mechanism for sharing
distributed Java objects, IEEE Internet Comput., 5(1), 36–44, 2001.

[13] Butrico, M., Chang, H., Cocchi, A, Cohen, N., Shea, D., and Smith, S., Gold
Rush: mobile transaction middleware with Java-object replication, in Proc.
of the Third USENIX Conf. on Object-Oriented Technologies (COOTS), Port-
land, OR, June, 1997.

[14] Haahr, M., Cunningham, R., and Cahill, V., Towards a generic architecture
for mobile object-oriented applications, in Proc. of IEEE Workshop on Service
Portability and Virtual Customer Environments, San Francisco, CA, Decem-
ber, 2000, pp. 91–96.

[15] Siegel, J., CORBA Fundamentals and Programming, John Wiley & Sons,
New York, 1996.

[16] Kistler, J.J. and M. Satyanarayanan, M., Disconnected operation in the Coda
file system, ACM Trans. Comput. Syst., 10(1), 3–25, 1992.

[17] Satyanarayanan, M., The evolution of Coda, ACM Trans. Comput. Syst.,
20(2), 85–124, 2002.

[18] Popek, G.J., Guy, R.G., Page, Jr., T.W., and Heidemann, J.S., Replication
in Ficus distributed file systems, in Proc. of the First IEEE Workshop on
Management of Replicated Data, Los Angeles, CA, November, 1990, pp.
20–25.

[19] Guy, R.G., Reiher, P.L., Ratner, D., Gunter, M., Ma, W., and Popek, G.J.,
Rumor: mobile data access through optimistic peer-to-peer replication, in
Proc. of Int. Workshops on Data Warehousing and Data Mining: Advances
in Database Technologies, 17th Int. Conf. on Conceptual Modeling (ER’98),
Singapore, November, 1999, pp. 254–265.

[20] Ratner, D., Reiher, P., Popek, G.J., and Kuenning, G.H., Replication require-
ments in mobile environments, Mobile Netw. Appl., 6(6), 525–533, 2001.

[21] Ratner, D., Reiher, P., and Popek, G.J., Roam: a scalable replication system
for mobility, Mobile Netw. Appl., 9(5), 537–544, 2004.

AU3833_C27.fm Page 725 Wednesday, August 16, 2006 5:23 PM

726 ■ Mobile Middleware

[22] Gray, J.N. and A. Reuter, A., Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, San Francisco, CA, 1993.

[23] Demers, A.J., Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., and
Welch, B.B., The Bayou architecture: support for data sharing among mobile
users, in Proc. of IEEE Workshop on Mobile Computing Systems and Appli-
cations (WMCSA’94), Santa Cruz, CA, December, 1994, pp. 2–9.

[24] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., and
Hauser, C.H., Managing update conflicts in Bayou, a weakly connected
replicated storage system, in Proc. of the 15th ACM Symp. on Operating
System Principles, Copper Mountain, CO, December, 1995, pp. 172–182.

[25] Terry, D.B., Petersen, K., Spreitzer, M., and Theimer, M., The case for non-
transparent replication: examples from Bayou, IEEE Data Eng. Bull., 21(4),
12–20, 1998.

[26] Preguiça, N., Martins, J.L., Cunha, M., and Domingos, H., Reservations for
conflict avoidance in a mobile database system, in Proc. of First Int. Conf.
on Mobile Systems, Applications, and Services (MobiSys’03), San Francisco,
CA, May, 2003.

[27] Sinha, A., Client-server computing, Commun. ACM, 35(7), 77–98, 1992.
[28] Androutsellis-Theotokis, S. and Spinellis, D., A survey of peer-to-peer con-

tent distribution technologies, ACM Comput. Surv., 36(4), 335–371, 2004.
[29] Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., and Demers, A.J.,

Flexible update propagation for weakly consistent replication, in Proc. of
the 16th ACM Symp. on Operating System Principles, Saint-Malo, France,
December, 1997.

[30] Shapiro, M., Structure and encapsulation in distributed systems: the proxy
principle, in Proc. of the 6th Int. Conf. on Distributed Systems, Boston, MA,
May, 1986, pp. 198–204.

[31] Campione, M. and Walrath, K., The Java Tutorial: Object Oriented Program-
ming for the Internet, 2nd ed., Sun Java Series, Addison-Wesley, Boston,
MA, 1996.

[32] Platt, D.S., Introducing Microsoft .NET, Microsoft Press, Redmond, WA, 2001.
[33] Nelson, M.N., Welch, B.B., and Ousterhout, J.K., Caching in the Sprite

network file system, ACM Trans. Comput. Syst., 6(1), 134–154, 1988.
[34] Muthitacharoen, A., Chen, B., and Mazieres, D., A low-bandwidth network

file system, in Proc. of the 18th ACM Symp. on Operating System Principles,
Lake Louis, Alta, Canada, October, 2001, pp. 174–187.

[35] Barreto, J. and Ferreira, P., A replicated file system for resource constrained
mobile devices, in Proc. of IADIS Applied Computing (IADIS’04), Madrid,
Spain, October, 2004.

[36] Barreto, J. and Ferreira, P., A highly available replicated file system for
resource-constrained Windows CE .NET devices, in Proc. of the 3rd Int. Conf.
on .NET Technologies, Pilsen, Czech Republic, May 30–June 1, 2005.

[37] NIST, FIPS PUB 180-1: Secure Hash Standard, Technical Report, National
Institute of Standards and Technology, Gaithersburg, MD, 1995.

[38] Rabin, M., Fingerprinting by Random Polynomials, Technical Report TR-
15-81, Center for Research in Computing Technology, Harvard University,
Boston, MA, 1981.

AU3833_C27.fm Page 726 Wednesday, August 16, 2006 5:23 PM

Seamless Service Access via Resource Replication ■ 727

[39] Chen, G. and Kotz, D., A Survey of Context-Aware Mobile Computing
Research, Technical Report TR2000-381, Department of Computer Science,
Dartmouth College, Hanover, NH, 2000.

[40] Tait, C., Lei, H., Acharya, S., and Chang, H., Intelligent file hoarding for
mobile computers, in Proc. of the 1st ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’95), Berkeley, CA, November,
1995.

[41] Kuenning, G.H and Popek, G.J., Automated hoarding for mobile computers,
in Proc. of the 16th ACM Symp. on Operating System Principles, Saint-Malo,
France, December, 1997, pp. 264–275.

[42] Kuenning, G.H., Ma, W., Reiher, P., and Popek, G.J., Simplifying automated
hoarding methods, in Proc. of the 5th ACM Int. Workshop on Modeling,
Analysis, and Simulation of Wireless and Mobile Systems (MSWiM), Atlanta,
GA, September, 2002, pp. 15–21.

[43] Piquer, J.M., Indirect reference-counting, a distributed garbage collection
algorithm, in Proc. of Int. Parallel Architectures and Languages Europe
(PARLE’91), Eindhoven, The Netherlands, June, 1991, pp. 150–165.

[44] Shapiro, M., Dickman, P., and Plainfossé, D., SSP Chains: Robust, Distributed
References Supporting Acyclic Garbage Collection, Rapport de Recherche
1799, Institut National de Recherche en Informatique et Automatique, Roc-
quencourt, France, (http://www-sor.inria.fr/SOR/docs/SSPC_rr1799.html).

[45] Abdullahi, S.E. and Ringwood, G.A., Garbage collecting the Internet: a
survey of distributed garbage collection, ACM Comput. Surv., 30(3),
330–373, 1998.

[46] Plainfossé, D. and Shapiro, M., A survey of distributed garbage collection
techniques, in Proc. of Int. Workshop on Memory Management (IWMM’92),
Kinross, Scotland, September, 1995.

[47] Ferreira, P. and Shapiro, M., Larchant: persistence by reachability in distrib-
uted shared memory through garbage collection, in Proc. of the 16th Int.
Conf. on Distributed Computing Systems (ICDCS’96), Hong Kong, May, 1996.

[48] Ferreira, P. and Shapiro, M., Modelling a distributed cached store for
garbage collection: the algorithm and its correctness proof, in Proc. of the
12th European Conf. on Object-Oriented Programming (ECOOP’98), Brus-
sels, Belgium, July, 1998.

[49] Cheriton, D.R. and Skeen, D., Understanding the limitations of causally
and totally ordered communication, in Proc. of the 14th ACM Symp. on
Operating Systems Principles, Austin, TX, November, 1993, pp. 44–57.

[50] Sanchez, A., Veiga, L., and Ferreira, P., Distributed garbage collection for
wide area replicated memory, in Proc. of the Sixth USENIX Conf. on Object-
Oriented Technologies (COOTS), San Antonio, TX, January, 2001.

[51] Veiga, L. and Ferreira, P., Repweb: replicated web with referential integrity,
in Proc. of the 18th ACM Symp. on Applied Computing (SAC’03), Melbourne,
FL, March, 2003.

[52] Messer, A., Greenberg, I., Bernadat, P., Milojicic, D., Chen, D. et al., Towards
a distributed platform for resource-constrained devices, in Proc. of IEEE Int.
Conf. on Distributed Computing Systems (ICDCS’02), Vienna, Austria, July,
2002, p. 43–51.

AU3833_C27.fm Page 727 Wednesday, August 16, 2006 5:23 PM

728 ■ Mobile Middleware

[53] Chen, D., Messer, A., Milojicic, D., and Dwarkadas, S., Garbage collector
assisted memory offloading for memory-constrained devices, in Proc. of the
Fifth IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’03), Monterey, CA, October, 2003.

[54] Veiga, L. and Ferreira, P., Poliper: policies for mobile and pervasive envi-
ronments, in Proc. of the 3rd Int. Workshop on Reflective and Adaptive
Middleware, 5th ACM/IFIP/USENIX Int. Middleware Conf., Toronto, Canada,
October, 2004.

[55] Chen, G., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Mathiske, B., and
Wolczko, M., Heap compression for memory-constrained Java environments,
in Proc. of ACM Conf. on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA 2003), Anaheim, CA, October, 2003, pp.
282–301.

[56] Ratner, D., Reiher, P.L., Popek, G.J., and Guy, R.G., Peer replication with
selective control, in Proc. of the First Int. Conf. on Mobile Data Access
(MDA’99), Hong Kong, December, 1999, pp. 169–181.

[57] Rodrigues, H.C.C.D. and Jones, R.E., Cyclic distributed garbage collection
with group merger, in Proc. of the 12th European Conf. on Object-Oriented
Programming (ECOOP’98), Brussels, Belgium, July, 1998, pp. 249–273.

[58] Fessant, F.L., Detecting distributed cycles of garbage in large-scale systems,
in Proc. of the 20th ACM Symp. on Principles of Distributed Computing
(PODC 2001), Newport, RI, August, 2001.

[59] Veiga, L. and Ferreira, P., Complete distributed garbage collection: an
experience with Rotor, IEE Res. J. Software, 150(5), 283–290, 2003.

[60] Veiga, L. and Ferreira, P., Asynchronous complete distributed garbage col-
lection, in Proc. of IEEE Int. Conf. on Parallel and Distributed Processing
Symp. (IPDPS’05), Denver, CO, April, 2005.

AU3833_C27.fm Page 728 Wednesday, August 16, 2006 5:23 PM

Section 5

MOBILE MIDDLEWARE
FOR LOCATION-
DEPENDENT SERVICES

AU3833_S05.fm Page 729 Wednesday, August 16, 2006 5:24 PM

AU3833_S05.fm Page 730 Wednesday, August 16, 2006 5:24 PM

731

Chapter 28

An Overview of the
Location Management
Problem for Mobile

Computing Environments

Javid Taheri and Albert Y. Zomaya

CONTENTS

Introduction... 732
Location Update Strategies... 734
Location Management Cost.. 736

Location Management Cost for the Location Area Strategy 738
Location Management Cost for the Paging Cell Strategy 740

Network Simulator .. 742
Network Modifier .. 743

Solving the Location Management Problem... 746
Analytical Approaches .. 747
Heuristic Approaches.. 747

Hopfield Neural Network in the Paging Cell Scheme..................... 748
Hopfield Neural Network in Location Area Scheme 750
Simulated Annealing in the Location Area Scheme 753
A Genetic Algorithm in the Location Area Scheme......................... 755

AU3833_C28.fm Page 731 Thursday, August 17, 2006 11:03 AM

732

■

Mobile Middleware

Results Explanation... 761
Effect of Selecting the Initial Population .. 761
Algorithm Robustness ... 763
PC Scheme: Separation of the Network ... 763
PC Scheme: Thin and Thick Boundary Cells ... 763
LA Scheme: Shape of the Location Areas... 763
LA Scheme: Number of Cells in a Location Area 763
LA Scheme: Number of Neighbors for Each Location Area 764
LA Scheme: Boundary Cells... 764

Conclusions ... 764
References ... 764

Introduction

Numerous companies and service providers are pursuing a fully integrated
service solution for wireless mobile networks. Current voice, fax, and paging
services will be combined with data transfer, video conferencing, and other
mobile multimedia services to build the next generation of wireless mobile
networks. Basically, such networks will be designed to support a true
combination of both real-time and non-real-time services and then form a
global personal communication network. To support such a wide range of
data transfer and user applications,

mobility management

 has to be con-
sidered when designing infrastructures for wireless mobile networks.

Mobility management involves two processes:

location management

and

handoff management

. Location management allows the wireless
network to discover the current point of attachment of a mobile terminal
and deliver calls to it, and handoff management allows the mobile network
to locate roaming mobile terminals for call delivery and to maintain a
connection as the mobile terminal moves around. During the first stage
of location management, known as

location registering

 or

location update

,
the mobile terminal periodically informs the network of its new access
point and helps the network to authenticate the user and revise user
location profiles. The second stage is

call delivery

, in which the wireless
mobile network is queried for a mobile terminal location and the current
position of that terminal is found [1,2].

On the other hand, handoff primarily represents a process of changing
some of the parameters of a channel (frequency, time slot, spreading code,
or a combination of these) while the current connection is in use [3,4].

The handoff process usually consists of two phases:

handoff initialization

and

handoff enabling phase

. During the handoff initialization phase, the
quality of the available communication channel is considered to decide
when the handoff process should be triggered, and in the handoff enabling
phase the allocation of additional resources by a new base station is

AU3833_C28.fm Page 732 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments

■

733

initiated and processed. Poorly designed handoff schemes tend to generate
huge signaling traffic, and thereby a dramatic decrease in quality of service
(QoS) of integrated services of the wireless network.

Mobility management requests are often initiated either by a mobile
terminal movement (crossing a cell boundary) or by deterioration in the
quality of a signal received on a currently allocated channel. Due to the
anticipated increase in the use of wireless services in the future, the next
generation of mobile networks should be able to support a huge number
of users and their bandwidth requirements. Furthermore, more frequent
handoffs will result when the size of the cells becomes smaller or a drastic
change occurs in the propagation condition of a signal; therefore, mobility
management becomes more crucial in the next generation of mobile
networks.

Figure 28.1 shows an example of a Global System for Mobile Commu-
nications (GSM) network [1–6]. In this network, cells are grouped together
into regions. Each region contains the entire allotted frequency spectrum,
and each cell of the group uses a part of the allocated frequency. The same
frequency can be used in other regions by carefully considering the minimum
distance between cells to avoid cross-talking [5,6]. On the other hand, as
the demand for wireless services increases, the size of the cells becomes
smaller and the reusability of the allocated frequencies becomes more
problematic. As a result, network management and, consequently, location

Figure 28.1 An example of a GSM network.

AU3833_C28.fm Page 733 Thursday, August 17, 2006 11:03 AM

734

■

Mobile Middleware

management become significant issues, and efficient techniques will be
required to ensure delivery of all incoming calls, even in the tiniest of cells.

As mentioned earlier, location management consists of location update
and location inquiry. In location update, every mobile terminal updates
its location in the network and notifies the network of its current location.
Location inquiry is performed by the network itself; in this process, the
network tries to locate the user based on the last known location. Location
update is usually performed when a user changes places in the network,
and location inquiry is usually performed when the network tries to direct
an incoming call to a customer.

Location Update Strategies

Location update strategies can be categorized into two main groups:

dynamic

 and

static

. In dynamic schemes, different network topologies
are considered for different users [7–18]. These topologies are highly
related to the movement patterns and calling behavior of each user. On
the other hand, in static schemes, the network has a unique behavior for
all users, like the current GSM networks. It is obvious that dynamic
schemes are much more complex than static ones and require more
computation capabilities in the network; thus, implementing static schemes
is the more popular approach [19–40]. A location update strategy, however,
must use minimum network resources to manage user tracking and should
not require massive computations. The following techniques are the most
common ones for static location updates:

■

Always update strategy.

 The user updates its location whenever it
crosses a cell boundary. In this case, the network is able to locate
the user in minimum time for each incoming call; that is, the network
will page the user only in the last updated cell. This scheme
generates a massive number of unnecessary location update signals.

■

Never update strategy.

 The user never updates its location; conse-
quently, for each incoming call, the network must page the user
in all cells of the network. It is obvious that this strategy is highly
inefficient, especially when the number of cells in the network is
large. Moreover, as the number of users in the system increases,
the number of paging signals would also increase.

■

Time-based strategy.

 The user updates its location after a predefined
time span [19]; therefore, in case of an incoming call, the network
will page the user in the last updated cell and the possible cells
that the user might be in after the last location update. Although
this strategy seems better than the other two, some disadvantages

AU3833_C28.fm Page 734 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments

■

735

still remain [19]; for example, if the user changes its location too
rapidly after the last location update, the network will not be able
to locate the user.

■

Movement-based strategy.

 The user makes an update after passing
a predefined number of cells (namely,

M

). In this case, the network
should page the user in a radius of

M

 cells from the last update
cell [20,21]. The main disadvantage of this strategy applies to the
case of cyclic users who periodically move between adjacent cells
of a network (e.g., move in a zigzag path between two cells).

■

Distance-based strategy.

 The user updates its location after moving
out of the last update cell for a predefined distance (namely,

R

).
In this case, the network can page the user in all cells that are
physically within the

R

 radius of the last updated location [22,23].
The main drawback of this method is the need for having geo-
graphical information about the network for each mobile terminal.
Clearly, each mobile terminal should have the complete information
about the network topology and must be able to determine its
geographical location as well, which makes the design of mobile
terminals so complicated and probably more expensive than the
current ones.

■

Location area scheme.

 This methodology is used in current GSM
networks. Adjacent cells are grouped together to form a

location
area

 (LA) [25,29,37–40]. In this case, the user performs an update
when it leaves its current LA and moves into a new one; therefore,
in the case of an incoming call, the network must page the user
in all cells of the last updated LA. Figure 28.2 shows a typical GSM
network layout. In this case, if the user updates its location in cell

X

, then for each incoming call all cells of the current LA (shown
in gray) will page the user.

■

Paging cell scheme.

 The user makes an update whenever it passes
through some predefined cells known as paging cells [13,26,28–35,
37]. In this case, a paging neighborhood is defined for each paging
cell. Basically, the paging neighborhood of each paging cell contains
all non-paging cells of the network that must page the user in case
of an incoming call. For example, consider the paging cells shown
in gray in Figure 28.3. The paging neighbors of paging cell

X

 are
all cells marked as

N

. Note that the user can be in any cell marked
as

N

 without passing through any other paging cell marked as

X

;
therefore, all of the cells marked as

N

 must be included in the user
paging process for any incoming call. In this strategy, paging cells
are assigned so they split the entire network into some smaller
networks. The never update strategy is then used in each of these
subnetworks.

AU3833_C28.fm Page 735 Thursday, August 17, 2006 11:03 AM

736

■

Mobile Middleware

The question that still arises in all of the above approaches is what
configuration of cells provides the best performance? For example, what
is the optimal predefined distance to be used in the distance-based
strategy? Or, what is the best predefined number of cells to travel for the
movement base strategy? Similarly, what is the best topology for location
areas in the location area scheme to have the best network performance
with minimum cost? And, finally, which cells should be defined as paging
cells in the paging cell scheme to split the network in the best possible
way? In this work, the aim is to explain the basics of the location
management problem and some related solution strategies. Finally, several
algorithms to solve this problem using the location area and paging cell
schemes are briefly presented.

Location Management Cost

Many algorithms have been proposed to solve the location management
problem, although it is still necessary to develop a framework that can
be used to compare these techniques [34–40]. A location management
cost should be defined to evaluate every approach. The location manage-
ment cost usually consists of two main parts:

updating cost

 and

paging
cost

. The updating cost is the portion of the total cost due to location
updates performed by mobile terminals in the network, and the paging
cost is incurred by the network during a location inquiry when the network

Figure 28.2 Location area configuration.

AU3833_C28.fm Page 736 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments

■

737

tries to locate a user. The total cost of location management involves other
parameters, such as the cost of database management to register users’
locations, the cost of the wired network (backbone) that connects the
base stations to each other, and the cost of switching between base stations
in the case of handoff and call diverting, among others. Nevertheless, in
general, these costs are assumed to be the same for all location manage-
ment strategies. As a result, the combination of location update and paging
costs is considered to be sufficient to compare the different approaches;
therefore, the total cost of a location management scheme can be given
as follows:

Cost

 =

β

×

N

LU

 +

N

P

where

N

LU

 is the total number of location updates,

N

P

 represents the total
number of paging transactions, and

β

 is a constant representing the cost
ratio of a location update to a paging transaction in the network. The
number of location updates is usually caused by the movement of the
user in the network, and the number of the paging transactions is greatly
related to the number of incoming calls.

Evidence shows that the cost of each location update is much higher
than the cost of a paging transaction because of the complex procedures
that have to be executed every time a location update is performed. On
the other hand, most of the calls of a mobile user are incoming calls (two
thirds); therefore, if the user moves in the network without making any

Figure 28.3 Paging cell configuration.

AU3833_C28.fm Page 737 Thursday, August 17, 2006 11:03 AM

738

■

Mobile Middleware

call, the network will undergo a huge number of useless transactions.
Thus, in most cases the cost of a location update is considered to be 10
times than that of a paging transaction (i.e.,

β

 = 10) [34–40].

Location Management Cost for the Location Area Strategy

To calculate the total cost of network management in the LA strategy, a
few issues must be considered. Based on the LA scheme, a location update
transaction takes place when a user changes its current LA; therefore, all
mobile terminals (users) entering the LAs of a network should be added
to compute this cost. On the other hand, the paging cost must be
considered when a user has an incoming call. As a result, all cells are
involved in calculating this cost. To clarify this point, consider the LA
strategy shown as gray in Figure 28.4. In this configuration, the flow of
the total number of users who enter the LA via the boundary cells can
be calculated as:

Number of location updates = 2343 + 4323 + 4342 + 5435 +
1101 + 4343 + 9832 + 1523 + 2249 + 6634 + 5231 + 7232 +
9921 + 9284 + 5647 + 4342 + 8265 + 1124 = 92,271

Figure 28.4 Incoming user flow for a sample location area.

AU3833_C28.fm Page 738 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments

■

739

Calculating the paging cost is much easier. This can be simply done by
counting the number of incoming calls in the LA and multiplying it by
the number of cells (of the LA). The total number of incoming calls for
the LA in Figure 28.4 is given in Figure 28.5, and the total number of
paging signals for this LA would be:

The number of paging transactions = (129 + 543 + 531 + 342
+ 992 + 162 + 552)

×

 7 = 22,757

Finally, if this procedure is repeated for all the LAs of the network, the
total number of location updates and paging signals can be calculated.
For the marked LA in Figure 28.4 and Figure 28.5 these costs would be
as follows:

Total number of location updates = 92,271

Total number of paging signals = 22,757

Total cost = (92,271

×

 10) + 22,757 = 945,467

In the above calculation, the cost of a location updates is assumed to be 10
times more expensive than that of a paging transaction (i.e.,

β

 = 10).

Figure 28.5 User call arrivals for a sample location area.

AU3833_C28.fm Page 739 Thursday, August 17, 2006 11:03 AM

740

■

Mobile Middleware

Location Management Cost for the Paging Cell Strategy

Calculating the total network management cost for the PC scheme is a
little different. As mentioned earlier, the paging cell scheme has two types
of cells: paging cells and non-paging cells. As a first step, a paging
neighborhood is assigned for each paging cell; this neighborhood includes
all non-paging cells that must page the user in the case of an incoming
call. Also, another factor, the

vicinity factor

, is defined for each cell of
the network, for both paging and non-paging cells. This factor is basically
the maximum number of paging neighbors for each cell that must page
the user in case of an incoming call. Obviously, the vicinity factor of each
paging cell is the number of its paging neighbors; however, for non-paging
cells, the way the vicinity factor is calculated is different. Based on the
fact that each non-paging cell might be in the paging neighborhood of
more than one paging cell, the maximum number of paging neighbors
that the cell is a part of is considered as its vicinity factor.

To clarify this definition, consider the paging cell configuration of the
network given in Figure 28.6, where the paging cells are marked in gray.
The cell marked

N

 is in the paging neighborhood of at least three paging
cells (shown in Figure 28.6a,b,c). The number of paging neighbors for
cell

X

 is 25, 17, and 22 for Figure 28.6a,b,c, respectively; that is, cell

N

 is
part of at least three paging neighborhoods with 25, 17, and 22 cells. To
consider the worst case, the vicinity factor of non-paging cell

N

 is con-
sidered to be 25, which is the maximum of 25, 17, and 22. If a non-paging
cell is a part of more than two paging cell neighborhoods, such as the
one in Figure 28.6, then this calculation must be performed for all of
them, and their maximum number is then considered as the vicinity factor
for that non-paging cell. In Figure 28.6d, for example, the non-paging cell
marked

N

 is a part of the paging neighborhood of all cells marked as

X

.
Finally, to calculate the total cost of the network location management,

the general cost function is modified as:

where

N

LU

(

i

) is the number of location updates for paging cell number

i,
NP(i) is the number of arrived calls for cell i, V(i) is the vicinity factor for
cell i, S is the set of cells defined as paging cells, and N is the total number
of cells in the network.

Consider the paging cell configuration given in Figure 28.7. The number
of location updates for each paging cell appears at the center of the cell.
The total number of location updates for this configuration would be:

Cost N i N i V iLU P

i

N

i S

= × + ×
=∈
∑∑β () () ()

0

AU3833_C28.fm Page 740 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 741

Total number of location updates = 453 + 395 + 541 + 492 +
432 + 361 + 409 + 123 = 3206

Calculating the paging cost of the network in this scheme is different.
Initially, the vicinity factor of each cell, including paging cells and non-
paging cells, must be computed and then the total paging cost can be
determined. In Figure 28.8, two numbers appear in each cell. The
number at the center of the cell is the number of incoming calls and
the number that appears near the edge of the cell is the vicinity factor
for that cell. Finally, the total number of paging transactions for this
network would be:

Figure 28.6 An instance of a non-paging cell belonging to more than one paging
cell neighbor.

AU3833_C28.fm Page 741 Thursday, August 17, 2006 11:03 AM

742 ■ Mobile Middleware

Total number of paging transactions = (51 × 8) + (43 × 8) +
(48 × 8) + (92 × 10) + (62 × 8) + (83 × 8) + (71 × 10) + (45
× 10) + (35 × 8) + (12 × 8) + (38 × 9) + (73 × 10) + (83 × 10)
+ (53 × 10) + (82 × 10) + (58 × 6) + (45 × 10) + (76 × 10) +
(57 × 6) + (19 × 10) = 10,076

If each paging transaction costs 1 unit and each location updates costs
10 units (i.e., β = 10), then the total cost of the network would be:

Total cost = (3206 × 10) + 10,076 = 42,136 units

Network Simulator
Simulating the network is one of the most important tasks when dealing
with this class of problems. In almost all of the available literature on solving
this problem, the cell attributes of the network are generated randomly. In
general, two independent attributes for each cell are considered: the number
of call arrivals and the number of location updates, and both are randomly
selected. In other words, the number of call arrivals and location updates
of adjacent cells are not correlated; however, these numbers are highly
correlated in a real network. Therefore, to generate these numbers for each
cell in this work, a set of sophisticated routines is used to generate user
profiles and, consequently, the network attributes of each cell [36]. As a

Figure 28.7 Number of location updates.

AU3833_C28.fm Page 742 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 743

result, the generated network configurations better match real-world traffic.
Moreover, two relatively independent aspects — network generation and
population generation — are considered in this work when simulating an
artificial environment to evaluate designed algorithms.

In the network generation stage, the aim is to model the backbone of
the network; Figure 28.9 shows the wizard dialog developed in the
software to generate a simple network. The aim of the population gen-
eration stage is to simulate the behavior of mobile network customers;
Figure 28.10 shows the wizard dialog developed in the software to
generate a sample population, and Figure 28.11 presents a sample histo-
gram of the population. This histogram represents the total number of
location updates for each cell.

Network Modifier

After generating a sample network with predefined cell attributes and mobile
terminal (user) characteristics, it is necessary to modify the network back-
bone to support the users based on the maximum capacity of each cell. In
this case, two restrictions are considered for each cell: the maximum number
of location updates and the maximum number of call arrivals. Now, if these
numbers exceed the predefined values of each cell, then the cell is split
into smaller cells to support the traffic. Figure 28.12 and Figure 28.13 show
a sample network that is modified based on the above argument.

Figure 28.8 Number of call arrivals.

AU3833_C28.fm Page 743 Thursday, August 17, 2006 11:03 AM

744 ■ Mobile Middleware

Figure 28.9 Network generation wizard dialog.

Figure 28.10 Population generation wizard dialog.

AU3833_C28.fm Page 744 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 745

Figure 28.11 Histogram for a sample population.

Figure 28.12 A sample network before modification.

AU3833_C28.fm Page 745 Thursday, August 17, 2006 11:03 AM

746 ■ Mobile Middleware

Solving the Location Management Problem
The approaches used to solve this problem are either static or dynamic.
In the static case, the assumption is made that the user profiles are all
known before trying to find the best configuration for the network. In
contrast, in the dynamic case, the network has an initial configuration that
is not necessarily optimal, and the algorithm is supposed to improve the
network configuration when it is in use. To solve this problem in the static
case, a sophisticated profile is gathered from the users, and then that data
is used to determine the optimal configuration of the network. The network
configuration is set up once and used afterward; however, in the dynamic
mode, the network configuration undergoes continuous modification even
after deployment of the network. As a result, the configuration of the
network might change many times during network operation. It is worth
mentioning that the current GSM network uses a static network. Because
of the higher computational load associated with handling dynamic net-
works, these networks are not used now but might be deployed in the
future; therefore, most of the research today focuses on examining static
networks, such as GSM networks, and improving their performance. In
this regard, two different approaches are used: analytical and heuristic.

Figure 28.13 A sample network after modification (split cell).

AU3833_C28.fm Page 746 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 747

Analytical Approaches

For an analytical approach, the problem is modeled as a stochastic one.
A probabilistic model is used to model the movement patterns of users in
the network. Figure 28.14 depicts the probable flow of users for an instance
cell; for example, it is assumed that 20 percent of the users in this cell
move to a cell below and 4 percent (1–0.15–0.17–0.22–0.09–0.20–0.13 =
0.04) of them never leave this cell. The aim of such a modeling process
is to have a mathematical model that attempts to capture reality as much
as possible. The use of stochastic models seems to be a suitable approach
for trying to reach optimal solutions; however, the use and development
of such models are never that straightforward. To clarify, for a 50-cell
network, the total number of parameters that must be considered is 7 ×
50 = 350; there are six probabilities (one probability per neighboring cell)
and also a probability that the user stays in the cell.

Heuristic Approaches

Just like analytical approaches, a cost function is chosen for a problem
(network) and heuristic algorithms are designed to find the optimal solution
for the network under consideration. In heuristic approaches, unlike ana-
lytical ones, a single or several seed solutions are considered as initial
points to start the algorithm, and then the heuristic approach is launched
to improve the quality of these solutions gradually. The mechanisms that
heuristics use are normally simple but difficult and cannot ensure that an
optimal solution can be found. Toward this end, in ill-defined problems a
process based on probabilistic selection or modification is incorporated in

Figure 28.14 User movement flow for a sample cell.

AU3833_C28.fm Page 747 Thursday, August 17, 2006 11:03 AM

748 ■ Mobile Middleware

the heuristic. Also, heuristic-based methods are usually executed several
times before the best answer is found, especially in the case of complex
problems. In the following text, several such approaches are implemented
to solve the location management problem.

Hopfield Neural Network in the Paging Cell Scheme

In this approach, the wireless network is modeled as a plate with troughs
and crests. The general cost function of the problem is related to the
energy level of the Hopfield neural network (HNN) optimizer, so lower
energy values represent better configuration of the network and, conse-
quently, lower costs associated with mobility management. In this case,
a HNN optimizer starts from an initial condition and tries to improve the
network configuration step by step. To clarify the way this algorithm
actually works, several test networks are described below [37]:

■ Test Network 1 — This 4 × 4 network is shown in Figure 28.15,
and the cell attributes are given in Table 28.1. Note that two
numbers are given for each cell in the table: the number of location
updates (NLU) and the number of arrived calls (NP). The final answer
(optimal paging cell configuration) is shown as gray cells in Figure
28.15, and Figure 28.16 shows how the total energy of the network
is reduced during the algorithm optimization process.

Figure 28.15 Solution for Test Network 1.

AU3833_C28.fm Page 748 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 749

■ Test Network 2 — This 7 × 9 network has the cell attributes given
in Table 28.2. Figure 28.17 shows the network and the optimal
answer, and Figure 28.18 provides the convergence results.

■ Test Network 3 — This 13 × 15 network has the cell attributes given
in Table 28.3. Figure 28.19 shows the network and the optimal
answer, and Figure 28.20 provides the convergence results.

Table 28.1 Cell Attributes of
the Network in Figure 28.15

Cell NLU NP

0 518 517
1 774 573
2 153 155
3 1696 307
4 1617 642
5 472 951
6 650 526
7 269 509
8 445 251
9 2149 224

10 1658 841
11 952 600
12 307 25
13 385 540
14 1346 695
15 572 225

Figure 28.16 Energy level for Test Network 1.

AU3833_C28.fm Page 749 Thursday, August 17, 2006 11:03 AM

750 ■ Mobile Middleware

Hopfield Neural Network in Location Area Scheme

The HNN is used in this case to solve our problem by adopting the
location area scheme [38]. As in the previous approach, an initial config-
uration (initial answer) is considered for a network, then the HNN opti-
mizer tries to improve the quality of this configuration gradually. The
total cost of the network management of the system is related to the
energy level of the HNN optimizer. Now, the general form of the HNN
is not efficient enough for solving this problem, and several modifications
were necessary to adjust the original HNN. The following test networks
illustrate how this approach works [38]:

■ Test Network 4 — The 5 × 5 network has cells with the attributes
given in Table 28.4. In this table, each row (cell) contains three
sections: number of incoming users (UpP), number of arrived calls

Table 28.2 Cell Attributes of the Network in Figure 28.17

Cell NLU NP Cell NLU NP Cell NLU NP

0 120 67 21 577 66 42 395 39
1 345 68 22 433 51 43 340 55
2 173 58 23 527 89 44 134 60
3 307 67 24 377 38 45 234 83
4 111 10 25 207 38 46 445 80
5 289 42 26 130 30 47 562 64
6 184 39 27 143 43 48 378 46
7 323 78 28 332 49 49 345 48
8 121 35 29 381 58 50 366 33
9 202 52 30 589 106 51 460 34

10 462 64 31 745 69 52 379 78
11 517 75 32 602 109 53 182 57
12 426 30 33 331 64 54 153 59
13 287 51 34 248 43 55 167 60
14 370 45 35 110 29 56 350 58
15 401 44 36 172 48 57 125 69
16 325 67 37 389 45 58 244 58
17 199 64 38 440 49 59 126 55
18 148 61 39 505 48 60 381 63
19 335 51 40 642 82 61 173 65
20 541 65 41 478 51 62 121 73

AU3833_C28.fm Page 750 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 751

(CAr), and number of users entering the cell from a specific neigh-
bor. The legend used to show the neighbor attributes, (x:a,b), is
as follows: x is a sequential ID used to count the number of
neighbors for this cell, a is the cell number of the xth neighbor,
and b is the number of users enters this cell from the xth neighbor.
The optimal solution found by the algorithm is marked with solid
lines in Figure 28.21. Figure 28.22 shows the energy value (cost)
and the probability factor for each algorithm cycle.

■ Test Network 5 — The 5 × 7 network (Figure 28.23) has cells with
the attributes given in Table 28.5, and Figure 28.24 demonstrates
the solution process.

Figure 28.17 Solution for Test Network 2.

Figure 28.18 Energy level for Test Network 2.

AU3833_C28.fm Page 751 Thursday, August 17, 2006 11:03 AM

752 ■ Mobile Middleware

Table 28.3 Cell Attributes of the Network in Figure 28.19

Cell NLU NP Cell NLU NP Cell NLU NP

0 41 36 65 807 44 130 729 68
1 109 55 66 824 34 131 631 74
2 64 50 67 974 52 132 656 89
3 143 61 68 938 54 133 279 48
4 82 59 69 908 67 134 159 41
5 167 57 70 767 55 135 234 47
6 70 34 71 702 64 136 554 60
7 155 51 72 710 59 137 751 62
8 75 44 73 446 45 138 759 43
9 168 35 74 178 72 139 732 87

10 79 34 75 119 35 140 627 46
11 273 66 76 306 67 141 735 93
12 166 66 77 457 81 142 690 43
13 275 39 78 535 59 143 791 67
14 131 63 79 702 36 144 727 50
15 143 60 80 911 88 145 677 79
16 331 57 81 919 69 146 568 31
17 316 95 82 991 40 147 448 52
18 490 67 83 1016 63 148 187 48
19 268 36 84 951 56 149 80 32
20 398 72 85 828 63 150 263 51
21 275 34 86 688 41 151 499 54
22 463 77 87 590 76 152 741 89
23 267 49 88 434 66 153 596 58
24 486 83 89 151 67 154 596 57
25 317 50 90 122 41 155 489 69
26 533 79 91 342 49 156 537 57
27 461 50 92 418 48 157 537 38
28 456 50 93 505 56 158 716 34
29 187 50 94 813 69 159 766 95
30 177 46 95 1051 62 160 684 44
31 436 76 96 1109 76 161 628 70
32 575 89 97 1136 92 162 356 42
33 740 87 98 1081 81 163 142 55
34 532 39 99 851 48 164 71 38
35 574 21 100 795 50 165 211 74
36 599 72 101 873 71 166 358 50
37 752 70 102 687 53 167 572 84
38 653 79 103 526 48 168 388 65

AU3833_C28.fm Page 752 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 753

Simulated Annealing in the Location Area Scheme

The simulated annealing (SA) technique can be combined with the location
area scheme [39]. The network begins with an initial configuration, and
the total cost of the network management is related to the temperature
level of the SA optimizer. The SA optimizer tries to find the optimal setup
of the network by heating and reheating the network temperature. The
following test networks, which were already solved by the HNN optimizer
earlier, show how this optimizer manages to solve the problem stated in
the previous section [39].

Table 28.3 Cell Attributes of the Network in Figure 28.19 (cont.)

Cell NLU NP Cell NLU NP Cell NLU NP

39 749 58 104 220 46 169 389 63
40 559 35 105 139 38 170 290 49
41 713 70 106 367 52 171 409 52
42 693 74 107 450 47 172 340 33
43 559 84 108 617 56 173 609 77
44 215 54 109 845 73 174 522 71
45 202 63 110 959 60 175 614 53
46 424 86 111 1124 67 176 449 62
47 648 68 112 1119 81 177 368 78
48 656 50 113 985 66 178 122 42
49 680 38 114 827 48 179 55 14
50 651 55 115 836 78 180 114 43
51 766 54 116 834 80 181 131 32
52 951 84 117 798 77 182 304 40
53 896 103 118 456 54 183 82 26
54 838 60 119 200 51 184 207 62
55 736 81 120 154 24 185 92 63
56 722 62 121 503 64 186 213 62
57 775 96 122 580 48 187 87 34
58 581 52 123 759 57 188 304 39
59 232 59 124 800 49 189 161 33
60 145 41 125 849 61 190 306 39
61 323 43 126 1031 69 191 142 55
62 514 46 127 896 72 192 207 58
63 601 47 128 897 42 193 52 59
64 590 40 129 756 59 194 46 57

AU3833_C28.fm Page 753 Thursday, August 17, 2006 11:03 AM

754 ■ Mobile Middleware

■ Test Network 4 — This network is shown in Figure 28.25 and has
the cell attributes shown in Table 28.4. Figure 28.26 shows the
general profile for the energy (cost) function during the optimiza-
tion process, and Figure 28.27 characterizes the reheating pattern.

■ Test Network 5 — The details of this network are given in Table
28.5 and Figure 28.28, Figure 28.29, and Figure 28.30.

Figure 28.19 Solution for Test Network 3.

Figure 28.20 Energy level for Test Network 3.

AU3833_C28.fm Page 754 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 755

A Genetic Algorithm in the Location Area Scheme

A genetic algorithm (GA) is combined with the location area scheme
to solve the location management problem [40]. In this case, each LA
configuration of a network is modeled as a chromosome. By using the
basic operators of a GA optimizer, the general condition of the chro-
mosomes improves generation by generation until the final solution is
found. The following test networks have been solved by the HNN and
SA approaches and are presented here to indicate the performance of
this approach [40]:

Table 28.4 Cell Attributes for Test Network 4

No. UpP CAr Neighbors

0 129 50 (0:1,70) (1:5,46)
1 279 73 (0:0,76) (1:2,41) (2:5,31) (3:6,69) (4:7,55)
2 100 44 (0:1,29) (1:3,35) (2:7,22)
3 265 52 (0:2,31) (1:4,61) (2:7,63) (3:8,73) (4:9,27)
4 120 73 (0:3,63) (1:9,50)
5 202 52 (0:0,42) (1:1,29) (2:6,66) (3:10,59)
6 341 44 (0:1,77) (1:5,60) (2:7,32) (3:10,22) (4:11,63) (5:12,74)
7 284 34 (0:1,66) (1:2,19) (2:3,52) (3:6,38) (4:8,33) (5:12,65)
8 347 46 (0:3,70) (1:7,42) (2:9,60) (3:12,79) (4:13,61) (5:14,25)
9 199 52 (0:3,34) (1:4,44) (2:8,72) (3:14,45)

10 167 69 (0:5,51) (1:6,27) (2:11,29) (3:15,46)
11 327 41 (0:6,54) (1:10,37) (2:12,66) (3:15,26) (4:16,85) (5:17,47)
12 454 84 (0:6,83) (1:7,61) (2:8,71) (3:11,77) (4:13,51) (5:17,101)
13 336 55 (0:8,68) (1:12,65) (2:14,40) (3:17,44) (4:18,76) (5:19,29)
14 151 69 (0:8,20) (1:9,45) (2:13,33) (3:19,34)
15 158 52 (0:10,39) (1:11,32) (2:16,29) (3:20,42)
16 365 92 (0:11,83) (1:15,42) (2:17,83) (3:20,47) (4:21,61) (5:22,43)
17 401 56 (0:11,37) (1:12,96) (2:13,49) (3:16,79) (4:18,76) (5:22,49)
18 364 80 (0:13,98) (1:17,71) (2:19,25) (3:22,46) (4:23,59) (5:24,53)
19 135 51 (0:13,34) (1:14,30) (2:18,21) (3:24,36)
20 124 63 (0:15,34) (1:16,60) (2:21,24)
21 150 82 (0:16,61) (1:20,25) (2:22,57)
22 253 59 (0:16,41) (1:17,46) (2:18,34) (3:21,50) (4:23,68)
23 159 52 (0:18,71) (1:22,49) (2:24,33)
24 138 59 (0:18,72) (1:19,40) (2:23,20)

AU3833_C28.fm Page 755 Thursday, August 17, 2006 11:03 AM

756 ■ Mobile Middleware

■ Test Network 4 —The network shown in Figure 28.31 has the cell
attributes given in Table 28.4. Figure 28.32, in this case, shows the
energy levels (cost) of the best chromosome and worst chromosome
and the average energy value of all chromosomes for each population.

Figure 28.21 Solution for Test Network 4 found using the Hopfield neural network.

Figure 28.22 HNN solving process for Test Network 4.

AU3833_C28.fm Page 756 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 757

■ Test Network 5 — The details of this network are given in Figure
28.33 and Table 28.5. Figure 28.34 shows the performance of the
algorithm for this test network.

Figure 28.23 Solution for Test Network 5 found using the Hopfield neural network.

Figure 28.24 HNN solving process for Test Network 5.

AU3833_C28.fm Page 757 Thursday, August 17, 2006 11:03 AM

758 ■ Mobile Middleware

Table 28.5 Cell Attributes for Test Network 5

No. UpP CAr Neighbors

0 115 43 (0:1,75) (1:7,36)
1 315 46 (0:0,61) (1:2,43) (2:7,33) (3:8,61) (4:9,112)
2 161 59 (0:1,31) (1:3,69) (2:9,50)
3 229 43 (0:2,47) (1:4,29) (2:9,43) (3:10,41) (4:11,57)
4 69 34 (0:3,23) (1:5,15) (2:11,24)
5 115 46 (0:4,15) (1:6,18) (2:11,32) (3:12,20) (4:13,16)
6 35 33 (0:5,22) (1:13,5)
7 213 71 (0:0,41) (1:1,33) (2:8,86) (3:14,44)
8 368 51 (0:1,63) (1:7,73) (2:9,54) (3:14,21) (4:15,71) (5:16,73)
9 475 95 (0:1,96) (1:2,56) (2:3,52) (3:8,52) (4:10,122) (5:16,84)

10 420 54 (0:3,23) (1:9,115) (2:11,37) (3:16,63) (4:17,58) (5:18,109)
11 248 41 (0:3,54) (1:4,18) (2:5,29) (3:10,44) (4:12,45) (5:18,42)
12 218 46 (0:5,24) (1:11,49) (2:13,17) (3:18,37) (4:19,25) (5:20,54)
13 54 35 (0:5,17) (1:6,8) (2:12,9) (3:20,7)
14 142 59 (0:7,47) (1:8,18) (2:15,26) (3:21,34)
15 311 45 (0:8,72) (1:14,29) (2:16,42) (3:21,32) (4:22,81) (5:23,41)
16 403 40 (0:8,76) (1:9,80) (2:10,39) (3:15,49) (4:17,76) (5:23,69)
17 431 53 (0:10,55) (1:16,74) (2:18,71) (3:23,70) (4:24,42) (5:25,105)
18 450 49 (0:10,113) (1:11,38) (2:12,49) (3:17,66) (4:19,118) (5:25,53)
19 461 92 (0:12,31) (1:18,122) (2:20,70) (3:25,109) (4:26,52) (5:27,69)
20 182 69 (0:12,53) (1:13,9) (2:19,73) (3:27,42)
21 133 57 (0:14,38) (1:15,25) (2:22,25) (3:28,34)
22 420 99 (0:15,97) (1:21,23) (2:23,108) (3:28,67) (4:29,57) (5:30,59)
23 410 58 (0:15,34) (1:16,60) (2:17,78) (3:22,111) (4:24,54) (5:30,57)
24 408 90 (0:17,36) (1:23,66) (2:25,94) (3:30,110) (4:31,15) (5:32,58)
25 526 63 (0:17,107) (1:18,58) (2:19,106) (3:24,116) (4:26,98) (5:32,23)
26 374 70 (0:19,52) (1:25,116) (2:27,46) (3:32,55) (4:33,15) (5:34,84)
27 200 46 (0:19,77) (1:20,32) (2:26,57) (3:34,29)
28 136 62 (0:21,37) (1:22,67) (2:29,26)
29 173 87 (0:22,56) (1:28,26) (2:30,82)
30 346 58 (0:22,60) (1:23,46) (2:24,112) (3:29,78) (4:31,41)
31 99 48 (0:24,20) (1:30,27) (2:32,36)
32 214 41 (0:24,48) (1:25,36) (2:26,51) (3:31,33) (4:33,35)
33 84 63 (0:26,12) (1:32,37) (2:34,14)
34 143 83 (0:26,85) (1:27,27) (2:33,24)

AU3833_C28.fm Page 758 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 759

Figure 28.25 Solution for Test Network 4 found by using the simulated annealing
optimizer.

Figure 28.26 Energy levels for Test Network 4.

Figure 28.27 Reheating curve for Test Network 4.

AU3833_C28.fm Page 759 Thursday, August 17, 2006 11:03 AM

760 ■ Mobile Middleware

Figure 28.28 Solution for Test Network 5 found by using the simulated annealing
optimizer.

Figure 28.29 Energy levels for Test Network 5.

Figure 28.30 Reheating curve for Test Network 5.

AU3833_C28.fm Page 760 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 761

Results Explanation
A number of observations can be made in relation to the use of heuristics
in solving the location management problem.

Effect of Selecting the Initial Population

The most outstanding result is the correlation of the final answer and the
initial population or cell attributes of the network in both the PC and LA
cases. In almost all of the available literature, the cell attributes of the

Figure 28.31 Solution for Test Network 4 found by using the genetic algorithm
optimizer.

Figure 28.32 GA chromosome quality for Test Network 4.

AU3833_C28.fm Page 761 Thursday, August 17, 2006 11:03 AM

762 ■ Mobile Middleware

network are generated randomly. This means that two independent
attributes for each cell are considered: the number of call arrivals and the
number of location updates. These numbers, however, are highly corre-
lated in real-life scenarios. A more robust and logical approach has been
used to generate the population and, consequently, the network attributes
of each cell. In summary, the users are classified into three main categories:
ordinary users, workers, and commuters, and each group has its own
characteristics and follows a certain pattern of moving and call making.
Also, the cells of network are classified into the three main categories of
ordinary cells, working cells, and living cells. As a result, the final cell
configurations (i.e., solutions) appear to be more realistic [36–40].

Figure 28.33 Solution for Test Network 5 found by using the genetic algorithm
optimizer.

Figure 28.34 GA chromosome quality for Test Network 5.

AU3833_C28.fm Page 762 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 763

Algorithm Robustness

One of the most important criteria by which to judge an algorithm is its
ability to generate the same solution regardless of how many times it is
launched. This factor is very important for metaheuristics (e.g., SA, HNN,
GAs). To examine the robustness of the proposed approaches, these
algorithms were executed many times (on average ten or more) for each test
network and for all PC- and LA-based algorithms. In some cases, the algorithm
managed to find identical answers for different numbers of iterations; in some
other cases, similar (but not identical) answers were found. It is worth
mentioning, however, that the total energy costs of the network in all the
cases did not deviate from each other by more than 2 percent [36–40].

PC Scheme: Separation of the Network

As was expected, the optimal paging cell configurations for all test
networks led to the splitting of the network into smaller subnetworks
(Figure 28.15, Figure 28.17, and Figure 28.19).

PC Scheme: Thin and Thick Boundary Cells

It should be noted that in some cases the network was split by a thin
boundary of paging cells and in other cases by thick boundaries (Figure
28.17) [37].

LA Scheme: Shape of the Location Areas

Despite the fact that the current GSM networks employ circular LA, current
work shows that more efficient LAs could have a variety of configurations,
such as rectangular or triangular, as can be seen in Figure 28.21, Figure
28.23, Figure 28.25, Figure 28.28, Figure 28.31, and Figure 28.33 [38–40].

LA Scheme: Number of Cells in a Location Area

Another interesting result is the number of cells in each LA. In GSM
networks, cells are grouped in 7 × 7 configurations to make a location
area, although different LAs should have different numbers of cells. It is
worth noting that the number of cells in a location area is highly correlated
with the number of users passing through the cells and the number of
calls they receive in each cell (see Figure 28.21, Figure 28.23, Figure 28.25,
Figure 28.28, Figure 28.31, and Figure 28.33) [38–40].

AU3833_C28.fm Page 763 Thursday, August 17, 2006 11:03 AM

764 ■ Mobile Middleware

LA Scheme: Number of Neighbors for Each Location Area

In almost all the cases, each LA is adjacent to two to four other LAs,
although this number is six for the currently implemented GSM networks.
The main reason for this phenomenon is the reduction in the number of
location updates and consequent reduction in the cost of network man-
agement. The smaller the number of neighbors of a LA, the fewer updates
are made by mobile users (see Figure 28.21, Figure 28.23, Figure 28.25,
Figure 28.28, Figure 28.31, and Figure 28.33) [38–40].

LA Scheme: Boundary Cells

Boundary cells of a LA tend to be less busy and have lower traffic than
other cells in the same location area; for example, cells 19, 20, 26, 27,
and 34 in Figure 28.23 are busy cells in comparison with cells 12, 18, 17,
25, 32, and 33, which have fewer location updates and call arrivals, as
seen in Table 28.4 [38–40].

Conclusions
This chapter introduced the basic concepts of the location management
problem. Several location management strategies were introduced fol-
lowed by sophisticated approaches to solve such a problem. These
approaches were based on metaheuristics used in combination with loca-
tion area and paging cell schemes. The Hopfield neural network, simulated
annealing, and genetic algorithms were used as representatives of the
different classes of metaheuristics. Finally, several general observations
were made regarding the different experiments.

References
[1] Lin, Y.-B. and Chlamatac, I., Wireless and Mobile Network Architecture, John

Wiley & Sons, New York, 2001.
[2] Agrawal, D.P. and Zeng, Q.-A., Introduction to Wireless and Mobile Systems,

Thomson Brooks/Cole, Pacific Grove, CA, 2003.
[3] Austin, M.D. and Stuber, G.L., Direction based handoff algorithms for urban

microcells, in Proc. IEEE Vehicular Technology Conf. (VTC’94), Stockholm,
Sweden, June, 1995, pp. 101–105.

[4] Zeng, Q.A. and Agrawal, D.P., Performance analysis of a handoff scheme
in integrated voice/data wireless networks, in Proc. IEEE Vehicular Tech-
nology Conf. (VTC’00), Boston, MA, September, 2000, pp. 845–851.

AU3833_C28.fm Page 764 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 765

[5] Al-Tawil, K., Akrami, A., and Youssef, H., A new authentication protocol
for GSM networks, in Proc. of the IEEE 23rd Annual Conf. on Local Computer
Networks (LCN’98), Lowell, MA, October, 11–14, 1998, pp. 21–30.

[6] Spirito, M.A. and Mattioli, A.G., On the hyperbolic positioning of GSM
mobile stations, in Proc. of Int. Symp. on Signals, Systems, and Electronics
(ISSSE’98), September, 1998, pp. 173–177.

[7] Yuen, W.H.A. and Wong, W.S.W., A dynamic location area assignment
algorithm for mobile cellular systems, in Proc. of IEEE Int. Conf. on Com-
munications (ICC’98), Atlanta, GA, June, 1998, pp. 1385–1389.

[8] Ho, J.S.M. and Xu, J., History-based location tracking for personal commu-
nications networks, in Proc. IEEE Vehicular Technology Conf. (VTC’98),
Ottawa, Canada, May, 1998, pp. 244–248.

[9] Lei, Z. and Rose, C., Wireless subscriber mobility management using adaptive
individual location areas for PCS systems, Proc. of IEEE Int. Conf. on Com-
munications (ICC’98), Atlanta, GA, June, 1998, pp. 1390–1394.

[10] Gu, D. and Rappaport, S.S., A dynamic location tracking strategy for mobile
communication systems, in Proc. IEEE Vehicular Technology Conf. (VTC’98),
Ottawa, Canada, May, 1998, pp. 259–263.

[11] Naor, Z. and Levy, H., Minimizing the wireless cost of tracking mobile users:
an adaptive threshold scheme, in Proc. IEEE INFOCOM’98, San Francisco,
CA, March, 1998, pp. 720–727.

[12] Jie, L., Kameda, H., and Keqin, L., Optimal dynamic location update for PCS
networks, in Proc. of IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’98), Amsterdam, The Netherlands, May, 1998.

[13] Lee, B.-K. and Chong-Sun Hwang, C.S., A predictive paging scheme based
on the movement direction of a mobile host, in Proc. IEEE Vehicular
Technology Conf. (VTC’99), Houston, TX, May, 1999, pp. 2158–2162.

[14] Liu, H.-I. and Liu, C.-P., A geography based location management scheme
for wireless personal communication systems, in Proc. IEEE Vehicular Tech-
nology Conf. (VTC’00), Boston, MA, September, 2000, pp. 1358–1361.

[15] Bera, A. and Das, N., Performance analysis of dynamic location update
strategies for mobile users, in Proc. of IEEE Int. Conf. on Distributed Com-
puting Systems (ICDCS’00), Taipei, Taiwan, April, 2000, pp. 428–435.

[16] Wu, H.-K., Jin, M.-H., Horng, J.-T., and Ke, C.-Y., Personal paging area
design based on mobile’s moving behaviors, Proc. IEEE INFOCOM’01,
Anchorage, AK, April, 2001, pp. 21–30.

[17] Lin, Y.-B., Lee, P.-C., and Chlamtac, I., Dynamic periodic location area update
in mobile networks, IEEE Trans. Veh. Technol., 51(6), 1494–1501, 2002.

[18] Akyildiz, I.F. and Wang, W., A dynamic location management scheme for
next-generation multitier PCS systems, IEEE Trans. Wireless Commun., 1(1),
178–189, 2002.

[19] Rose, C., Minimizing the average cost of paging and registration: a timer
based method, Wireless Networks, 2, 109–116, 1996.

[20] Akyildiz, I.F. and Ho, J.S.M., Movement based location update and selective
paging for PCS networks, IEEE/ACM Trans. Networking, 4, 629–638, 1996.

[21] Casares, G.V. and Mataix, O.J., On movement based mobility tracking: an
enhanced version, IEEE Commun. Lett., 2, 45–47, 1998.

AU3833_C28.fm Page 765 Thursday, August 17, 2006 11:03 AM

766 ■ Mobile Middleware

[22] Wong, V.W.S. and Leung, V.C.M., An adaptive distance based location update
algorithm for next generation PCS networks, IEEE J. Selected Areas Commun.,
19, 1942–1952, 2001.

[23] Wong, V.W.-S. and Leung, V.C.M., An adaptive distance-based location
update algorithm for PCS networks, in Proc. of IEEE Int. Conf. on Commu-
nications (ICC’00), New Orleans, LA, June, 2000, pp. 2001–2005.

[24] Suh, B., Choi, J.-S., and Kim, J.-K., Mobile location management strategy
with implicit location registration, in Proc. IEEE Vehicular Technology Conf.
(VTC’99), Houston, TX, May, 1999, pp. 2129–2133.

[25] Gu, D. and Rappaport, S.S., Mobile user registration in cellular systems with
overlapping location areas, Proc. IEEE Vehicular Technology Conf. (VTC’99),
Houston, TX, May, 1999, pp. 802–806.

[26] Kim, T.K. and Leung, C., Generalized paging schemes for cellular commu-
nication systems, in Proc. of 7th IEEE Pacific Rim Conf. on Communications,
Computers, and Signal Processing (PACRIM’99), Bali, Indonesia, October,
1999, pp. 217–220.

[27] Tonguz, O.K., Mishra, S., and Josyula, R., Intelligent paging in wireless
networks: random mobility models and grouping algorithms for locating
subscribers, in Proc. IEEE Vehicular Technology Conf. (VTC’99), Houston,
TX, May, 1999, pp. 1177–1181.

[28] Subrata, R. and Zomaya, A.Y., Location management in mobile computing,
in Proc. of the 3rd ACS/IEEE Int. Conf. on Computer Systems and Applica-
tions, Cairo, Egypt, January, 2001, pp. 287–289.

[29] Demirkol, I., Ersoy, C., Caglayan, M.U., and Delic, H., Location area planning
in cellular networks using simulated annealing, in Proc. IEEE INFOCOM’01,
Anchorage, AK, April, 2001, pp. 13–20.

[30] Shirota, M., Yoshida, Y., and Kubota, F., Statistical paging area selection
scheme (SPAS) for cellular mobile communication systems, in Proc. IEEE
Vehicular Technology Conf. (VTC’94), Stockholm, Sweden, June, 1994, pp.
367–370.

[31] Curle, P. and Colombo, G., Sub-optimal solutions for location and paging
areas dimensioning in cellular networks, in Proc. of the Fourth IEEE Int.
Conf. on Universal Personal Communications (ICUPC’95), Tokyo, Japan,
November, 1995, pp. 672–676.

[32] Lei, Z., Saraydar, C.U., and Mandayam, N.B., Mobility parameter estimation
for the optimization of personal paging areas in PCS/cellular mobile net-
works, in Proc. of Signal Processing Advances in Wireless Communications
(SPAWC’99), Annapolis, MD, May, 1999, pp. 308–312.

[33] Wu, H.-K., Jin, M.-H., Horng, J.-T., and Ke, C.-Y., Personal paging area
design based on mobile’s moving behaviors, in Proc. IEEE INFOCOM’01,
Anchorage, AK, April, 2001, pp. 21–30.

[34] Subrata, R. and Zomaya, A.Y., A comparison of three artificial life technique
for reporting cell planning in mobile computing, IEEE Trans. Parallel
Distributed Syst., 14(2), 142–153, 2003.

[35] Subrata, R. and Zomaya, A.Y., Evolving cellular automata for location man-
agement in mobile computing networks, IEEE Trans. Parallel Distributed
Syst., 14(1), 13–26, 2003.

AU3833_C28.fm Page 766 Thursday, August 17, 2006 11:03 AM

Location Management Problem for Mobile Computing Environments ■ 767

[36] Taheri, J. and Zomaya, A.Y., Realistic simulations for studying mobility
management problems, Int. J. Wireless Mobile Comput., 1(8), 2005.

[37] Zomaya, A.Y. and Taheri, J., A modified Hopfield network for mobility
management, 2006 (in press).

[38] Taheri, J. and Zomaya, A.Y., The use of a Hopfield neural network in
solving the mobility management problem, in Proc. of the IEEE/ACS Int.
Conf. on Pervasive Services (ICPS’04), Beirut, Lebanon, July, 2004, pp.
141–150.

[39] Taheri, J. and Zomaya, A.Y., A simulated annealing approach for mobile
location management, in Proc. of the 8th Workshop on Nature Inspired
Distributed Computing (NIDISC’05), Int. Parallel and Distributed Processing
Symp., Denver, CO, April, 2005.

[40] Taheri, J. and Zomaya, A.Y., A genetic algorithm for finding optimal location
area configurations for mobility management, in Proc. of IEEE Conf. on
Local Computer Networks (LCN 2005), Sydney, Australia, November 15–17,
2005, pp. 568–577.

AU3833_C28.fm Page 767 Thursday, August 17, 2006 11:03 AM

AU3833_C28.fm Page 768 Thursday, August 17, 2006 11:03 AM

769

Chapter 29

Location Privacy
Protection in Mobile

Wireless Networks

Jieyan Fan, Dapeng Wu, Qi He, and Pradeep Khosla

CONTENTS

Introduction... 770
System Architecture .. 772

Ubiquitous Computing.. 772
Agent-Based System Architecture .. 774

Blind Signature.. 775
Voting Example ... 776
Protocol.. 777

Authorized-Anonymous-ID-Based Scheme ... 779
Registration Protocol... 779
Controlled Connection Protocol .. 781
Improvements.. 781

Reconfusion ... 782
Access Authorization Revocation ... 783
Untraceable Routing Infrastructure .. 784

Related Work... 784
Summary.. 785
References ... 785

AU3833_C29.fm Page 769 Thursday, August 17, 2006 11:26 AM

770

■

Mobile Middleware

Introduction

The convergence of a wireless communication infrastructure, mobile com-
puting devices, and embedded systems is causing a profound shift in the
way we live and work, offering the promise of bringing us closer to the
Holy Grail of information technology: ubiquitous computing (computing
at any place and at any time) [3]. To fulfill the promise of ubiquitous
computing, information about mobile users’ locations is a critical and
valuable resource that has to be utilized. Many efforts have been directed
toward making such information available as a key service in the ubiq-
uitous computing environment. The location information service or func-
tionality can act as a double-edged sword, however, as it can make our
life more convenient while providing criminals with powerful weapons
to compromise the privacy of mobile users. Computer scientists have
realized that, unless the use of this information is strictly controlled, it can
be applied to a variety of unsavory situations [3,4].

To address the location privacy issue, an architecture for location privacy
control [4] was designed and tested on the wireless Andrew network, an
IEEE 802.11 wireless local area network (WLAN) that covers the entire
campus of Carnegie Mellon University. The architecture implemented in
He et al. [4] is illustrated in Figure 29.1. This architecture has a centralized
location server where a mobile user can register and submit location
information along with a

permission rule set

 regarding the user’s privacy
preferences. Others can send queries to the server for location information
about mobile users whose location information is stored in the server. The
server processes the query according to the queried user’s preferences
specified within the set of rules, and then the server may return the queried
information, deny the query, or return a fake location [4].

This simple architecture is essentially identical to the one described in
Weiser [3], who suggested that a distributed architecture could be of benefit
to the control of mobile location privacy, because a centralized architecture
has the following drawbacks:

■

The location privacy of mobile users is not completely under their
control because the system administration maintains a central server
where the location information of mobile users is stored.

■

The central server is a single-failure point; that is, the location
privacy of mobile users would be compromised if an attacker
successfully hacked into it.

■

The centralized architecture is not scalable.

To achieve complete personal control over location privacy by replacing a
centralized architecture with a distributed one is not trivial. For example, the
system administration, for the sake of system maintenance and management,

AU3833_C29.fm Page 770 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks

■

771

has the privilege of checking any access point and obtaining a list of
Internet Protocol (IP) addresses and corresponding Media Access Control
(MAC) addresses of the mobile devices that are connecting to the checked
access point. The administration also has the data that can indicate a
bijection relationship between MAC addresses (or IP addresses) of autho-
rized mobile devices and registered legitimate mobile users. The location
information about a mobile user can be easily figured out by the admin-
istration. So, we face a dilemma: On the one hand, the administration
would like to require all legitimate users to provide information for authen-
tication to grant them permission to use their wireless service; on the other
hand, mobile users would prefer not to expose any of their information
(e.g., IDs and MAC addresses) that would enable anyone, including the
administration, to get clues regarding their whereabouts.

To resolve the above dilemma, He et al. [1] proposed an authorized-
anonymous-ID-based scheme. In this scheme, an authorized-anonymous-
ID generated by a cryptographic technique called

blind

signature

 [5] is
used to replace the real ID (e.g., a MAC address) of an authorized mobile
device (e.g., a WLAN card). An anonymous ID can tell nothing more than
whether the provider of the ID is an authorized user. This authorized-
anonymous-ID is then used as the key for packet authentication, and the
message authentication code (generated by the key) [6] is used for access

Figure 29.1 WaveGuard architecture.

AU3833_C29.fm Page 771 Thursday, August 17, 2006 11:26 AM

772

■

Mobile Middleware

control. In this way, the administration can grant authorized mobile users
access to the wireless communication infrastructure, while mobile users
need not divulge their real IDs during authorization, which could otherwise
lead to compromising their location privacy. Built on an agent-based
architecture, the authorized-anonymous-ID-based scheme gives mobile
users complete control over their location privacy. Here, the agent is a
computer program or code that is autonomous.

System Architecture

To address the location privacy issue in a ubiquitous computing environ-
ment, we need to understand the key components for ubiquitous com-
puting. Based on this understanding, we can then design a system to
protect location privacy. Below, we first discuss key components in
ubiquitous computing from a security perspective and then present our
agent-based system architecture for location privacy protection.

Ubiquitous Computing

For quite some time, a ubiquitous computing environment has been depicted
as dynamically changing self-organized networks formed by resource-
constrained mobile devices that occasionally join and leave the networks. It
is difficult to believe, however, that this

ad hoc

 infrastructure-less system
could be the basis of what we call ubiquitous computing. We believe that
identifying reasonable formations of ubiquitous computing and exploring
security implication of ubiquitous computing based on the discovered for-
mations are fundamentally significant research approaches. In Brewer et al.
[7], we learn that a ubiquitous computing environment should be formed
by a powerful infrastructure that is highly available, cost effective, and
sufficiently scalable to support millions of users and their low-power mobile
devices, which are small and lightweight; it does not matter very much what
a device can do, but what does matter is the possibility that the device can
harness terabytes of data and the power of supercomputers even while
mobile — as long as it has access to a ubiquitous network [7]. This under-
standing of the formation of ubiquitous computing guides the design of the
system architecture for location privacy protection.

Security, already a thorny problem on the Internet, is greatly compli-
cated by ubiquitous computing, not only because of its vulnerability due
to the sharing nature of the wireless medium and computational limitations
resulting from requirements for low weight, compact size, and good
ergonomics of mobile device and embedded systems, but more impor-
tantly also because of the following challenges:

AU3833_C29.fm Page 772 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks

■

773

■

Geographically distributed systems are connected to form hetero-
geneous networks of unlimited scale which lack a central authority,
a homogeneous security policy, and a ubiquitous security infra-
structure for security enforcement or guarantee.

■

Ubiquitous computing creates an environment full of computing
and communication devices that must gracefully integrate with
human users [3], so the electronic security mechanisms must be
user centered and cannot rely on or be controlled by network
infrastructure operators.

■

The design of security mechanisms for ubiquitous computing must
follow the end-to-end principle [8].

The agent technology [9] can effectively address the aforementioned chal-
lenges for three reasons. First, agents are autonomous and distributed, so
no central authority is required for security enforcement. Second, agents
can act on the users’ behalf; hence, agent-based security mechanisms can
be designed to be user centered. Third, agents are application oriented,
which naturally satisfies the end-to-end principle (i.e., agents communicate
on the application layer).

Based on the agent concept, we perceive, from a security perspective,
that a ubiquitous computing environment should consist of the following
three key components (see Figure 29.2):

Figure 29.2 Ubiquitous computing.

PTCB
(personal trusted computing base)

on mobile device

PAN
(personal area network)

AU3833_C29.fm Page 773 Thursday, August 17, 2006 11:26 AM

774

■

Mobile Middleware

■

A

personal trust computing base

 (PTCB) is a personal-held com-
puting device, such as personal digital assistant (PDA) and laptop;
a PTCB is under the full control of the owner, and only the owner
with proper authentication information such as personal identifi-
cation number (PIN) or biometrics information can activate a PTCB
to work on behalf of the owner.

■

A

personal area network

 (PAN) is an architecture that consists of a
main home PC, which has a connection to an Internet gateway,
and a wide range of appliances (i.e., PTCBs) connected to the main
home PC in many ways. Each PTCB is associated with some kind
of autonomous software, called

agent

 (or

proxy

). The agent runs
on the PTCB if the PTCB is computationally capable of running the
agent; otherwise, the agent runs on the main home PC. To secure
the communication within a PAN, we need to consider two cases:
(1) an agent runs on the PTCB, and (2) an agent runs on the main
home PC. For the first case, a protocol can be designed to initialize
a symmetric key shared by the PTCB and the main home PC; the
messages between the PTCB and the main home PC can then be
encrypted and authenticated with the shared secret key. For the
second case, a method known as

resurrecting duckling

 [10] can be
employed whereby a PTCB and its agent share a symmetric key to
secure their communication; the PTCBs can then securely commu-
nicate with each other through their agents, which can negotiate
keys for encryption or authentication. Hence, the communication
within a PAN can be secured by symmetric cryptosystems. An
engineering practice that addresses the second case is described in
Burnside et al. [11], who designed and implemented a device-to-
proxy protocol and a proxy-to-proxy protocol.

■

The

Internet

 provides a communication channel between a PTCB
and a PAN; however, the channel cannot be trusted.

Agent-Based System Architecture

Because the properties of agents meet the security requirements imposed
by ubiquitous computing, He et al. [1] designed an agent-based system
architecture for location privacy protection. The following agents act on
behalf of the players (devices or users) under this architecture:

■

Administrator

 (

A

) is an agent that acts on behalf of an adminis-
tration to authenticate legitimate users and grant them access to
the wireless infrastructure.

AU3833_C29.fm Page 774 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks

■

775

■

Rover

 (

R

) is an agent running on a PTCB and acts on behalf of
the owner of a mobile device. It is responsible for determining
the location of the mobile device, automatically updating the
location information stored in the home PC (managed by another
agent called manager, described below), and interacting with users
for privacy permission settings [4].

■

Manager

 (

M

) is an agent running on a home PC that can be
delegated to act on behalf of a mobile user. It manages the location
information submitted by the rover and executes the user’s control
policy [4] for location privacy when it processes location informa-
tion queries from other users.

■

Connector

 (

C

) is an agent running at an access point and is
delegated by the administrator agent to authenticate mobile devices
and control wireless connections between mobile devices and the
access point.

■

Lookup

 (

L

) is an optional agent that provides Internet users with
public lookup services. Lookup agents, acting as well-known public
service providers, will listen for location information queries from
users and forward the queries to the queried user’s manager agent
running at home.

With the above agents, He et al. [1] proposed a multi-agent system
architecture, as illustrated in Figure 29.3. Under the architecture, agents
communicate with each other through three types of protocols:

registra-
tion

,

controlled connection

, and

location query/response

 (numbered 1, 2,
and 3, respectively, in Figure 29.3). In the next section, we present the
registration protocol and the controlled connection protocol. Readers can
find more information about the location query/response protocol in He
et al. [4]. Before we present the authorized-anonymous-ID-based scheme
for mobile location privacy protection, in the next section, we first describe
the blind signature technique that is essential in the design of the autho-
rized-anonymous-ID-based scheme.

Blind Signature

The blind signature scheme, first introduced by Chaum [5], allows a person
to receive a message signed by another party (a signer) without revealing
any information about who the signer is. This scheme is critical for the
authorized-anonymous-ID-based scheme. To illustrate the concept of blind
signature, we present the following example, which was originally given
in Chaum [5].

AU3833_C29.fm Page 775 Thursday, August 17, 2006 11:26 AM

776

■

Mobile Middleware

Voting Example

Consider a committee that needs to elect a new chairman. An administrator
is in charge of the election, and all members of the committee will vote;
however, for some reason, the members cannot gather together to drop
their ballots into a single hat. Each member wants to keep his vote secret.
Each member also wants to verify that his vote is counted. One solution
is to use a special carbon-paper-lined envelope. The envelope is designed
in such a way that writing a signature on the outside of the envelope
leaves a carbon copy of the signature on a piece of paper inside the
envelope. Thus, voting would proceed as follows:

■

Each member casts his vote on a ballot and places the ballot
into a carbon-paper-lined envelope. He then inserts the carbon-
paper-lined envelope into a regular outer envelope bearing the
member’s return address and mails the nested envelope to the
administrator.

■

The administrator verifies the member by his name and address.
If the member is qualified to vote, the administrator removes the
carbon-paper-lined envelope and signs on it. Due to the carbon

Figure 29.3 Agent-based system architecture.

AU3833_C29.fm Page 776 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks

■

777

paper, the signature is copied to the ballot inside the carbon-paper-
lined envelope. The administrator then inserts the carbon-paper-
lined envelope into another regular outer envelope and mails it to
the member.

■

When the member receives the envelope, he removes the ballot
from the envelope. The member can then mail the ballot to the
administrator as his vote. This time, however, the member does
not write his return address on the envelope.

■

In the end, the administrator displays all the ballots.

Because the administrator does not know the contents of the ballot when
signing on the carbon-paper-lined envelope, no correspondence takes
place between the administrator and the member who votes. However,
because only the authorized member will receive the signed carbon-paper-
lined envelope and the signed ballot, the validity of the ballot is guaran-
teed. Here, we assume that the signature is well designed for this vote
so the signature cannot be imitated. Because all the ballots are displayed,
a member can verify that his vote was counted by identifying some
particular features of the ballot, such as the fiber pattern.

Protocol

As in the previous example, suppose a provider wants a message to be
signed by a signer but does not want the signer to learn anything about
the message. The provider can use blind signature to solve this problem.
Blind signature requires three set of functions:

■

Function

S

, which is known only to the signer, and function

S

–1

,
which is known to the public — It is impractical to infer

S

 from

S

–1

. The pair of functions

S

 and

S

–1

 can be implemented by public
key cryptographic algorithms. Specifically,

S

 corresponds to encryp-
tion with a private key and

S

–1

 corresponds to decryption with a
public key; hence,

S

–1

(

S

(

x

)) =

x

, where

x

 is the message.

■

Function

C

 and its inverse

C

–1

 — Both are known only to the
provider.

C

 and C–1 satisfy the property that C–1(S(C(x)) = S(x). In
addition, it is impractical to infer x from C(x) and S(x).

■ Redundancy checking function r, which checks whether redundancy
is enough to make search for valid signatures impractical — Func-
tion r takes a signed matter as input, and the value of r is Boolean;
that is, r(x) = true indicates sufficient redundancy of x to make the
search for valid signatures impractical, whereas r(x) = false indicates
insufficient redundancy of x.

AU3833_C29.fm Page 777 Thursday, August 17, 2006 11:26 AM

778 ■ Mobile Middleware

Using the above functions, the protocol for the provider and the signer
is analogous to the previous voting example:

■ The provider chooses a random number x, which satisfies r(x) =
true. It then forms C(x) and sends C(x) to the signer. This step is
analogous to a member inserting his ballot into the carbon-paper-
lined envelope, placing the carbon-paper-lined envelope in an
outer envelope with his own return address, and mailing it to the
administrator.

■ The signer signs C(x) to generate S(C(x)) and returns the signed
matter, S(C(x)), to the provider. This step is analogous to the
administrator validating the return address, signing on the outside
of the carbon-paper-lined envelope, wrapping the carbon-paper-
lined envelope in a new outer envelope, and sending it back to
the return address.

■ The provider strips the signed matter (S(C(x))) by applying C–1,
yielding C–1(S(C(x))) = S(x). This step is analogous to the member
opening the carbon-paper-lined envelope and removing the signed
ballot.

■ Anyone can check that the stripped matter S(x) was formed by
the signer by applying the publicly known function S–1 and check-
ing that r(S–1(S(x))) = true. This step is analogous to the member
sending the signed ballot to the administrator and everyone being
able to check the ballot without knowing who voted.

From the above protocol, we see that blind signature has following
features:

■ Anyone can validate the stripped signature S(x) by performing
r(S–1(S(x))).

■ The signer knows nothing about the correspondence between the
stripped signed matter S(x) and the unstripped signed matter
S(C(x)); thus, the provider’s message is blind to the signer.

■ The provider can create at most one stripped signature for each
thing signed by the signer; that is, even with S(C(x1)), S(C(x2)), …,
S(C(xn)) and a choice of C, C–1, and x1, x2, …, xn, it is impractical
to produce S(y) such that r(y) = true and y ≠ xi for any i.

Next, we present the authorized-anonymous-ID based scheme, which uses
the blind signature technique.

AU3833_C29.fm Page 778 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks ■ 779

Authorized-Anonymous-ID-Based Scheme
This section presents the authorized-anonymous-ID-based scheme —
specifically, the registration protocol and the controlled connection
protocol. To authenticate users when they request access to the wireless
infrastructure, we must first assign a valid ID to a legitimate user (i.e.,
authorizing a user), and then only authorized users are allowed to
access the network infrastructure (i.e., access control). Hence, our
scheme has two phases: (1) the registration phase, specified by a
registration protocol, and (2) the controlled connection phase, specified
by a controlled connection protocol.

The registration phase authorizes users and the controlled connection
phase controls access. In the first phase, the manager (or rover) of a
mobile user applies for an authorized-anonymous-ID from the adminis-
trator of the wireless infrastructure. After the first phase, the obtained
authorized-anonymous-ID is carried by the rover of the mobile user and
will be presented when the mobile device is requesting connection
through an access point. In the second phase, the rover presents the ID
to request connection and the ID is also used by the access point to
authenticate the packets from the mobile device thereafter for the purpose
of access control.

Table 29.1 lists the notations used in the description of the protocols.
Note that because both Ru and Mu have the private key of U, both of
them can represent U. If Ru and Mu are interchangeable in the protocol,
we can use U to represent them. In other words, U in the following
protocols can be replaced by either Ru or Mu.

Registration Protocol

In the registration protocol, the initial authentication of users is required.
We assume that an infrastructure supports the initial authentication of
users. This infrastructure could be either a public key infrastructure (PKI)
or a Kerberos-based system [12]. When a PKI is in place, to obtain
authentication a user must sign a request with the user’s digital signature
and send the request to the administrator.

The registration protocol is based on authorized-anonymous-ID. With
an authorized-anonymous-ID as a digital token, a legitimate mobile device
can be granted permission to access the wireless infrastructure after a
successful authentication; yet, the association between the token and the
real ID of a legitimate user is eliminated. The registration protocol is as
follows (see Figure 29.4):

AU3833_C29.fm Page 779 Thursday, August 17, 2006 11:26 AM

780 ■ Mobile Middleware

■ The U generates two random numbers, r0 and r1.
■ The U encrypts r0 by applying the A’s public key (e.g., EA(r0)).
■ The U generates c0 = EA(r0) × H(r1) and sends c0 to the A.
■ When the A receives c0 from the U, it authenticates the U.
■ If the authentication passes, the A generates c1 = DA(c0) = r0 ×

DA(H(r1)) and sends c1 back to the U.
■ The U receives c1.
■ The U removes the blind factor by dividing c1 by r0 (id = c1/r0).
■ The U verifies id by checking EA(id) = H(r1). If id = DA(H(r1)), then

the verification will pass. Notice that we have assumed that it is
impractical to find an id such that id ≠ DA(H(r1)) and EA(id) = H(r1).

■ The U keeps id = DA(H(r1)) as its authorized-anonymous-ID.

As we mentioned previously, the role of a U in the registration protocol
could be played by either Ru or Mu, depending on the environment where
the U is currently staying. Usually, when at home with a mobile device,
the user can have the Mu initiate the protocol to get the authorized-
anonymous-ID (r1, DA(H(r1)) and then convey the authorized-anonymous-
ID to the Ru via a secure channel between the Ru and the Mu, which is
protected by a symmetric cryptosystem. When the mobile device already
has a connection to the administrator, the rover can also initiate the

Table 29.1 Notations

U A mobile user, identified by her public key. The
corresponding private key is held by her rover running
in her PTCB and Manager in home-PC of PAN.

Ru Rover of mobile user U
Mu Manager of mobile user U
Ex Public key of X
Dx Private key of X
Kxy(m) Encrypt m by using symmetric cryptosystem with a key

shared by x and y
K–1

xy (c) Decrypt c by using symmetric cryptosystem with a key
shared by x and y

H(x) One-way hash function with input x
Ex(m) Encrypt m by using asymmetric cryptosystem with the

public key of x
Dx(c) Decrypt a cipher c with the public key of x
r0, r1 Random numbers
ack Acknowledgment for the last received message

AU3833_C29.fm Page 780 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks ■ 781

registration procedure to get an ID to make the mobile user disappear
with the new ID (the reconfusion protocol is discussed later). No matter
who initiates the protocol, the ID must be passed to the rover for the
mobile device to be authenticated at access points.

Controlled Connection Protocol

Once an R obtains an ID, the mobile device can use the controlled
connection protocol to gain access to the wireless infrastructure via an
access point. First, the R sends an access request by presenting its
authorized-anonymous-ID (encrypted with the administrator’s public key)
to the C at the access point. The C then forwards the message to its A
for verification. The A decrypts the message, verifies the authenticity of
the embedded authorized-anonymous-ID, signs the ID (if it is a valid one),
encrypts the ID and the signature with the key shared by the A, and sends
the encrypted message back to the C. When the C receives the encrypted
message from the A, it decrypts it and checks the signature signed by the
A and sends an “ack” message to the R if the signature is valid. Thereafter,
the R and the C share the ID as a secret for packet authentication, and
only successfully authenticated packets can get through the access point
to the Internet. This protocol is outlined in Figure 29.5.

Improvements

The basic protocols presented earlier can be improved by the following
methods.

Figure 29.4 Registration protocol.

AU3833_C29.fm Page 781 Thursday, August 17, 2006 11:26 AM

782 ■ Mobile Middleware

Reconfusion

It is known that the longer an ID exists, the greater the chances of the
association between the ID and the corresponding mobile user being
exposed. To mitigate this problem, we can use a method called reconfusion,
the objective of which is to generate a new authorized-anonymous-ID to
replace the old authorized-anonymous-ID. Figure 29.6 outlines the protocol
for the reconfusion method. First, an R sends the administrator a request
(encrypted with the public key of the administrator) for a new authorized-
anonymous-ID. Different from the registration protocol, in which a real
identification (e.g., a public key certificate) is required to be presented, a
request for a new authorized-anonymous-ID in reconfusion contains

■ One of the mobile user’s current or previous authorized-anony-
mous-IDs

■ A random number multiplied by a factor that is blind or unknown
to the administrator

■ A symmetric encryption key suggested for this communication
session between the R and the A

Figure 29.5 Controlled connection protocol.

AU3833_C29.fm Page 782 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks ■ 783

After successful verification of the presented ID, the A signs a blind
signature on the random number, encrypts it with the suggested key, and
sends it back to the requesting rover. The R decrypts the message from
the A, removes the blind factor, and retrieves the new authorized-anon-
ymous-ID. The nice feature of the reconfusion protocol is that any dis-
closure of the previous ID would not compromise the anonymity of the
new ID.

Access Authorization Revocation

It is not desirable, from an administration perspective, for an authorized-
anonymous-ID to give a mobile device eternal rights to access the infra-
structure; hence, the administration may want to have a function that can
revoke or invalidate an issued authorized-anonymous-ID. One way to add
this revocation function is for the administrator to periodically expire and
change its own keys for access authorization. The anonymous IDs signed
by the revoked keys will no longer be valid for authentication. This
solution has a drawback, however, in that the mobile users need to
periodically update their anonymous IDs, which introduces much com-
munication overhead if the keys of the administrator expire too quickly.
Another solution is to attach an expiration time stamp to the ID. The
expiration time stamp should not be unique to the mobile user; otherwise,
the unique association between the expiration time stamp and the ID can
reveal the identity of a mobile user.

Figure 29.6 Reconfusion protocol.

Reconfusion request

AU3833_C29.fm Page 783 Thursday, August 17, 2006 11:26 AM

784 ■ Mobile Middleware

Untraceable Routing Infrastructure

Frequent communication between a home computer and a mobile device
could also contribute to exposing an association between a mobile device
and its stationary home. An untraceable routing infrastructure [13] can be
used to erase the track but at a certain communication cost. A restriction
on the protocols is that the standards of current wireless technologies,
such as IEEE 802.11 and Bluetooth®, require manufacturers to assign an
identification number (i.e., MAC address) to every device. The MAC
address is essentially an annoying tag attached at all times to a mobile
device. The custom of assigning a number to each wireless communication
device is adopted from numbering every network interface card (e.g.,
Ethernet card) for stationary computers, where location privacy does not
matter. In a ubiquitous computing environment, however, such a practice
exposes the ID of a mobile device at the MAC layer. An ideal way to
remedy this is to replace the MAC address with the authorized-anonymous-
ID. ID collision should not be a serious problem in this case and can be
prevented in many ways — for example, by adding a time stamp.

Related Work
Mobile IP [14] resembles the structure of our system. To support both
mobility and privacy, these two systems must interact, but they ar e
essentially different in two senses. First, they serve different purposes —
Mobile IP is aimed at packet routing and forwarding, whereas the location
information service/control system is targeted at providing location service
under personal control. Second, they are implemented at different layers
— Mobile IP is used at the network layer, whereas the location information
service system is implemented at the application layer. As suggested
before, the authorized-anonymous-ID can replace the hardware MAC
address, but it is not necessary to change other layers (except for the
application layer).

The basic idea behind the privacy extension for Mobile IPv6 [15,16] is
to replace the MAC address of a mobile device with a random one, called
a temporal mobile identifier (TMI) [15] or pseudo-random interface identifier
(PII) [16]. In these schemes, personal mobile location privacy control relies
on either home administration or foreign administration, or both. Moreover,
it is necessary for home administration to share some secrets with foreign
administration to prevent eavesdroppers from having any knowledge about
binding users’ temporal identifiers and real identifiers. These efforts do not
allow mobile location privacy to be completely controlled by a mobile user,
as the administration can associate any identifier (PII or TMI) with the
corresponding real ID of the mobile user (or device).

AU3833_C29.fm Page 784 Thursday, August 17, 2006 11:26 AM

Location Privacy Protection in Mobile Wireless Networks ■ 785

Under the authorized-anonymous-ID-based scheme, the dilemma aris-
ing from two seemingly conflicting expectations — security (connection
access control) and privacy (location information confidentiality) — is
resolved by using an authorized-anonymous-ID created with a crypto-
graphic technique: blind signature. The authorized-anonymous-IDs are
used by mobile users as permission tokens for connection access con-
trolled by the administration, but the authorized-anonymous-IDs, embed-
ded in the packets transmitted to access points, would not reveal any
information about the mobile users because the IDs being used are
completely disassociated from the real IDs of the users.

Because efforts, such as those by Castelluccia and Dupont [15] and
Escudero [16], have been directed toward addressing the location privacy
issue at a lower layer (e.g., IP layer) rather than at the application layer,
it may be worth mentioning that, according to our rationale study, a
machine equipped with a lower layer technique may not be able to
effectively achieve personal control over location privacy, because the
lower layer technique will depend on the operators of the infrastructures
to hide the identity of a mobile user. Also, in contrast to our solution at
the application layer, the solutions at the IP layer are even more difficult
to deploy. A detailed justification can be found in the Personal Ubiquitous
Multi-Agent (PUMA) project report [17].

Summary
In this chapter, we investigated the problem of protecting location privacy
of mobile users in the setting of ubiquitous computing. We pointed out
that location privacy protection is particularly challenging due to the
different requirements imposed by the administration and mobile users.
To address this issue, we introduced an authorized-anonymous-ID-based
scheme. In this scheme, an authorized-anonymous-ID is created by the
blind signature technique and is used to replace the real ID of an
authorized mobile device. With an authorized-anonymous-ID architecture,
mobile users maintain complete control over their location privacy but
the administration can still authenticate legitimate mobile users. The system
introduced in this chapter has been built on the wireless Andrew network,
a WLAN covering the campus of Carnegie Mellon University.

References
[1] He, Q., Wu, D., and Khosla, P., Quest for personal control over mobile

location privacy, IEEE Commun. Mag., 42(5), 130, 2004.
[2] Hills A., Wireless Andrew, IEEE Spectr., 36(6), 49, 1999.

AU3833_C29.fm Page 785 Thursday, August 17, 2006 11:26 AM

786 ■ Mobile Middleware

[3] Weiser, M., Some computer science issues in ubiquitous computing, Com-
mun. ACM, 36(7), 75, 1993.

[4] He, Q. et al., WaveGuard: secure location service for wireless Andrew, in
Proc. Int. Conf. on Wireless Communications, 2001.

[5] Chaum, D., Blind signatures for untraceable payments, in Proc. of Crypto82,
Plenum Press, New York, 1982.

[6] Krawczyk, H., Bellare, M., and Canetti, R., HMAC: Keyed-Hashing for Mes-
sage Authentication, Request for Comments 2104, Internet Engineering Task
Force (IETF), 1997 (http://www.ietf.org/rfc/rfc2104.txt).

[7] Brewer, E. et al., A network architecture for heterogeneous mobile com-
puting, IEEE Pers. Commun., 5(5), 8–24, 1998.

[8] Saltzer, J.H., Reed D.P., and Clark, D., End-to-end arguments in system
design, ACM Trans. Comput. Syst., 2(4), 277–288, 1984.

[9] Chorafas, D.N., Agent Technology Handbook, McGraw-Hill, New York, 1997,
chap. 13.

[10] Stajano, F. and Anderson, R., The resurrecting duckling: security issues for
ad hoc wireless networks, in Proc. of 7th Int. Workshop of Security Protocols,
Cambridge, U.K., April, 1999.

[11] Burnside, M. et al., Proxy-based security protocols in networked mobile
devices, in Proc. of the 17th ACM Symp. on Applied Computing (SAC’02),
Madrid, Spain, March, 2002.

[12] Kaufman, C., Perlman, R., and Speciner, M., Network Security: Private
Communication in a Public World, 2nd ed., Prentice Hall, Upper Saddle
River, NJ, 2002.

[13] Reed, M., Syverson, P., and Goldschlag, D., Anonymous connections and
onion routing, IEEE J. Selected Areas in Commun., 16(4), 482, 1998.

[14] Perkins, C. and Johnson, D., Mobility support in IPv6, in Proc. of the 2nd
ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBICOM’96),
White Plains, NY, November, 1996.

[15] Castelluccia, C. and Dupont, F., A Simple Privacy Extension for Mobile IPv6,
Internet Draft, Network Working Group, 2001 (http://www.ietf.org/internet-
drafts/draft-dupont-mip6-privacyext-03.txt).

[16] Escudero, A., Location privacy in IPv6: tracking binding updates, in Proc.
of the 8th Int. Workshop on Interactive Distributed Multimedia Systems (IDMS
2001), Lancaster, U.K., September, 2001.

[17] He, Q., Khosla, P., and Su, Z., A practical study on security of agent-based
ubiquitous computing, in Proc. of Deception, Fraud, and Trust in Agent
Societies Workshop, First Int. Conf. on Autonomous Agents and Multi-Agent
Systems (AAMAS’02), Bologna, Italy, July, 2002.

AU3833_C29.fm Page 786 Thursday, August 17, 2006 11:26 AM

787

Chapter 30

Location-Based

Service Differentiation

Spyros Panagiotakis and Nancy Alonistioti

CONTENTS

Introduction... 788
Context Awareness and Profiling .. 788
Service-to-Context Adaptation ... 792

Service-to-Terminal/Network Adaptation .. 792
Service-to-Location Adaptation... 793
Service-to-User Preferences Adaptation .. 793

The 3GPP Generic User Profile... 794
Proposed Framework for Context-Aware Service Provision 796

The Location Manager .. 799
The User Profile Manager .. 803

Context-Sensitive User Profiling... 804
Interfaces of the UPM... 809

Example Scenarios.. 812
Location-Aware Service Deployment... 812
Location-Aware Service Discovery and Execution 813
Retrieving User Preferences ... 814
Profiling-Dependent Event Notifications ... 815

Conclusion... 817
References ... 817

AU3833_C30.fm Page 787 Thursday, August 17, 2006 11:57 AM

788

■

Mobile Middleware

Introduction

Personalization remains a challenging issue in the upcoming mobile com-
munications era. The provision of applications and services that are aware
of individual preferences and characteristics of subscribers of mobile
networks contributes to mobile communication with a personalized touch.
In that context, user profiles and localization play a critical role. The
former contributes to collecting, linking, and publishing various user-
specific attributes, the latter to adapting service offerings to the user’s
location. Location is important with regard to how people organize and
relate to their world. Knowing where a person or object is at any time
adds a powerful new dimension to the range of information services that
can be offered.

In this chapter, we introduce a more flexible and innovative model
for user profiling. This innovation is based on the enrichment of common
user profiling architectures to include the location and other contextual
attributes so enhanced adaptability and personalization can be achieved.
In the proposed architecture for context-sensitive user profiling, the user
preferences are primarily dependent on the location (e.g., home, office)
of the user. Other parameters that can also be taken into account are the
type of the terminal device, the radio access network, the user presence,
the time of day, and the mood of the user. These attributes constitute the
user context. For each context, an associated user profile is created, and
service provision is adapted to the user profile instance that best applies
to the current user context. In particular, this chapter focuses on location
and context awareness in service provisioning and proposes a framework
that allows efficient management of location and context information.
Furthermore, the concept of context-sensitive user profiling is introduced.
Also discussed are the generic model, structure, and content of context-
sensitive user profiles, along with some related implementation issues and
a general architecture proposed for managing location and user profiles.

Context Awareness and Profiling

Within the context of future mobile communications, users will be able
to access an abundance of services that typically will be developed by
many cooperating entities. Moreover, the diversity of service access con-
texts (inevitable in an era of pervasive, anywhere computing) and the
coexistence of different technologies resulting from the evolutionary char-
acter of the transition to next-generation systems will lead to heterogeneity
of the networks and systems that support the provision of end-user
applications. As a result, applications will have to be optimally delivered

AU3833_C30.fm Page 788 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

789

and executed over a large diversity of infrastructures and configurations,
and services must be able to adapt dynamically to changing conditions
and contexts. Because it would not be feasible to develop distinct versions
for the various possible execution contexts, applications should be to a
large extent independent of the environment they run on. Intelligent
mechanisms should exist for identifying the context and particular high-
level requirements of an application and mapping them to appropriate
reconfiguration operations on the underlying hardware and software infra-
structure [1].

Consider a mobile user who is receiving real-time news video from
an application provider on a large-screen terminal at home. When the
mobile user enters a vehicle to go to work and changes from the large-
screen terminal to a portable phone, a location information server in the
service-support layer notifies the application of the location update. Based
on the user’s profile or by interacting with the user, the application
successfully recognizes the user’s wish to change contents (media) from
video to text, and a media converter executes content conversion. This
is only one example of requirements for flexible, customized, context-
aware, and ubiquitous multimedia service provision to mobile users that
the evolution of mobile communication systems to 3G and beyond intro-
duces. In a system that aims to provide flexible and context-aware service
provision and adaptation, knowledge of the system status as well as the
various entities’ states and events is a significant factor. It is necessary to
know at any given time the network status, the user location, the profiles
of the various entities (users, terminals, network equipment, services)
involved, and the policies that are employed within the system. In other
words, the system must be able to cope with a large amount of context
information.

We define

context

 as the combination of information relevant to the
nearest environment of a user, such as the user location, the serving
network, and the user’s terminal device. The contextual information is
encoded in various related profiles, such as the user preferences profile
and the terminal, ambient, network, and service profiles. The combination
of all of these profiles constitutes the

user

profile

 [2]. Because profiling
information is exchanged among different administrative boundaries, to
ensure interoperability the eXtensible Markup Language (XML) [3] and the
other XML-based languages (e.g., WSDL [4], SMIL [5], OWL [6]) are the
best candidates for describing profiles. Moreover, profiles should be con-
cise so they are transmitted efficiently. In situation-aware architectures,
user profiles must be dynamically composed because their constituting
segments may be distributed.

Contextual profiles greatly influence deployment and execution of
a service, as context-aware services should be able to adapt to context

AU3833_C30.fm Page 789 Thursday, August 17, 2006 11:57 AM

790

■

Mobile Middleware

and related updates. In the above scenario, for example, the service
logic must be able not only to detect the user moving from one place
to another but also to adapt its content to the new location the user
has entered. This can be accomplished only if the user preferences of
each subscriber are location sensitive, so a different set applies to each
location or geographical zone. In such a situation, as the user moves
from one geographical area to another, the service must be able to
follow the user preference mobility, along with the user’s physical
mobility, and adapt the service offering accordingly. This advanced
feature of service provisioning introduces the requirement for location
(and contextual, in general) sensitivity in profiling architectures; hence,
it is not enough for user profiles to simply encode location and other
contextual information in static profiles. It is more important for the
user-specific information included in the profiles to be organized on
the basis of location and context attributes. In the sections that follow,
a detailed analysis of that concept is presented.

The profiling information included in the user profile can be classified
as summarized below:

■

Terminal profile —

According to the

user agent profile

 (UAProf)
specification [7], the terminal profile includes device attributes spe-
cific to (1) the hardware platform (e.g., CPU, screen size), (2) the
software platform (e.g., Java platform and virtual machine version;
operating system name, vendor, and version), (3) the network
characteristics (e.g., current bearer service, supported bearers), (4)
the browser user agent (e.g., support for Javascript, tables, frames),
(5) the Wireless Application Protocol (WAP) characteristics (e.g.,
WML version, WML deck size), and (6) the push characteristics
(e.g., maximum push message size supported).

■

Network profile

 — The network profile can include: (1) identifica-
tion and general description information for the surrounding net-
works, such as type (e.g., GSM/GPRS, UMTS, WLAN), physical
location, and network operator data; (2) variations in the quality
of service (QoS) provided by the network infrastructure (e.g., the
available bandwidth), monitored and detected in real time; (3)
technical characteristics, such as the type of bearer, supported
bandwidths, topological and coverage information, and QoS levels
supported; and (4) characteristics of a hybrid business/technical
nature, such as support of open interfaces (e.g., Parlay/OSA [8,9],
JAIN [10]) that enable access to selected network functionality.

■

Ambient profile

 — The ambient profile includes information such
as location, temperature, presence of other people, and whether
the user is outdoors or indoors and in a suburban, urban, or rural

AU3833_C30.fm Page 790 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

791

area. It also includes date and time information, which has partic-
ular significance for certain types of applications and may affect
the service functionality as well as management tasks (e.g., billing).

■

Service profile

 — The service profile is a Web document that
describes the different multimedia content elements and objects
that each service consists of. When a multimedia element within
a service document is offered in multiple content alternatives, the
full collection of those alternatives is specified inside the document.
For example, if an image inside a Web document is offered in
three different versions according to the screen size of the targeted
device, a listing with those three alternatives is given. The profile
can also include all the required information for publishing the
service and supporting its provisioning to the end users: the
necessary service identification information (service name, service
provider identifier), as well as data needed for discovering (cate-
gory, keywords, language, valid location), accessing (available
service versions, service client location, minimum terminal capa-
bilities, and QoS required), and managing (application server IP
address and ports, tariffs, pricing model) the service. Although XML
and Web Services Description Language (WSDL) have been widely
used for publishing such documents, the attributes and facilities
offered by SMIL (e.g., the switch element) make it an ideal candi-
date for describing service profiles.

■

Charging profile

 — The charging profile collects charging-, pricing-,

and billing-specific user information; for example, it records
whether the user is willing to pay additional charges to ensure a
better quality of the provided services. It can include: (1) user
subscription information (e.g., user identities, subscription status),
(2) subscribed charging characteristics (i.e., whether the subscriber
is a normal, prepaid, flat rate, or hot billing subscriber), (3) sub-
scribed charging services (e.g., the location-based charging service),
and (4) the user charging, pricing, and billing preferences (i.e., the
applicable charging rules, pricing, and billing models).

■

User preferences profile

 — The user preferences profile encodes the
user preferences, which specify desirable service provision features
that are particular to an individual user. User preferences can be
categorized into service-independent, which apply to all services
that are accessed by the user, and service-specific, which pertain
to a particular application. The user preferences may include a
broad range of attributes related to (1) the perceived QoS require-
ments, such as desired voice quality in phone calls, audio/video
quality for streaming applications, or the degree of resolution for
images; (2) the languages that the user prefers; (3) the content and

AU3833_C30.fm Page 791 Thursday, August 17, 2006 11:57 AM

792

■

Mobile Middleware

media presentation characteristics (e.g., text versus audio versus
video); (4) font sizes; (5) fees and billing; (6) privacy and security;
(7) favorite geographical zones; (8) user identity, including name,
gender, and profession; (9) user presence information; and (10)
user history and calendar.

Service-to-Context Adaptation

The challenge with mobile, distributed computing is enhancing the user’s
dynamic environment with a new category of applications that are aware
of the context in which they run. A context-aware service takes into
account the current context of the user and, based on this information,
it adapts its behavior to the respective user’s needs including personal
preferences and environment’s capabilities [11]. Context-aware applica-
tions present information and services to users, in addition to automatically
executing services and commands according to the context and its
changes. Changes in the contextual environment are modeled as events
and are communicated to the application for real-time service adaptation.

To enable third parties to develop context-aware services, various
efforts have been undertaken by standardization work groups and forums
toward the introduction of open, network-independent interfaces allowing
context retrieval [8–10]. These interfaces provide applications with trans-
parent access to network functionality (e.g., call control, location infor-
mation, messaging, profiles retrieval), thus offering third-party application
developers the opportunity to create advanced, network-independent, and
context-full services with standard software engineering tools and general-
purpose programming languages.

Service-to-Terminal/Network Adaptation

A context-aware application would be responsible for editing the service
presentation to consumers, taking into account the user’s terminal in
conjunction with the network capabilities available. For example, a user
participating in a teleconference using a PC can receive high-quality sound
and video input, but from a mobile phone it is possible to continue
participating in the discussion without the video input. Furthermore, if
the user specifies a maximum load time for a page, the transcoding system
should sense the end-to-end bandwidth to derive the ideal data size for
the content. The effectiveness of this service-to-terminal/network adapta-
tion depends on the dynamic creation of a generic service presentation
description; therefore, a service should provide multiple views to users,
modifying and transcoding the user interface multimedia components for

AU3833_C30.fm Page 792 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

793

appropriate presentation based on the user’s terminal and network capa-
bilities. Moreover, a context-aware application should aim at reducing
communication needs but should also provide roaming capabilities so the
user can transparently switch between networks and adapt to the changing
QoS of the network [11].

Service-to-Location Adaptation

Location has a lot to do with how people organize their lives. In that
context, the importance of localization as a primary concept for service
customization, network reconfiguration, and operator differentiation has
influenced many telecommunication companies and institutions to develop
or integrate positioning systems into their networks. The exploitation of
location information introduces a powerful new dimension to the range
of information services that can be offered. By combining positional
mechanisms with user-specific location and mobility information, it is
possible to offer truly customized personal communication services through
a mobile phone or other mobile devices [12]. For example, a user can find
services according to geographical criteria utilizing different information
sources at the same time. A service, on the other hand, may send location-
, situation-, or event-related information on the basis of a user profile, so
someone driving a car can receive information about the location of the
closest gas station and a traveler has access to well-targeted information
about suitable overnight accommodations. Location-sensitive applications
can retrieve location and presence information, as well as receive notifi-
cations for related events through the associated open application pro-
gramming interface (API) that the underlying network provides and which
enables authorized applications to access the location and presence server
of the network operator [8,9].

Service-to-User Preferences Adaptation

Adapting service provision and providing personalized services based on
user preferences were introduced by the 3rd Generation Partnership Project
(3GPP) to the Virtual Home Environment (VHE) [13]. VHE is a concept for
personal service environment (PSE) portability across network boundaries
and between terminals. The primary aim of VHE is to consistently present
the same personalized features, user interface customization, and services
in whatever network and terminal (within the capabilities of the terminal
and the network) wherever the user may be located. VHE is enabled by
user profiles as they encode parameters that are essential to the user, such
as the user’s communication preferences and service presentation on the
terminal.

AU3833_C30.fm Page 793 Thursday, August 17, 2006 11:57 AM

794

■

Mobile Middleware

The 3GPP Generic User Profile

The 3GPP specifies the service requirements for the generic user profile
(GUP) [14] and GUP architecture [2]. The objective is to provide a concep-
tual description that promotes harmonized usage of shared user-related
information distributed among different entities, such as the user equipment
(UE), home network (home public land mobile network [PLMN]), or third-
party application/service providers (ASPs). 3GPP introduced the GUP as a
solution to the increasing amount of user-related data. The conceptual view
of GUP distribution can be seen in Figure 30.1. GUP allows intra-network
and inter-network usage, which results in its access by different applications
in a standardized way. Intra-network usage involves the exchange of data
between applications within the mobile operator’s network, and inter-
network usage deals with the communication of profiling information
between the mobile operator’s network and ASPs. Each entity can hold a
copy of a component that can be originally located in another entity (e.g.,
in Figure 30.1, component C in the ASP domain).

Figure 30.2 shows the GUP reference architecture. GUP data reposi-
tories are located in various nodes across networks and are distributed
from the UE (e.g., Universal Subscriber Identity Module [USIM]) to the
home PLMN (e.g., home subscriber service [HSS]/home location register
[HLR]) or the third-party ASPs. Each GUP data repository stores the primary

Figure 30.1 Conceptual view of the GUP distribution.

AU3833_C30.fm Page 794 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

795

master copy of one or several profile components. The repository access
function (RAF) provides standardized access to the GUP data repository.
It hides the implementation details of the data repositories from the GUP
infrastructure; neither the storage format nor the interface between the
RAF and GUP data repository is specified. It is presumed that a GUP data
repository and its RAF are usually colocated. The Rg and Rp are standard-
ized interfaces providing harmonized access to the GUP server and GUP
data repositories, respectively.

The GUP server is a functional entity providing a single point of access
to the GUP data of a particular subscriber. It authenticates and authorizes
profile requests from applications, identifies the profile components rele-
vant to the request, and localizes them at the various GUP data repositories.
The GUP reference architecture does not specify or limit the physical
location of the GUP server.

As it is depicted in Figure 30.3, the GUP server supports two operation
modes: acting either as a proxy server or as a redirect server. Although
3GPP tends to restrict the use of the redirect mode to applications in the
home PLMN, other criteria to select either mode are still under discussion.
Depending on the operation mode, the GUP server is involved directly
or not in conveying profile data between repositories and applications,
including optional synchronization of the slave copy of an application
with the master copy.

Definitely, the 3GPP GUP architecture provides an integrated framework
for user profile management. The solution it provides is ideal for managing
the storage, distribution, and propagation of the profiling documents;
however, it does not include the required flexibility to deal with location-
and context-sensitive profiles because it monolithically and indiscriminately

Figure 30.2 GUP reference architecture.

AU3833_C30.fm Page 795 Thursday, August 17, 2006 11:57 AM

796

■

Mobile Middleware

addresses all profiling documents, context sensitive or not. Hence, addi-
tional intelligence that takes into account the user context and the content
of those documents is required to efficiently manage location- and context-
sensitive profiles. The add-on intelligence has to deal with the location-
and context-based parameterization, storage, and management of those
profiles, so upon request only the profile associated with the current
location and context of the targeted user is retrieved. The following sections
elaborate in detail how the GUP framework can be complemented to
include the required flexibility.

Proposed Framework for Context-Aware
Service Provision

To support the demand of future communications networks for efficient
and personalized service provisioning, the standard Universal Mobile
Telecommunications System (UMTS) infrastructure should be supple-
mented with intelligent components. Figure 30.4 illustrates the general
architecture and an example physical placement of the proposed service
provisioning platform to meet requirements for 3G and the era beyond
3G. It is assumed that the independent ASPs will be offering their appli-
cations and services using the transport service provided by the underlying
UMTS network.

The platform constitutes an integrated distributed software framework
for context-aware management of applications and services offered to
mobile users [1,12,15]. The platform can be viewed as an intelligent service
middleware that mediates between ASPs and the network operator to

Figure 30.3 GUP server operation modes.

AU3833_C30.fm Page 796 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

797

provide ASPs and end users with advanced context-aware services and
enable the dynamic composition of mobile services and applications. To
accomplish this, the platform takes into account context information such
as location and mobility information for the subscribers, preferences from
their user profiles, and the current terminal and network capabilities to
adapt service provisioning accordingly and perform reconfiguration actions
on the network nodes and end-user terminal equipment.

The framework comprises the service/application logic component that
orchestrates the adaptability of services to context. Whenever an autho-
rized user requests access to a specific service, this component takes as
input the updated contextual information for the user from the user profile
manager (UPM), the location manager, and other context sensors in the
form of profiles (e.g., user profile, user location, terminal capabilities,
network profile), along with the presentation profile of the requested
service (the service profile). In parallel, the service logic registers itself
with the UPM, location manager, and context sensors to receive event
notifications concerning updates to the current context of the requesting
user. Then, based on the encoded information included in the contextual
profiles, it filters the service profile document to generate a customized
service presentation profile adapted to the current context.

Figure 30.4 Generic framework for context-aware service provision.

AU3833_C30.fm Page 797 Thursday, August 17, 2006 11:57 AM

798

■

Mobile Middleware

The generated presentation profile is propagated to the service exe-
cution engine that is responsible for compiling and executing the com-
mands in the incoming profile. This task can include the retrieval of
appropriate multimedia content from the content repositories in the exact
format indicated in the presentation profile, interaction with the content
adaptation services for transcoding or translating some media files, com-
position of media files according to the indicated presentation format, and
packaging and forwarding the produced result to the requesting user. If
a context parameter changes while the user executes the service, an
associated notification reaches the service logic and the operation
described above is repeated. Based on the updated context information,
a new service presentation profile is generated for the user and the service
execution is adapted accordingly. For example, if the incoming event
notification indicates that the user has exited his home to drive to work,
the service logic is advised by the UPM to be aware of the new user
preferences for service consumption in the new situation or geographical
area the user enters, modifies the service presentation profile accordingly,
and instructs the service execution component to perform the required
adaptations (e.g., a video-to-text conversion).

The UPM is responsible for managing the user profiling data distributed
among several data repositories across the network and providing user-
specific information to the requesting applications/services. The sections
that follow provide a detailed analysis of the UPM. The location and
presence manager [12] is an independent module of the framework
responsible for retrieving, managing, and exploiting information related
to the location, presence, and mobility of the subscribers. Hence, it
interacts with the sources of location and presence information of the
underlying network infrastructure (e.g., 3GPP GMLC [8,9,17], 3GPP Pres-
ence Server [16], a private location and presence sensing network) to track
the location and presence of subscribers. Detailed analysis of the location
manager is also provided in the sections that follow.

The context-sensing components are considered to be the service/appli-
cation interface to the context sources. The context information (e.g.,
network performance metrics, mobile equipment [ME]- or radio access
technology [RAT]-specific, location- and presence-specific) can be equally
retrieved through either a private sensor network or the OSA/Parlay APIs
that might be provided by the underlying network infrastructure to the
authorized applications (applicable only to OSA/Parlay-aware applications).

The context interpretation components translate the raw contextual
information retrieved from the context sources to the high-level and user-
specific information required for personalized adaptation. For example,
location interpretation can translate the geographical coordinates taken
from a global position system (GPS) device to a street address or applicable

AU3833_C30.fm Page 798 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

799

favorite zone (e.g., home zone [12]) of the positioned user. A geographical
information system (GIS) could be used to this end.

The content adaptation services are responsible for adapting media
content to the current content. They include various media processing
technologies used to increase content accessibility and improve the user’s
experience within heterogeneous networking environments. They can
transcode, compress, or convert media content according to the character-
istics of the client display (e.g., screen size and color depth), current network
parameters (e.g., available bandwidth), and specific user preferences (e.g.,
low-resolution images and video or audio tracks instead of video.)

The Location Manager

The location manager, as shown in Figure 30.4, is an independent module
of the platform responsible for retrieving, managing, and exploiting infor-
mation related to the location and mobility of subscribers. It interacts with
the sources of location and presence information of the underlying network
infrastructure (e.g., 3GPP GMLC [8,9,17] and 3GPP Presence Server [16], a
private location and presence sensing network) to track the location, pres-
ence, and mobility of the subscribers. To translate the retrieved location
information into a recognizable and usable format instead of the geograph-
ical coordinates or network areas that the underlying location sensor or
server (e.g., the Gateway Mobile Location Center [GMLC]) provides, the
location manager interacts with the appropriate interpretation component
of the platform. Then, location, presence, and mobility data and events
along with the preferences of the corresponding subscriber (taken from the
user profile [2]) are processed for the user in the recently entered new
location.

Figure 30.5 illustrates the environment of the location manager. The
user’s location can be used to determine, based on the user’s preferences,
the reconfiguration policies that are propagated from the location manager
to the underlying network infrastructure. By combining location informa-
tion with user preferences, the location manager is able to provide end
users and any authorized entity internal (e.g., application/service logic
component) and external (e.g., application/service providers) to the plat-
form with new advanced location-aware services. Furthermore, it enriches
the service provisioning approach of the platform with location informa-
tion features, enabling better customization and personalization of the
service offering. Figure 30.6 depicts the service logic behind the function-
ality of the location manager.

The location manager retrieves the required location information by
accessing the location sensors of the underlying network infrastructure

through the associated open API; for example, the 3GPP location server

AU3833_C30.fm Page 799 Thursday, August 17, 2006 11:57 AM

800

■

Mobile Middleware

[17] supports most of the positioning technologies specified for location
measurement and computation in mobile networks (UMTS and GPRS),
such as cell location, the observed time difference of arrival (OTDOA),
enhanced observed time difference (E-OTD), and network-assisted GPS.
The positioning method selected and the accuracy with which the location
measurements are performed depend on the quality of the location infor-
mation requested by the location service client for each request.

For transparency and independence, the functionality provided by the
location manager is accessed by internal modules of the framework as
well as authorized application/service providers through an open API
provided by the framework to the authorized entities. That open interface
includes methods that provide:

■

Retrieval of the location of the specified user — Location retrieval
can be immediate (when the current location of the user is
requested) or deferred (when the location of the user is requested
after a specific event takes place) [17]. Making use of appropriate
spatial databases or GIS systems, the location manager is able to
map the current user location as determined by the underlying
location sensor (expressed in geographical coordinates or network
areas) to the requested format (e.g., street address or predefined
geographical zones). Hence, the retrieved location information will
be in a recognizable and usable format. The service/application
logic component of the platform uses these methods to achieve

Figure 30.5 Location manager environment.

AU3833_C30.fm Page 800 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

801

location-based service provisioning in terms of location-sensitive
service deployment, discovery, and execution.

■

Activation or cancellation of the location-based charging and billing
mechanism [12] for the provision of flexible and personalized billing
schemes

■

Activation or cancellation of the location- and mobility-aware QoS
management mechanism directed by the location manager — With
this service, the QoS provided to the subscribers follows the
location updates that are induced due to their mobility. Hence,
whenever a mobile user enters or leaves a predefined geographical
zone, the QoS that the user receives is automatically adapted to
the user’s subscribed QoS preferences associated with the new
zone as they are included in his user profile.

■

Creation, modification, and deletion of location-sensitive policy
classes

■

Activation and deactivation of location-sensitive policies

■

Creation, modification, and deletion of policy events

■

Registration and deregistration for receiving location-sensitive event
notifications

■

Handling of event notification from the network

■

Notifications to registered end users and applications for the avail-
able policies, restrictions, updates, tariffs, reconfigurations, and
other events associated with the current location of the user or
induced due to the location updates that occur

The primary goal of the location manager is to enable easier development
of location-based applications and services. To accomplish this objective,
we have designed the methods and built the services that we expect a
location-based application or service to require frequently. Furthermore, the
location manager collects raw location information from the location sensors

Figure 30.6 Location manager service logic.

AU3833_C30.fm Page 801 Thursday, August 17, 2006 11:57 AM

802

■

Mobile Middleware

of the underlying network infrastructure and maps it into the required higher
level format by using the appropriate spatial databases (represented in
Figure 30.4 and Figure 30.5 by the context interpretation modules, such as
a GIS). In this way, we can provide applications with an execution envi-
ronment and some reusable and customizable location-sensitive building
blocks for structuring their functionality, while we hide from application
developers the complexity and physical interactions required for retrieving
and adapting the location information. The design of our platform does not
focus on the development of a specific application or service (location-
based or not). Instead, our primary goal is to build a generic framework
for service development and deployment that can accommodate any service
or application, gathering the necessary informational resources and building
blocks for facilitating development and deployment.

Location tracking takes place with respect to the user privacy settings
located in the user profile. The privacy policies are an implementation of
the settings recommended in References 17 and 18. Each user, upon
registration with the platform, defines the policies that will govern the
retrieval of his location by third parties. These include: (1) a list of the
services and applications that are authorized to retrieve the location of the
user, (2) a list of the persons or groups (known as

requestors

) that are
authorized to request the retrieval of his location, (3) the password given
by each user to authorized requestors (a unique password for each
requestor) for authenticating themselves with the location platform, (4) an
indication of when the location manager should prompt the user for explicit
authorization prior to any location-retrieving action (i.e., never, all actions,
or only when previously specified criteria are not met). Whenever an
application (or the requestor/consumer of that application) requests the
location of a user, the location manager examines whether it is authorized
by the user to do so. If the application is not authorized to make the request,
then the end user’s preferences determine whether the request is simply
denied or the end user is asked for explicit authorization.

By further deploying the operations provided by the location manager,
the functionality of our platform could be enhanced to include novel,
advanced, location-aware services such as advanced mobility management
that provides for optimized network planning, location registration, paging,
and handover management. This could be accomplished by monitoring
and storing the user mobility and location data for a long period and then
processing the mobility and location historical data by applying specific
mobility and location prediction algorithms. Other services would include
terminal device reconfiguration with software and protocol updates and
upgrades, in addition to performance-enhancing mediation and, finally,
network node selection and reallocation based on user mobility for network
performance optimization and better service provision to the end user.

AU3833_C30.fm Page 802 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

803

The User Profile Manager

The architecture we propose for user profile management enhances the
3GPP GUP architecture with the concepts of

home zones

and

context zones

.
It adopts the distribution and information model of the GUP, incorporating
in its logic a provision for enhanced context sensitivity. The enhanced GUP
server proposed here is referred to as the

user profile manager

, and it is a
structural part of the innovative architecture (see Figure 30.4), providing
context-aware service provision [15]. The UPM is responsible for managing
the user profiling information distributed among several data repositories
across the network and disseminating the user-specific information to the
requesting applications and services. It mediates between applications and
services and the

user profile data repositories

 (UPDRs), hiding from applica-
tions the underlying infrastructure and facilitating interaction with the pro-
filing sources. The applications that may request access to the user profile
data can vary from applications in the ME to applications in the home PLMN
or third-party application/service providers. The UPM allows end users and
authorized applications to insert, delete, or modify user profiling data in the
UPDRs; retrieve user profiling data upon request; and receive profiling-
dependent event notifications each time a registered event occurs. Figure
30.7 illustrates the environment of the UPM.

Figure 30.7 The UPM environment.

AU3833_C30.fm Page 803 Thursday, August 17, 2006 11:57 AM

804

■

Mobile Middleware

The user profiling information is distributed and stored in various
UPDRs. Each UPDR stores the primary master copy of one or several
profile components. Possible candidates for the UPDR include the ME,
HSS/HLR, and various application and management servers in a home
PLMN or third-party ASPs. Synchronization among profiling data in the
UPDRs and UPM is required.

Access to UPDRs is accomplished through the associated

user

profile
data repositories access functions

 (UPDRAFs). Each UPDRAF can be viewed
as the front end of the underlying repository that realizes the harmonized
access interface. It hides the implementation details of the UPDR from the
rest of the UPM infrastructure. UPDRAFs perform protocol and data trans-
formation where needed. The protocol between UPDRAFs and the UPDR
is implementation dependent and not standardized. The UPDRAFs can also
take part in the authorization of access to the UPDR. Through UPDRAFs,
the UPM can insert, delete, or modify the underlying profiling data; read
the data; and receive synchronization notifications whenever a change in
any profiling data occurs. The interfaces between the UPM and UPDRAFs
and between the UPM and applications are discussed in following sections.

The UPM interacts also with the location and presence manager and
the context sensors of the proposed framework to retrieve the location,
presence, and other contextual information required to compute context
zones and provide context-sensitive user profiling. The concepts of home
zones, context zones, and context-sensitive user profiling are discussed
in the following text.

Context-Sensitive User Profiling

The key to offering truly context-aware and customized services to sub-
scribers is the user profile. In contrast to common architectures for user
profiling that consider profiles as static collections of user preferences,
we propose here that the user profile can also be context aware. Context
awareness of the user profile can be based on the concept of home zones.
Each home zone is composed of a geographical area in which a user
wishes to experience personalized and customized service provisioning
(e.g., the home, office, car) [12]. Ideally, a home zone should be as large
as the user wishes, so true customization can be achieved. If a user wants
to experience different service provision in each room of his home or
office, then each room of the home or office would be considered as a
distinct home zone for that user. Limitations in the accuracy of location
measurement induced by current position estimation technologies do not
allow location-based services to distinguish among very narrow home
zones. For this reason, minimum distances between the defined home
zones of a user, depending on the accuracy of the location measurements,

AU3833_C30.fm Page 804 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation

■

805

should exist so the position-detection system can follow the moves of
subscribers from one home zone to another. In the near future, when
location estimation technologies mature further, location-based services
will be able to provide users with more accurate positioning.

Taking into account that within a single home zone a subscriber can
switch from one type of mobile equipment to another (e.g., from a UMTS
mobile handset to a PDA or laptop) and can access dif ferent radio
environments (e.g., from GPRS or UMTS networks to WLAN/WiFi or
Bluetooth

®

), further classification of user profiles within a home zone can
be achieved. The current home zone, current terminal equipment, and
current serving radio access technology (RAT) of a subscriber are consid-
ered to be the three key context attributes that uniquely identify the
current context of a user. Each triplet of type {current home zone, current
terminal device, current radio access technology} defines a user-specific
context zone that can be used for identifying the user status and custom-
izing service provisioning accordingly. As the user moves to a different
location (home zone) or switches between mobile devices or access
networks, a different context zone is assigned.

Because within the geographical area that defines a home zone a
subscriber can move from one terminal device to another or change the
RAT being utilized, obviously a home zone is considered to be broader
than a context zone. Thus, within a home zone, multiple context zones
can coexist which differ according to the terminal device used or the
serving RAT. If the user changes terminal devices while remaining attached
to the same RAT, a different context zone is assigned. The same occurs
when the user transits to a different RAT while using the same mobile
equipment. Figure 30.8 illustrates the relationships among home zones
and context zones. Taking into consideration that within the illustrated
home zone (home zone A) a user can access two different RATs (e.g.,
UMTS and WLAN RATs) with each of his terminal devices (ME1, ME2),
then within home zone A four different context zones can be identified.
In particular, context zone 1 (home zone A, ME1, WLAN), context zone
2 (home zone A, ME2, WLAN), context zone 3 (home zone A, ME1,
UMTS), and context zone 4 (home zone A, ME2, UMTS) can be defined
for the targeted subscriber.

A user may define multiple preference profiles for a single home zone.
Better personalization and customization can be achieved during service
provisioning by differentiating the user preferences in the three basic ways
— location of the user (e.g., home, office, car), terminal device used, and
serving radio access network — and by maintaining in parallel different
user profiles instances for each context zone instance, so they are {location,
terminal, network}-dependent profiles or context-zone-dependent profiles
[12]. Profiles can be also further classified by and associated with specific

AU3833_C30.fm Page 805 Thursday, August 17, 2006 11:57 AM

806 ■ Mobile Middleware

presence attributes of subscribers, such as the time of day (e.g., lunch
time) or a specific ambient attribute (e.g., temperature, velocity, height)
or even a certain mood of the subscriber (e.g., happy or sad), thus
broadening the concepts of context zones and context-zone-dependent
profiles accordingly. The presence information required in such presence-
sensitive user profiling can be retrieved by either specific presence sensors
or the associated presence server [16] of the underlying network infra-
structure. A presence-aware context zone includes the presence attribute
in addition to the three aforementioned ones, so each quaternary of type:
{current home zone, current terminal device, current radio access tech-
nology, current presence status} defines a context zone.

Whenever a user enters a context zone where multiple profiles have
been defined, the system prompts the user to indicate which profile to
activate. Each user profile instance can be considered as a user preferences
customization set that includes the user interface preferences, the browser
appearance, the preferred memory usage, etc., as well as the application/
service subscription profiles with the preferred settings for the subscribed
applications/services. The services provisioned to a user depend on the
current context zone and, hence, the associated active profile.

Figure 30.8 Relationships among home zones and context zones.

AU3833_C30.fm Page 806 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 807

Figure 30.9 illustrates the concept of context-sensitive user profiling. The
rounded rectangles in blue represent the triplet of the current context zone
of the subscriber (home zone 3, ME2, RAT2) and the associated active user
preferences customization set (user preferences customization set 2). From
that point of view, each context-sensitive user profile can be considered as
a tree for which the subscriber’s identity (e.g., IMSI, e-mail, or SIP identity)
is the root, the three context zone attributes are nodes, and the user
preferences customization sets are leaves. By storing locally such a tree-
like user profile for each subscriber, finding the user’s current context zone,
and traversing the tree from the top down, the serving manager (e.g., UPM,
ASPs) can retrieve the most up-to-date user profiling data each time it is
required. Although in Figure 30.9 only the three basic context zone attributes
are taken into account for user preferences selection and service differen-
tiation, further contextual parameters could be used (e.g., presence, time,
ambience, mood attributes) for better elaboration and specification.

Each subscriber, upon registration with a service provisioning platform,
specifies his applicable home zones by describing each one with real-world
addresses or street names. It is then up to the location manager of the
platform [12] to translate the home zones specified by the user to the
appropriate geographical coordinates or network areas (e.g., cell IDs, location

Figure 30.9 Context-sensitive user profile.

AU3833_C30.fm Page 807 Thursday, August 17, 2006 11:57 AM

808 ■ Mobile Middleware

or routing areas), making use of databases with the appropriate spatial and
geographical information. Although the particular ME and RAT types are
dynamically retrieved as the user accesses the network, optionally the user
can declare to the platform the various types of ME he possesses along with
the different radio access networks he usually utilizes. The specified home
zones, along with the ME and RAT types declared, are used as the initial
tree nodes of the user profile. Hence, a tree-like and context-sensitive user
profile is created and stored for each user (see Figure 30.9). Then, each time
the subscriber specifies a user preferences customization set, it is associated
with the current context zone of the subscriber (communication with the
context sensors of the platform is assumed here for retrieving the current
context zone) or the context zone indicated by the subscriber.

For each new context value (i.e., new home zone, new ME, new RAT),
a new node in the tree is inserted. Equally, for each new customization
profile a new leaf is added to the tree. A user preferences customization
set can be associated with more than one context zone, if the user wishes.
For each active subscriber, the UPM stores locally a data structure that
represents the tree of that subscriber’s context-sensitive user profile. The
data itself is not included; instead, a reference to the UPDR that stores
each profile is kept, along with a unique data reference generated upon
data creation and storage. The three context values (home zone, terminal
type, RAT type) are used by the UPM to identify the path to the active
profile data. To this end, a pointer that crosses the user profile tree and
points to the active customization profiles is created for each user. The
pointer is updated each time a change occurs.

Whenever a user enters the platform, the UPM retrieves the user’s current
location to identify the home zone in which the user is currently situated,
along with the applicable terminal and network profiles, to identify the
context zone of the user and retrieve the user profile instance that applies
to the specific context. It is implicit that the user is always prompted to
confirm the user profile instance selection or alternatively to choose the
one desired. The UPM stores locally the current context zone of each user
for later use and faster searching in the user profile tree. With context-aware
user profiling, only the profile that best applies to the current home zone
and status of the user is taken into account, thus customizing the service
offering accordingly. Figure 30.10 illustrates the user profile instance tran-
sition induced by the context zone change. The user moving from home
zone 1 to home zone 3 initiates a change of the current context zone from
context zone 1 (home zone 1, ME1, RAT2) to context zone 2 (home zone
3, ME1, RAT2) and hence to a different user preferences customization set
(from user preferences customization set N to user preferences customization
set 2). Such a change of the active user profile instance triggers the UPM
to generate and propagate an associated alert event, so the components
registered for receiving such alerts are properly informed.

AU3833_C30.fm Page 808 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 809

Interfaces of the UPM

The UPM–Applications Interface

To hide the implementation details of the profiling architecture from
applications and services and ensure service transparency, interaction
between internal modules or services of the profiling architecture, as well
as authorized third-party applications, and the UPM is implemented through
an open API provided by the UPM to authorized entities. The API can be
used, for example, to create the user profile or some components of it, to
read any piece of data in the profile, or to modify those using the
harmonized access interface. Furthermore, it is possible to authorize all
requests and protect the user’s privacy in all operations. Protocol and data
transformations are performed when necessary. The UPM locates the data
repositories responsible for the storage of the requested profile components
and, in proxy mode, carries out the requested operation on the data; in
redirect mode, the UPM returns the locations of the corresponding UPDRs
and the application can then send the requested operations directly to the
corresponding UPDRAFs.

Figure 30.10 User profile instance transition induced by the context zone change.

AU3833_C30.fm Page 809 Thursday, August 17, 2006 11:57 AM

810 ■ Mobile Middleware

Profiling data stored in the various user profiling components is iden-
tified based on the identity of the associated subscriber or user, the
corresponding context zone of the user, and the component type. In these
interactions, the UPM acts as the server and the applications as the client.
The proposed open interface for accessing the UPM services includes
methods that provide:

■ Creation, deletion, or updating of user profile data — These
procedures are always related to a single subscriber and context,
which are identified in the request (through the subscriber identity
and context zone parameters). If the context zone attribute is
missing, the current context zone of the identified subscriber is
assumed. New or updated data is also provided.

■ Retrieval of the user profile data or some specific components —
The queried data is identified based on the subscriber identity,
context zone, and data reference. If the context zone is not passed
in the request, then the UPM retrieves the current context zone of
the targeted user and returns to the requesting application the
requested profile data that corresponds to the current context of
the user.

■ Listing of the existing profile items in the various UPDRs that are
associated with the specified context zone of the targeting user

■ Creation, modification, or deletion of profile-dependent policy
events

■ Registration or deregistration for receiving profile-dependent event
notifications

■ Submission of event-driven notifications to the registered applica-
tions whenever some of the registered events occur — Synchro-
nization of the profile data kept by an application can be performed
by the last three procedures (i.e., creation of a synchronization
event, registration for receiving synchronization-dependent events,
and receipt of associated notifications when synchronization is
required).

■ Notifications to the users for the profile-dependent policies, restric-
tions, and updates associated with the current context of the user

The UPDRAF–UPM Interface

For the UPDRAF–UPM interface, in addition to the UPM some authorized
applications (e.g., the home PLMN applications) can also be assigned direct
access on UPDRAFs (redirect mode of the UPM operation). Furthermore,
the 3G trend to distribute and decentralize operations, thus opening mobile

AU3833_C30.fm Page 810 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 811

service provisioning to new players, may allow the UPM to fall within a
different business domain (e.g., an authorized third-party service provider)
than the UPDRs. To provide the UPM and other applications with a
harmonized access interface to the underlying UPDRs that also hide the
implementation details of the underlying infrastructure, we propose pro-
viding access to UPDRs through open APIs implemented by the associated
UPDRAFs (see Figure 30.7). In this case, the UPM (and other authorized
applications) acts as the active requestor toward the UPDRAFs (e.g., to
read or modify the data). It is assumed that both ends initially share the
same data structure definitions. Through this API, the UPDRAFs would be
responsible for authorizing incoming requests to protect the user’s privacy
in all operations while also performing protocol and data transformations
where necessary.

Similar to the UPM–applications interface, the profiling data stored in
the various UPDRs is identified based on the identity of the associated
subscriber or user, the corresponding context zone of the user, and the
component type. In those interactions, the UPM acts as the client and the
UPDRAFs as the server. The proposed open interface for accessing
UPDRAFs includes methods that provide:

■ Creation, deletion, or updating of user profile data — These
procedures are always related to a single subscriber and context,
which are identified in the request (through the subscriber identity
and context zone parameters). New or updated data is also pro-
vided. Updated data is identified by a data reference generated
upon first data creation and storage.

■ Retrieval of the user profile data or some specific components —
The queried data is identified by the subscriber identity, the context
zone, and the data reference.

■ Listing of the existing profile items in the underlying UPDRs asso-
ciated with the specified context zone of the user

■ Creation, modification, or deletion of profile-dependent policy
events

■ Registration or deregistration for receiving profile-dependent event
notifications

■ Submission of event-driven notifications to the UPM and registered
applications whenever some of the registered events occur — The
synchronization of profile data between the UPM and UPDRs can
be performed by the last three procedures (i.e., creation of a
synchronization event by the UPM, registration for receiving syn-
chronization-dependent events, and receipt by the UPM of associ-
ated notifications when synchronization is required).

AU3833_C30.fm Page 811 Thursday, August 17, 2006 11:57 AM

812 ■ Mobile Middleware

Example Scenarios
In this section, some example scenarios and interactions that demonstrate
the enhanced context-sensitive nature of our platform are presented. First,
we will examine how a third-party ASP can deploy its applications with
the platform and how location-aware service discovery and execution
are achieved. Then, we will present how an application can retrieve the
current user preferences of a user and how that application can remain
informed about changes in the active user preferences of the subscriber
when some change in the current context zone attributes of the user
takes place.

Location-Aware Service Deployment

With the proposed architecture, third-party ASPs of the platform have the
ability to offer their applications in the form of downloadable applications.
An application cannot be made available to mobile users before the owning
ASP registers it to the service provisioning platform [1,12]. This can be
accomplished dynamically through a Web-like API provided by the platform
to the authorized ASPs. The API facilitates and automates the service
deployment process, making it transparent to the ASPs. Through this API,
the authorized third-party ASPs are able to register new applications with
the platform, as well as delete and update existing ones. The platform
performs all reconfiguration actions required to accommodate the new or
updated application. These actions can include storage of the service profile
document in the service profile repository, as well as the configuration or
reconfiguration of the metering devices that monitor the IP traffic flows to
and from that application (for charging purposes).

During the application registration process, the requesting ASP provides
to the platform the XML-encoded service profile document that includes
all the required information for the support and provisioning of that
application to the end users. That service profile can include the necessary
service identification information (service name, service provider identi-
fier), as well as the data required for discovering (category, keywords,
language, valid location), accessing (available service versions, service
client location, minimum terminal capabilities and QoS required), and
managing (application server IP address and ports, tariffs, pricing model,
available formats of multimedia content) the application. A simplified
example of such a location-aware XML document containing service
information is provided in Figure 30.11.

The “valid location” field in this XML document specifies the geograph-
ical area or extent of coverage for which an application is offered. By
including location information in these documents, the platform becomes

AU3833_C30.fm Page 812 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 813

aware of the location characteristics of registered applications. Hence,
whenever a user requests the platform for discovering services and appli-
cations, for example, the platform is able to match the location of the
requesting user with the valid location area of the available applications,
thus providing the user with a listing of only those applications offered
at the user’s current location. Furthermore, implicit location information
can be included in the XML document as part of the location-based
charging service offering label. More specifically, this information indicates
to the platform whether location-based charging applies for that applica-
tion along with the applicable pricing policies.

Location-Aware Service Discovery and Execution

Taking into consideration the huge range of expected applications avail-
able to mobile users of the forthcoming 3G networks and the competitive
nature of the new era, the need to provide mobile subscribers with an

Figure 30.11 Example location-aware XML document for application deployment.

AU3833_C30.fm Page 813 Thursday, August 17, 2006 11:57 AM

814 ■ Mobile Middleware

efficient and simple mechanism for personalized service and application
discovery and provisioning is growing. The proposed platform provides
users with the ability to discover and choose the applications they wish
to access by requesting application listings through a personalized, Web-
portal-like user interface offered by the service discovery client. The
application listings would be presented to the users after the service profile
repository records are filtered according to the applicable terminal device
and network capabilities, the current user location, and the applicable
user preferences [1,12,15]. Each application in the service discovery listing
is associated with a short description and fee information so the user may
choose an application based on the criterion of lowest cost, for example.
Following the service discovery phase, the user is able to select the desired
application and begin downloading the associated client to his device.

During service access, the platform has the ability to track the location
of the user to perform the reconfiguration actions required by the mobility
of the user. When a user enters or exits a home zone, for example, the
user receives notification of the new home zone or radio environment he
has entered, the new local applications offered, and the applicable fee
schedule therein. At the same time, the applicable user preferences in the
new home zone are retrieved through the UPM so the service/application
logic component tailors the service offerings accordingly.

Retrieving User Preferences

Figure 30.12 illustrates the interactions among various components of the
profiling architecture when an application accesses the UPM to retrieve
the current user preferences of a subscriber. Only the direct mode of the
UPM operation is illustrated. Such interactions include the following:

■ An authorized application requests to retrieve some user profile
components of a specific subscriber. The application does not
include the context zone parameter in the request.

■ The UPM authenticates the application and checks its authorization
to receive the requested data.

■ Because the context zone is not provided, the UPM presumes that
the profile data requested is associated with the current context
zone of the targeting user. The UPM then contacts the location
manager of the architecture to retrieve the current home zone of
the user.

■ The UPM retrieves the type of mobile equipment from the appro-
priate context sensor.

■ The UPM retrieves the type of radio access technology serving the
user from the appropriate context sensor.

AU3833_C30.fm Page 814 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 815

■ The UPM identifies the current context zone of the user and, based
on that information, it crosses the context-zone-dependent structure
of the user profile to identify the location of the requested com-
ponents.

■ The UPM accesses the API of the identified UPDR to request the
specified data. The UPM includes the context zone and data
reference in the request.

■ The UPDRAF searches the context-zone-dependent structure of the
stored profiling information to retrieve the requested data and
responds to the UPM.

■ The UPM responds to the application with the requested profiling
data. Because the data requested by the application may have been
stored in several UPDRs, it is likely that the UPM will have to
interact with all of the involved repositories to retrieve the data.
In that case, the UPM should properly consolidate the returned
data before responding to the application.

Profiling-Dependent Event Notifications

The example below presents how an authorized application could remain
informed about changes in the active user preferences of a subscriber that
are induced by changes in the current context zone of the user. Figure
30.13 illustrates the interactions required among the various components
of the profiling architecture. Such interactions include the following:

Figure 30.12 Interactions for retrieving user preferences.

AU3833_C30.fm Page 815 Thursday, August 17, 2006 11:57 AM

816 ■ Mobile Middleware

■ The application accesses the API provided by the UPM to create a
profiling-dependent policy event related to a specific subscriber.
The specific event reflects the interest of that application in receiving
notifications whenever some change in the current user preferences
of the subscriber occurs.

■ The UPM authenticates the application and checks its authorization
for the requested operation.

■ The application registers itself to receive notifications related to
the aforementioned event.

■ The UPM receives an event from the location manager of the
architecture indicating that the specified subscriber has entered a
new home zone. It is assumed that registration of the UPM for
receiving such events from the location manager has occurred.

■ The UPM contacts the location manager of the architecture to retrieve
the current home zone of the user. This step can be skipped if the
location event received includes the new home zone of the subscriber.

■ Because the UPM has not received notifications from the associated
context sensors for changes in the ME or the serving RAT of the
subscriber, it assumes that only the geographical location of the
user has changed. The UPM identifies the new context zone of
the user and, based on that information, crosses the context-zone-
dependent structure of the user profile to identify the available
profiles of the user in the new context zone.

Figure 30.13 Interactions for profiling-dependent event notifications.

AU3833_C30.fm Page 816 Thursday, August 17, 2006 11:57 AM

Location-Based Service Differentiation ■ 817

■ The UPM interacts with the user to request him to identify among
the service customization profiles available in the new context zone
the one he wishes to activate.

■ The user selects and activates the desired profile.
■ The UPM updates the user profiling pointer to point to the newly

activated profile of the user and locates the UPDR that stores the
new profile components. The UPM then accesses the API of the
identified UPDR to request the specified data. The UPM includes
the context zone and data reference in the request.

■ The UPDRAF searches the context-zone-dependent structure of the
stored profiling information to retrieve the requested data and
responds to the UPM.

■ The UPM notifies the requested application that a change has
occurred. The notification to the application can be a simple
announcement of a change occurring in the user preferences, unless
the application has requested to also receive the new profiling data
along with the notification (illustrated in Figure 30.13). In the first
case, the application should again contact the UPM to receive the
new data (see first example above). In the latter case, the UPM
should contact the UPDRAF of the appropriate UPDR to retrieve
the profiling data associated with the new context zone of the user
before responding to the application.

Conclusion
This chapter has focused on location and context awareness in service
provisioning and has proposed a framework that allows for efficient man-
agement of location and context information. Furthermore, a more flexible
and innovative model for user profiling was introduced. This innovation is
based on the enrichment of common user profiling architectures to include
location and other contextual attributes so enhanced adaptability and per-
sonalization can be achieved. For each context instance, an associated user
profile instance is created and service provisioning is adapted to the user
profile instance that better applies to the current context. The generic model,
the structure, and the content of that context-sensitive user profile, along
with some implementation issues, were also discussed.

References
[1] Alonistioti, N., Houssos, N., and Panagiotakis, S., A framework for recon-

figurable provisioning of services in mobile networks, presented at the Int.
Symp. on Communications Theory and Applications (ISCTA’01), Ambleside,
Cumbria, U.K., July, 2001.

AU3833_C30.fm Page 817 Thursday, August 17, 2006 11:57 AM

818 ■ Mobile Middleware

[2] 3rd Generation Partnership Project (3GPP), TS 23.240: 3GPP Generic User
Profile (GUP); Architecture (Stage 2), version 6.2.0, 2003-12.

[3] Extensible Markup Language (XML), http://www.w3.org/XML.
[4] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/

wsdl.
[5] Synchronized Multimedia Integration Language (SMIL) 2.0 specification,

http://www.w3.org/TR/smil20/.
[6] Web Ontology Language (OWL), http://www.w3.org/2004/OWL/.
[7] User Agent Profile (UAProf) specification, http://www.wapforum.org/what/

technical.html.
[8] Parlay Group, Parlay API specification, http://www.parlay.org/specs/index.asp.
[9] 3rd Generation Partnership Project (3GPP), TS 29.198: Open Service Access

(OSA); Application Programming Interface (API), Part 1-12, version 5.0.0,
2002-06.

[10] Keijzer, J., Tait, D., and Goedman, R., JAIN: a new approach to services in
communication networks, IEEE Commun. Mag., 38(1), 94–99, 2000.

[11] Kovacs, E., Rohrle, K., and Schiemann, B., Adaptive mobile access to
context-aware services, in Proc. of the 1st Int. Symp. on Agent Systems and
Applications and 3rd Int. Symp. on Mobile Agents, Palm Springs, CA, October
3–6, 1999, pp. 190–201.

[12] Panagiotakis, S. and Alonistioti, A., Intelligent service mediation for sup-
porting advanced location and mobility aware service provisioning in recon-
figurable mobile networks, IEEE Wireless Commun. Mag., 9(5), 28–38, 2002.

[13] 3rd Generation Partnership Project (3GPP), TS 23.127: Service Aspects; The
Virtual Home Environment, version 5.2.0, 2002-06.

[14] 3rd Generation Partnership Project (3GPP), TS 22.240: Service Requirement
for the 3GPP Generic User Profile (GUP); Stage 1, version 6.4.0, 2004-09.

[15] Alonistioti, N., Panagiotakis, S., and Kaloxylos, A., A framework for dynamic
and context-aware composition of adaptable mobile services, in Proc. of
3rd Int. Conf. on Computer Science, Software Engineering, Information
Technology, e-Business, and Applications (CSITeA 2004), Cairo, Egypt,
December, 2004.

[16] 3rd Generation Partnership Project (3GPP), TS 23.141: Presence Service;
Architecture and Functional Description, version 6.7.0, 2004-09.

[17] 3rd Generation Partnership Project (3GPP), TS 23.271: Functional Stage 2
Description of LCS, version 6.10.0, 2004-12.

[18] 3rd Generation Partnership Project (3GPP), TR 23.871: Enhanced Support
for User Privacy in Location Services, version 5.0.0, 2002-07.

AU3833_C30.fm Page 818 Thursday, August 17, 2006 11:57 AM

819

Chapter 31

Location-Dependent

Database Access

Faïza Najjar, Sean Kelley,
and Margaret H. Dunham

CONTENTS

Introduction... 820
Terminology... 821
Location-Dependent Data Versus Spatial Data Versus Temporal Data ... 822

Architecture ... 826
Global Position System... 826
LDS Middleware Architecture... 827

Overview of Location-Dependent Queries... 829
LDQ Versus Point Location Queries.. 830
Classification of Queries... 831

Overview of Moving Object Queries and Databases .. 831
Location Modeling and Translation... 835
Nearest-Neighbor Queries Through Point Location and Indexing..................... 837

Voronoi Diagram... 837
Related Work in Indexing Techniques.. 839

Kirkpatrick’s Technique: Triangulation.. 840
Trapezoidal Map.. 840

k

d-Trees.. 842
D-Tree .. 844

AU3833_C31.fm Page 819 Thursday, August 17, 2006 12:58 PM

820

■

Mobile Middleware

The N-Tree: A New Index Structure for LDQ.. 845
Summary of Indexing Techniques... 847

Conclusions ... 847
References ... 847

Introduction

In a mobile and wireless environment, efficient and consistent data access
is a challenging research area because of the weak connectivity and
resource constraints. The mobile data access strategies can be essentially
distinguished by delivery modes. The modes for server delivery can be
described as client pull, server push, or hybrid:

■

Client pull

 (sometimes called

on-demand access mode

) — A mobile
client first submits a query via the uplink channel and then “pulls”
data, from the server through a wireless network (the downlink
channel), in the same manner as in a traditional client–server
system.

■

Server push

(also called

broadcast

 [15]) — The mobile client
receives information as a result of his or her whereabouts without
having to actively submit a query. The information sent to the
mobile client may be on a public wireless channel (e.g., a welcome
message when entering a new town) or may be subscription based
(e.g., alert system).

■

Hybrid delivery

integrates

both server push and client pull delivery

.

Location-dependent data access assumes that a mobile user queries
data where the value is dependent on the user’s location. A typical query
of this type is: “Where is the closest restaurant?” This query may be stated
explicitly (in the client pull environment) or implicitly (in the server push
environment). In a broadcast setting, a content provider can broadcast
restaurant information for a local area near the broadcast station. A

location-dependent query

 (LDQ) is a mobile query where the result of
the query depends on the location of the user making the query [4,23,26].
This definition can be expanded to include a broadcast environment.
Here, the content of the broadcast is based on the location of the broadcast
station; thus, as a mobile user roams, the result of the user’s implicit query
(i.e., the data that he receives) changes.

We conclude this section by reviewing some terms commonly used
within location-dependent data and queries in wireless environments. We
then briefly overview temporal and spatial database concepts, as these
are important to understanding location-dependent database access. Sub-
sequent sections of this chapter examine architectural issues related to

AU3833_C31.fm Page 820 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access

■

821

location-dependent data access, an overview of location-dependent que-
ries, an overview of moving object databases and queries, location mod-
eling and translation, and nearest-neighbor queries and indexing.

Terminology

As long as people move across the Earth’s surface, the need to know their
current location anywhere, anytime has become a very important constraint
in mobile databases. The term

location

 refers to the position of a point
relative to a geometric subdivision or a given set of disjoint geometric
objects [1,16]. Before studying queries and data access approaches in mobile
databases, it is important to emphasize some fundamental properties of
location data.

With regard to location models, we distinguish two kinds of location:

geometric

(or geographic)

and

 semantic

 (or symbolic) (see Figure 31.1).
The

available mechanisms for identifying the g

eometric

location can be
divided into two basic classes:

■

In the World Geodic System 1984 (WGS84), a location is three
dimensional and unique and has three coordinates: latitude, lon-
gitude, and altitude. These coordinates can be easily provided by
a satellite-based positioning system, such as the widely known
global position system (GPS).

■

A location can also be specified as a set of coordinates defining
the bounding geometric shape (such as polygon) of an area.

Figure 31.1 Location model architecture.

AU3833_C31.fm Page 821 Thursday, August 17, 2006 12:58 PM

822

■

Mobile Middleware

Geometric location can be considered in heterogeneous systems and is
commonly used in the outdoor domain [14]; however, mobile users are often
interested in the “meaning” of a location than its geometric coordinates.

Semantic location

 is the logical representation of the real-world entities
describing the location space. Entities can be cities, street address, Zip
Codes, or system-defined elements such as cell IDs in cellular phone
networks, infrared beacons, or wireless local area network (WLAN) access
point IDs in the indoor domain. These last entities are uniquely identifiable
by a hierarchical naming system such as location trees.

Finally, both geometric and symbolic locations are present and have
to be considered for LDQs. The process of converting a given symbolic
location to (

x

,

y

) coordinates (latitude and longitude) is called

geocoding

(see Figure 31.1) [22]. The opposite function of geocoding is

reverse
geocoding

, which is the process of deriving the semantic location of a
specified longitude/latitude coordinate.

Precision

depends on the measurement errors in geometric coordinates
and on the completeness and accuracy of address names (normalized).

Scope

 is the geometric area of potential coordinates (it often takes the
shape of polygon). A valid scope (also called a

data region

) of a spatial
data was introduced by Zheng et al. [15]; it defines the region within
which the result is valid with respect to the query. In addition to the
location, more spatial information sometimes is required, such as orien-
tation or speed.

The properties of location can affect the processing of queries
significantly when users change their position in a mobile and wireless
environment.

Location-Dependent Data Versus
Spatial Data Versus Temporal Data

Space and time are two powerful forces that have mesmerized scientists,
theologians, astrologists, and philosophers for 2500 years. Einstein’s theory
of general relativity described the “effect of gravitation on the shape of
space and the flow of time” [11]. Einstein’s work led to the development
of what is referred to as

spacetime

: “a universe in which space and time
are woven together into a single fabric” [11]. The relationship between
space and time will be a key theme throughout this chapter because this
relationship serves as a foundation for queries stated in a mobile com-
puting environment.

The adjective

 spatial

 is defined as “relating to, involving, or having
the nature of space.” A s

patial database

 (SDB) offers spatial data types
in its data model and query language and supports spatial data types

AU3833_C31.fm Page 822 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access

■

823

in its implementation, providing at least spatial indexing and spatial
join methods. Spatial data is oftentimes geographic or geometric in
nature, and the space of interest is dependent on the problem being
solved [10]. The problem space may be, for example, the surface of
Mars (geographic space), the layout for a very-large-scale integration
(VLSI) design (manmade space), or the structure of a DNA sample taken
from an extinct species (subatomic space) [10]. The complexity of the
space being studied can often become easier to understand if it is
broken down into large collections of relatively simple geometric objects
[10]. For example, points, lines, and regions (see Figure 31.2) are often
found in spatial databases and are used to model real-world entities.
A line can be used to track movement through space or create a
connection between two or more points (e.g., roads, boundaries). A
region can be two or three dimensional, may have holes, and can
consist of many disjoint pieces [10].

The position of these objects may be viewed at different levels of
granularity, and the geometric representation of an object may change as
the granularity changes; for example, a city may be viewed as a line or
region, depending on the level of detail required by the model [13]. In
addition, spatial objects often have descriptive properties that may or may
not change, depending on the position of an object within space. Fur-
thermore, these objects may be associated with one another using spatial
relationships. These relationships can be subdivided into three categories:
topological, directional, and metric (see Table 31.1) [10].

Figure 31.2 Point, line, region, and region with gaps.

AU3833_C31.fm Page 823 Thursday, August 17, 2006 12:58 PM

824

■

Mobile Middleware

A spatial query language would then contain special operators that
would facilitate the inspection and manipulation of these objects. Specif-
ically, one might use the ADJACENT operator to identify two regions that
touch each other; likewise, it may be necessary to use an ABOVE or
BELOW operator to determine the direction in which one point lies with
respect to another point. Various index techniques are used to support
the querying of spatial objects in an effort to decrease the access time.
Spatial indexes are composed of keys that allow for a less complex
representation of the underlying objects. This, in turn, decreases the
amount of I/O or processing needs for spatial queries.

Temporal database

s (TDBs) allow for the management of time-varying
data [12]. Most applications are temporal in nature with different degrees
of support for formal temporal semantics. These applications include
inventory management, scientific analysis, asset management, and bud-
geting/forecasting [12]. The two most important concepts associated with
TDBs are

valid time

 and

transaction time.

Valid time is defined as a set
of “collected times — possibly spanning the past, present and future —
when some fact is true in the modeled reality” [12]. Frequently, valid time
is not recorded in a database because it may not be known or it may not
be relevant to the application [12].

Transaction time

 can be defined as
the period of time that a fact is current within a database. Transaction
time is associated with a window of time, beginning with the time that a
record is inserted into the database and ending with the time that a record
is deleted from the database. It is important to note that deletion might
be logical, and a time stamp is sufficient to invalidate a fact. Invalidation
implies that the fact will no longer be associated with the current state
of the database. As a result, transaction time allows us to navigate between
the various states through which a database passes. Finally, it is important
to note that transaction time and valid time might be the same, and much
of the research around temporal databases involves understanding and
modeling their differences.

One additional temporal concept that is important to mention is the
concept of

current time

 or

now

. Some of the peculiarities of

now

 include

Table 31.1

Spatial Relationship Types

Relationship Type Examples

Topological Inside, disjoint, overlaps
Directional Above, below, north of, south of
Metric Distance < 30, distance = 10

AU3833_C31.fm Page 824 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access

■

825

the fact that it is always moving forward and that it serves as a moving
boundary dividing the past and the future [12]. The idea of current time
makes it challenging to integrate temporal techniques with techniques
from other research areas. In addition, tracking current time often requires
unique data management and access strategies.

The complexity and inefficiencies of

ad hoc

 temporal data management
have led to the development of a variety of formal data models [12]. For
the purposes of this chapter, only two of these models will be discussed.
The first model is the

Bitemporal Conceptual Data Model

 (BCDM). This
model involves associating each tuple with a series of transaction time/
valid time pairs. This series of pairs is stored in a single attribute, allowing
the full history of a fact to be stored in one tuple [12]. Table 31.2 illustrates
the BCDM model using a relation that contains data pertaining to DVD
rentals. The downsides to this approach include the varying lengths and
large size of each tuple. In addition, storing a string of time stamps in a
single attribute makes querying and displaying this information unintuitive
to the end user.

The second strategy involves storing each time-stamp pair in separate
tuples; as a result, the lifetime of a fact is spread across multiple records (see
Table 31.3). Although this fixed-length strategy may be easier to store and
manipulate, queries spanning the entire lifetime of a fact may require addi-
tional logic. This strategy also leverages the idea of “now,” which decreases
the amount of updates necessary to maintain a complete picture [12].

Many existing query languages (e.g., SQL) can be used to manipulate
temporal data, but the logic required can be overly complex. As a result,
extensions for existing data manipulation languages (e.g., TSQL2) and
hundreds of temporal languages have been developed to allow for the
natural manipulation of complex temporal ideas [12].

Table 31.2

Bitemporal Conceptual Data Model

Customer Name DVD ID Transaction Time, Valid Time

John Smith 1 {(10/2,10/2), (10/2,10/3), (10/3,10/2),
(10/3,10/3), (10/3, 10/4)}

Jim Kelly 2 {(10/5,10/5), (10/6,10/5), (10/6,10/6),
(10/7,10/5), (10/7,10/6), (10/7,10/7)}

Source:

Jensen, C.S., An Introduction to Temporal Database
Research, Ph.D. dissertation, University of Arizona, Tucson, 2000.
With permission.

AU3833_C31.fm Page 825 Thursday, August 17, 2006 12:58 PM

826

■

Mobile Middleware

Architecture

Global Position System

The global position system (GPS) is the most prominent example of
satellite navigation systems [22]. Many location-based services use GPS to
determine the current location. The main advantages of GPS are its
accuracy and high level of coverage, but it fails in indoor environments.
Today, 24 satellites are moving on six different orbits with four satellites
per orbit [22]. They are all one-way communication and they are sending
signals continuously. The architecture of GPS can be divided into three
segments as follows:

■

User segment

 (GPS receivers, which can be plug-in cards or separate
devices with a serial interface connection)

■

Space segment

 (defined by the satellites)

■

Control segment

 (administration of satellites as well as the corrections)

Mobile users who want to know their current location can use GPS signals
which are now free of charge, and the receivers are not expensive. GPS
services are classified into two types:

Table 31.3

Fixed-Length Strategy

Customer Name DVD ID
Transaction

Time
Valid
Time

John Smith 1 10/2 10/2
John Smith 1 10/2 10/3
John Smith 1 10/3 10/2
John Smith 1 10/3 10/3
John Smith 1 10/3 10/4
Jim Kelly 2 10/5 10/5
Jim Kelly 2 10/6 10/5
Jim Kelly 2 10/6 10/6
Jim Kelly 2 10/7 10/5
Jim Kelly 2 10/7 10/6
Jim Kelly 2 10/7 10/7

Source:

Jensen, C.S., An Introduction to Temporal Data-
base Research, Ph.D. dissertation, University of Arizona,
Tucson, 2000. With permission.

AU3833_C31.fm Page 826 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access

■

827

■

Precise positioning service

 (PPS), which is not accessible by civilian
users but only by the military, allows positioning with a precision
of about 3 meters.

■

Standard positioning service

 (SPS) has been available for civilian
users since 2000 and provides the current location with a precision
of 25 meters.

LDS Middleware Architecture

The middleware architecture discussed in this section comes primarily
from Seydim et al. [24], whose work is typical of that done in this area.
We use the term

location-dependent services

 (LDSs)

to refer to the software
that is responsible for processing location-dependent data access. Any
LDS design must at least support the following basic functions:

■

Bind location to query.

■

Determine content provider(s) for processing the query.

■

Translate query location to location used by data.

We assume that the LDS software uses a

location service

 (LCS) to determine
the location for the query. As we assume that the LDS is independent of
both the content provider and the wireless provider, the LDS must also
determine where to process the query. This could be at multiple content
provider locations. The LDS must then translate the query into a query
format understood by each content provide. We make no assumptions
about the type of data and system used by any content provider.

Three architectural approaches can be used to support LDS applications:

■

Content side — Here, all LDS support functions are provided by
the content provider with the support of an LCS module. The
content provider is responsible for binding the mobile user’s query
to a location and then for processing the query itself. Location is
assumed to be the current position of the mobile user. The LCS
estimates the mobile user’s most accurate position by using the
information stored in the network or the device itself. If the
granularity provided by the LCS is not compatible with the gran-
ularity of the stored data, then the content provider may have to
customize its database accordingly; otherwise, the content provider
can ask for the location of the mobile user at a certain granularity.
This approach is simple and suitable for thin clients with scarce
resources, such as mobile phones and personal digital assistants
(PDAs). Ericsson’s Mobile Positioning System (MPS) is an example
of this type of architecture [5].

AU3833_C31.fm Page 827 Thursday, August 17, 2006 12:58 PM

828 ■ Mobile Middleware

■ Wireless side — Here, support for LDS applications is moved to
the wireless operator side. The wireless operator provides all the
functionality to the mobile user in a well-defined and limited way.
The mobile user does not know anything about the content pro-
vider; all he sees is the menu provided by his wireless operator.

■ Middleware — This approach assumes that a special software agent,
the location-dependent services manager (LDSM), sits between the
wireless operator and the content (service) provider. This approach
is shown in Figure 31.3. This software agent performs all LDS
functions, with the help of LCS software, independent of both the
wireless operator and the content provider. Currently, SignalSoft
Corp. [28], and Mobilaris [18] support this type of architecture;
however, these implementations are limited in the type of location
binding and translation supported.

Although the first two approaches are relatively simple and straight-
forward, many problems are associated with them. First of all, they are
not flexible enough to support complicated LDQ requests. Each request
must be well defined and sent to a specific content provider directly.
Although this may be true for current LDS applications, we envision future
applications that are composed of queries to be sent to multiple content
providers. In addition, it may not be known a priori which content provider
is to receive and process the query. Indeed, the content provider choice
may itself be location based; for example, one provider in the United
States may perform yellow pages applications while another does the

Figure 31.3 LDSM Middleware.

LDSM: Location-dependent services manager
 MU: Mobile unit
 DB: Database

AU3833_C31.fm Page 828 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 829

same in Europe. Thus, the same query could be sent to two different
providers. The matching of the query to a provider should be dynamic,
not prewired. Users should be able to use any LDS from any service
provider, not simply the ones presented by default from the wireless
network.

Besides being independent of the underlying cellular technology, the
middleware approach provides a more flexible and transparent framework
for LDS applications. Different location identification software or LCSs can
be used in the architecture to locate the mobile user. Unlimited content
options can be provided by this approach, which allows access to many
different localized information services. We envision LDS application soft-
ware providers competing with each other for users. These LDS providers
will use different functionalities and approaches to implement location-
dependent applications. Users from different wireless operators may sub-
scribe to the same LDS services.

The middleware design facilitates the implementation of a flexible LDS
support service that could work with multiple wireless operators and
content providers. In addition, very complex location binding can be
supported. LDQs of the future will have to have the query bound to
locations other than the current position of the mobile unit (MU). Some
types of queries must be repeatedly requested; for example, a user who
wishes to spend the night only at a Brand A hotel could issue a query
that is requested periodically to find a Brand A hotel. This sophisticated
type of LDQ can be supported by middleware software but is not easily
supported by any of the other two approaches. Other types of queries
may be fragmented and sent to different content providers. These subquery
results could then be merged together and returned to the user. The
architecture could also use intelligence for caching results for frequent
disconnection cases or use access patterns for prefetching data and for
efficient use of resources.

Overview of Location-Dependent Queries
In this section we provide the definition of location-dependent data/query
and then classify the queries. The term location-dependent data (LDD)
can be defined as the data whose value is dependent on some reference
location, which in most cases is the current position of the query’s issuer.
A data item refers to one type of LDD (e.g., restaurants) and usually has
different instances; thus, a data instance is an answer to the query. Before
a mobile user can access information, it is important to consider the
location model, in which location information specified in the user’s query
is either explicit or implied in the query.

AU3833_C31.fm Page 829 Thursday, August 17, 2006 12:58 PM

830 ■ Mobile Middleware

The query-retrieving LDD is referred to as a location-dependent query
(LDQ), and the result set of the query changes depending on the location
of the query issuer. The location information is always hidden and implied
by “current location or here” (e.g., “find the nearest gas station”).

When the user’s location is known (e.g., by GPS), the LDQ can be
converted into a location-aware query (LAQ) [23] with an explicit indica-
tion of this special location attribute in the query. The process of obtaining
the location information of the query issuer is called location binding (see
Figure 31.4). Examples of location binding include: “Find the nearest hotel
of position x° latitude and y° longitude” or “Find all Chinese restaurants
in Dallas.” So, LAQ retrieves the same query results independent of the
query issuer. Sometimes, LAQs also require location binding if the query
results depend on the location of a mobile client — for example, “Find
friend application” [22] or “Find a mall close to my friend.”

LDQ Versus Point Location Queries

A formal definition of LDQ [32] is as follows:

Definition 1. Given a set of data instances P = {P1, P2, …, PN}
and the corresponding set of valid scopes R = {R1, R2, RN}, an
LDQ issued at location q returns the data instance Pj from P if
and only if q is located in the region Rj where 1 ≤ j ≤ N.

One of the most fundamental query problems is the point location problem,
in which a subdivision of space into disjoint regions is given, and the
problem consists of identifying which region contains a given query point.
A more technical definition is given as follows:

Definition 2. Given a partition of data regions R = {R1, R2, …,
RN} and a point query q, a (planar) point location query (PLQ)
returns the data region Ri from R that covers q.

Figure 31.4 Location-dependent query (LDQ) versus location-aware query
(LAQ).

AU3833_C31.fm Page 830 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 831

For example, “Where am I?” is a PLQ; thus, a LDQ is reduced to a PLQ
when the data region covering the point query maintains a pointer pointing
to its associated data instance.

Classification of Queries

There are various query classifications in the literature [9,15,26]. In Seydim
et al. [24], the authors provide a formal query classification for mobile
database queries. In this subsection, we will summarize these previous
works (see Table 31.4). At the highest level, queries may contain location
information (but no movement) or may be mobile queries, or neither of
these. Queries with no movement (but location) can request data from
local or non-local locations. Traditional queries involve no locations.
Mobile queries involving location can be divided into two types: station-
ary-location-related queries (SLRQs), and mobile objects database queries
(MODQs). We can also identify the continuous queries (CQs) inside an
MODQ; for example, a client in a moving car who would like to receive
continuously updated information to find the least expensive hotel can
submit the following query: “Find the room rates of all the hotels within
1 mile from me.”

Overview of Moving Object Queries and Databases
A moving object database (MOD) is defined as a type of “spatiotemporal
database supporting spatial objects with continuously changing position”
[7]. This definition permits us to think of MODs as a kind of spatiotemporal
database (STDB); however, spatiotemporal databases are not typically
associated with continuous movement. Adding continuous movement to
an application usually requires additional modeling, access, and update
strategies.

A database must have a couple of important characteristics to be clas-
sified as a MOD. These databases must “store spatial information whose
position and extent changes over time” [7]. This is a broad definition because
it includes two types of spatial objects: (1) those that are stationary or move
slowly with respect to time, and (2) those that move continuously with
respect to time. The first category includes objects such as states, counties,
lakes, and roads. The second category encompasses objects such as auto-
mobiles, planes, and people [7]. The first category is generally associated
with spatiotemporal applications and databases. MODs are responsible for
storing and manipulating both types of objects described above, and it is
the second class of objects that makes this technology so unique.

AU3833_C31.fm Page 831 Thursday, August 17, 2006 12:58 PM

832 ■ Mobile Middleware

Ta
bl

e
31

.4
C

la
ss

ifi
ca

ti
on

 o
f

Q
ue

ri
es

 i
n

M
ob

ile
 D

at
ab

as
es

C
ri

te
ri

a
Q

u
er

y
Ty

p
e

Q
u

er
y

Su
b

ty
p

e
Lo

ca
ti

o
n

 M
o

d
el

Q
u

er
y

Ex
am

p
le

s

Sp
ac

e:
 a

cc
es

s
to

lo

ca
ti

o
n

 i
n

fo
rm

at
io

n
,

n
o

 m
o

ve
m

en
t

Lo
ca

l
N

N
Q

Ex
p

lic
it

/im
p

lic
it

“F
in

d
 t

h
e

n
ea

re
st

 t
ra

in
 s

ta
ti

o
n

.”

Si
m

p
le

 v
er

su
s

ge
n

er
al

Ex
p

lic
it

/im
p

lic
it

“W
h

er
e

is
 th

e
C

h
in

es
e

re
st

au
ra

n
t w

it
h

re

sp
ec

t
to

 m
y

h
o

te
l?

”

N
o

n
-l

o
ca

l
G

eo
gr

ap
h

ic
al

ly

cl
u

st
er

ed
Ex

p
lic

it
/im

p
lic

it
“W

h
at

’s
 t

h
e

w
ea

th
er

 i
n

 T
u

n
is

?”

G
eo

gr
ap

h
ic

al
ly

d

is
p

er
se

d
Ex

p
lic

it
/im

p
lic

it
 “

Li
st

 a
ll

h
o

te
ls

 w
it

h
 a

 r
o

o
m

 r
at

e
b

el
o

w

$1
00

.”

Sp
ac

e
an

d
 t

im
e:

m

o
b

ili
ty

 o
f

th
e

is
su

er

an
d

/o
r

d
at

ab
as

es

SL
R

Q
LD

Q
/N

N
Q

Im
p

lic
it

“W
h

er
e

is
 t

h
e

cl
o

se
st

 a
ir

p
o

rt
?”

LA
Q

Ex
p

lic
it

“I
d

en
ti

fy
 a

ll
am

b
u

la
n

ce
s

th
at

 a
re

 w
it

h
in

2

m
ile

s
o

f
m

y
cu

rr
en

t
lo

ca
ti

o
n

.”

PL
Q

Im
p

lic
it

/e
xp

lic
it

“W
h

er
e

am
 I

 l
o

ca
te

d
?”

M
O

D
Q

/C
Q

SL
R

Q
 +

 (
ti

m
e,

sp

ee
d

, d
ir

ec
ti

o
n

)
—

“F
in

d
 th

e
h

o
te

ls
 th

at
 I

w
ill

 r
ea

ch
 w

it
h

in

5
m

in
u

te
s”

N
o

 s
p

ac
e

o
r

ti
m

e
Tr

ad
it

io
n

al
—

N
o

n
-l

o
ca

ti
o

n
“L

is
t a

ll
th

e
ac

to
rs

’ n
am

es
 in

 th
e

m
o

vi
e

‘N
at

io
n

al
 T

re
as

u
re

’.”

N
o

te
: L

A
Q

, l
o

ca
ti

o
n

-a
w

ar
e

q
u

er
y;

 L
D

Q
, l

o
ca

ti
o

n
-d

ep
en

d
en

t
q

u
er

y;
 N

N
Q

, n
ea

re
st

-n
ei

gh
b

o
r

q
u

er
y;

 P
LQ

, p
o

in
t

lo
ca

ti
o

n
 q

u
er

y;
SL

R
Q

, s
ta

ti
o

n
ar

y
lo

ca
ti

o
n

-r
el

at
ed

 q
u

er
y.

AU3833_C31.fm Page 832 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 833

Moving object databases store the position of objects in space. Some
of those objects move through space and others are stationary; for example,
an application used to manage a fleet of delivery trucks would focus on
tracking the delivery trucks (moving objects) as they travel through the
streets (stationary objects) of a particular city (stationary object). As time
moves forward, an object may change its position within space, affecting
the spatial relationship between that object and other objects found within
the database [6]. A moving object has a starting position, which is a point
in space denoting the beginning of a route. That starting position can be
coupled with a start time. In addition, a line through space is used to
represent the route of an object. The end position of a route may or may
not be known beforehand. Other characteristics such as trajectory, velocity,
and acceleration may also be associated with a moving object [27].

Many operators are commonly used to manipulate and understand
moving objects. The operator IN can be used to determine whether or
not an object is within a region at a given point in time. It may also be
necessary to determine if an object is entering or exiting a region.
Furthermore, it might be important to identify whether two objects are
moving away or toward one another. Similarly, two objects moving toward
each other may collide. Catching up may be used to describe two objects
that are moving in the same direction with the distance between those
objects decreasing. Opposite direction would imply that two objects are
moving away from each other. Meet requires that the faster of two objects
must have a negative acceleration and the slower object must have a
positive acceleration, or both [25].

Because the entities being tracked in MODs are continuously changing
with regard to space and time, the location of an object is intrinsically
uncertain, and this idea is generally referred to as location uncertainty.
Moreover, regardless of how frequently the current position of a moving
object is updated within the database, the database location will never
be the same as the actual location. As a result, it may be necessary to
qualify or quantify that uncertainty using “must” or “may” semantics.
Specifically, it might be necessary to differentiate between all objects that
must satisfy a query predicate and all objects that may satisfy a query
predicate. Furthermore, a probability could be used to identify the likeli-
hood that a result may satisfy a query [28].

Queries against MODs can fall into a number of categories. First, range
queries can be described as requesting objects that fall within a given
spatio-temporal range; for example, one might request the identification
of all vehicles within 5 miles (spatial predicate) of a bank robbery between
2 and 3 p.m. (temporal predicate) [18]. Next, nearest-neighbor (kNN)
queries are interested in objects that are within a defined proximity to
some point in space. The nearest-neighbor predicate is typically applied

AU3833_C31.fm Page 833 Thursday, August 17, 2006 12:58 PM

834 ■ Mobile Middleware

to the spatial dimension or the temporal dimension, but not to both. The
kNN predicate is then coupled with a range predicate to be applied to
the other dimension. To clarify, a temporal kNN query might be something
like: “Retrieve the first ten vehicles that were within 100 yards [spatial
range] from the scene of the accident ordered based on the difference
between the time the accident occurred and the time the vehicle crossed
the spatial region [temporal kNN predicate]” [18]. Generally, temporal kNN
queries are interested in the most recent past or some point in the future
but rarely in both, allowing the query to concentrate on one portion of
the time dimension. A spatial kNN query might ask: “Retrieve the five
ambulances that were nearest to the location of the accident [spatial kNN
predicate] between 4 and 5 p.m. [temporal range]” [18]. Join queries are
traditionally used to detect or predict the collision or the overlap of either
two moving objects or a moving object and a stationary object. For
example, join queries can be used by flight controllers to estimate the
effects of a flight pattern reconfiguration during an emergency in an effort
to avoid any in-flight collisions.

Several nuances that are typically associated with querying MODs are
worth mentioning. First, one may choose to limit the perspective of a
query with regard to the time dimension, and it may be necessary to focus
only on the historical positions of an object. In contrast, it is also common
to focus on the current and future positions of an object which requires
associating that object with a function of time. That function could take
velocity and trajectory into consideration when estimating the future
position of an object. It may also be feasible to obtain a “reservation”
from each object that specifies the spatial destination. This greatly reduces
the complexity of predicting the future positions of objects. Splitting
queries along these lines is often necessary because the techniques regard-
ing indexing and optimization can be different. In addition, because the
locations of moving objects are continuously changing, these locations
are inherently uncertain [28]; for example, one may wish to “retrieve the
friendly helicopters that are expected (according to the current speed and
direction information) to enter a stated region in the next hour.” It might
be necessary to apply “must” or “maybe” semantics to this query. The
latter would be coupled with some uncertainty bound or probability
dictating the acceptable threshold for incorrect predictions. The reply to
a query using an uncertainty bound might be “M is on Route 968 at
location (x,y) with an error or deviation of at most 2 miles.” Furthermore,
the database engine might commit to sending a location update when
some deviation is reached [28].

Moving object databases and applications are being used extensively
in the field of mobile workforce management. Location tracking is com-
bined with predetermined route information to manage mobile devices

AU3833_C31.fm Page 834 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 835

such as planes, trains, delivery trucks, and taxis. Call centers can use these
applications to optimize resource utilization, determine delivery times, and
react to extenuating circumstances such as bad weather or traffic conges-
tion [27]. As an example, a database used to track the location of taxis
might have to know all the free cabs within a one-mile radius of a given
customer. Likewise, a delivery service might have to alter a route for a
special delivery and would do so by first determining all routes that fall
within a certain distance of that address.

Another application for moving object databases is called location-aware
content delivery. The origins of this technology lie in a field called context-
aware computing. These applications use a mobile device such as a cell-
phone to provide location information. That information can then be com-
bined with contextual information such as the time of day, current weather
conditions, nearby locations, and the mobile users’ current activities [2].
Ultimately, content is tailored based on that contextual information and sent
to that mobile device. This content might include coupons for local stores,
information on surrounding tourist attractions, and restaurant reviews [2].

Finally, moving object technology is often used in the digital battlefield.
Military leaders have realized that the key to winning a war is to create
a fast and accurate information delivery system [19]. The aim of battlefield
analysis is to collect and analyze information about such things as enemy
location and movement, characteristics of the terrain, and weather condi-
tions [19]. These applications leverage distributed computing solutions that
seek to track mobile objects in an environment where network bandwidth
is scarce [3]. Data may come from a wide variety of sources including
satellites, reconnaissance drones, and mobile devices worn by ground
troops. The application should integrate that data into a unified view and
allow key decision makers to adjust their strategies accordingly; for exam-
ple, it may be necessary to determine all friendly aircraft that can be
expected to enter a region in the near future [27]. In the event of an
emergency, this type of information would allow decision makers to
determine if it is best to pull out due to a lack of adequate air support
or stay in place because assistance will arrive in a timely manner.

Location Modeling and Translation
As indicated earlier, any LDQ must involve either an explicit or implicit
location; however, a location can be viewed in many ways: latitude and
longitude, street address, Zip Code, etc. An even bigger problem is that
different system entities involved in processing the LDQ may have different
views. Different content providers could store data at different location
granularities. The LCS could bind the location to yet a third. This difference

AU3833_C31.fm Page 835 Thursday, August 17, 2006 12:58 PM

836 ■ Mobile Middleware

between location granularities is referred to as the location granularity
mismatch problem. A layered translation approach to solve this problem,
location leveling (LL) has been proposed [23]. LL is an extension of the
geocoding/reverse geocoding concept introduced earlier. It is a software
technique used to convert any location to which the mobile unit is bound
to a location provided by the content provider. The LL technique assumes
that concept hierarchies are provided by all content providers which
indicate the relationships between their data and other data. Some of the
translation approaches may be algorithm based, and others are table based.
Figure 31.5 illustrates one such concept hierarchy.

Here, two different content provides have two different views of the
data. It is assumed that the content providers provide translation algorithms
between any two locations for which an edge is present. Thus, if a user
submits a query that is bound to a Zip Code to content provider 2, where
the data in the corresponding database is at the county granularity, then
a translation from Zip Code to county would be required to determine
which counties satisfy the proposed query.

Figure 31.5 Concept hierarchy to support leveling. (From Seydim, A.Y. et al., in
Proc. of the 2nd ACM Int. Workshop on Data Engineering for Wireless and Mobile
Access (MobiDe’01), Santa Barbara, CA, May, 2001, pp. 47–54. With permission.)

AU3833_C31.fm Page 836 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 837

Nearest-Neighbor Queries Through
Point Location and Indexing

Nearest-neighbor (NN) searching is an important problem in a variety of
applications, including multimedia databases, document retrieval, knowl-
edge and data mining, pattern recognition and classification, machine
learning, and statistics. The NN search (e.g., finding the nearest gas station)
can be seen as an LDQ problem when the solution space is precomputed
(e.g., by Voronoi diagram). So, to determine the closest site, it suffices to
first compute the subdivision induced by the Voronoi diagram and then
generate a point location data structure for the Voronoi diagram. In this
way, the nearest-neighbor queries (NNQs) are reduced to PLQs. We begin
this section by providing some preliminaries about Voronoi diagrams and
then explore the use of indexes to facilitate efficient evaluation of LDQs
in mobile and wireless environments.

Voronoi Diagram

The concept of the Voronoi diagram is used extensively in a variety of
applications, including robotics, knowledge discovery and data mining,
classification, multimedia databases, document retrieval, and statistics,
among many other fields. The Voronoi diagram is a versatile geometric
structure. Given a set of n points (referred to as sites) in the plane, a fairly
intuitive definition of a Voronoi diagram is a partitioning of the space into
n regions (closed and convex, or unbounded) according to the nearest-
neighbor rule: Each site is assigned to the region to which it is closest (see
Figure 31.6). More formally, the Voronoi diagram [17] can be defined as
follows:

Given a set P of n points (n ≥ 3) in a plane that are in general
positions (that is, no three of them are colinear and no four
points are cocircular), we associate all locations in the space
with the closest members of the point set with respect to the
Euclidean distance.

The set of points that are closest to a particular site pi forms the so-
called Voronoi cell (see Figure 31.7.a) and is denoted by υ(pi). Thus,
mathematically we have:

υ(pi) = {p ∈ IR2 | dist(p,pi) < dist(p,pj) for all j ≠ i}

AU3833_C31.fm Page 837 Thursday, August 17, 2006 12:58 PM

838 ■ Mobile Middleware

The boundary of a Voronoi diagram consists of Voronoi edges (i.e.,
line segments, half lines), which are equidistant from two point sites, and
Voronoi vertices, which are equidistant from at least three sites (see Figure
31.7.b). Because the Voronoi diagram, Vor(P), is viewed as a planar graph,
every vertex in a Vor(P) has degree 3 (i.e., exactly three Voronoi edges
are incident to it). The union of the boundaries of the Voronoi cells is
the Voronoi diagram, which we refer to as Vor(P). Note that adjacent
Voronoi cells overlap only on their boundaries.

Figure 31.6 The Voronoi diagram of a set of points.

Figure 31.7 (a) A Voronoi cell of Pi (filled region); (b) a Voronoi diagram in a
bounded box.

(a) (b)

AU3833_C31.fm Page 838 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 839

Now that we understand the structure of the Voronoi diagram, we next
discuss its complexity in terms of the total number of vertices and edges
[1,17]:

Property: For n ≥ 3, the number of vertices in the Voronoi
diagram of a set of n point sites is at most 2n – 5, and the
number of Voronoi edges is at most 3n – 6.

The Voronoi diagram, then, has a linear complexity. The Voronoi
diagram serves as the basis for nearest-neighbor queries. Each query is a
point in the space containing N sites, and we are required to report the
closest site to the query point. In such cases, it suffices to compute first
the Voronoi diagram and then to generate a point location data structure
for the Voronoi diagram. Consequently, the problem of LDQ can be
reduced to the problem of PLQ.

Related Work in Indexing Techniques

We now explore the use of indexing on simple shapes which in general
performs efficiently in mobile and wireless environments. The indexing
problem of LDQ can be defined as: Given the valid scopes (Voronoi cells)
of all data instances of a certain query type, how can we index them to
allow efficient processing of LDQs through PLQs? The goal of PLQs is to
preprocess a subdivision into a data structure that provides an optimal
O(n) space and O(logn) query time for answering PLQs in the plane.
Several indexing techniques for PLQs exist in the literature. The two most
well-known types of index techniques are object decomposition and object
approximation. The former is based on the precomputed solution space
and is also referred to as the solution-based index. Especially, for NN
search, the solution space can be represented by valid scopes (e.g.,
Voronoi diagrams). Whereas the latter represents a simple approximation
of each data region, it is also referred to as the object-based index, because
it is built on object locations. The most commonly used index in geo-
graphical information systems (GISs) is the minimal bounding box (MBB)
or minimal bounding rectangle (MBR).

In the following subsections, we briefly review the existing indexing
approaches and then introduce our new index structure for LDQ. Most
of the decomposition techniques are based on the principle of recursive
hierarchical partition. We assume for the following subsections that a
polygonal subdivision (that is, a Voronoi diagram) contains n vertices and
m edges.

AU3833_C31.fm Page 839 Thursday, August 17, 2006 12:58 PM

840 ■ Mobile Middleware

Kirkpatrick’s Technique: Triangulation

Kirkpatrick’s algorithm is based on the triangulation of the current subdi-
vision. The construction of the index begins by building a finite sequence
of triangulations (T0, …, Tp), where T0 is the initial triangulation of the
original subdivision. The main idea is to recursively remove an indepen-
dent set of vertices (that is, a set of mutually nonadjacent vertices) along
with all the incident edges. The resulting subdivision is then retriangulated
until Tp, which consists of the single triangle forming the external face of
the original triangulation. If Tp is not a triangle, we compute the convex
hull and triangulate the pockets between the subdivision and the convex
hull. For all Ti+1 (1 ≤ I ≤ p – 1), each triangle intersects a constant number
of triangles in Ti, and the number of vertices in Ti+1 is smaller by a constant
fraction than the number of vertices in Ti. A rooted directed acyclic graph
is the index structure, where the root corresponds to the last triangulation
Tp and the leaves represent the triangles of T0. Figure 31.8 illustrates both
the process of triangulation and the corresponding index data structure
[30]. The search of the location of the point query proceeds level by level
through the hierarchical directed acyclic graph (DAG), visiting the nodes
representing the triangles that contain the query point q. Given a query
point q, the searching of the point location proceeds by first locating the
point inside the outer triangle (that is, the root). At any step in the search
approach, one has located the query point in a triangle t on some level
in the DAG. One then follows the pointers in the DAG to search all the
children triangles, which were eliminated to form t. Figure 31.8 shows
the unique triangle (that is, 3) containing q. The visiting nodes are in the
path of 20, 18, and finally triangle 3.

Trapezoidal Map

The trapezoidal map or decomposition (sometimes also known as the
vertical decomposition) of space S is viewed as a collection of line
segments. The trapezoidal map is obtained by passing a vertical line
through each endpoint pi of each segment in S, going upward and
downward until it hits another segment of S. Some of these lines will
continue to infinity, because they do not hit any other line segments. We
assume henceforth that:

■ The entire domain is enclosed in a large bounding box to avoid
infinite lines.

■ The x-coordinates of the segments are all distinct to avoid degeneracy.

Thus, the process of randomized incremental construction of the trape-
zoidal map is described by the following steps:

AU3833_C31.fm Page 840 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 841

■ Input a set S of m planar line segments; that is, S = (s1, s2, …, sm)
in a random order.

■ Output the trapezoidal map T(S) and a search data structure D
(rooted DAG):
■ For i from 1 to m, find the set ∆0, …, ∆k, of trapezoid T properly

intersected by si.
■ Remove the set from T and replace it with the new trapezoids

that appeared after the insertion of si.
■ Remove the leaves from D, and create new leaves from the

currently found trapezoids; that is, link internal nodes to new
leaves with respect to the history of the randomized construction
(explained below).

We now describe the point location data structure, which is based on
a rooted DAG. Each internal node consists of two types of nodes: x-nodes
and y-nodes. Each x-node, represented by circles, contains the x-coordi-
nate x0 of an endpoint of one of the segments, and its two children
correspond to the neighbor points lying to the left and right of the
x-coordinate (that is, x = x0). Each y-node, represented by a hexagon,

Figure 31.8 The sequence of triangulation generated by Kirkpatrick’s approach
and its corresponding DAG for searching.

AU3833_C31.fm Page 841 Thursday, August 17, 2006 12:58 PM

842 ■ Mobile Middleware

contains a pointer to a line segment of the subdivision. The left and right
children of a y-node correspond to the spaces above and below the line
segment represented by the y-node (see Figure 31.9). The leaves represent
the trapezoids.

Given a query point q, the search process begins at the root and
terminates when a leaf node is reached. At the x-node, we evaluate
whether q lies to the left or to the right of the vertical line defined by
the stored x-coordinate. At a y-node, we evaluate whether q lies above
or below the segment. This is illustrated in Figure 31.9. For further details
see Berg et al. [1] and Lee et al. [15].

kd-Trees

The k-dimensional tree (kd-tree) is one of the most prominent d-dimen-
sional data structures [8,15]. Perhaps the most popular class of indexing
technique for the NN search structure involves some sort of hierarchical
space decomposition. It is a binary search tree that represents a recursive
subdivision of the universe into subspaces by means of (d – 1)-dimensional
hyperplanes. The hyperplanes are iso-oriented, and their direction alter-
nates between the d possibilities. For d = 3, for example, splitting hyper-
planes are alternately perpendicular to the x-, then y-, then z-axis and then
back to x- and so on. The choice of the splitting rule is an important issue

Figure 31.9 Construction of trapezoidal map and its associated DAG.

AU3833_C31.fm Page 842 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 843

in the implementation of the kd-tree. A good split is one that divides the
points into subsets of roughly equal sizes and which produces cells
containing at least one data point. Internal nodes contain the axis-orthog-
onal splitting hyperplane and have one or two children representing the
rectangular subcells (see Figure 31.10). The leaves store all the data points.
Searching and insertion of new points are straightforward operations.
Deletion is somewhat more complicated and may cause a reorganization
of the subtree below the data point to be deleted. Note that it is difficult
to keep the tree balanced in the presence of frequent insertions and
deletions. The structure works best if all the data is known a priori and if
updates are not frequent. One disadvantage of a kd-tree is that for certain
distributions no hyperplane can be found that splits the data points evenly.

The construction of a kd-tree can be briefly described as follows: We
first compute the median of the point set in one of the dimensions (say,
the x-axis) and partition the point set into two subsets based on the median
point; that is, all the points having coordinates less than the median point
along the x-axis are placed in one subset (left) and the remaining points
are placed in the other subset (right). This process is then recursively
continued along the y-axis in the resulting cells. When the partitioning is
completed all along that axis, it is repeated back to x-axis and so on until
only one data point remains. The general advantage of the kd-tree is that
the decision of which subtree to use is always unambiguous.

The kd-tree search is not the most efficient, as the search algorithm
visits all the nodes containing query point q and maintains the closest
point to q. Because the root represents the entire space region, it has to
go first to a leaf (say, pi) that is the initial closest point to q. It then would
visit the parent and all the nodes intersecting the circle centered at q of

Figure 31.10 An example of a kd-tree (right) and its corresponding spatial sub-
division (left).

AU3833_C31.fm Page 843 Thursday, August 17, 2006 12:58 PM

844 ■ Mobile Middleware

radius distance (q,pi). If the distance is greater than the distance of the
closest point encountered so far, the search returns immediately. In Figure
31.10, with query point q, the search algorithm first finds the closest point
p3 (with a deep search). The visited points in the kd-tree are italicized.
The final answer is p2.

D-Tree

The D-tree is reported to have a better performance for indexing solution-
space than traditional indexes [30]. The D-tree is a binary, height-balanced
tree. It is similar to the kd-tree; however, the kd-tree is built based on
hyperplanes, and the D-tree is constructed based on the divisions that form
the boundaries of the valid scopes. For a space containing a set of valid
scopes that are disjoint and complementary, it recursively partitions the space
according to similar numbers of scopes until a space has one scope only.
The partition between two subspaces is represented by one or more
polylines. Figure 31.11a shows a valid scope for four objects. Polyline pl(v2,
v3, v4, v6) partitions the original space into P5 and P6, and pl(v1, v3) and pl(v4,
v5) further partition P5 into P1 and P2 and P6 into P3 and P4, respectively.

Figure 31.11b shows the corresponding D-tree. Each node of the D-
tree contains a header attribute, the partition that divides the space into
two complementary subspaces, and two pointers (left and right). Searching
on the D-tree begins from the root and recursively follows either the left
pointer or the right pointer according to the partition and the position of
the query point until a leaf is reached that contains a pointer to the data
instance corresponding to the region.

Figure 31.11 Index construction using the D-tree: (a) divisions in the index, and
(b) D-tree structure. (From Wolfson, O. et al., in Proc. of the 10th Int. Conf. on
Scientific and Statistical Database Management (SSDBM’98), Capri, Italy, July,
1998. With permission.)

AU3833_C31.fm Page 844 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 845

The N-Tree: A New Index Structure for LDQ

One of the original motivations for the Voronoi diagram was nearest-
neighbor searching. We propose a new index structure, called N-tree
(neighbors tree), which indexes data regions based on neighbors in the
solution space represented by a Voronoi diagram. N-tree, however, can
also be applied to any planar subdivision or valid scopes. N-tree is a
balanced binary space partitioning (BSP) tree, similar to D-tree [29,30];
however, the partition in D-tree is based on polylines, but N-tree is based
on the frontier represented by a set of neighbors that cover the other
sites. Because each point in two-dimension space has two values (x- and
y-coordinates), we have to sort and split on the x-coordinate or y-
coordinate according to the minimum cardinality of the frontier. We
recursively partition a space consisting of a sorted set of data instances
(sites) into two complementary subspaces (left subspace and right sub-
space) containing about the same number of sites until each subspace
has one site only. The data structure of the N-tree is given by Figure 31.12.

The N-tree index is based on both object and space solution; that is,
instead of storing the boundaries of valid scopes, it stores the object
locations of adjacent sites. Our index structure can be considered as a
hybrid index, because it combines both object- and solution-based
indexes. We are inspired by the Delaunay triangulation [1,17] and the
straight-line duality of the Voronoi diagram, where the objects are repre-
sented by vertices and two objects are connected (edge) if and only if
their valid scopes are adjacent. Thus, we define the frontier set of neigh-
bors to be the set of edges <pi, pj> with one endpoint in each of the left
and right site frontiers (LSF and RSF, respectively). We have to verify that
LSF (or RSF) covers all the sites in the left subspace (or right subspace);
that is, LSF and RSF are sufficient to guide a query point to the appropriate
subspace: LS (left sites) or RS (right sites). Before describing the partition
algorithm, we first illustrate it by providing an example (see Figure 31.13).

The idea of the construction of the hierarchical partition and its
associated index N-tree is as follows:

Figure 31.12 Data structure of the N-tree node.

AU3833_C31.fm Page 845 Thursday, August 17, 2006 12:58 PM

846 ■ Mobile Middleware

■ Input —
S, a set of sites sorted by increasing order of x-coordinates (Sx)
and simultaneously sorted by decreasing order of y-coordinates
(Sy); the cardinality of S is N.
E, a set of neighbors <pi, pj> sorted, respectively, on x-coordi-
nates (Ex) and y-coordinates (Ey); the cardinality of E is m (the
number of edges in the Voronoi diagram generated by N points).

■ Output — N-tree

For each partition dimension (x,y):

■ Partition S into two complementary subsets, LS and RS.
■ Find the frontier (F) and retrieve from E the edges with one

endpoint in each of the two sets LS and RS.
■ Choose the partition with the minimal cardinality of the F.
■ Find LSF, the left site frontier (or RSF, the right site frontier).
■ Update LE and RE, the edges, respectively, of the left subset and

the right subset.
■ Verify that LSF (or RSF) covers the remaining sites of LS (or RF).
■ Partition on LS and LE (recursive partition on the left subset).
■ Partition on RS and RE (recursive partition on the right subset).

The search algorithm starts from the root and computes the Euclidean
distance from query point q to the associate points of this node then
recursively follows either the left pointer or the right pointer according
to the minimal distance found (in LSF or RSF). If the number of sites in
an internal node is equal to the sum of all points in this node, the search
returns immediately the closest point instead of reaching the leaf. In the
example of Figure 31.13, for any query point, the search stops at level
one (for the best case) and level two (for the worst case) of the tree
because the number of sites in the subtree at level one is equal to four
and the number of points in that node is equal to four. So, in general,
the worst case to get the closest site is (logN – 1).

Figure 31.13 Construction of N-tree based on the example given in Figure 31.7.

AU3833_C31.fm Page 846 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 847

Summary of Indexing Techniques

Indexing techniques are briefly summarized in Table 31.5, where N is the
number of regions (data instances or sites), n is the number of vertices,
and m is the number of segments in the polygonal subdivision.

Conclusions
In this chapter, we have provided a brief overview of location-dependent
data access, including LDQs, MODs, NN queries, and point queries. We
have also examined indexing techniques to be used for them. A major
emphasis of this chapter was on nearest-neighbor queries.

References
[1] Berg, M., Kreveld, M.V., Overmars, M., and Schwarzkopf, O., Computational

Geometry: Algorithms and Applications, 2nd ed., Springer-Verlag, Heidel-
berg, 2000.

[2] Chen, G. and Kotz, D., A Survey of Context-Aware Mobile Computing
Research, Technical Report TR2000-381, Department of Computer Science,
Dartmouth College, Hanover, NH, 2002.

[3] Chamberlain, S., Model-based battle command: a paradigm whose time has
come, in Proc. of the First Int. Symp. on Command and Control Research
and Technology, National Defense University, Washington, D.C., June, 1995,
pp. 31–38.

[4] Dunham, M.H. and Kumar, V., Location-dependent data and its management
in mobile databases, in Proc. of the Ninth Int. Workshop on Database and
Expert Systems Applications (DEXA’98), Vienna, Austria, August, 1998, pp.
414–419.

[5] Ericsson, Ericsson Mobile Positioning System, 2000, http://www.erics-
son.se/wireless/products.

[6] Erwig, M. and Schneider, M., Developments in spatio-temporal query lan-
guages, Proc. of the Tenth Int. Workshop on Database and Expert Systems
Applications (DEXA’99), Florence, Italy, September, 1999, pp. 441-449.

[7] Forlizzi, L., Guting, R.H., Nardelli, E., and Schneider, M., A Data Model and
Data Structures for Moving Objects Databases, Technical Report Informatik
260, Department of Communication Systems, FernUniversität, Hagen, Ger-
many, 1999.

[8] Gaede, V. and Gunther, O., Multidimensional access methods, ACM Comput.
Surv., 30(2), 170–231, 1998.

[9] Gupta, M., Tang, N., and Pasos, A., Query Processing Issues in Mobile
Databases, term paper on distributed database systems, University of Cali-
fornia, Davis, 2003 (http://sirius.cs.ucdavis.edu/teaching/).

[10] Guting, R.H., An introduction to spatial database systems, VLDB J., 3(4),
357–399, 1994.

AU3833_C31.fm Page 847 Thursday, August 17, 2006 12:58 PM

848 ■ Mobile Middleware

Ta
bl

e
31

.5
Su

m
m

ar
y

of
 D

iff
er

en
t

In
de

xi
ng

 T
ec

hn
iq

ue
s

fo
r

LD
Q

C
h

ar
ac

te
ri

st
ic

K
ir

kp
at

ri
ck

Tr
ap

ez
o

id
al

kD
-T

re
e

D
-T

re
e

N
-T

re
e

In
d

ex
 d

at
a

st
ru

ct
u

re
R

o
o

te
d

 D
A

G
R

o
o

te
d

 D
A

G
B

in
ar

y
tr

ee
B

al
an

ce
d

 B
SP

 t
re

e
B

al
an

ce
d

 B
SP

 t
re

e

C
o

n
st

ru
ct

io
n

ap

p
ro

ac
h

 (r
ec

u
rs

iv
e

p
ar

ti
ti

o
n

in
g)

Tr
ia

n
gu

la
ti

o
n

R
an

d
o

m
iz

ed

in
cr

em
en

ta
l

H
ie

ra
rc

h
ic

al
 s

p
ac

e
d

ec
o

m
p

o
si

ti
o

n
H

ie
ra

rc
h

ic
al

 s
p

ac
e

d
ec

o
m

p
o

si
ti

o
n

H
ie

ra
rc

h
ic

al
 s

p
ac

e
d

ec
o

m
p

o
si

ti
o

n

C
o

n
st

ru
ct

io
n

co

m
p

le
xi

ty
O

(n
lo

g n
)

O
(m

lo
g m

)
O

(N
lo

g N
)

O
(N

2 l
o

g N
 +

N
2

+

m
N

)
O

(N
2 l

o
g N

 +

N
m

lo
gm

 +
 N

m
)

Se
ar

ch
 t

im
e

co
m

p
le

xi
ty

 (n
u

m
b

er

o
f

n
o

d
es

 v
is

it
ed

)

O
(l

o
g n

)
O

(l
o

g m
)

>
O

(l
o

g N
)

O
(l

o
g N

)
O

(l
o

g N
)

R
em

ar
ks

Ea
sy

 t
o

u

n
d

er
st

an
d

;
n

o
t

p
ra

ct
ic

al

Si
m

p
le

; p
ra

ct
ic

al
G

en
er

al
 p

u
rp

o
se

s;

n
o

t
ef

fi
ci

en
t

G
o

o
d

p

er
fo

rm
an

ce
 E

ffi
ci

en
t

st
o

ra
ge

an

d
 r

et
ri

ev
al

A
p

p
lic

at
io

n
s

(p
o

in
t

lo
ca

ti
o

n
 p

ro
b

le
m

s)
B

in
ar

y
se

ar
ch

;
n

ea
re

st
-

n
ei

gh
b

o
r

se
ar

ch

N
ea

re
st

-n
ei

gh
b

o
r

se
ar

ch
G

eo
m

et
ri

c
re

tr
ie

va
l

p
ro

b
le

m
s

N
ea

re
st

-n
ei

gh
b

o
r

se
ar

ch
N

ea
re

st
-n

ei
gh

b
o

r
se

ar
ch

O
N

k
+

(
)

AU3833_C31.fm Page 848 Thursday, August 17, 2006 12:58 PM

Location-Dependent Database Access ■ 849

[11] Board of Trustees, General Relativity, Science for the Millennium Expo,
University of Illinois, Urbana-Champaign, 1995 (http://archive.ncsa.uiuc.
edu/Cyberia/NumRel/GenRelativity.html)

[12] Jensen, C.S., An Introduction to Temporal Database Research, Ph.D. disser-
tation, University of Arizona, Tucson, 2000.

[13] Koubarakis, M. et al., Eds., Spatio-Temporal Databases: The Chorochronos
Approach, Springer, New York, 2003.

[14] Kubach, U., Becker, C., Stepanoo, I., and Tian, J., Simulation models and
tools for mobile location-dependent information access, in Mobile Comput-
ing Handbook, Ilyas, M. and Mahgoub, I., Eds., Auerbach, Boca Raton, FL,
2005.

[15] Lee, D., Lee, W.-C., Xu, J., and Zheng, B., Data management in location-
dependent information services: challenges and issues, IEEE Perv. Comput.,
1(3), 65–72, 2002.

[16] Mehta, D.P. and Sahni, S., Handbook of Data Structures and Applications,
Chapman & Hall, Boca Raton, FL, 2005.

[17] Narr, J.S. and LaRocque, G., Approaching the Digital Battlefield [transcript],
Center for Defense Information, Washington, D.C., 1996.

[18] Location services, Mobilaris AB, Stockholm, Sweden, 2000 (http://www.
mobilaris.se).

[19] Okabe, A., Boots, B., Sugihara, K., and Chiu, S.N., Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams, 2nd ed., John Wiley &
Sons, New York, 2000.

[20] Porkaew, K., Lazaridis, I., and Mehrotra, S., Querying Mobile Objects in
Spatio-Temporal Databases, Springer-Verlag, Heidelberg, 2003.

[21] Ryu, K.H. and Ae Ahn, Y., Application of Moving Objects and Spatiotemporal
Reasoning, Technical Report TR-58, TimeCenter, Aalborg Øst, Denmark,
2001 (http://www.cs.aau.dk/TimeCenter/pub.htm).

[22] Schiller, J. and Voisard, A., Location-Based Services, Morgan Kaufmann, San
Francisco, CA, 2004.

[23] Seydim, A.Y., Dunham, M.H., and Kumar, V., Location-dependent query
processing, in Proc. of the 2nd ACM Int. Workshop on Data Engineering for
Wireless and Mobile Access (MobiDe’01), Santa Barbara, CA, May, 2001, pp.
47–54.

[24] Seydim, A.Y., Dunham, M.H., and Kumar, V., An architecture for location-
dependent query processing, in Proc. of the Twelfth Int. Workshop on
Database and Expert Systems Applications (DEXA’01), Munich, Germany,
September, 2001, pp. 549–555.

[25] Seydim, A.Y. and Dunham, M.H., Location leveling, IEEE Trans. Knowledge
Data Eng. (submitted).

[26] Seydim, A.Y. and Dunham, M.H., Location-dependent query processing in
mobile computing, in Mobile Computing Handbook, Ilyas, M. and Mahgoub,
I., Eds., Auerbach, Boca Raton, FL, 2005, pp. 255–274.

[27] Su, J., Xu, H., and Ibarra, O., Moving objects: logical relationships and
queries, in Proc. of the 7th Int. Symp. on Spatial and Temporal Databases
(SSTD’01), Los Angeles, CA, July, 2001, pp. 3–19.

AU3833_C31.fm Page 849 Thursday, August 17, 2006 12:58 PM

850 ■ Mobile Middleware

[28] Wireless location services, SignalSoft Corp., Boulder, CO, 2000 (http://www.
signalsoftcorp.com).

[29] Wolfson, O., Chamberlain, S., Dao, S., and Jiang, L., Location management
in moving object databases, in Proc. of the Second Workshop on Satellite-
Based Information Services (WOSBIS’97), Budapest, Hungary, October,
1997.

[30] Wolfson, O., Chamberlain, S., Xu, B., and Jiang, L., Moving object databases:
issues and solutions, in Proc. of the 10th Int. Conf. on Scientific and
Statistical Database Management (SSDBM’98), Capri, Italy, July, 1998.

[31] Xu, J., Zheng, B., Lee, W.-C., and Lee, D.L., Energy efficient index for
querying location-dependent data in mobile broadcast environments, in
Proc. 19th Int. Conf. on Data Engineering (ICDE’03), Bangalore, India,
March, 2003, pp. 239–250.

[32] Xu, J., Zheng, B., Lee, W.-C., and Lee, D.L., The D-tree: an index structure
for planar point queries in location-based wireless services, IEEE Trans.
Knowledge Data Eng., 16(12), 1526–1542, 2004.

AU3833_C31.fm Page 850 Thursday, August 17, 2006 12:58 PM

851

Chapter 32

Location-Dependent

Service Accounting

Michael Georgiades, Christos Politis,
Nadeem Akhtar, and Rahim Tafazolli

CONTENTS

Introduction... 852
Accounting, Billing, and Charging for the Mobile Internet:
Trends in Service Accounting.. 853

RADIUS ... 854
TACACS .. 855
Diameter Protocol ... 855
IPDR ... 856

Middleware Accounting Solutions for Location-Dependent Services 857
Intra-Domain and Inter-Domain Accounting .. 858
Mobile-Middleware-Based Accounting Solutions 859

Mobile Agents for Usage-Based Accounting..................................... 859
Application Domain Accounting for Roaming Services 861
QoS-Aware Accounting for Roaming Services 862

Accounting, Billing, and Charging Models for Location-Dependent Services

..... 862
Functional Model for the Internet ... 862
Functional Model for Wireless Communications.. 865
Network Entities Involved in Charging... 865

Charging Protocols .. 868

AU3833_C32.fm Page 851 Thursday, August 17, 2006 2:03 PM

852

■

Mobile Middleware

Security Framework Challenges .. 868
Conclusions ... 871
References ... 872

Introduction

Accounting constitutes one of the most important functions in any tele-
communication network. The provisioning of accounting requires very
complicated functionality due to the large number of users involved as
well as differences in the tariff schemes applied to different user groups.
The accounting functionality consists of four subfunctions: metering, charg-
ing, accounting, and billing. The metering function is responsible for
identifying and recording information relevant to the usage of a resource
in a meaningful way; for example, the information could be about access
to a resource or the time and duration of usage. The records created by
the metering function are referred to as

usage metering records

 (UMRs).
The charging

function collects the metering records pertaining to specific
service usage events and combines them into service transaction records,
which include pricing information. Charges are calculated for the resources
used from the metered information by applying appropriate tariff schemes.
The accounting

function assigns charges in terms of service transaction
records to customers’ accounts. The charges for service usage may be
distributed to service providers that cooperate together to provide the
services to the users. Finally, the billing

function collects service transaction
records and selects from the account that pertains to a particular service
subscriber, accumulates the charges, and finally sends an invoice to the
subscriber.

The accounting and billing models used by traditional wired Internet
Service Providers (ISPs) have been based on a flat-pricing model, with the
prices being determined by the user subscription and the time they are
connected. For subscribers in mobile communication networks, the charg-
ing scheme also takes into account additional parameters; for example,
voice and video calls have different rates, with the latter being typically
more expensive. Similarly, the user location also affects charging as a
roaming user has to be billed on a different tariff compared to a user
connected to the home network. Location-dependent accounting will play
an increasingly important role in next-generation networks that aim to
provide a rich collection of services as well as support for seamless mobility.
Mobile users will want to access anytime, anywhere services and the service
providers will have to implement appropriate accounting methods for
charging in such scenarios.

AU3833_C32.fm Page 852 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

853

A new dimension to the charging problem is added by the emergence
of user-operated networks in the form of personal area networks (PANs),
body area networks (BANs), etc. These low-complexity networks consist
of a number of communication devices under a common administrative
control. The owner of such a network can use these multiple devices to
connect diverse networks. Furthermore, the internal structure of such
networks may be dynamic in the sense that PAN members may join and
leave the network when required. It is also possible that a PAN may be
distributed over space with different devices connected via interconnection
networks such as the Universal Mobile Telecommunications System
(UMTS), wireless local area networks (WLANs), etc. These new develop-
ments have to be taken into account when designing accounting solutions
for location-dependent services and applications. The accounting solution
has to be scalable to perform efficiently under various scenarios.

In the next section, we present the main trends in the area of location-
dependent accounting and discuss the main issues involved, including
security aspects. This is followed by a discussion of how middleware can
support mobility-aware accounting, accounting, billing, and charging models
for location-dependent services as well as new security challenges that arise.

Accounting, Billing, and Charging
for the Mobile Internet:
Trends in Service Accounting

Recent years have seen several new advances in service accounting and
some of them are highly relevant for location-dependent accounting. A
number of standardization bodies are working actively in this area, in the
mobile telecommunications world as well as in the Internet Engineering
Task Force (IETF) community. Examples include, the SA5 Group of the
3GPP, the UMTS Forum, the Mobile IP and Authentication, Authorization,
and Accounting (AAA) Working Groups of the IETF, and the Authentication
Authorization Accounting ARCHitecture Research Group (AAARCH) Work-
ing Group of the Internet Research Task Force (IRTF).

The Mobile IP and AAA Working Groups have worked together in
defining mobility-related requirements for authentication, authorization,
and accounting. Glass et al. [2] describe the requirements that have to be
supported by the AAA service to aid in providing Mobile IP services.
Within these working groups, a differentiation is made between a home
domain and a foreign domain, which is an administrative domain visited
by a Mobile IP client and containing the AAA infrastructure required to
carry out the necessary operations. The solutions and models proposed

AU3833_C32.fm Page 853 Thursday, August 17, 2006 2:03 PM

854

■

Mobile Middleware

by these working groups have mainly been constrained by the protocol
stack designed for the traditional fixed architectures. The Terminal Access
Controller Access Control System (TACACS) also offers an accounting model
with initiation, termination, and interim update messages [3]. TACACS has
been designed to run over the Transmission Control Protocol (TCP) and,
although offering a number of advantages such as scalability, these
approaches are not suitable for handling accounting events in environments
that support high mobility.

Other traditional solutions include the Common Management Informa-
tion Protocol (CMIP) and Simple Network Management Protocol (SNMP).
SNMP [4] has been widely deployed for a variety of intra-domain accounting
applications, usually using the polling data collection model, which allows
data to be collected for multiple accounting events simultaneously. Remote
Authentication Dial-In User Service (RADIUS) accounting [6] is useful where
low processing delay is required, such as credit risk management or fraud
detection; nevertheless, RADIUS accounting implementations are vulnerable
to packet loss as well as application-layer failures, network failures, and
device reboots. These deficiencies are magnified in inter-domain account-
ing, something which is essential for roaming. The Diameter Base Protocol
[7] aims to provide an AAA framework for applications such as network
access or IP mobility. Diameter is also intended to work in both local AAA
and roaming situations and has been the most suitable solution so far.

The majority of these protocols and systems have been mainly designed
to offer accounting solutions on the traditional fixed architectures provid-
ing general-purpose management solutions and in some cases have been
extended to also handle mobility issues. As a result, they lack specific
management functions for location-aware accounting and do not provide
mobility-enabled metering of resource usage. In the following, we high-
light some of these trends in more detail and discuss their impact on
accounting for location-depended services and applications.

RADIUS

Remote Authentication Dial-In User Service (RADIUS) [5] is an AAA client–
server protocol between a Network Access Server (NAS) and a centralized
authentication server. The latter is referred to as the RADIUS server. RADIUS
was initially designed for intra-domain use, where the NAS and RADIUS
server exist within a single administrative domain. The protocol messages
are carried over the User Datagram Protocol (UDP) on top of IPv4 as well
as IPv6 and use the attribute–value pairs (AVPs) format for data delivery.
RADIUS provides hop-by-hop security and supports a variety of authentica-
tion methods, including the Challenge Handshake Authentication Protocol
(CHAP), Password Authentication Protocol (PAP), Extensible Authentication

AU3833_C32.fm Page 854 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

855

Protocol (EAP), and UNIX log-in. A shared secret key is used between the
different servers or the end users and the server. This means that transactions
between the client and RADIUS server are authenticated through the use of
a shared secret, which is never sent over the network. In addition, any user
passwords are sent encrypted between the client and RADIUS server to
eliminate the possibility that someone snooping on an unsecured network
could determine a user’s password. RADIUS, however, does not provide
end-to-end security on the data path between two corresponding hosts.

TACACS

The Terminal Access Controller Access Control System (TACACS) is a remote
authentication protocol developed by Cisco Systems for use with its own
routers and NAS systems. This protocol has been reengineered over the
years by Cisco and is supported on many terminal servers, routers, and NAS
devices found in enterprise networks today. The current version is called
TACACS+, which includes a number of enhancements made to the original
TACACS protocol. Like RADIUS, TACACS+ is also a client–server protocol
and supports a similar set of services; however, it uses TCP as the transport
protocol and encrypts not only the password in the access-request packet
but also the remainder, such as username, authorized services, and account-
ing. Contrary to RADIUS, which combines authentication and authorization
(the access-accept packets sent by the RADIUS server to the client contain
authorization information), TACACS+ separates authentication, authorization,
and accounting in a AAA activity. This allows separate authentication solu-
tions that can still use TACACS+ for authorization and accounting.

Diameter Protocol

The Diameter Protocol is being developed by the Authentication, Authori-
zation, and Accounting (AAA) Working Group of the IETF [2]. This protocol
aims to provide an AAA framework for a diverse set of services such as
network access or IP mobility. Diameter supports both local AAA function-
ality and also works in roaming scenarios. The Diameter Protocol is even-
tually expected to replace its precursor, RADIUS. As the Internet grew and
new business and networking models were being deployed, a number of
shortcomings of RADIUS were exposed [6]. Some examples are listed below:

■

Failover support

■

Transmission-level security

■

Reliable transport

■

Agent support

■

Server-initiated messages

AU3833_C32.fm Page 855 Thursday, August 17, 2006 2:03 PM

856

■

Mobile Middleware

The Diameter Protocol design aims to eliminate these shortcomings as
well as support additional features such as capability negotiation, peer
discovery, and roaming support. In contrast to RADIUS, Diameter is a
peer-to-peer AAA protocol, and it also supports inter-domain accounting,
which was lacking in RADIUS. Diameter follows a modular design
approach and consists of a base protocol and a set of extensions. The
base protocol is not intended to be used alone but must be used with a
service-specific extension. Examples of extensions include the Network
Access Server Requirements (NASREQ) for network access and Mobile IP.
The protocol provides for reliable message transport by using TCP or
Stream Control Transmission Protocol (SCTP) as transport protocols. It
provides hop-by-hop security, end-to-end security, and a mechanism for
congestion control. AVPs are used to deliver all the protocol data. The
AVP values may be associated with the Diameter Base Protocol or they
may also be specific to the Diameter applications. The AVPs that are used
by Diameter may carry different types of information, such as:

■

User authentication information

■

Service specific authorization information, between client and servers

■

Resource usage information

The AVPs are also used to support relaying, proxying, and redirecting of
Diameter messages through a server hierarchy.

IPDR

The IP Detail Record (IPDR) is a joint initiative promoted by leading vendors
of charging and billing solutions, equipment vendors, system integrators,
and Internet Service Providers (ISPs). The purpose of the IPDR initiative
is to create a single industry standard. It also aims to define accounting
interfaces for new equipment and services as they emerge and to consol-
idate existing nonstandardized IP services. The IPDR Streaming Protocol
for accounting has been proposed as part of this initiative.

Traffic flowing from an exporter to a collector is composed primarily
of data records. A data record is a collection of information gathered by
the service element for various purposes (e.g., accounting). An exporter
is an implementation on the data-producing side of the Streaming Protocol,
and a collector is an implementation on the data-receiving side of the
protocol. In addition to data records, a small portion of the traffic includes
bidirectional control message exchanges.

The protocol can be used for the delivery of different types of accounting

-
related data, mainly data records from service elements to different sys-
tems, such as mediation systems and the business support system (BSS)/

AU3833_C32.fm Page 856 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

857

operations support system (OSS). The protocol is being developed to
address the needs for exporting a high volume of data records from the
service element. In the IPDR Reference Model, a service element is the
logical entity that senses usage of services by the service consumer. Typical
examples of service elements may include various components tradition-
ally considered infrastructure network elements, such as:

■

VoIP gateways

■

Web servers

■

Application servers

■

Streaming media servers

■

Game servers

■

Location-based wireless services

The IPDR Streaming Protocol runs over a transport layer protocol that
must be connection oriented and reliable. Like Diameter, TCP or SCTP
maybe used. Another possible candidate transport protocol is the Blocks
Extensible Exchange Protocol (BEEP; RFC3080), which sits between low-
level transport protocols such as TCP or SCTP and higher level application
protocols such as the Hypertext Transfer Protocol (HTTP). The reliability
of data delivery is provided at both the transport-layer level and the IPDR
Streaming Protocol level.

The IPDR Streaming Protocol specifications also include IPDR service
definitions, based on eXtensible Markup Language (XML) schema, by
reference. These definitions describe the properties of the different account-
ing records and their fields. Furthermore, the IPDR streaming templates
identify the Uniform Resource Identifiers (URIs) of the schema, which
describe a given accounting record structure and identify each field using
its qualified name, as defined in the referenced XML schema or in subor-
dinate imported schemas.

Middleware Accounting Solutions
for Location-Dependent Services

The evolution of emerging and heterogeneous wireless access technologies
and the increase in demand for multimedia and mobility services has
forced the wireless industry to evolve toward a pervasive integrated
system. The idea is to develop a global core network that will accommo-
date Internetworking among the various access networks and facilitate
the creation and deployment of innovative applications and services, which
will also include location-based services. Different forms of mobility must
be supported, and users should be able to connect to the Internet from

AU3833_C32.fm Page 857 Thursday, August 17, 2006 2:03 PM

858

■

Mobile Middleware

any location offering access availability. Networks should be able to offer
anytime, anywhere access services to a variety of mobile devices (e.g.,
mobile phones, PDAs, wireless pagers). For this, mobile users need to
maintain connectivity any time during their roaming.

Regarding service provisioning, it is important to differentiate between
two classes of possible services that must be supported for mobile clients.
On the one hand, a mobile client should be provided with traditional
Internet service designed for the fixed network infrastructure, but, on the
other hand, that mobile client should be provided with mobility-related
services depending on the current position of the mobile user (also referred
to as location-dependent services). The main challenges that must be dealt
with for roaming in such a heterogeneous environment and the provision-
ing of location-dependent services are the design and implementation of
accounting systems.

Mobility-aware accounting solutions require tracking the location of
mobile users while they roam in this global environment and coordinating
resources of interest possibly present in a number of heterogeneous
networks. Like other services, mobility-aware accounting systems must
also continue operation regardless of possible temporary disconnections
of mobile users from the Internet. Also, a number of different ISPs and
network operators contribute input to the pricing and charging strategies,
and mutual agreements formed between these players must be monitored
and organized by an accounting system.

Intra-Domain and Inter-Domain Accounting

The majority of the research and implementations on accounting man-
agement have focused mainly on intra-domain accounting applications;
however, with the increasing demand of services such as Voice-over-
IP (VoIP), global roaming, and location-based services, applications
requiring inter-domain accounting are becoming more and more com-
mon. Inter-domain and intra-domain accounting differ in a number of
ways. Intra-domain accounting aims only to collect resource information
within an administrative domain. Accounting protocol packets and session
records do not have to cross administrative boundaries, resulting in low
packet loss and data to be transferred between trusted entities [1]. On
the other hand, inter-domain accounting collects resource information
within an administrative domain to be used within another administra-
tive domain. In this case, accounting protocol packets and session
records will cross administrative boundaries. This could result in higher
packet loss and less trust between the involved entities requiring additional
security measures.

AU3833_C32.fm Page 858 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

859

Mobile-Middleware-Based Accounting Solutions

Both service provisioning and systems management will face many chal-
lenges and therefore changes due to the merging of mobile communica-
tions, wireless communications, and the Internet. Traditional solutions for
fixed networks do not suit the new scenario where users, devices, and
even service components can change their location during service provi-
sioning. The IETF AAA working group has worked on many issues related
to middleware, including defining processes for access and admission
control, identification, authentication for validating that identity, authori-
zation for determining an eligibility for resource requests, resource utili-
zation, and accounting, at least to the degree that resource utilization is
recorded [8]. Accounting solutions for pervasive services require the fixed
Internet infrastructure to be extended with mobility-enabled monitoring,
processing, pricing, and charging functions. Several middleware solutions
have been proposed that can support local operations while allowing
mobile devices to maintain continuous connectivity with remote central-
ized home managers [9,10]. In the following sections, we describe some
middleware technologies that, besides other services, can be used to
support pervasive accounting solution by deploying an accounting infra-
structure where required.

Mobile Agents for Usage-Based Accounting

One efficient technology that can resolve the accounting issues intro-
duced by mobility described earlier is the introduction of mobile agents
(MAs) [11]. MAs can track the movements of a mobile device to maintain
their colocation with the clients they are responsible for, or they can
dynamically move close to required resources and service components,
hence preserving locality for the operations. MAs can be a very suitable
candidate technology for supporting session-dependent usage-based
accounting. They can be used to install new monitoring and charging
behavior dynamically and can maximize locality for access to monitoring
data. They can be used to support accounting even in the case of
temporary network disconnections.

Currently, service provisioning and accounting do not deal with the
location of the user’s device at provisioning time. Location awareness is
very important in adapting services during roaming, depending on the
available local resources and allowing for location-conscious accounting
strategies. Location awareness is central to the MA-based approach, which
makes allocation of resources visible up to the application layer. In general,
MAs offer the following advantages for pervasive accounting:

AU3833_C32.fm Page 859 Thursday, August 17, 2006 2:03 PM

860

■

Mobile Middleware

■

Mobility awareness

 — MAs can maintain colocality with the user
by following the movements of the portable device or at least
preserve locality by moving close to needed resources and service
components.

■

Dynamicity

 — MAs offer the possibility of providing an extended
flexible support infrastructure by adapting to requirement changes
at runtime and influencing pricing and charging accordingly.

■

Location awareness

 — MAs can adapt services to the currently
available local resources and enable accounting strategies depend-
ing on the resources available.

■

Personalization

 — MAs have the ability to adapt services depend-
ing on the users preferences and device characteristics.

■

Security

 — MAs also support authentication of mobile users, mon-
itor and register usage of system resources, and support secrecy
and integrity in communications.

■

Interoperability

 — Users may roam across several heterogeneous
networks, and MAs can support pervasive accounting by monitoring
and controlling the consumption of resources.

Mobile-agent-based Internet applications rely on the Secure and Open
Mobile Agent (SOMA) distributed programming framework, which pro-
vides a layered service infrastructure. The SOMA architecture consists of
four layers: mobility middleware layer, core services layer, Java Virtual
Machine layer, and a heterogeneous distributed system. The mobility
middleware layer consists of a user virtual environment, a mobility virtual
terminal, and a virtual resource management services [10]. The core
services layer consists of services such as communication, migration,
naming, security, interoperability, persistency, and quality of service (QoS)
adaptation. SOMA groups several places into domain abstractions that
correspond to network localities. Each node provides at least one place
for agent execution, and places are grouped into domains. Each domain
has a default place in charge of inter-domain routing and Common Object
Request Broker Architecture (CORBA™)-based interoperability. The
accounting layer is responsible for all issues related to metering, storing,
and processing information regarding resource usage. Metering collects
and carries out measurements regarding resource consumption. Metering
data is stored either locally or in a remote administration site among with
other service information. This information is processed depending on
the accounting strategy for access control, auditing, capacity planning,
and billing.

Portable-device usage-based pervasive accounting (PUPA) has been pro-
posed in Bellavista et al. [12] and is a usage-based accounting management
platform designed to provide a layered infrastructure for network operators,

AU3833_C32.fm Page 860 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

861

system administrators, and service providers for accounting support in
mobile and dynamic environments. It operates on top of the SOMA platform
to provide accounting services based on the MA technology. It consists of
two layers: a metering layer and a pervasive accounting layer. The metering
layer collects information about resource consumption at the system, net-
work, and application level. For the system level, this includes information
on the processes working on local resources and on their usage of the
communication infrastructure such as process name, process identifier, CPU
usage time and percentage, and memory allocation. Network-level informa-
tion includes metering data regarding the number of UDP/TCP packets sent
and received, the number of TCP connections, etc. For the application level,
the metering layer can collect information about all service components
accessed from within the Java execution environment. The pervasive
accounting layer exploits the metering layer and determines how, where,
and when to perform accounting management.

Application Domain Accounting for Roaming Services

Application domain roaming accounting proposed in Bellavista et al. [13]
requires dynamic and flexible middleware solutions to support a variety
of different billing schemes at service provisioning time. Application
domain accounting solutions can provide us with a solution where users
can also be charged for the:

■

Accessed service contents

■

QoS levels received

■

Dynamic adaptations of content formats

The MA metering service, therefore, must monitor attributes such as the
bandwidth used in the access network locality and how much memory
is consumed on the content adaptation nodes. The metering and charging
functions proposed are mobile middleware components capable of migrat-
ing during service provisioning to follow the movement of the roaming
users. Figure 32.1 shows how the roaming accounting middleware utilizes
the SOMA platform described earlier. The architecture of our roaming
accounting middleware consists of three main services: the location ser-
vice, the metering service, and the charging service.

The metering service holds the metering logic that is to be applied on
the user’s resource usage. The charging service holds the charging logic
used to produce the billing reports for the users according to their service-
level agreements. The location service is used to achieve real-time location
visibility of the mobile device and passes this information to other mid-
dleware services.

AU3833_C32.fm Page 861 Thursday, August 17, 2006 2:03 PM

862

■

Mobile Middleware

QoS-Aware Accounting for Roaming Services

The location of a mobile device during roaming will have an impact on
the level of the QoS offered during service provisioning, and this needs
to be considered by accounting solutions. The QoS offered to a user may
depend not only on the best-effort model of the Internet communication
but also on the dynamic change of the user’s location, which results in
reshuffling of the resources available. The initial QoS-level agreement is
no longer sufficient to fairly account for roaming users but should be
dealt with at runtime during service provisioning.

The active middleware for quality-aware accounting of mobile services
(AQuAM) proposed in Bellavista et al. [14] is a layered support infrastruc-
ture capable of accounting final users for the total QoS level offered during
service provisioning for roaming users. It works at the middleware level
to provide information related to the service such as customer preferences,
security profiles, and low-level accounting information to the application
level for modifying the QoS level offered accordingly.

Accounting, Billing, and Charging Models
for Location-Dependent Services

Functional Model for the Internet

This section presents a functional model for collecting and processing
information related to resource usage and billing and charging of users
[15]. In this model, metering is the function of capturing all data related

Figure 32.1 Architecture for roaming accounting middleware.

Location-based services Real-time services

Java Virtual Machine

AU3833_C32.fm Page 862 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

863

to consumption of the network resources (e.g., volume of exchanged
data) and is performed by network devices. To achieve this functionality
it is necessary for the network devices to export flow information in
a standardized way. An IP flow information export system includes a
data model, which represents the flow information, and a transport
protocol. The IETF Real-Time Traffic Flow Measurement (RTFM) Work-
ing Group has as its main objective the review of existing work and
the development of an improved traffic flow model [21]. The RTFM
Working Group defined the Traffic Flow Measurement Architecture [22]
and introduced FlowMeter MIB as a “standards track” document within
the IETF [21].

Another working group formed by the IETF is the IP Flow Informa-
tion eXport (IPFIX) Working Group, whose goal is to define a “standard
IP flow” and choose a protocol to which IP flow information will be
transferred [23]. Regarding RTFM, the IPFIX framework specifies a
complete and similar architecture for gathering flow information. Both
architectures consider the same definition of flow (i.e., a set of packets
sharing a common set of endpoint address-attribute values), their basic
entities are similar, and both leave parts of the system unspecified. The
resource usage data, after being collected by the network, is sent to an
accounting server for further processing. Transferring the accounting
data is done with the use of an appropriate accounting protocol. The
collection of metering data can be initiated either by the network device
itself (push model) or by the accounting server, which plays the role
of the collector entity (pull model).

The accounting function, which is performed by the accounting
server, is responsible for the collection and storage of the accounting
data. Accounting may also include summarization of interim information,
elimination of duplicated data, and generation and processing of session
records. Moreover, session records and their related IDs are also pro-
duced and handled. Accounting is also responsible for forwarding these
records to other peer entities in the case of roaming terminals. The
accounting attributes depend on the applied charging model (e.g., flat-
rate, session-oriented, time-based, volume-based). According to the
standards [21], these attributes contain the identity of the user, the
service type, the volume of the transmitted data, the start and stop time
for a session, the reserved network resources during a session, etc.
When different organizations are involved in an accounting process,
accounting data and session records will typically cross administrative
boundaries. The accounting process that involves the collection of
information on resource usage of an entity within an administrative
domain for use within another administrative domain is called

inter-
domain accounting

. Different accounting systems are often employed

AU3833_C32.fm Page 863 Thursday, August 17, 2006 2:03 PM

864

■

Mobile Middleware

in a multi-domain environment; therefore, different ways of representing
accounting information are likely to exist in each domain. Thus, the
standardization of accounting and session records as well as the accep-
tance of a general AAA protocol is fundamental [24].

The billing function deals with bill preparation and presentation to the
party that is responsible for payment. This function receives session
records or processed accounting data from the accounting function via a
transfer protocol such as the Simple Mail Transfer Protocol (SMTP), File
Transfer Protocol (FTP), or HTTP. Finally, it prepares an invoice according
to the appropriate billing policy (e.g., computing a special discount for a
user, addition of a monthly fee).

Further to this functional model, the AAAARCH group proposes the
introduction of a more flexible model that enables a policy-based account-
ing model [16,19]. Based on this proposal, the network devices can be
configured to monitor all flows equally, or they can be configured to
collect data only for specific flows. The implementation of NeTraMet sets
up policy-based metering [25]. NeTraMet is an open-source implementation
of the RTFM architecture for network traffic flow measurement. More
specifically, a NeTraMet meter is an SNMP agent that implements the
RTFM Meter MIB. In such a flexible model, the accounting server can be
dynamically configured to handle resource usage data according to the
communication type (e.g., voice sessions, HTTP requests). Furthermore,
the pricing policy that determines the price to be charged for a used
service could also be static or dynamic. In the case of static pricing,
predefined values stored in pricing tables are used for computing the
charges [19]. These prices are the same under congested and normal traffic
conditions. For dynamic pricing, several parameters such as network and
service utilization are also taken into account for the computation of
corresponding prices.

Finally, on top of the aforementioned dynamic model is current
interest in investigating the possibility of supporting content accounting.
Although most content providers offer their contents free of charge, it
is expected that in the near future some of them will eventually market
their content. Content accounting consists of the following functions:
metering content consumption, collecting and storing the metered data,
defining pricing schemes to perform the charging policy, and billing
the customers. The main difficulties in the case of content accounting
are the definition of metering strategies, the specification of a standard
way to store metered data, and the support of several payment methods
such as micropayments or the use of a credit or debit card. In the IETF,
the Internet Open Trading Protocol Working Group, which is an interop-
erable framework for Internet commerce, investigates content account-
ing issues [26].

AU3833_C32.fm Page 864 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting

■

865

Functional Model for Wireless Communications

This section presents a functional model for charging, billing, and account-
ing used in wireless networks [18]. The charging function collects infor-
mation related to a chargeable event from several network nodes. The
charging information generated by network nodes is structured in the
form of a charging data record (CDR) and is transferred via standard
charging protocols. This is a well-established procedure in use since the
establishment of the Global System for Mobile Communications (GSM),
and until recently the acronym CDR stood for “call detail records.” The
charging function is responsible for further processing and storing tem-
porarily the generated CDRs to correlate any partial records and transfer
them securely to the billing function. The CDRs are transferred to the
billing function via a transfer protocol such as File Transfer, Access, and
Management (FTAM), FTP, or the Trivial File Transfer Protocol (TFTP).
The charging functionality is accomplished by two entities, the charging
gateway functionality (CGF) and the charging collection functionality
(CCF), which are described in more detail later.

The billing function processes the records arriving from the charging
functional entity according to the respective tariffs stored in the home
location register (HLR), the main register that stores detailed information
related to every subscriber, or in the billing system and calculates the
charge for which the user will be billed.

In the case of roaming users, the accounting function is responsible
for apportioning charges among the home environment, the serving net-
work, and the user and then calculating the portion that is due to each
operator. The billing record concerning a roaming user is forwarded to
its home network operator using the transferred account procedure (TAP)
and a specific TAP format. The transfer of TAP records between the visited
and the home mobile networks may be performed directly or via a
clearinghouse. Clearinghouses are independent business players respon-
sible for TAP records creation, tariffing, and re-tariffing. The calculation
of apportioning revenue between the operators normally happens once
per month. In an open marketplace, where many independent entities
(mobile operator, network and application/service providers) are involved
in the service provision process, a well-specified accounting function will
be responsible for apportioning their revenue automatically.

Network Entities Involved in Charging

To facilitate an understanding of the charging, accounting, and billing
processes in wireless/mobile networks, a brief description of the overall
architecture is provided here, together with a presentation of the network

AU3833_C32.fm Page 865 Thursday, August 17, 2006 2:03 PM

866

■

Mobile Middleware

components involved in these functions. Based on the 3GPP’s release 5,
the 3G mobile network infrastructure is logically divided into core network
(CN) and access network (AN) infrastructures. The CN is composed of a
circuit-switched domain (CS domain), a packet-switched domain (PS
domain), an IP multimedia subsystem (IMS), and a service domain. Two
different types of access networks are used by the CN: the base station
system (BSS) for GSM and the radio network system (RNS) for UMTS:

■

The

CS domain

 refers to the set of all the core network entities
offering a CS-type of connection for user traffic as well as all the
entities supporting the related signaling. A CS-type of connection
is a connection for which dedicated network resources are allocated
at the connection establishment and released at the connection
release. Involved entities are the mobile-service switching center
(MSC), the MSC server, the media gateway (MGW) function, the
gateway MSC (GMSC), the GMSC server, and the interworking
function (IWF).

■

The

PS domain

 refers to the set of all the core network entities
offering a PS-type of connection for user traffic as well as all the
entities supporting the related signaling. A PS-type of connection
transports the user information using autonomous concatenation
of bits called

packets

; each packet can be routed independently
from the previous one. Involved entities are the serving General
Packet Radio Service (GPRS) support node (SGSN), the gateway
GPRS support node (GGSN), and the border gateway (BG).

■ The IMS has been recently introduced in to enable person-to-person
real-time services (e.g., voice calls) over the PS domain. The
introduction of a multimedia call model based on the Session
Initiation Protocol (SIP) creates the ability to deliver IP-based real-
time multimedia services including VoIP. The IMS includes all the
core network elements providing IP-based real-time and non-real-
time person-to-person and person-to-machine multimedia services,
such as audio, video, text, and chat, and a combination of them
that is delivered over the PS domain. Involved entities are the Call
Session Control Function (CSCF), the Media Gateway Control Func-
tion (MGCF), the Media Gateway (MGW), the Multimedia Resource
Function Controller (MRFC), the Border Gateway Control Function
(BGCF), and the Application Server (AS).

■ The service domain incorporates a wide range of services deployed
by the network provider, such as multimedia messaging service
(MMS) or location service (LCS), or by independent application/ser-
vice providers making use of the Open Service Access (OSA)
architecture.

AU3833_C32.fm Page 866 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting ■ 867

The OSA architecture specified by the 3GPP and adopted by the Euro-
pean Telecommunications Standards Institute (ETSI) opens up 3G networks
through open standardized application programming interfaces (APIs),
enabling independent service application developers to make use of the
underlying network functionality without exposing the underlying commu-
nication infrastructure to unauthorized business entities. The two nodes that
handle this information are the CCF and CGF. The CGF provides a mech-
anism to transfer charging information from the GPRS support nodes (GSNs)
to the billing function. In addition, it acts as a storage buffer for real-time
CDR collection and is able to perform consolidation of CDRs and prepro-
cessing of their fields. The CDRs are transferred from the GSNs to the CGF
via the standardized Ga interface using the GTP’s charging protocol.

The CGF can be implemented in a separate network element or the
charging gateway (CG) or can be integrated in the GSNs. The CCF is
responsible for the IMS domain and is a logical function equivalent to the
CGF. Additionally, it is able to validate, combine, aggregate, and consol-
idate the received charging information, generate partial records, remove
duplicate charging data, and support load sharing, redundancy, high
availability, and efficient management of the generated CDRs. The IMS
network entities send the CDRs to the CCF through the standardized Rf
interface (except for the AS that uses the Ra interface). Regarding the
charging protocol, used over the Rf interface, the Diameter Protocol was
initially proposed but a decision has not yet been finalized.

The network elements that generate charging records are:

■ The MSC for the CS domain — Information related to the call
duration, the source (calling number), the destination (called num-
ber), the cause for termination, etc. [27]

■ The GSNs for the PS domain — Information related to the use of
a radio interface and the general GPRS resources; these CDRs
include attributes such as the usage duration (PDP context dura-
tion), the source (served IP address), the destination (access point
name [APN]), the volume of transferred data, QoS-related informa-
tion, etc. [28]

■ The proxy-CSCF, the serving-CSCF, the interrogating-CSCF, the MGCF,
the MRFC, the BGCF, and the application server for the IMS that
establish and control IP multimedia sessions between the users [29]

Concerning the service domain, application services such as the multi-
media messaging service (MMS) and the location service (LCS) are able to
generate charging information in the form of CDRs [20]. The CDRs generated
by the MMS relay/server contain information regarding the usage of the
MMS resources, the source and the destination, the usage of PS domain

AU3833_C32.fm Page 867 Thursday, August 17, 2006 2:03 PM

868 ■ Mobile Middleware

resources, and the usage of external data networks [30]. Note also that the
generation of the CDRs and their respective information for LCS usage is
currently under investigation by the SA5. In the service domain, we can
also include the OSA framework and the independent application providers.
The OSA architecture enables application providers to add application and
content charges via the OSA charging service capability feature (SCF) [31].
Finally, two components responsible for content-charging issues [17] have
been recently introduced. In particular, the subscriber content charging
function (SCCF) handles content-charging requests produced when a sub-
scriber accesses a specific content. Content-charging requests are typically
sent to the SCCF from the content provider charging function (CPCF). The
CPCF receives content-charging requests from the content server, processes
them, and relays them to the SCCF. Additionally, the CPCF maintains and
manages the account for the content provider.

Charging Protocols

The CGF and the CCF are connected with the GSNs and the IMS network
entities. The transfer of CDRs over these standardized interfaces is per-
formed with the use of standardized protocols. The charging protocol
used over the Ga interface is GTP. This protocol is based on the GPRS
Tunneling Protocol (GTP), which is used for packet data tunneling in the
backbone network. GTP contains functionality for transferring CDRs, redi-
recting them in another CGF, detecting communication failures, and pre-
venting the transfer of duplicate CDRs during redundancy operations. The
SA5 of the 3GPP proposes to use this protocol over the Rf interface as
well. However, after taking into account the work produced by the IETF,
another option is still under consideration for transferring charging infor-
mation between the IMS and the CCF — namely, the use of the Diameter
Protocol. This protocol is suitable for handling authentication, authoriza-
tion, and charging. Moreover, the Diameter Protocol is also capable of
supporting prepaid users.

Security Framework Challenges
One of the most fundamental rights in a healthy society is the right of
every citizen to be left alone. Article 12 of the U.N. Universal Declaration
of Human Rights states that “no one shall be subjected to arbitrary
interference with his privacy, family, home or correspondence.” In reality,
though, this right is increasingly being trod upon. Along with undreamed-
of comforts and conveniences for the population in general, the digital
revolution has made it possible to gather and store information about

AU3833_C32.fm Page 868 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting ■ 869

human behavior on a massive scale. We leave electronic footprints every-
where we go, footprints that are being watched, analyzed, and sold without
our knowledge or even control.

Within this context, security and privacy are mandatory aspects when
developing new pervasive (ubiquitous) technologies. The security services
for a next-generation network (B3G) should be bound together by a
security framework, and the architecture for the integration of different
security services (e.g., authentication, cryptographic key management)
must be properly defined. This section describes the actual and low-profile
security services required for defining a security framework for the next-
generation wireless networks. The following security aspects are worth
discussing, due to the challenges they impose on B3G systems:

■ Trust — Current wireless and mobile communications systems take
for granted certain and preestablished trust relationships, which is
unlikely to be generally true for future systems because of their
dynamic nature.

■ Privacy — The requirements concerning privacy, imposed by
legislation and user expectations, should be fulfilled within any
wireless communications system. To ensure that the system is
trusted, implementing this in a way that the end user can relate
to and which safeguards the end-user’s privacy is a very important
task.

■ Authentication and authorization — The most important research
issues regarding authentication and authorization are the following:
■ Systems must be able to detect maliciously injected or spoofed

packets; this requires the design and development of source
authentication mechanisms to verify the packet originator.

■ Mechanisms must be in place for preventing compromising
networks or systems from using the secret keys of legitimate
networks or systems to be authenticated.

■ Various types of attacks can compromise the availability of any
system or network; addressing this issue requires the design and
development of mechanisms to accomplish graceful degradation
in the presence of malicious activity.

■ Mechanisms necessary to detect adversaries that may disrupt
operation, leading to denial of service (DoS), must be designed
and developed.

■ Dependability — The ability to deliver service that can justifiably
be trusted; dependability is an integrative concept that encompasses
the following attributes:
■ Availability — readiness for correct service
■ Reliability — continuity of correct service

AU3833_C32.fm Page 869 Thursday, August 17, 2006 2:03 PM

870 ■ Mobile Middleware

■ Safety — absence of catastrophic consequences for users and
the environment

■ Confidentiality — absence of unauthorized disclosure of infor-
mation

■ Integrity — absence of improper system state alterations
■ Maintainability — ability to undergo repairs and modifications

■ Confidentiality and integrity
■ Secrecy — Confidentiality is about controlling the ability of any

given subject to extract information from an object. Under
certain circumstances, it is possible that attacks against confi-
dentiality affect user anonymity.

■ Service integrity — It will ensure that the content of a message
or services was not altered during transit by an adversary.
Integrity can be provided by either classical or keyed hash
functions. Some integrity check must be done, but attention
has to be paid to the overhead that it implies and to the time
required to compute the check. Because packets are encrypted
before transmission, the most likely forgery that can be imagined
is a random change of bits in a packet.

■ Secure group management — Each network/system exhibits
limited computational and communication capabilities; however,
in-network data aggregation and analysis can be performed by
groups of systems. Secure protocols for group management are
therefore required, securely admitting new group members and
supporting secure group communication. The outcome of the
group computation is usually transmitted to a base station. The
output must be authenticated to ensure it comes from a valid
group. Any solution must also be efficient in terms of compu-
tational and power resources, preventing many classical group-
management approaches.

■ Intrusion detection — Wireless networks and systems are suscep-
tible to many forms of intrusion. In wired networks, traffic and
computation are typically monitored and analyzed for anomalies
at various concentration points. This is often expensive in terms
of network memory and energy consumption, as well as its inher-
ently limited bandwidth. It is important to understand how coop-
erating adversaries might attack the system. The use of secure
groups may be a promising approach for decentralized intrusion
detection.

■ Data aggregation — One of the major benefits of wireless networks
is the provisioning of fine-grained data.

■ Self-organization — The wireless networks topology must be
adapted in case of node or system compromise and failure. If a

AU3833_C32.fm Page 870 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting ■ 871

malicious node discloses the network topology, routing establish-
ment paths may be affected as well. One critical factor is that many
wireless systems are mobile, and this mobility affects self-organi-
zation.

■ Anonymity/pseudonymity — In wireless systems, the disclosure of
personal information will be inevitable, even with the use of
policies and well-defined user preferences. This is due to the
enormous size of the information space that must be constructed
for all possible scenarios of everyday interactions that must be
taken into consideration; therefore, it is necessary to have interac-
tive mechanisms and interfaces for the control of personal infor-
mation disclosure with the simultaneous necessary transparency.

■ Security management — Due to potentially harsh, uncertain, and
dynamic environments, as well as the energy, power, and band-
width constraints of the participating systems, wireless networks
pose additional challenges in the context of network discovery,
network control and routing, collaborative information processing,
querying, and tasking. Security management is a very difficult and
multi-dimensional problem.

Conclusions
The integration of the Internet with telecommunication networks promises
a distributed computing infrastructure that provides globally available
services. Due to the continuous increase in the number of portable devices
connected to the Internet, the demand for users to have the ability of
accessing any kind of information services regardless of their location will
increase. The main challenges that must be addressed for roaming in such
a heterogeneous environment and the provisioning of location-dependent
services are the design and implementation of accounting systems. Cur-
rently, particular charging and billing models are used for the Internet
and different ones for wireless communications, but these models will
have to be revised for dealing with such a global integrated system.
Accounting is the subject of various research projects and is being stan-
dardized by the IETF. Recently, the Authentication, Authorization, and
Accounting Working Group of the IETF selected Diameter as the preferred
protocol for transport accounting, although other protocols such as SNMP
are also considered. Mobile middleware (specifically, mobile agents) can
also be a very suitable candidate technology for supporting location-based
accounting. Mobile agents provide mobility awareness, dynamicity, loca-
tion awareness, personalization, interoperability, and security, which can
be real benefits when it comes to location-based accounting. Furthermore,

AU3833_C32.fm Page 871 Thursday, August 17, 2006 2:03 PM

872 ■ Mobile Middleware

changing location also raises significant security issues for the authenti-
cation of mobile users and terminals, authorization to access system
resources, communication secrecy, and integrity assurance, as well as
many other security issues.

References
[1] Aboba, B., Arkko, J., and Harrington, D., Introduction to Accounting Man-

agement, Request for Comments 2975, Internet Engineering Task Force
(IETF), 2000 (http://www.ietf.org/rfc/rfc2975.txt).

[2] Glass, S., Hiller, T., Jacobs, S., and Perkins, C., Mobile IP Authentication, Autho-
rization, and Accounting Requirements, Request for Comments 2977, Internet
Engineering Task Force (IETF), 2000 (http://www.ietf.org/rfc/rfc2977.txt).

[3] Finseth, C., An Access Control Protocol, Sometimes Called TACACS, Request
for Comments 1492, Internet Engineering Task Force (IETF), 1993 (http://
www.ietf.org/rfc/rfc1492.txt).

[4] Levi, D., Meyer, P., and Stewart, B., Simple Network Management Protocol
(SNMP) Applications, Request for Comments 3413, Internet Engineering
Task Force (IETF), 2002 (http://www.ietf.org/rfc/rfc3413.txt).

[5] Rigney, C., Willens, S., Rubens, A., and Simpson, W., Remote Authentication
Dial In User Service (RADIUS), Request for Comments 2865, Internet Engi-
neering Task Force (IETF), 2000 (http://www.ietf.org/rfc/rfc2685.txt).

[6] Rigney, C., Radius Accounting, Request for Comments 2866, Internet Engi-
neering Task Force (IETF), 2000 (http://www.ietf.org/rfc/rfc2866.txt).

[7] Calhoun, P., Loughney, J., Guttman, E., Zorn, G., and Arkko, J., Diameter
Base Protocol, Request for Comments 3588, 2003 (http://www.ietf.org/
rfc/rfc2866.txt).

[8] Aiken, B. et al., Network Policy and Services: A Report of a Workshop on
Middleware, Request for Comments 2768, Internet Engineering Task Force
(IETF), 2000 (http://www.ietf.org/rfc/rfc2768.txt).

[9] Bellavista, P., Corradi, A., and Stefanelli, C., An integrated management
environment for network resources and services, IEEE J. Selected Areas
Commun., 18(5), 676–685, 2000.

[10] Bellavista, P., Corradi, A., and Stefanelli, C., Mobile agent middleware to
support mobile computing, IEEE Comput., 34(3), 73–81, 2001.

[11] Bellavista, P., Corradi, A., and Vecchi, S., Mobile agent solutions for account-
ing management in mobile computing, in Proc. of the 7th IEEE Int. Symp.
on Computers and Communications (ISCC’02), Taormina, Italy, July, 2002,
pp. 753–760.

[12] Bellavista, P., Corradi, A., and Vecchi, S., Mobile agents for usage-based
accounting in wireless ubiquitous environments, in Proc. of WOA 2002,
Bologna, Italy, November, 2002.

[13] Bellavista, P., Corradi, A., and Vecchi, S., Application domain accounting
for roaming services, in Proc. of the 9th IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS’03), San Juan, Puerto Rico, May,
2003, pp. 359–366.

AU3833_C32.fm Page 872 Thursday, August 17, 2006 2:03 PM

Location-Dependent Service Accounting ■ 873

[14] Bellavista, P., Corradi, A., and Vecchi, S., QoS-aware accounting in mobile
computing scenarios, in Proc. of the 11th Euromicro Workshop on Parallel,
Distributed, and Network-Based Processing (PDP’03), Genoa, Italy, Febru-
ary, 2003, pp. 537–543.

[15] Aboba, B., Arkko, J., and Harrington, D., Introduction to Accounting Man-
agement, Request for Comments 2975, Internet Engineering Task Force
(IETF), 2000 (http://www.ietf.org/rfc/rfc2975.txt).

[16] Jonkers, H. and Hille, S., Accounting Context: Application and Issues,
Authorization, Authentication, and Accounting Architecture Research Group,
2000, www.aaaarch.org/doc06/file-11249.pdf.

[17] 3G TR 23.815 Version 5.0.0 (2002-03), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Service Aspects;
Charging Implications of IMS Architecture (Release 5).

[18] 3G TS 22.115 Version 5.2.0 (2002-03), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Service Aspects;
Charging and Billing (Release 5).

[19] Carle, G., Zander, S., and Zseby, T., Policy-Based Accounting, Request for
Comments 3334, Internet Engineering Task Force (IETF), 2002 (http://www.
ietf.org/rfc/rfc3334.txt).

[20] 3G TS 32.200 Version 5.2.0 (2002-12), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Telecommuni-
cation Management; Charging Management; Charging Principles (Release 5).

[21] Brownlee, N., RTFM: New Attributes for Traffic Flow Measurement, Request for
Comments 2724, Internet Engineering Task Force (IETF), 1999 (http://www.
ietf.org/rfc/rfc2724.txt).

[22] Brownlee, N., Traffic Flow Measurement: Architecture, Request for Com-
ments 2722, Internet Engineering Task Force (IETF), 1999 (http://www.ietf.
org/rfc/rfc2722.txt).

[23] IP Flow Information Export (IPFIX), www.ietf.org/html.charters/ipfix-charter.
html.

[24] Bhushan, B. et al., Federated accounting: service charging and billing in
a business-to-business environment, in Proc. of IEEE/IFIP Int. Symp. on
Integrated Network Management (IM 2001), Seattle, WA, May, 2001, pp.
107–121.

[25] Brownlee, N., Traffic Flow Measurement: Experiences with NeTraMet,
Request for Comments 2123, Internet Engineering Task Force (IETF), 1997
(http://www.ietf.org/rfc/rfc2123.txt).

[26] Internet Open Trading Protocol (TRADE), www.ietf.org/html.charters/trade-
charter.html.

[27] 3GPP TS 32.205 Version 5.2.0 (2002-12), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Telecommuni-
cation Management; Charging Management; 3G Charging Data Description
for the Circuit-Switched (CS) Domain (Release 5).

[28] 3GPP TS 32.215 Version 5.2.0 (2002-12), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Telecommuni-
cation Management; Charging Management; Charging Data Description for
the Packet-Switched (PS) Domain (Release 5).

AU3833_C32.fm Page 873 Thursday, August 17, 2006 2:03 PM

874 ■ Mobile Middleware

[29] 3GPP TS 32.225 Version 5.1.0 (2002-12), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Telecommuni-
cation Management; Charging Management; Charging Data Description for
the IP Multimedia Subsystem (Release 5).

[30] 3GPP TS 32.235 Version 5.1.0 (2001-12), 3rd Generation Partnership Project;
Technical Specification Group Services and System Aspects; Telecommuni-
cation Management; Charging Management; Charging Data Description for
Application Services (Release 4).

[31] 3GPP TS 29.198-12 Version 5.1.0 (2002-09) 3rd Generation Partnership
Project; Technical Specification Group Core Network; Open Service Access
(OSA); Application Programming Interface (API); Part 12: Charging
(Release5).

AU3833_C32.fm Page 874 Thursday, August 17, 2006 2:03 PM

Section 6

MOBILE MIDDLEWARE
FOR CONTEXT-
DEPENDENT SERVICES

AU3833_S06.fm Page 875 Thursday, August 17, 2006 2:04 PM

AU3833_S06.fm Page 876 Thursday, August 17, 2006 2:04 PM

877

Chapter 33

Mobile Middleware:
Processing Context-
Related Data in

Mobile Environments

Yih-Farn (Robin) Chen and Rittwik Jana

CONTENTS

Introduction... 878
What Is Context?... 880

Device Context.. 880
User Context.. 881
Environment Context .. 882
Device–User–Environment Interactions... 882

A Reference Model for Context-Aware Service Platforms................................... 883
Context Manager ... 884
Context Acquisition Through the Resource Server 884
Context Storage ... 885
Management of Contextual Data ... 886
Context Reasoning .. 887
Policy Management... 887

Enabling Context-Aware Services .. 888

AU3833_C33.fm Page 877 Thursday, August 17, 2006 2:33 PM

878

■

Mobile Middleware

Application to Context Manager.. 888
Context Manager to Middleware Manager Interactions............................. 889
Context-Aware Mobile Service Platform.. 890
Middleware Manager to Applications
Interactions: Context Markup Language ... 892
Privacy Requirements ... 892

Context-Aware Mobile Services ... 893
Seamless Transition of Audio/Video Conference Call 893
Emergency Alerts .. 894

Research Challenges and Emerging Technologies... 894
Location Tracking Systems ... 894
Context Acquisition and Discovery ... 895
Context Reasoning and Model Building ... 895
Other Developments... 896

Conclusions ... 896
References ... 897

Introduction

Real-world scenarios in which human–computer interactions are guided
by the surrounding context have created a new realm of computing —
the era of

context-aware computing

. As the man–machine interface
becomes more pervasive and intimate, it will have to rely on cognitive
science as a basis for understanding what humans are capable of doing
under different situations and modify the application behavior accordingly.
Context information gathered from sensors, networks, user profiles, and
other sources can be used to adapt mobile applications to enhance the
user experience. Much emphasis has been placed lately on research to
enrich the user experience with more natural inputs such as voice, gestures,
emotions, and facial expressions via video and situation awareness of the
environment captured using a myriad of sensor-enabling technologies [1–3].
Unfortunately, obtaining contextual knowledge is a nontrivial task. Sensors
can be distributed and may communicate their data using a variety of
protocols and formats. Raw sensor data may have to undergo complex
postprocessing before it can become useful in any applications [7]. The
overarching goals in researchers’ minds are, first, to facilitate the under-
standing of these complex input processes by computers and, second, to
enhance human–computer interaction.

Context can be defined in a number of different ways. In Abowd and
Dey [4], context is defined as any information that can be used in an
entity’s situation. An entity can include a person, place, or object relevant
to the conversation between the end user and the application. Many
researchers have also tried to define context by enumerating examples of

AU3833_C33.fm Page 878 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

879

context, namely computing context, physical context, and user context
[5]. We take a further look at the various definitions of context in the next
section from device, user, and environment perspectives. One goal of
context-aware computing is to acquire and utilize this information to
provide services that are appropriate to the particular place, people, space,
or time; for example, if the system knows that a user is in a meeting, the
service may want to notify that user’s cellphone using the vibration mode
instead of ringing. By taking into account the relevant context (i.e., the
different exposed situations that are relevant to a requested service)
applications can be streamlined and customized to provide a more satis-
fying overall user experience. It is, however, the responsibility of the
application designer to present and use context intelligently to provide
such an experience.

Examining and reacting to context are becoming critically important
with the increasing popularity of mobile computing. Today’s information
era requires people to be constantly on the move; yet, they must remain
productive and informed. Mobile computing puts many constraints on the
clients’ ability to utilize services that they are accustomed to in a regular
desktop environment; in particular, client resource constraints imposed by
display width and size and slow or fluctuating bandwidth connections are
typical. Specifying required input parameters to request a service can be
a tedious and frustrating experience; for example, when a cellphone user
makes a request for the current weather, the service should figure out
where the mobile user is and what device limitations exist — short message
service (SMS) or multimedia messaging service (MMS) — and then deliver
the information appropriately.

Acquiring context is not a trivial task. This is one of the main reasons
why it is difficult to use context. Quite often this means dealing with
sensor-based technologies that detect various phenomena about the
environment. Acquiring context can be either explicit (i.e., provided by
an end user by means of textual, voice, or video input) or implicit
through automatic inference. Apart from the lack of proliferation of this
kind of nonstandard technology (e.g., sensors, global positioning receiv-
ers), there is also some hesitation to ubiquitously deploy such technol-
ogies due to privacy and other considerations. A consensus must be
reached among public utilities to standardize the rollout of such an
infrastructure. Of course, a viable economics model must be developed
to allow third-party vendors to participate competitively. The recent
mandatory E911 initiative by the Federal Communications Commission
of the U.S. government aims at deploying location sensing technologies
in coordination with cellular carriers to report the telephone number
of a wireless 911 carrier and the precise location of the antenna to
within a 50- to 100-meter resolution [9].

AU3833_C33.fm Page 879 Thursday, August 17, 2006 2:33 PM

880

■

Mobile Middleware

In this chapter, we examine a particular methodology of modeling
context information with reference to a framework of a service platform
that uses context information to provide value-added services. Next, we
describe the various forms of context — namely, device, user, and envi-
ronment — followed by a reference model or framework that describes
context-aware service platforms. We also examine the important interac-
tions between the middleware platform and the context processing plat-
form. In particular, we highlight the service-level adaptations that occur
while connecting these entities. Two examples of context-aware services
are also explained later, followed by some current research activities.

What Is Context?

Many mobile services today are delivered without consideration for the
context in which a mobile user currently resides. A mobile user in an
important meeting may prefer to have important notifications communi-
cated through text messages rather than actual phone calls. The experience
of mobile users can be greatly enhanced if the surrounding context
information is somehow automatically collected, processed, and used
intelligently to modify the service that is being delivered to them.

Typically, a context is defined as a situation within which something
exists or happens [4]. To facilitate our discussions on context processing,
we use a model that separates the concerns specific to devices, users,
and environments. This allows us later on to employ an entity-relationship
model [51] on contextual data for ease of processing and reasoning. Figure
33.1 gives a typical scenario in which mobile users might reside and
demonstrates the three different kinds of context. We discuss how we can
build a richer context-processing environment by reasoning from the
separate pieces of context information collected.

Device Context

We define device context as the state in which a device exists, not including
context information that can be derived (perhaps through the context
reasoning engine, to be described later) by its surrounding environment
or from information about the mobile user that owns the device. A device
may have a built-in mechanism to collect its own context; for example,
the location of the device may be determined by an embedded global
position system (GPS) receiver. The location-tracking mechanism of the
cellphone owned by the girl walking the dog in Figure 33.1 may help us
determine that she is in Central Park, New York, if we can determine that
she has the cellphone with her. The separation of the device context and

AU3833_C33.fm Page 880 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

881

user context is important, as a user may have multiple devices and may
not always have all of them in proximity.

Some internal and changeable state of the device may also be consid-
ered context; for example, a device may currently be in the vibration
mode only, with the audio turned off completely. In addition, the device
may have its own sensors to monitor and display its own temperature,
battery power, etc. Although we can try to infer the temperature of a
cellphone from the general temperature in Central Park, it may not always
be accurate because the temperature of the cellphone itself may be quite
different, depending on whether it is kept in a pocket or exposed to the
sunlight.

User Context

We define user context as the state in which a mobile user exists at a
given time. A user may be driving, jogging, in a meeting, or talking on
the phone or may even be emotionally disturbed. Some state may be
derived from the user’s calendar (with some probability of being correct)
and some may be obtained by attaching a radiofrequency identification
(RFID) tag on the person of the user; yet, some may be specified explicitly
by the user. Note again that the location of users is not necessarily the

Figure 33.1 User context, device context, and environment context.

AU3833_C33.fm Page 881 Thursday, August 17, 2006 2:33 PM

882

■

Mobile Middleware

same as the locations of their devices. It also depends on the accuracy
of the location determination technology; for example, drivers may choose
to carry their cellphones with them but leave their wireless local area
network (WLAN)-enabled personal digital assistants (PDAs) in a briefcase
in the car trunk. Depending on how the location-determination technology
is used in an application, the two devices may well be considered to be
in two different locations: one that can communicate with other dashboard
devices through the Bluetooth

®

 technology and one, in the vehicle trunk,
that cannot.

Environment Context

We define environment context as the state in which a particular

space

exists. A space may be a room, a building, a park, a train station, an area
covered by a Zip Code, or a

virtual

space (such as a chat room) in which
a user or device resides. Some typical attributes of a space may be the
temperature, the number of people in it, or the noise level. The way in
which we communicate with a user in a noisy train station may be quite
different from how we would commutate with a coworker sitting in an
office [39].

Device–User–Environment Interactions

By assembling the device-specific, user-specific, and environment-specific
information and reasoning from it, we can derive very rich contextual
information. We may infer, for example, that a particular mobile user is
having a meeting in a very noisy place (the man at the train station in
Figure 33.1 or someone at a party) and is holding a multimedia-enabled
device in his hand by assembling all relevant context information from the
environment, the user, and the device itself. To alert this mobile user of an
emergency situation occurring in his proximity, the best way to communicate
with him is probably to alert him through device vibration followed by a
video message with text, but not by relying on audio. On the other hand,
if we can infer that the mobile user is driving a car, then we can probably
deliver the same message with a ring tone followed by audio automatically
without requiring him to push any buttons to pick up the message.

It is also important to determine that a user has left a space and
entered another one; for example, suppose the user with a BlackBerry™
device in Figure 33.1 is leaving the building and is on his way to Central
Park. For the purpose of seamless mobility [43], the mobile device must
be able to sense the environment change and may have to move from
a WLAN (WiFi) connection to a cellular General Packet Radio Service

AU3833_C33.fm Page 882 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

883

(GPRS)/Global System for Mobile Communications (GSM) connection
or another form of communication, depending on what is available
outside the building. Later, we give more details on how we can infer
from different contexts.

A Reference Model for Context-Aware
Service Platforms

To facilitate the discussion of context-aware service platforms, we propose
a reference model for such platforms. The model provides a framework
on how context information can be acquired and delivered in a reliable
and secure way to middleware platforms that utilize it to make decisions
on service adaptations. We also examine current standards and technologies
that facilitate the use of context information during application delivery.
An illustration of the context reference framework is shown in Figure 33.2.
The framework consists of two major clusters of components interacting
with each other and the applications:

contextware

 [1] on the right-hand
side and middleware on the left-hand side. Our model is similar to the

Figure 33.2 A reference model for context-aware service platforms.

AU3833_C33.fm Page 883 Thursday, August 17, 2006 2:33 PM

884

■

Mobile Middleware

context management architecture proposed by Conan et al. [47], with the
following major differences: (1) notions of policy decision points and policy
enforcement points, (2) a resource server that has plug-in modules to
interface with both devices and information sources, and (3) a context
storage database to hold both dynamic and static context states. The
following sections describe the constituent components of the framework.

Context Manager

The

context manager

must perform two functions to enable a pervasive
environment. First, the context manager must describe or model the context
information. Second, the manager must support queries and subscriptions
from applications and notify the corresponding entities when an event of
interest occurs. The manager provides a plug-in context registration service
which lets applications share the abstracted context information. For exam-
ple, a conference call application may be interested in transferring a cellular
call originating at a car in the parking lot to the driver’s WiFi-enabled
cellphone as he is walking down the office corridors and eventually to a
desktop phone when he enters his office. It can subscribe to an event on
“Smith entering room B259” with the context manager.

Context Acquisition Through the Resource Server

A wide selection of sensors and sensing technologies can be applied to
collect contextual information. Some of the sensing technologies can be
further categorized into:

■

Temperature and humidity

■

Vision and light

■

Location, orientation, and presence

■

Magnetic and electric fields

■

Touch, pressure, and shock

■

Audio

■

Weight

■

Smell (gas sensors)

■

Acceleration (motion detection)

Often it is not enough to collect all the contextual information from a
single sensor. In mobile computing, sensors can be in one place or
distributed spatially. In an array of sensors, communication protocols have
to be engineered to facilitate the fusion of such data. This fusion can
involve rather complex postprocessing; for example, in wearable comput-
ing, sensors are placed all over the human body [22], and placement of

AU3833_C33.fm Page 884 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

885

these sensors is crucial to the contextual observations. In any application,
the designer has to ultimately choose the correct sensor type and its
relevant positioning. In our model, we assume that a resource server is
equipped with the appropriate device interfaces that can facilitate the
collection of sensor information from various sources.

A large number of research papers, however, concentrates on location-
based services using either indoor or outdoor location information as
context [13–16,49]. The location-determination technology may provide
an interface that allows our resource server to collect location information
of interested parties. Location-aware computing systems or applications
are often designed to respond to a user’s location, either spontaneously
or when explicitly activated by a user request.

Context Storage

Context data storage is important for the use of historical information to
establish trends or predict future context values. Ideally, a context-based
storage system consists of a logical context data model and a physical
data storage space. By using the entity-relationship model [51], the context
information can be easily represented using a variety of

entities

 — people,
place, things, attributes

— that describe some property of an entity and

relationships

, which involve two or more entities. It is necessary to have
an access policy mechanism that enforces who is allowed to access what
data; for example, the location data of a truck driver may be accessible
by the trucking company from 8 a.m. to 5 p.m. but not outside of the
driver’s work hours. We discuss how policies can be deployed and
enforced in context-aware services later in this section.

Several other parameters must be considered regarding context storage
for ease of data management:

■

Persistence

 — Potentially, we can associate each data item with a
temporal attribute. We can designate its time-to-live (TTL) value or
associate the context data with a particular communication session
(such as a conference call). The data should be removed as soon
as the session is terminated.

■

History

 — Logging the history of sensor readings has more impli-
cations on what can be done with the data than having only the
last instance available. For example, the history of location infor-
mation and orientation can help us calculate the speed, direction,
and even acceleration of a vehicle. Data points may be associated
with precise time stamps or may just be ordered.

■

Granularity

 — This parameter determines the frequency of context
snapshots or freshness of the latest reading.

AU3833_C33.fm Page 885 Thursday, August 17, 2006 2:33 PM

886

■

Mobile Middleware

Management of Contextual Data

Figure 33.3 shows a typical data management architecture for a context-
aware service that supports location-based services (LBSs). In essence, the
location data is ingested and processed at the network platform. This
postprocessed information is then made available to application providers
via an open interface, thereby enabling applications to adhere to a unified
and consistent mechanism to offer location information. The location
gateway acts as the intermediary between wholesale services and the data-
processing engine. Data correlation involves combining or correlating with
other data points (e.g., call detail records, user work schedule) and
presenting an appropriate view of the combined data to an application.
An example data presentation would be a map that shows the current
locations of all fleet vehicles of a rental car company.

Comparing this architecture to the reference model, the data collection
is achieved by the resource servers, the data processing and correlation
engine will sit within the context reasoning block, and the location gateway
acts as the context manager for vending location information to interested
consumers. The example also demonstrates that context reasoning (see
below) may be performed inside contextware or in external applications
that handle their own business logic.

Figure 33.3 Typical data management architecture of context-aware service
supporting location-based services.

AU3833_C33.fm Page 886 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

887

Context Reasoning

We consider context reasoning as a means to deduce new and relevant
information to an application or user from the various sources of context
data, following the definition by Przybilski et al. [44]. The authors con-
sidered several approaches (among others) to context reasoning:

■

Low-level context processing

 —

Context reasoning frequently
involves

context inference

, which maps low-level data (such as
GPS signals and sensor data) to high-level data (such as location
and the level of danger). Logic reasoning and ontology are fre-
quently employed here. Another common example is

sensor data
fusion

. The primary motivation here is to reduce communication
costs by the integration of similar data sources or to recognize
falsely calibrated sensors through simple reasoning so outliers can
be rejected in further analyses.

■

Application-centric view

 — This approach focuses on how we use
context data in applications. One of the key considerations here
is how an application and the underlying contextware [1] agree
on how and what context data can be used in the applications
and what inferences can be made to enhance the applications; for
example, which application and which other users have the rights
to know the location information of a truck driver, and what period
during the day? We will discuss the issue of policies further in the
next section.

■

Context monitoring —

This approach can be critical for proactive
applications that want to know or predict what the context will
likely change to and that want to use the prediction to change the
way a service is delivered; for example, a conference call service
may proactively monitor a mobile user’s location and switch the
conference call to an office phone or desktop as soon as the mobile
user enters the office.

Context reasoning can provide additional information that does not exist
in the context storage, but care must be taken to maintain data consistency
before adding such information to the context storage, as the underlying
raw context information may change continually.

Policy Management

The acquisition and storage of context information may trigger privacy
concerns. Any context-processing mechanisms must adhere strictly to the
security and privacy policies. The Internet Engineering Task Force (IETF)

AU3833_C33.fm Page 887 Thursday, August 17, 2006 2:33 PM

888

■

Mobile Middleware

Open Pluggable Edge Services (OPES) group [21] has developed an
architecture framework to authorize, invoke, and trace application-level
services on the network between the endpoints. In particular, RFC 3838
describes how policies are authored, deployed, and enforced in the
network. We will briefly describe these concepts and how they might
apply to context-aware services that are frequently deployed on the
network between target applications and clients.

Following the OPES model, the policy functions of the reference
architecture are decomposed into three components: rule author (RA),
policy decision point (PDP), and policy enforcement point (PEP). Multiple
RAs may provide rules to the PDP. These rules control the invocation of
context-aware services on behalf of the rule author. Each PDP has the
authority to decide what policies should be used that concern a particular
party or a group of parties in an application. PEPs execute policies
deployed from PDPs. The PDPs and the PEPs (as shown in Figure 33.2)
interpret the collected rules and appropriately enforce them.

Enabling Context-Aware Services

The use of context information by applications in a mobile environment
poses a number of challenges arising from the distributed and dynamic
nature of sensors, the accuracy and resolution of sensors, and the fusion
of output of multiple sensors to determine context. In addition, the mobile
environment poses further challenges with regard to the dependability,
predictability, and timeliness of communication. Middleware is required
that provides abstractions for the fusion of sensor information to determine
context, representation of context, and intelligence inference. Essential
services that provide support for operation in a mobile environment, such
as supporting the reliability of communication, are also required. In this
section, we examine how a middleware service platform can aid in the
delivery of context-aware services.

Application to Context Manager

The context manager can make the context information accessible either
directly to external applications or through the middleware service platform.
The context manager provides a query interface for other agents to obtain
the current context. Depending on the type of logic or learning mechanism
used, the context provider agents may have different ways of evaluating
queries; however, the context consumers query the manager in a uniform
way. This greatly aids development of context-aware applications. The

AU3833_C33.fm Page 888 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments

■

889

context manager is the administrator of the system, responsible for mon-
itoring ongoing context-based sessions and managing the environment
resources.

Applications can subscribe to context change notifications, where the
clients essentially register with the manager, asking that “when something
about this happens, let me know” and to obtain the authorization needed
to use and negotiate context information. The manager stores relevant
information in the context storage for inference, consistency, and knowl-
edge sharing. This context storage is used to retrieve information about
entities in the environment. The manager accepts subscription requests
from user, service, and context provider agents to be added to the agent
directory. This subscription phase allows the manager to search and select
the best available context that will satisfy the agreements required by
applications and users. In addition, the manager binds the provider agents
to applications according to their context agreement. It maintains this
information in the context storage for future use so resources can be
reconfigured as the context changes.

Context Manager to Middleware
Manager Interactions

Having external applications to process changes in context and to recon-
struct a model of the mobile user environment may prove to be daunting
to application programmers. A middleware platform may interact with the
context manager and help simplify the task of application adaptation. The
context manager can notify the middleware manager of changes in con-
texts that are detected. This is usually implemented in a rule-based
notification server that decides when the desired situation has been fulfilled
in order to activate user rules, producing notifications. The algorithmic
processing in the context manager undertakes most of the intensive task
of event aggregation and correlation. A sentient notification service [31]
achieves the following goals by connecting the context manager to the
middleware manager:

■

It provides a model of producing logical abstractions over physical
entities and their associated context.

■

It senses the environment and produces time-varying inferences.

■

It gives the middleware manager a powerful pattern-matching
ability for large-scale events. The Sentient Computing project [32]
uses sensors and resource status data to maintain a model of the
world that is shared between users and

applications. Based on the
Bat location system, Sentient Computing can help store and retrieve

AU3833_C33.fm Page 889 Thursday, August 17, 2006 2:33 PM

890

■

Mobile Middleware

context-sensitive data about mobile users. Whenever information
is created, the system knows who created it, where they were,
and who they were with. This contextual metadata can support
the retrieval of multimedia information.

Context-Aware Mobile Service Platform

Now we discuss one example (see Figure 33.4) of a reference implemen-
tation from a system perspective of how context is acquired and provided
to a mobile service platform. This information is then supplied to appli-
cations running on the middleware platform. Using location as an example
piece of context information, different positioning technologies are used
to locate a subscriber. These interfaces are facilitated via a location-based
services platform with the standardized Mobile Location Protocol (MLP)
interface. Varying degrees of accuracy are achieved due to the complexity
of the positioning technologies used. The LBS platform also has other
responsibilities (e.g., interfacing with geographical information system
[GIS] engines for mapping, geocoding, and routing).

Central to the connection between the middleware platform and the
LBS platform is a network resource gateway standardized by Open Service
Access (OSA) in the Parlay framework [20]. The Parlay Group aims to
intimately link IT applications with the capabilities of the telecommuni-
cations world by specifying and promoting application programming
interfaces (APIs) that are secure, easy to use, rich in functionality, and
based on open standards. Parlay integrates telecommunications network
capabilities with IT applications via a secure, measured, and billable
interface. Providing this abstraction offers several advantages, namely:

■

Being open and technology independent

■

Eliminating the need for programmers to learn difficult telecom-
munications protocols, thus lowering costs, and raising the pro-
gramming abstraction level to the point where telecommunications
capabilities become just normal IT APIs

■

Making it possible for external application servers to interact with
telecom network capabilities

■

Reducing business risk for all parties involved via the open API
model

■

Allowing the creation of innovative and rapid applications that
function across multiple networks

■

Supporting 2G, 2.5G, and 3G wireless networks with the same
APIs, providing a future-proof evolution path for network services

AU3833_C33.fm Page 890 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments ■ 891

The middleware service platform Enterprise Messaging Network
(EMN®) [38] has been developed at AT&T Labs Research. This middleware
platform allows a set of disparate mobile devices to communicate with
each other and to securely access corporate and Internet content and
services. If we were to look inside EMN, it consists of a set of distributed
and cooperative component containers. The role of a container is defined
by the set of components it manages. We distinguish two main roles,
namely gateways and servers. Gateways handle protocol-specific interfaces
to mobile devices and perform authentication, device profiling, and session
management functions. Gateways host particular types of components,
called devlets, which have the main role of providing the device access
to the protocol adaptation layer. EMN provides devlets for a multitude of
protocols: e-mail, HTTP, pager, voice, fax, SMS, and instant messaging.

 The servers are responsible for accessing and processing (such as
content repurposing and alert scheduling) the information. The compo-
nents that make up the behavior of an EMN server are called infolets.
Infolets implement the associated application logic and usually provide
access to one or more sources of information. The context information
can be accessed from the EMN gateways and servers using ParlayX Web
service calls exposed via the terminal location API. The application logic
can consist of tying the different information gathered from several infolets
and repurposing this information to a variety of user interfaces. In the

Figure 33.4 Context-aware mobile service platform.

LDAP

SNMP

XML

AU3833_C33.fm Page 891 Thursday, August 17, 2006 2:33 PM

892 ■ Mobile Middleware

latter example, the OSA gateway acts as the context manager and imple-
ments a policy management and enforcement engine. The mobile service
platform queries the OSA gateway for context information and utilizes
this in its realm of deployed applications. The middleware platform also
presents the end user with a consistent look and feel for the context-
aware application regardless of the destination device.

Middleware Manager to Applications
Interactions: Context Markup Language

Scandon and Sadeh [41] introduced a Semantic Web architecture aimed
at supporting the automated discovery and access of personal resources;
support for these exist in a variety of context-aware applications. Within
this architecture, each source of contextual information (e.g., a calendar,
location tracking functionality, collections of relevant user preferences,
organizational databases) is represented as a Semantic Web service. A
central element of the architecture is its semantic e-Wallet, which acts as
a directory of contextual resources for users while enforcing their privacy
preferences. Privacy preferences enable users to specify what information
can be provided to whom in different contexts. The security community
has developed powerful languages to capture access control privileges
such as the Security Assertion Markup Language (SAML), the XML Access
Control Markup Language (XACML), and the Enterprise Privacy Authori-
zation Language (EPAL); however, Scandon and Sadeh [41] extend this to
incorporate semantic technologies.

Privacy Requirements

Privacy protection remains a serious impediment to the widespread adoption
and deployment of context-aware and ubiquitous computing environments.
It is important that privacy protection mechanisms are in place from the start
so a relationship of trust can be formed between technology users and
service providers. “Privacy is the claim of individuals, groups, or institutions
to determine for themselves when, how, and to what extent, information
about them is communicated to others” [45]. The ownership of information
is with the subject, who alone should control the release of information.
Owners can also delegate this function to a service provider, via a service-
level agreement, who can then release this information on the owner’s behalf.
Several privacy-enhancing mechanisms have been proposed, all of which
have a role-based, access-control mechanism as their foundation.

AU3833_C33.fm Page 892 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments ■ 893

 Traditionally, with respect to location-based services, operators have
kept subscriber location information contained within their own net-
works. With roaming, the subscriber’s location will be transferred over
network boundaries and outside networks. The basic requirements
include the following:

■ The identity of the target (e.g., the Mobile Station International ISDN
Number [MSISDN]) should be made anonymous to the service
provider.

■ The user will have control over the level of granularity of posi-
tioning to protect privacy.

■ The user will have control over who is allowed or which application
is able to locate the user:

Control statically by user for each application
Control dynamically based on application
Control dynamically per location per request

Context-Aware Mobile Services
In this section, we will try to utilize all the concepts we have explained
in the chapter by giving examples of context-aware mobile services that
can be built on top of the reference model and the architecture that we
proposed earlier in this chapter. We will focus on two examples: an
audio/video conference call example and an emergency alert example.

Seamless Transition of Audio/Video Conference Call

Assume that our friend Smith (the one with a BlackBerry in Figure 33.1)
is engaged in an audio/video conference call with his colleagues as he
walks from the park back to the office building. Suppose Smith was tagged
with an RFID, and the context acquisition software in the building imme-
diately senses the presence of Smith and begins tracking his location and
streaming the information to the context resource server, as shown in
Figure 33.2. As soon as the context resource server/reasoning engine
senses that Smith is in his office, the conference call is transferred to his
desktop speaker phone or the video/audio conference call software on
his PC. In addition, because the contextware also senses that an RFID-
tagged fax machine is nearby (through the RFID resource server), it notifies
Smith’s colleagues that they can now send faxes of offline documents to
that machine if necessary.

AU3833_C33.fm Page 893 Thursday, August 17, 2006 2:33 PM

894 ■ Mobile Middleware

Emergency Alerts

Suppose our other friend, Adam, while chatting on the phone at the train
station (Figure 33.1), is not aware that a bomb threat exists at a federal
office building that he plans to visit after he gets off the train. While
monitoring Adam’s calendar, our context reasoning engine collects news
sources through the Really Simple Syndication (RSS) protocol and figures
out that the entire building has been evacuated. Because our alert appli-
cation (Figure 33.2) subscribes to any events that might affect Adam’s
calendar, it is notified that the appointment should be canceled. It requests
the presence information of the user and his devices from the middleware
manager, which then determines that an alert should be sent to Adam’s
pager because Adam is still chatting on his phone.

Research Challenges and Emerging Technologies
This section highlights some of the more recent projects in several insti-
tutions that are related to context-aware computing. This is by no means
an exhaustive list and does not indicate the relative importance of one
project over another. We found these projects interesting in their own
right and found it necessary to include them to provide a sense of the
different flavors of context-aware computing.

Location Tracking Systems

The Cricket location support system from MIT provides an indoor analog
of GPS to provide information about location, orientation, and geographic
spaces [15]. Cricket beacons, mounted on walls or ceilings, transmit
ultrasound and RF signals; compact listeners, attached to mobile or static
devices, use the difference in signal arrival times to determine where they
are. Cricket V2 has a new software stack that runs on TinyOs [50], an
open-source operating system designed for wireless embedded sensor
networks, and provides better support for continuous object tracking.
Many context-aware applications in pervasive and sensor computing envi-
ronments, such as human/robot navigation, physical/virtual computer
games, and patient tracking and monitoring, can benefit from an indoor
location determination system such as Cricket.

The Bat ultrasonic location system was originally developed in AT&T
Labs. The first experiments with context-aware systems used room-scale
information generated by infrared active badges [31]. This small device,
worn by personnel, transmits a unique infrared signal every 10 seconds.
Each office within a building is equipped with one or more networked

AU3833_C33.fm Page 894 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments ■ 895

sensors that detect these transmissions. The location of the badge (and
hence its wearer) can thus be determined on the basis of information
provided by these sensors, but many applications require fine-grained
three-dimensional (3D) location and orientation information, which active
badges cannot supply. AT&T Labs have since developed a 3D ultrasonic
location system (known as the Bat system [13]), which is low power,
wireless, and inexpensive. Recently, the authors reported their experience
in deploying the Bat system over a large area and running it for a period
exceeding two years [49]. The survey revealed that the two most important
incentives for users to increase their Bat system usage and to wear their
Bat devices were the implementation of more Bat applications (35 percent
of personnel wear their Bats daily) and adoption of the system by other users.

Context Acquisition and Discovery

In the Intentional Naming System (INS) [30] from MIT, names are inten-
tional; they describe application intent in the form of properties and
attributes of resources and data, rather than simply network addresses
(e.g., URLs) of objects. Potentially, the use of an INS would allow a context
acquisition system to address resources easily in a dynamic environment
lacking preconfigured support for describing, locating, and gaining access
to available resources.

The Smart Dust [33] project from the University of California–Berkeley
is probing the limitations of microfabrication technology to determine
whether an autonomous sensing, computing, and communication system
can be packed into a tiny device called a mote; this mote element would
form the basis of an integrated, massively distributed sensor network.
Only a few cubic centimeters in size, the motes collect light, temperature,
humidity, and other data about their physical environment. The data is
then relayed from one mote to a neighboring mote (mesh network) until
it reaches its desired destination for processing.

Context Reasoning and Model Building

The Sentient Computing project [32] uses sensors and resource status data
to maintain a model of the world that is shared between users and
applications. Based on the Bat location system, Sentient Computing can
help store and retrieve context-sensitive data about mobile users. When-
ever information is created, the system knows who created it, where they
were, and who they were with. This contextual metadata can support the
retrieval of multimedia information.

AU3833_C33.fm Page 895 Thursday, August 17, 2006 2:33 PM

896 ■ Mobile Middleware

Other Developments

Mobile computing devices such as palmtop computers, mobile phones,
and personal digital assistants have gained widespread popularity. Even
though devices and networking capabilities are becoming increasingly
powerful, the design of mobile applications will continue to be constrained
by the physical limitations. Mobile devices will likely continue to be battery
driven, and wide-area wireless networks will have fluctuations in band-
width depending on the physical location. Traditional middleware for
fixed distributed systems cannot be used in the mobile environment,
particularly for the reasons outlined earlier. Many researchers have inves-
tigated systems that collect context information and help applications adapt
to changes. Research must continue, and middleware must be developed
so a better quality of services can be delivered to mobile applications.
Capra et al. [35] studied reflective middleware that maintains an updated
representation of the context. Acquisition of context is also very important
and has largely focused to date on obtaining location information. Progress
has been made in the acquisition of other forms of context such gesture,
voice, ambience, etc. Researchers have recognized the need to create
context toolkits [39,40] or contextware that provides important abstractions
and support for context-aware computing. We expect the seamless inte-
gration of contextware and middleware service platforms to emerge in
the next decade to greatly enrich mobile users’ experience.

The representation of context information in a universal way is impor-
tant for systems to interoperate. The W3C community is also actively
involved in defining standards such as Composite Capability/Preference
Profiles (CC/PP), which has the role of representing delivery context in
assisting device-independent presentation for the Web [36]. Recently, W3C
annouced the Mobile Web Initiative; its goal is to make mobile devices
first-class citizens of the World Wide Web. Research on context-aware
services for mobile devices has the potential to make unique contributions
to this initiative [52].

Conclusions
This chapter investigated the issues associated with context-related data
processing in a mobile environment. The importance of context was
discussed, followed by a definition of the central context entities: user,
device, and environment. A reference model for context-aware service
platforms was introduced which is responsible for the management, acqui-
sition, storage, and reasoning of the collected data. As described in the
chapter, providing a context-aware service is often facilitated by interac-
tions between a middleware manager and applications using a context

AU3833_C33.fm Page 896 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments ■ 897

markup language or a vendor-independent API. Two such examples of
context-aware services were highlighted toward the end of the chapter,
followed by emerging research challenges and projects that continue to
illustrate the importance of this field.

References
[1] Ferscha, A., Contextware: bridging physical and virtual worlds, in Proc. of

the 7th Int. Conf. on Reliable Software Technologies, ADA-EUROPE 2002,
Vienna, Austria, June 17–21, 2002.

[2] Hightower, J. and Boriello, G., Location systems for ubiquitous computing,
in IEEE Comput., 34(8), 57–66, 2001.

[3] Schmidt, A. and Beigl, M., There is more to context than location: environ-
ment sensing technologies for adaptive mobile user interfaces, in Proc. of
Interactive Applications of Mobile Computing (IMC’98), Rostock, Germany,
November 24,1998.

[4] Abowd, G.D. and Dey, A.K., Towards a better understanding of context
and context-awareness, in Proc. of the 1st Int. Symp. on Handheld and
Ubiquitous Computing, Vol. 1707, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 1999, pp. 304–307.

[5] Schilit, B., Adams, N., and Want, R., Context-aware computing applications,
in Proc. of IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’94), Santa Cruz, CA, December, 1994, pp. 85–90.

[6] Cox, R.V., Kamm, C.A., Rabiner, L.R., Schroeter, J., and Wilpon, G.J., Speech
and language processing for next-millennium communications services,
Proc. IEEE, 88(8), 1314–1337, 2000.

[7] Urnes, T., Hatlen, A.S., Malm, P.S., and Myhre, O., Building distributed
context-aware applications, Pers. Ubiquitous Comput., 5, 38–41, 2001.

[8] Schilit, B., System Architecture for Context-Aware Mobile Computing, Ph.D.
dissertation, Columbia University, New York, 1995.

[9] Wireless Enhanced 911, http://www.fcc.gov/911/enhanced/.
[10] Weiser, M., The computer for the 21st century, Sci. Am., 265(3), 66–75, 1991.
[11] Pascoe, J., Ryan, N., and Morse, D., Issues in developing context-aware

computing, in Proc. of the 1st Int. Symp. on Handheld and Ubiquitous
Computing, Karlsruhe, Germany, September, 1999, pp. 208–221.

[12] Dey, A.K., Providing Architectural Support for Building Context-Aware Appli-
cations, Ph.D. dissertation, Georgia Institute of Technology, Atlanta, 2000.

[13] Ward, A., Jones, A., and Hopper, A., A new location technique for the active
office, IEEE Pers. Commun., 4(5), 42–47, 1997.

[14] Bahl, P. and Padmanabhan, V., RADAR: an in-building RF-based user loca-
tion and tracking system, in Proc. IEEE INFOCOM’00, Tel Aviv, Israel, March,
2000, pp. 775–784.

[15] Priyantha, N.B., Chakraborty, A., and Balakrishnan, H., The cricket location-
support system, in Proc. of the 6th ACM/IEEE Int. Conf. on Mobile Computing
and Networking (MOBICOM’00), Boston, MA, August, 2000, pp. 32–43.

AU3833_C33.fm Page 897 Thursday, August 17, 2006 2:33 PM

898 ■ Mobile Middleware

[16] Want, R. and Russell, D.M., Ubiquitous electronic tagging, IEEE Distributed
Syst. Online, 1(2), 2000.

[17] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P., The anatomy
of a context-aware application, in Proc. of the 5th ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MOBICOM’99), Seattle, WA, August,
1999, pp. 59–68.

[18] PulsON Technology Time Modulated UWB Overview, Time Domain Corp.,
Huntsville, AL, 2001.

[19] Hightower, J. and Borriello, G., Location Sensing Techniques, Technical
Report UW-CSE-01-07-01, Computer Science and Engineering Dept., Uni-
versity of Washington, Seattle, WA, 2001.

[20] The PARLAY Group, www.parlay.org.
[21] OPES (Open Pluggable Edge Services), http://www.ietf-opes.org.
[22] MIThril: The Next Generation Research Platform for Context-Aware Wearable

Computing, MIT University, Cambridge, MA (http://www.media.mit.edu/
wearables/mithril/).

[23] Schilit, B.N. and Theimer, M.M., Disseminating active map information to
mobile hosts, IEEE Network, 8(5), 22–32, 1994.

[24] Turner, R.M., Context-sensitive reasoning for autonomous agents and coop-
erative distributed problem solving, in Proc. of IJCAI Workshop on Using
Knowledge in Its Context, Chambéry, France, August, 1993.

[25] Pascoe, J., Adding generic contextual capabilities to wearable computers,
in Proc. of the 2nd IEEE Int. Symp. on Wearable Computers (ISWC’98),
Pittsburgh, PA, October 19–20, 1998, pp. 92–99 (http://cs.ukc.ac.uk/pubs/
1998/676/content.zip).

[26] Rao, H., Chen, Y., Chang, D., and Chen, M., iMobile: A proxy-based platform
for mobile services, in Proc. of the 1st ACM Workshop on Wireless Mobile
Internet (WMI 2001), Rome, July, 2001.

[27] W3C, The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, World
Wide Web Consortium, 2001, http://www.w3.org/TR/2001/WD-P3P-
20010928.

[28] W3C, A P3P Preference Exchange Language 1.0 (Appel 1.0) [working draft],
World Wide Web Consortium, 2002, http://www.w3.org/TR/P3P-prefer-
ences.

[29] Myles, G., Friday, A. and Davies, N., Preserving privacy in environments
with location-based applications, IEEE Pervasive Comput., 2(1), 56–64, 2003.

[30] Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., and Lilley, J., The design
and implementation of an intentional naming system, in Proc. of the 17th
ACM Symp. on Operating Systems Principles, Charleston, SC, December,
1999, pp. 186–201.

[31] The Active Badge System, http://www.uk.research.att.com/ab.html.
[32] Sentient Computing, http://www.cl.cam.ac.uk/Research/DTG/research/sen-

tient/.
[33] Warneke, B., Last, M., Liebowitz, B., and Pister, K.S.J., Smart dust: commu-

nicating with a cubic-millimeter computer, Computer, 34(1), 44–51, 2001.
[34] Tiny OS, http://webs.cs.berkeley.edu/tos/.

AU3833_C33.fm Page 898 Thursday, August 17, 2006 2:33 PM

Processing Context-Related Data in Mobile Environments ■ 899

[35] Capra, L., Emmerich, W., and Mascolo, C., Reflective middleware solutions
for context-aware applications, in Proc. of the Third Int. Conf. on Metalevel
Architectures and Separation of Crosscutting Concerns (REFLECTION 2001),
Kyoto, Japan, September, 2001, pp. 126–133.

[36] W3C, Composite Capability/Preference Profiles, World Wide Web Consor-
tium, 2003, http://www.w3.org/Mobile/CCPP/.

[37] The WASP Project, http://www.w3.org/2003/p3p-ws/pp/utwente.pdf.
[38] Chen, Y.F., Huang, H., Jana, R., Jim, T., Hiltunen, M. et al., iMobile EE: an

enterprise mobile service platform, ACM J. Wireless Networks, 9(4), 283–297,
2003.

[39] Salber, D., Dey, A.K., and Abowd, G.D., The context toolkit: aiding the
development of context-enabled applications, in Proc. of ACM SIGCHI Conf.
on Human Factors in Computing Systems (CHI’99), Pittsburgh, PA, May
15–20, 1999, pp. 434–441.

[40] Schmidt, A., Ubiquitous Computing: Computing in Context, Ph.D. disserta-
tion, Lancaster University, Lancaster, U.K., 2002.

[41] Scandon, F. and Sadeh, N., Semantic Web Technologies To Reconcile Privacy
and Context Awareness, Computer Science Technical Report CMU-ISRI-03-
107, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 2003.

[42] Nurmi, P. and Floreen, P., Reasoning in Context-Aware Systems, position
paper, University of Helsinki, Finland, 2004, http://www.cs.helsinki.fi/u/
ptnurmi/papers/positionpaper.pdf.

[43] IETF Seamless Mobility Working Group, http://www.ietf.org.
[44] Przybilski, M., Nurmi, P., and Floreen, P., A framework for context reasoning

systems, in Proc. of the IASTED Int. Conf. on Software Engineering (SE2005),
Innsbruck, Austria, February, 2005.

[45] Westin, A.F., Privacy and Freedom, Bodley Head, London, 1970.
[46] Wagealla, W., Terzis, S., English, C., and Nixon, P., On trust and privacy in

context-aware systems, in Proc. of the Second iTrust Workshop on Trust
Management in Dynamic Open Systems, London, September, 2003.

[47] Conan, D., Taconet, C., Ayed, D., Chateigner, L., Kouici, N., and Bernard, G.,
A pro-active middleware platform for mobile environments, in Proc. of the
IASTED Int. Conf. on Software Engineering (SE2004), Innsbruck, Austria,
February, 2004.

[48] Barbir, A. et al., Policy, Authorization, and Enforcement Requirements of
the Open Pluggable Edge Services (OPES), Request for Comments 3838,
Internet Engineering Task Force (IETF), 2004 (http://www.ietf.org/rfc/
rfc3838.txt).

[49] Harle, R.K. and Hopper, A., Deploying and evaluating a location-aware
system, in Proc. of the Third Int. Conf. on Mobile Systems, Applications, and
Services (MobiSys’05), Seattle, WA, June, 2005.

[50] Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R. et al., The Emer-
gence of Networking Abstractions and Techniques in Tiny OS, in Proc. of
the First USENIX/ACM Symp. on Networked Systems Design and Implemen-
tation (NSDI 2004), San Francisco, CA, March 29–31, 2004.

AU3833_C33.fm Page 899 Thursday, August 17, 2006 2:33 PM

900 ■ Mobile Middleware

[51] Chen, P.P.-S., The entity-relationship model: toward a unified view of data,
ACM Trans. Database Syst., 1(1), 9–36, 1976.

[52] W3C Mobile Web Initiative, World Wide Web Consortium, http://www.
w3.org/2005/MWI/.

AU3833_C33.fm Page 900 Thursday, August 17, 2006 2:33 PM

901

Chapter 34

Integrated Profiling
of Users, Terminals,
and Provisioning

Environments

Alessandra Agostini, Claudio Bettini,
and Daniele Riboni

CONTENTS

Introduction... 902
Current Profiling Approaches .. 904

Profile Representation of Devices ... 904
HTTP Headers ... 904
Composite Capability/Preference Profiles and UAProf 906

User Profiling... 908
Profiling Provisioning Environments ... 910

Bandwidth Estimation Techniques... 910
Location.. 911
Environment Conditions ... 914

Profile-Based Delivery Platforms ... 914
CC/PP-Based Architectures ... 914
Commercial Application Servers .. 915

AU3833_C34.fm Page 901 Thursday, August 17, 2006 3:20 PM

902

■

Mobile Middleware

CARE Mobile Middleware for the Integration of Distributed Profile Data........ 916
Architecture Overview.. 917
Profile Management and Aggregation... 918

Profile Managers.. 918
Profile Representation... 919
Profile Aggregation and Conflict Resolution..................................... 920

Policies for Supporting Adaptation.. 921
Policy Representation.. 921
Conflicts and Resolution Strategies.. 922
Intra-Session Profile Updates ... 923

Case Study ... 924
Profile-Resolution Directives... 925
User and Service Provider Policies.. 926
A Specific Scenario ... 926

Alternative Middleware Proposals ... 928
Open Issues and Challenges ... 930

Ontologies and Ontological Reasoning... 931
Privacy Issues .. 932

Acknowledgments... 934
References ... 934

Introduction

Context awareness is emerging as an essential feature for the next gener-
ation of Internet mobile services. Context awareness is a desirable feature
for many application areas, including natural language understanding,
electronic commerce, telemedicine, and e-learning, just to cite a few. It is,
however, particularly relevant for mobile and pervasive computing, as
mobile devices naturally enable a much wider set of contexts characterized,
among other things, by a spatiotemporal dimension, a wide range of device
features and networking capabilities, and very different environment situ-
ations. In this chapter, we discuss how the many parameters defining the

context

 of a specific mobile service request can be acquired from different
sources, formally represented, managed by software agents, and integrated
in a consistent uniform description to be used for service adaptation.

We consider the context defining a mobile service request as being
described by a set of parameter values possibly belonging to different

profiles

. A profile is intended as a structured set of parameters describing
an entity. Most common examples of profiles are

user profiles

 and

device
profiles

. The first type usually contains data about user preferences,
interests, and demographics, as well as behavior models. The second type
usually contains technical data describing device capabilities such as
installed memory, screen resolution, computing power, available user
interfaces, and installed software, as well as device status parameters such
as the battery level or the available memory.

AU3833_C34.fm Page 902 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

903

Modeling the context of a mobile service request also includes consid-
ering profile parameters of the

provisioning environment

. These parameters
include the availability, type, and status of the network connection between
the user and the service provider; the spatiotemporal condition of the user
(e.g., time, location, speed, direction); the user’s environment (e.g., close-
by resources, temperature, weather conditions); and the policies the service
provider may enforce for the service request. The different types of profile
data are discussed in detail, and we provide for each one a survey of the
existing approaches to represent, manage and use these data.

The real challenge we are considering in this chapter is the acquisition
from different sources of all the profile parameters defining the context
of a service request and their aggregation into a consistent uniform
description. The distribution of profile sources imposes two main require-
ments: (1) a common formalism and a shared vocabulary to be used by
the different profile sources to represent the data, and (2) a mechanism
to deal with possibly conflicting parameter values provided by different
sources. It is indeed possible that different sources have different values
for the same profile parameters; for example, the context provider may
maintain its own user profiles, storing among other values the user’s
interests as deduced from previous service requests. On the other side,
the user may provide a personal profile that includes the user’s own
interests as explicitly defined by the user or automatically derived by a
software agent. Conflicts may exist even when considering more technical
parameters such as, for example, positioning data; different data may be
provided by the network operator using triangulation and cell ID and by
the user utilizing GPS or other client-side methods.

Other relevant aspects that must be taken into account are related to
the relationships among profile parameters and to the dynamics of profile
data. The value of a parameter may well depend on the value of other
parameters. For example, the preference of a user for receiving high-
quality multimedia content on his device may depend on the cost of the
connectivity he is using at the time of the request or the status of the
device (e.g., battery level). Other user preferences may depend on the
user location or on the current user activity. The conditional setting of
parameter values can be modeled by the introduction of simple user
policies that should be evaluated at the time of the service request.
Analogously, the service provider and possibly other profile sources may
have their own set of policies. A comprehensive solution for distributed
profiling should also take care of possible conflicts both within a set of
local policies and among policies from different sources.

Profile data can also be dynamic in the sense that parameter values
may change quickly and possibly during service provisioning. Typical
examples are tracking applications whose service is actually based on the

AU3833_C34.fm Page 903 Thursday, August 17, 2006 3:20 PM

904

■

Mobile Middleware

update of the positioning data. An example of a more advanced service
is adaptive multimedia streaming. Streaming may be initiated with a very
high bit rate based on profile data acquired at the time of request, but it
should progressively degrade if the profile parameters change during the
streaming session, suggesting the use of a lower bit rate. Taking into
account this aspect requires a mechanism to detect changes in relevant
profile parameters at remote different sources as well as defining how
much a value should change to require recomputation of the aggregated
global profile.

Current Profiling Approaches

This section considers profile data describing device features, profile data
describing users, and profile data describing the provisioning environments.
For each of these profile categories, we illustrate the main approaches to
profiling considering both existing commercial systems and research work.
The last subsection briefly illustrates existing delivery platforms based on
profiling.

Profile Representation of Devices

A precise definition of the characteristics and capabilities of the device
used for accessing an Internet service is essential for performing adaptation.
In particular, profile data includes information regarding both software
(e.g., browser name and version, Java support) and hardware (e.g., CPU
and network interfaces). Although software capabilities remain constant
throughout the service provision, data regarding certain hardware param-
eters can change (e.g., remaining battery lifetime, available memory).

HTTP Headers

The diffusion of mobile devices with low capabilities has spurred the
definition of markup languages (e.g., WML, cHTML) targeted at different
classes of terminals. The simplest technique (and, actually, still the most
adopted by service providers) for choosing the most appropriate markup
language and for adapting Web contents to the device that makes the
request involves identifying the device by means of the Hypertext
Transfer Protocol (HTTP) request headers. It is worth noting that this
technique is applicable only to HTTP-based services. The HTTP/1.1
specification defines the syntax and semantics of all standard HTTP/1.1

AU3833_C34.fm Page 904 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

905

header fields. Unfortunately, the information conveyed by HTTP/1.1 head-
ers that can be useful for representing device capabilities is quite limited
and includes only the user agent (i.e., browser) and media types (MIME
types) accepted by the user agent (e.g., the supported markup languages),
charsets, and encodings. Hence, this information only allows the service
provider to determine how to mark up the content. The

User-Agent Display
Attributes Headers

 Internet Draft [51] has been widely adopted by browser
developers for extending the set of information provided by HTTP headers
with data regarding display characteristics, such as screen size and reso-
lution, and color capabilities. Moreover, some browsers include in the
HTTP request other undocumented header fields for representing infor-
mation, such as the operating system, CPU, and voice capabilities. As an
example, Table 34.1 shows some of the HTTP request headers provided
by the Internet Explorer

®

 browsers of Windows

®

 XP, Pocket PC, and
SmartPhone devices.

Obviously, the header approach has a number of shortcomings. First,
the provided information is limited to static characteristics of the device,
but a mobile computing scenario requires knowledge of the current status
of devices, such as available memory and battery charge status. Moreover,
because some of the headers are not well documented, it is necessary to
perform a sort of reverse engineering to understand their meaning. In
fact, different browsers provide different HTTP headers for the same
device.

Table 34.1 HTTP Request Headers Provided by the Internet Explorer

Browser for Various Devices

Windows XP PocketPC SmartPhone

User-Agent Mozilla/4.0
(compatible;

MSIE 6.0)

Mozilla/4.0
(compatible;

MSIE4.01)

Mozilla/4.0
(compatible;

MSIE4.01)

Accept application/
msword, …

image/gif, \ldots image/gif, …

UA-CPU — i486 ARMOMAP710

UA-OS — WinCE
(PocketPC)

WinCE
(SmartPhone)

UA-pixels — 240

×

 320 176

×

 220

AU3833_C34.fm Page 905 Thursday, August 17, 2006 3:20 PM

906

■

Mobile Middleware

Composite Capability/Preference Profiles and UAProf

To overcome the limitations of the HTTP headers approach, the World Wide
Web Consortium (W3C) defined the structure and vocabularies of

Composite
Capability/Preference Profiles

 (CC/PP) [34]. CC/PP uses the eXtensible
Markup Language (XML) serialization of Resource Description Framework
(RDF) graphs to create profiles that describe the capabilities of the device
and, possibly, the preferences of the user. CC/PP profiles are structured as
sets of

components

 that contain various

attributes

 with associated values.
Components and attributes are defined in

CC/PP vocabularies

 (i.e., RDF
schemas that formally define their semantics and allowed values). Data-type
support in CC/PP is quite limited; in fact, attribute values can be either
simple (string, integer, or rational number) or complex (set or sequence of
values, represented as

rdf:Bag

 and

rdf:Seq

, respectively).

Currently, CC/PP is used primarily for representing device capabilities
and network characteristics. UAProf [42] is the most renowned CC/PP-
compliant vocabulary. It has been proposed by the Open Mobile Alliance
for representing the hardware, software, and network capabilities of
mobile devices. Some components defined within UAProf have been
extended with new attributes by Intel [13]. In particular, UAProf defines
seven components:

■

HardwarePlatform

 provides a detailed description of the hardware
capabilities of the terminal, including input/output capabilities,
CPU, memory, battery status, and available expansion slots.

■

SoftwarePlatform

 describes the device operating system, its Java
support, supported video and audio encoders, and the user’s
preferred language.

■

BrowserUA

 describes in detail the browser features, providing not
only the browser name and version but also information regarding
its support for applets, JavaScript, voiceXML, and text-to-speech
and speech-recognition capabilities, as well as the user’s preference
regarding frames.

■

NetworkCharacteristics

 provides information about the network
capabilities and environment (such as the supported Bluetooth
version), support of security protocols, and the current bearer signal
strength and bit rate.

■

WAPCharacteristics

 contains a set of attributes regarding the device
Wireless Application Protocol (WAP) capabilities, including the
supported WAP, Wireless Markup Language (WML), and WMLScript
versions, as well as the WML deck size.

■

PushCharacteristics

 and

MMSCharacteristics

 provide information
regarding the device WAP push capabilities and multimedia mes-
saging service (MMS) support, respectively.

AU3833_C34.fm Page 906 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

907

A small excerpt of the UAProf definition of the

HardwarePlatform

 com-
ponent can be seen in Figure 34.1.

Currently, many hardware vendors make publicly available on their
Web sites the UAProf profiles of their devices (several examples can be
found at http://w3development.de/rdf/uaprof_repository/). At the time of
this writing, the list of UAProf descriptions provided by important vendors
such as Nokia, Sony Ericsson, and BlackBerry™ are kept up to date with
the new models, suggesting that this technology is considered interesting
by hardware vendors. Figure 34.2 shows an excerpt of the UAProf profile
of a mobile phone, as published on the supplier Web site.

Figure 34.1

Excerpt of the UAProf definition of the

HardwarePlatform

component.

AU3833_C34.fm Page 907 Thursday, August 17, 2006 3:20 PM

908

■

Mobile Middleware

The CC/PP and UAProf specifications also define the communication
protocol of profiles to the service provider. These protocols are based on

profile defaults

 and

profile diffs

 [41,42]. The client should send HTTP requests
containing a reference to the device default profile and attribute–value pairs
that describe the variations from the default profile (e.g., the insertion of a
new memory card or volatile information such as the current available
memory). Possibly, the CC/PP profile can be updated with new information
by firewalls and proxies encountered by the HTTP request.

User Profiling

Within the user modeling literature, a

user model

 is intended as the system
representation of the

characteristics

 of a user, including, for example,
knowledge and beliefs, skills and expertise, and interests and preferences.
Our definition of a

user profile

, as a structured set of parameters, can be

Figure 34.2 Excerpt of the UAProf profile of a mobile phone.

AU3833_C34.fm Page 908 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

909

considered in all respects a user model, as it represents many relevant
user characteristics; however, it is only the whole context profile (com-
posed by different integrated profiles coming from different sources) that
contains, among other things, the complete user model. Research proto-
types and commercial systems exploiting user profiles can be categorized
taking into account different relevant aspects. With respect to our needs,
we consider as

primary dimensions

: (1) the adopted method for modeling
users and (2) the richness and generality of user data modeled. We also
consider, as

secondary dimensions

: (3) the kind of user data acquisition
(e.g., explicit or derived data collection) and (4) the type of user adaptation
(e.g., content or presentational adaptation). In the following, we report
on some academic research and commercial systems that provide seminal
solutions or are considered to be well-established providers with regard
to one or more of the above dimensions.

Early research adopted a simple user model expressed in the form of
records of command usage or data access; the user adaptation was directly
connected to the frequency of such usage. No attempt was made to infer
or represent any other information about the user. The user model was
embedded in the application, and it was not possible to distinguish specific
user modeling components from the other application modules.

The forerunner of future user modeling shell systems is the

General
User Modeling System

 (GUMS) [20] (i.e., a system providing user modeling
services at runtime that can be configured during development time). In
general, user modeling shell systems [35] feature quite sophisticated
approaches to modeling users and include rich categories of user data (i.e.,
the primary dimensions provided above). They support both explicit user
data acquisition and derivation of implicit user characteristics, as well as
the handling of contradictions (also referred to as

truth maintenance

). For
example, GUMS allows the definition of simple stereotype hierarchies, and
for each stereotype a set of Prolog facts describes stereotype members and
a set of rules defines the system’s reasoning. The final application can also
communicate new facts about the user at runtime. In contrast, the

Belief,
Goal, and Plan Maintenance System

 (BGP-MS) [36] provides two integrated
formalisms for representing users’ beliefs and goals. Assumptions about
the user and stereotypical assumptions about user groups can be repre-
sented in a first-order predicate logic. A subset of these assumptions is
stored in a terminological logic. Inferences are defined in a first-order
modal logic.

The

SeTA

 prototype [4], a toolkit for the construction of adaptive Web
stores, includes state-of-the-art solutions in many dimensions. With regard
to dimension 4, SeTA integrates the personalized suggestion of items
(content adaptation) with the adaptation of the layout based on user
preferences and expertise. This is especially made possible due to the

AU3833_C34.fm Page 909 Thursday, August 17, 2006 3:20 PM

910

■

Mobile Middleware

richness of the user model (dimension 2) and to a specific representation
technique (dimension 1). The SeTA user model contains four main types
of data:

1. Explicitly provided personal data such as age, gender, job, educa-
tion level

2. Domain-independent user features, such as the user’s receptivity,
expertise, and interests

3. Domain-dependent preferences regarding product properties that
are used by SeTA to select the items most suited to the user

4. Information relative to the classification of the user in the stereo-
typical customer classes

User data acquisition (dimension 3) is both explicit and dynamically
computed taking into account the user’s behavior during the current
session. With respect to dimensions 1 and 3, SeTA integrates knowledge
representation (KR)-based user modeling techniques with machine learn-
ing mechanisms. In particular, although personal data is composed of
simple attribute–value pairs, the other profile attributes have a more
sophisticated representation. For example, for each user features attribute,
a probability distribution is associated to its possible values (e.g., expertise
about phones: low = 0.1; medium = 0.2; high = 0.7).

Recommender systems, such as

GroupLens

 [45], should also be men-
tioned, as they are heavily based on user profiling. In these systems, the
affinity between users is evaluated considering explicit ratings of items
provided by users, implicit ratings derived from navigational behaviors,
and transaction history data. A comprehensive comparison of products
for e-commerce and Customer Relationship Management (CRM) can be
found in Fink and Kobsa [21].

Profiling Provisioning Environments

As outlined earlier, the set of context data useful for performing a better
adaptation goes beyond device capabilities and user information. In this
section, we present some profiling methods for gathering information
regarding the network status, the position of the user and of people and
objects in the user’s surroundings, and the user’s environment.

Bandwidth Estimation Techniques

An estimate of the data rate that can be transmitted by the network link
that connects the service provider to the user is important for determining
the adaptation parameters of a wide spectrum of Internet services. As a

AU3833_C34.fm Page 910 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

911

consequence, a number of techniques have been proposed in the last
years to estimate available bandwidth. A survey regarding metrics, tech-
niques, and tools can be found in Prasad et al. [43].

Application-level approaches try to estimate quantities of interest (espe-
cially available bandwidth) at the communication endpoint observing
packet dispersion [37] either in probing traffic or existing transmissions.
As an example, some techniques estimate the end-to-end available band-
width by means of streams of

probing packets

 that the source (server)
sends to the receiver (client). Similar application-level approaches require
a strict cooperation between the sender and the receiver, as the receiver
has to give explicit feedbacks. Other techniques require the receiver to
perform the estimation itself to improve the system scalability. Application-
level approaches have a number of known weaknesses; in particular, even
in wired networks, the main weakness resides in the estimation accuracy
itself and in convergence times. The application of these techniques in a
mobile computing scenario poses new issues, mainly due to the required
cooperation of clients having low power and network capabilities. In fact,
client-side cooperation determines power consumption and loss of band-
width (which in many mobile network technologies is a very valuable
and costly resource). Moreover, due to their particular characteristics, being
able to obtain a reliable end-to-end measurement in some mobile networks
(e.g., in WiFi networks) is questionable.

To overcome these weaknesses, various network-level approaches have
been devised. Network-level techniques exploit explicit network feedback
to monitor available resources, as described in Kazantzidis et al. [33]. The
main disadvantage of these techniques resides in the fact that for nodes to
operate in the network they must provide specific support for each given
architecture and technology; clearly, this limits scalability and ease of
deployment of such techniques. Moreover, these techniques are unsuitable
in end-to-end networks such as Universal Mobile Telecommunications Sys-
tem (UMTS) and General Packet Radio Service (GPRS). For a more in-depth
discussion of bandwidth monitoring issues in the context of mobile service
adaptation, we refer the interested reader to Maggiorini and Riboni [38].

Location

Currently, a number of mobile computing applications provide services
targeted to the user’s location. Navigation systems, emergency services,
mobile tourist guides, and proximity marketing are only few examples of
location-aware applications. To support such applications, many different
location systems and technologies have been developed to provide users
and devices with information about their physical location and other
people and items located in their surroundings [28].

AU3833_C34.fm Page 911 Thursday, August 17, 2006 3:20 PM

912

■

Mobile Middleware

It is worth noting that the various techniques may specify the locations
of objects and people using different representation schemes. Generally,
outdoor systems provide a

physical position

 (e.g., coordinates), and indoor
systems provide a

symbolic position

 (e.g., in room R32, in the living room).
The physical position of an object can be naturally expressed through a
two- or three-dimensional coordinate system (latitude, longitude, and
optionally altitude) in a given spatial reference model. For example, the
National Marine Electronics Association (NMEA) 0183 is a standard for
communicating physical location information based on asynchronous

sen-
tences

 that provide the latitude and longitude (expressed by degree,
minute, and second triplets), and other data (e.g., velocity). Unfortunately,
representing symbolic positions is much more difficult. One possible
solution consists in defining an ontology of symbolic locations as done
for example in Millard et al. [40]. This ontology defines classes, such as
country, city, street, building, floor, and room, using the Ontology Web
Language (OWL) [39]. An ontology-based representation of symbolic loca-
tions also allows some simple forms of reasoning. Mapping between
physical and symbolic locations is generally executed by an external
spatial-aware application.

Localization techniques differ in many aspects, such as the accuracy
of the provided position, the physical medium exploited for determining
location, and power and infrastructure requirements. Probably, the most
renowned outdoor positioning technology is the global position system
(GPS). GPS is a worldwide positioning infrastructure formed by 24 satel-
lites, together with ground stations in charge of maintaining the precise
position of satellites. Satellites transmit signals encoded with timing infor-
mation obtained from an atomic clock. Signals are used by GPS receivers
to calculate their position by means of

trilateration

. Basically, to determine
its position, a GPS receiver uses an estimate of the distance from four or
more satellites, obtained analyzing the travel time of radio signals. Given
the particular nature of these signals, the GPS technology is generally
unavailable indoors. From the user’s perspective, GPS receivers are small,
relatively economical widgets integrated into vehicles and mobile devices
or easily connectable to mobile devices through a wireless link (usually
a Bluetooth connection). The communication between GPS receivers and
mobile devices is based on the NMEA standard. GPS accuracy can vary
depending on a number of factors, including the particular receiver,
electronic interferences, atmospheric effects, and the presence of tall
buildings or other surfaces that reflect signals before they reach the
receiver. Currently, low-cost GPS receivers have an accuracy of 10 meters
or less. Even if GPS accuracy is not a problem for a number of location-
based services, various modifications to the basic GPS technology have
been devised for improving accuracy (e.g., DGPS and AGPS [7]).

AU3833_C34.fm Page 912 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments

■

913

A method that offers lower accuracy with respect to GPS but is available
both outdoors and indoors is cell ID. Cell ID exploits the GSM base station
to which the user is connected for approximating the user’s position. As
a consequence, accuracy depends on the cell size and varies from hundreds
of meters in densely populated urban areas to tens of kilometers in rural
areas. The main advantage of this technique, currently used by many
operators, is that it is employable with no modifications to the network
infrastructure, and it does not require new functionalities to be added to
mobile devices; however, the localization accuracy provided by this tech-
nique is inadequate for a number of location-based services, and various
improvements have been proposed for increasing its accuracy [1].

One of the first indoor positioning infrastructures, Active Badge [49],
was developed between 1989 and 1992 at Olivetti Research Labs. The
Active Badge proximity system is based on infrared transmitters carried
by people and receivers located in buildings that are in charge of deter-
mining symbolic locations (typically, the room that people are in). More
recently, similar techniques have been proposed that adopt ultrasound
instead of infrared beacons and determine the location of users and objects
by means of triangulation, thus obtaining greater accuracy. In the Active
Bat system [27], the user’s location is calculated by a centralized module
that collects and analyzes data retrieved from sensors. In contrast, the
Cricket system [44] utilizes emitters that are spread in the environment,
and user-side widgets are in charge of receiving beacons and performing
triangulation, thus protecting the user’s privacy.

Radiofrequency identification (RFID) systems utilize a set of readers
that can read data through electromagnetic transmission from RFID tags.
RFID tags can be either active or passive. Active tags have radio capabilities
and ranges of up to hundreds of meters. Passive tags only reflect signals
received from readers; thus, their communication range is smaller, but
passive tags are considerably less expensive than active ones. The advan-
tage of RFID systems is that they are easily deployable and tags are
relatively inexpensive.

Other approaches have tried to exploit general-purpose wireless net-
works for implementing location systems. Various techniques (e.g., RADAR
[6]) propose a solution based on WiFi networking for tracking users inside
buildings. The user’s position is determined by analyzing signal strengths
at multiple overlapping base stations that cover a certain area. Even though
such techniques have the advantage of being implementable on top of a
widespread wireless network infrastructure, the accuracy they provide is
not entirely satisfactory. As an example, the RADAR system is able to
determine the location of users to within 3 meters of their true position
with 0.5 probability. Similar considerations hold for positioning systems
deployed on top of Bluetooth network infrastructures.

AU3833_C34.fm Page 913 Thursday, August 17, 2006 3:20 PM

914 ■ Mobile Middleware

Various commercial systems (generally called location servers, such as
Microsoft’s MapPoint® location server, Geodan’s Movida location server,
and SiRF’s SiRFLoc® server) offer the opportunity to nicely integrate
location information collected by different means (e.g., GPS, cell ID).
These systems allow application providers to access location information
in a uniform way, independent of the specific technique used to derive it.

Environment Conditions

Various interesting reports exist that are focused on gathering information
about the user’s surrounding environment on the basis of sensors. The
AmbieSense (http://www.ambiesense.com/) project is based on the use
of context tags. Context tags are small electronic widgets that can be
spread all over the environment (for example, within shops, hotels,
furniture, and even clothes). They automatically send contextual informa-
tion about the surrounding environment to mobile users. Interestingly,
context tags can also be attached to users. In this case, they provide
context information about the users to which they are attached. User
context information includes sociocultural data such as a user’s interests
and status, as well as other spatiotemporal aspects. This information is of
paramount importance, because each user belongs to the sociocultural
environment of other users who interact with him.

Other projects (e.g., TEA [23]) are focused on the integration of simple
and inexpensive sensors that measure raw data, such as presence, tem-
perature, sound, and light level, to derive more complex, implicit context
conditions (e.g., the action performed by the user). An application of
similar techniques is the analysis of human eye-blinking and other factors
to determine the fatigue states of car drivers [12].

Profile-Based Delivery Platforms

Several delivery platforms that take into account users’ profile data have
been developed, by both academic and industrial groups. In this section,
we briefly present two research proposals adopting the CC/PP approach,
and we discuss the customization mechanisms of some well-known com-
mercial application servers.

CC/PP-Based Architectures

Even if CC/PP and UAProf provide a satisfactory solution to the issue of
representing both static and dynamic properties of mobile devices, cur-
rently the adoption of these technologies is not yet widespread. The key
requirement for implementing the CC/PP approach is to enable browsers

AU3833_C34.fm Page 914 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 915

to recognize the current device and communicate (through HTTP headers)
its UAProf profile to the service provider (either building the UAProf
profile from scratch or pointing to the profile stored on the vendor Web
site). Moreover, to keep parameters up to date regarding the current status
of the device, the profile should be updated on the client side by a proper
monitor application. The Dynamic Execution Layer Interface (DELI) and
the CC/PP Software Development Kit (SDK) provide two experimental
platforms supporting the CC/PP technology.

DELI [14] is an open-source Java library developed by HP Labs that
allows the resolution of HTTP requests containing references to the CC/PP
profile of the client device. DELI adopts the profile integration approach
of UAProf in that it associates a resolution rule with every attribute.
Whenever a conflict arises (i.e., when the default profile and profile diffs
provide different values for the same attribute), the resolution rule deter-
mines the value to be assigned to the attribute by considering the order
of evaluation of partial profiles. DELI is fully integrated with Cocoon, the
well-known XML-based application server.

Intel’s CC/PP SDK [13] proposes an architecture utilizing client- and
server-side modules for the management of UAProf profiles. Client-side
modules execute on Microsoft Pocket PC 2002 devices. The CC/PP profile
of the device is kept up to date by a monitoring module that is in charge
of retrieving static as well as dynamic information about the device status
and capabilities. Communication of the CC/PP profile with server appli-
cations is achieved by means of the CC/PP client proxy, which intercepts
HTTP requests (e.g., originated by the microbrowser of the device) and
inserts profile information into the HTTP headers. Server-side, the main
component of this architecture is the CC/PP Content Customization Mod-
ule, a module of the Apache Web server that is in charge of retrieving
partial profiles by analyzing the HTTP request headers and of combining
them to obtain the merged profile. This profile is used by the application
logic for adapting the content and its presentation. The CC/PP SDK
framework provides three different mechanisms for personalization. Con-
tent selection involves building different representations of the same con-
tent and choosing the most appropriate representation on the basis of
profile data. Stylesheet conversion is used for adapting XML-based content
using a different eXtensible Stylesheet Language (XSL) stylesheet for
various classes of profiles. Finally, script processing uses a script language
to dynamically build an interface suited to the profile.

Commercial Application Servers

Today, most commercial application servers provide personalization and
content adaptation solutions that take into account at least the characteristics

AU3833_C34.fm Page 915 Thursday, August 17, 2006 3:20 PM

916 ■ Mobile Middleware

of the user’s device. As an example, the personalization scheme of IBM’s
WebSphere® portal is based on the creation of Web pages and services using
XML Device-Independent Markup Extensions (XDIME). Depending on the
specific device, XDIME contents are transformed by properly predefined
eXtensible Stylesheet Language Transformations (XSLT) into the most appro-
priate format (e.g., WML, XHTML Basic), evaluating policies that take into
account the capabilities of the particular device that issued the request. The
framework also includes a repository of mobile device profiles describing
the capabilities of a broad range of terminals. Similar solutions are provided
by other well-known application servers such as BEA’s WebLogic and
OracleAS Wireless.

CARE Mobile Middleware for the
Integration of Distributed Profile Data
Taking into account the issues outlined in the introduction, we have
proposed the Context Aggregation and REasoning (CARE) middleware for
context awareness in mobile environments [2]. CARE has been defined
based on a specific list of requirements obtained by the analysis of a wide
spectrum of Internet services that would benefit from adaptation. In
particular, the requirements were identified considering the data required
for implementing highly adaptive services, the infrastructure available now
and that will be available in the near future, as well as the issues of data
privacy and accessibility. The main requirements we identified are:

■ Interoperable context representation — A representation formalism
is necessary for the specification of a very broad set of profile data
that integrates device capabilities with spatiotemporal context,
device, and network status, as well as user preferences and seman-
tically rich context data. Because such data must be exchanged
among various entities, it is highly advisable to use a standard
language, a shared vocabulary, and unambiguous semantics.

■ Support for context dynamics — It must be possible for multiple
entities (e.g., users, providers, agents) to define how some changes
in context reflect in other context data; for this reason, a repre-
sentation formalism is required for the specification of policies that
can dynamically determine the value of some profile data based
on other values. Moreover, changes in context must be asynchro-
nously communicated to the interested entities; therefore, the archi-
tecture should provide a configurable mechanism for intra-session
adaptation based on real-time updates of certain profile data (e.g.,
location).

AU3833_C34.fm Page 916 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 917

■ Support for distributed context data — Context data is naturally
provided by different sources, in some cases delivering conflicting
information. The architecture should support the distributed storage
and management of profiles and policies, with information stored
and managed close to its source.

■ Conflict resolution — The architecture should provide a mechanism
for aggregating profile data and policies from different sources that
supports a flexible and finely grained conflict-resolution mecha-
nism.

■ Privacy — The architecture should rely on an advanced system
for privacy protection that allows users to precisely control the
partial sharing of their profile data.

■ Efficiency — The time required for adaptation should not signifi-
cantly affect the final user.

Architecture Overview

Clearly, the specification and implementation of a full-fledged architecture
satisfying all of these requirements are long-term goals. The approach
illustrated here is intended to be a first step in this direction. In CARE,
three main entities are involved in the task of building an aggregated
profile: the user and the user’s devices, the network operator with its
infrastructure, and the service provider with its own infrastructure. The
architecture has been designed to handle an arbitrary number of entities.
A profile manager devoted to managing profile data is associated with
each entity, and they are referred to as the UPM, OPM, and SPPM,
respectively. We assume that the user’s location is kept up to date by an
external location server that communicates that location to the UPM. The
UPM and SPPM are also in charge of interacting with ontology services
for managing and reasoning with sociocultural contextual data. Adaptation
and personalization parameters are determined by policy rules defined
by both the user and the service provider and are managed by their
corresponding profile managers.

In Figure 34.3 we illustrate the system behavior by describing the main
steps involved in a service request. In step 1, a user issues a request to
a service provider through his device and the connectivity offered by a
network operator. The HTTP header of the request includes the Uniform
Resource Identifiers (URIs), which are used to contact the UPM and the
OPM. Then, in step 2, the service provider queries the Context Provider
module to retrieve the profile information necessary to perform adaptation.
In step 3, the same module queries the profile managers to retrieve
distributed profile data and user policies. The profile data is aggregated
by the Merge module in a single profile which is given, together with

AU3833_C34.fm Page 917 Thursday, August 17, 2006 3:20 PM

918 ■ Mobile Middleware

policies, to the Inference Engine (IE) for policy evaluation. Ontological
reasoning is performed on demand (i.e., at the time of the service request)
only if the integrated profile lacks values for the ontology-based profile
data necessary for providing the service. In this case, the Context Provider
populates the ontology with the integrated profile, performs ontological
reasoning, and adds the new context information to the integrated profile.
In step 4, the integrated profile is returned to the service provider. Finally,
profile data is used by the application logic to properly adapt the service
before it is provided (step 5).

Profile Management and Aggregation

In the following, we explain the mechanism of profile management and
address the issue of how to aggregate possibly conflicting data in a single
profile.

Profile Managers

As outlined above, each profile manager is responsible for managing
profile attributes provided by the entity it pertains to. In addition, the
UPM and SPPM manage user and service provider policies, respectively,
and can perform ontological reasoning. In particular:

■ The UPM stores information related to the user and the user’s
devices. This data includes, among other things, location, per-
sonal data, interests, sociocultural context information, and

Figure 34.3 Architecture overview and data flow upon a user request.

AU3833_C34.fm Page 918 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 919

device capabilities. The UPM periodically performs ontological
reasoning for deriving new semantically rich context information;
for example, from the user’s calendar and contacts it may be
possible to derive the user’s current activity. The UPM also manages
policies defined by the user that describe the content and presen-
tations he wants to receive under particular conditions.

■ The OPM is responsible for managing attributes describing the
current network context (e.g., available bandwidth, connection
profile, network status, user’s location).

■ The SPPM is responsible for managing service provider proprietary
data, including information about users derived from previous
service experiences, as well as adaptation policies. Similarly to the
UPM, the SPPM can also perform ontological reasoning.

Profile Representation

In our framework, we divide profile data into two classes: shallow profile
data and ontology-based profile data. We consider as shallow profile data
those attributes that can be modeled in a natural and simple way by using
attribute–value pairs, provided their semantics are clear to all entities. This
class contains data about environmental conditions and the technological
infrastructure; however, only a few attributes regarding the user and related
sociocultural information can be modeled in this way. We represent
shallow profile data by CC/PP profiles. Because existing CC/PP vocabu-
laries primarily cover only hardware, software, and network capabilities
of mobile devices, we have extended them to include a much richer set
of context information.

Unfortunately, CC/PP has many shortcomings when it comes to mod-
eling non-shallow profile data, such as user activities. Indeed, CC/PP
vocabularies define both the semantics of each attribute and the list of its
possible values by using the <rdfs:comment> resource and a description
in natural language, leading to possibly different interpretations. Moreover,
the two-level structure (components and attributes) imposed by CC/PP
greatly affects its expressive power. For representing non-shallow profile
data, a natural choice is ontologies; in fact, they have a higher expressive
power than CC/PP, and, in most cases, they offer reasoning services. The
introduction of ontologies in our framework has two main purposes: First,
public/shared ontologies support knowledge sharing among the various
involved entities. Second, ontologies are used for consistency checking of
contextual data instances and for other reasoning tasks; for example, they
are used to automatically derive, based on other context data, that the
user is busy in a specific type of activity such as “InternalMeeting.” In this
second case, ontologies can be private to a specific profile manager. We

AU3833_C34.fm Page 919 Thursday, August 17, 2006 3:20 PM

920 ■ Mobile Middleware

currently use OWL-DL [39] as the ontology language, because we want
to take advantage of the reasoning services it supports and it is becoming
a de facto standard in various application domains. However, primarily
for interoperability purposes, different from other approaches [16,48], we
decided to continue storing all of the profile data in CC/PP profiles but
to link those attributes modeling non-shallow context data to ontology
concepts that formally define their semantics. To adhere to the CC/PP
specification, the mapping between a CC/PP attribute and an ontology
concept is defined in the vocabulary that defines the attribute, using the
<rdfs:comment> resource.

Profile Aggregation and Conflict Resolution

When the Context Provider has obtained profile data from the other profile
managers, this information is passed on to the Merge module, which is
in charge of profile aggregation. Conflicts can arise when different values
are given by different profile managers for the same attribute; for example,
the UPM could assign to the Coordinates attribute a certain value x
(obtained through the GPS of the user’s device), and the OPM could
provide for the same attribute a different value y, obtained through
triangulation. To resolve this type of conflict, the service provider has to
specify resolution rules at the attribute level in the form of priorities among
entities. Priorities are defined by profile-resolution directives, which asso-
ciate with every attribute an ordered list of profile managers.

Example 1

Consider the following profile-resolution directives:

setPriority */* = (SPPM, UPM, OPM)
setPriority NetSpecs/* = (OPM, UPM,SPPM)
setPriority UserLocation/Coordinates = (UPM, OPM)

In the first one, a service provider gives highest priority to its own profile
data and lower priority to data given by the other entities; clearly, if no
value is present in the service provider profile, then the value is taken
from other profiles following the priority directive. The second and third
directives give the highest priority to the operator for network-related data
and to the user for the single Coordinates attribute, respectively. The
absence of SPPM in the third directive indicates that values for that attribute
provided by the SPPM should never be used.

AU3833_C34.fm Page 920 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 921

The semantics of priorities actually depend on the type of the attribute.
When the attribute is simple, the value to be assigned to the attribute is
the one retrieved from the first entity in the list that supplies it. When the
attribute is of type rdf:Bag, the values to be assigned are the ones
retrieved from all entities present in the list. If some duplication occurs,
only the first occurrence of the value is taken into account (i.e., we apply
union). Finally, if the type of the attribute is rdf:Seq, then the values
assigned to the attribute are the ones provided by the entities present in
the list, ordered according to the occurrence of the entity in the list. All
duplicates are removed, keeping only the first occurrence.

Policies for Supporting Adaptation

As noted earlier, policies can be declared by both the service provider
and the user. The evaluation of policies against aggregated profile data
determines the adaptation parameters applied by the service provider; for
example, the provider of a streaming service can determine the resolution
of a video considering explicit profile data such as available bandwidth
and screen resolution. Similarly, users can dynamically change their pref-
erences regarding content and presentation on the basis of some profile
data. For example, a user may prefer a visual medium (e.g., text or video)
when working on a PDA but would prefer to switch to an audio medium
when using a WAP phone.

Policy Representation

The choice of a representation language is a compromise between simplicity,
expressiveness, and efficiency. The policy language must also support the
definition of a mechanism for handling conflicts that could arise when user
and service provider policies determine different values for the same
attribute. Each policy rule can be interpreted as a set of conditions on
profile data that determine a new value for a profile attribute when satisfied.
A policy in our language is composed of a set of rules of the form:

If C1 and … and Cn, then set Ak = Vk

where Ak is an attribute, Vk is either a value or a variable, and C1 is either
a condition such as Ai = Vi or not Ai, with the meaning that no explicit
nor derived value for Ai exists; for example, the informal user policy
“When I am in the main conference room using my palm device, any
communication should occur in textual form” can be rendered by the
following policy rule:

AU3833_C34.fm Page 921 Thursday, August 17, 2006 3:20 PM

922 ■ Mobile Middleware

If location = “MConfRoom” and device = “Pda” then set
PreferredMedia = “Text.”

Rules can also be labeled, and expressions of the form R1 > R2 can
be specified to state that rule R1 has higher priority than rule R2. Because
priorities are introduced in the language only for managing conflicts
between rules, we restrict priorities to being assigned to rules setting a
value to the same attribute.

Conflicts and Resolution Strategies

Because policies can dynamically change the value of an attribute that may
have an explicit value in a profile or may be changed by some other
policies, they introduce nontrivial conflicts. They can be determined by
policies or by explicit attribute values given by the same entity or by different
entities. A categorization of possible conflicts is useful for determining the
system behavior. We summarize the desired behavior of the system, in the
presence of possible conflicts, considering each case as follows:

1. Conflict between explicit values provided by two different entities
when no policy is given for the same attribute. In this case, the
priority over entities for that attribute determines which value
prevails. This kind of conflict is totally handled by the Merge
submodule of the Inference Engine.

2. Conflict between an explicit attribute value and a policy given by
the same entity that could derive a different value. A simple exam-
ple of a conflict of this type is the use of policies to override
default attribute values when specific events occur or specific
conditions are verified. In this case, a policy given by an entity,
deriving a value for an attribute, intuitively has higher priority over
an explicit value for that attribute given by the same entity; thus,
the value derived from the policy must prevail.

3. Conflict between an explicit attribute value and a policy given by
a different entity that could derive a different value. Conflicts of
this type can occur, for instance, when a provider is not able or
does not want to agree with a user explicit preference and sets
up a policy rule to override the values explicitly given by the user.
This kind of conflict is solved by considering the priority rules
adopted earlier for explicit attribute values. Based on the priority
over entities for that attribute, if the entity giving the explicit value
has priority over the other, then the policy can be ignored; other-
wise, the policy should be evaluated and, if a value is derived,
this value prevails over the explicit one.

AU3833_C34.fm Page 922 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 923

4. Conflict between two policies given by two different entities on a
specific attribute value. Similarly to conflict 3, the priority over
entities for that attribute states the priority in firing the correspond-
ing rule. If a rule fires, no other conflicting rule from different
entities should fire.

5. Conflict between two policies given by the same entity on a specific
attribute value. When no intuitive way exists to solve such a
conflict, we assume that the entity gives a priority over these rules,
using the syntax provided by the policy language. If this is not
given, a default ordering will be used. The priority over rules for
that attribute is used to decide which one to evaluate first. If a
rule fires, no other conflicting rule from the same entity should fire.

Although the actual implementation of conflict resolution is beyond
the scope of this chapter (see Bettini and Riboni [11] for a complete
description), we outline here the rationale of the mechanism. The intuitive
evaluation strategy is to proceed, for each attribute A, from the rule having
A() in its head with the highest priority and to continue considering rules
on A() with decreasing priorities until one of them fires. If none of them
fires, the value of A is the one obtained by the Merge module on A or
none if such a value does not exist. In our case, a direct evaluation
algorithm has been devised and implemented that is linear in the number
of rules.

Intra-Session Profile Updates

The dynamic nature of some profile attribute values requires a mechanism
for keeping up to date the profile information used by the service provider
during a session. Consider the case of user profile data; although some
attributes do not change during a session (e.g., the user personal data),
other information may change depending on device status (e.g., available
memory), user interaction with the device or application (e.g., turning a
feature on or off), and user behavior (e.g., change of location). Data
owned by the network operator is possibly even more unstable. Different
mechanisms can be adopted to address this requirement, with the usual
approaches being based either on polling techniques or on asynchronous
notifications fired by triggers. Polling, especially when involving properties
of the user device, poses problems of cost and bandwidth consumption.

Our choice is to include in the CARE middleware a trigger mechanism
to obtain asynchronous feedback on specific events (e.g., available band-
width dropping below a certain threshold, user location changed by more
than 100 meters). When a trigger fires, the corresponding profile manager
sends the new values of the modified attributes to the Context Provider

AU3833_C34.fm Page 923 Thursday, August 17, 2006 3:20 PM

924 ■ Mobile Middleware

module, which should then reevaluate the profile attributes. Referring to
the steps of a typical service request described earlier, this is equivalent
to restarting the process from step 3. Of course, various optimizations are
possible to avoid recomputing those values that are completely indepen-
dent from the changed attributes. Figure 34.4 illustrates the trigger mech-
anism. To ensure that only useful update information is sent to the service
provider, a deep knowledge of the service characteristics and requirements
is needed. As a consequence, the conditions for notifications are set by
the service provider’s application logic and are communicated (in their
entirety at the beginning of the session and as updates during the session)
to the Context Provider module, which forwards them to the appropriate
profile managers. Because most of the events monitored by trigger settings
sent to the UPM are generated by the user device, our choice is to have
the UPM properly communicate the settings to a server module resident
on the user’s device. To keep the information owned by the UPM up to
date, a specific software module must be running on the user’s device,
monitoring its state accordingly to the triggers and communicating values
to the UPM when necessary.

Case Study

To test the CARE middleware, we have developed various prototype
services that take advantage of it; as an example, an adaptive architec-
ture for the management of context-aware points of interest has been
demonstrated in Agostini et al. [3]. In this section, we illustrate a Web-
based adaptive proximity marketing service [2]. The prototype service

Figure 34.4 Trigger mechanism.

AU3833_C34.fm Page 924 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 925

we developed is an adaptive proximity marketing Web application. The
main goal of the service is to provide personalized, location-aware adver-
tisements for sales on items contained in a user’s personal shopping list.
Items in the shopping list are ranked according to the distance of shops
that have them on sale. When the user clicks on an item, the service
shows a Web page providing multimedia information about the target
product. Multimedia contents are further adapted considering the user’s
device and network conditions. We want to point out that we were not
the first to consider such a service (see, for example, ELBA [19]); as a
matter of fact, our emphasis is on service adaptation, based on both user
and service provider policies. The service discriminates between users as
being either paying or non-paying service subscribers. Non-paying sub-
scribers also receive unsolicited advertisements regarding items that are
not on their shopping list but are chosen by standard Customer Relation-
ship Management (CRM) software that considers the explicit preferences
of the user as retrieved from the aggregated profile. Currently, the service
is browser based and provided on a per-request basis. The list of ads is
periodically refreshed, and the refresh interval is dynamically chosen by
the server application on the basis of context.

In the following, we report one of the test cases we have considered
to illustrate some of the profile-resolution directives and policies that
determine the adaptation parameters. We consider the case of John, a
hypothetical user strolling around a hypothetical town with a PDA in his
hands. The town is divided into bidimensional cells identified by pairs of
coordinates. We assume that some of the cells are covered by a GPRS
connectivity service (providing low bandwidth), and others by a broad-
band WiFi HotSpot service. Movements of our user and context changes
are simulated. The service continuously adapts to John’s changes of context
(e.g., location, network conditions, time of the day), showing different
ads and properly adapting the presentation.

Profile-Resolution Directives

Directive 4 in Figure 34.5 is an example of a profile-resolution directive.
In this case, the directive is intended to solve conflicts due to different
estimations of the user’s current speed given by different entities. The
service provider gives higher confidence to the value provided by the
UPM, because speed can be estimated very precisely by user-side sensors
(e.g., supplied by car appliances or GPS-enabled devices). If no value for
speed is given by the user, the value provided by the operator (if present)
is taken into account; otherwise, the value inferred by the service provider
analyzing the history of the user’s location is chosen.

AU3833_C34.fm Page 925 Thursday, August 17, 2006 3:20 PM

926 ■ Mobile Middleware

User and Service Provider Policies

Suppose John declares policy 6 in Figure 34.5 to request high-quality
multimedia content when using his PDA; similarly, service providers can
declare policies for determining content and presentation directives. Pos-
sibly conflicting policy 7 is declared by the service provider, who wants
to deliver low-quality multimedia contents when the available bandwidth
drops below a certain threshold. Policies can also be declared to enrich
the profile; in our scenario, policy 8 induces the phase of the day based
on the current time. The refresh rate of the service is determined by
policies 10, 11, and 12. Policy 10 determines a long refresh interval when
the user is moving slowly; policy 11 shortens the refresh interval when
the user is moving fast; and policy 12 sets the refresh interval to infinite
(thus disabling the service) when the user is close to home and presumably
already knows the shops in the area.

A Specific Scenario

In this section, we illustrate via a simple scenario the resulting behavior
of the system determined by the evaluation of profile-resolution directives
and policies. Suppose John decides to go shopping downtown in the
morning. His personal shopping list is stored on his UPM together with
the rest of his profile data. At first, he activates the local proxy that will
attach profile manager references to each service request (see Figure

Figure 34.5 Excerpt of profile-resolution directives and policies.

AU3833_C34.fm Page 926 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 927

34.6A). Suppose also that he starts the service by accessing the proximity
marketing Web page. After profile data is gathered from the network by
the SPPM, the Merge module obtains two different values for the Coor-
dinates attribute: One is provided by John’s GPS device, and the other is
provided by the network operator on the basis of the user’s current cell.
Applying resolution directive 2, the Merge module keeps only the value
provided by the user’s GPS.

Suppose John hates unsolicited advertisements and therefore sets the
value to “No” for the AllowRecommendations attribute on his UPM; how-
ever, because he is a non-paying service subscriber, policy 9 fires, over-
riding his explicit preference. Note that this override is due to profile-
resolution directive 1, which gives higher priority to the service provider
for this attribute. As a consequence, on top of the list of ads, John receives
a couple of recommendation messages (Figure 34.6B). While looking at
the list, John notices an interesting last-minute offer by a nearby travel
agency regarding Cancun, one of his preferred destinations. When John
selects the corresponding link, evaluation of policy 6 sets the attribute
MediaQuality to “High,” thus adapting the service to deliver a high-quality
multimedia presentation of the resort (Figure 34.6C). John also receives
a map to the travel agency (Figure 34.6D). Note that policy 7 cannot fire,
because John is currently in a WiFi hot-spot. John is walking, so his speed
(estimated by his GPS-enabled PDA) is slow and policy 10 fires; thus, the
list is updated every 15 minutes.

Figure 34.6 Screenshots of the Web application prototype.

AU3833_C34.fm Page 927 Thursday, August 17, 2006 3:20 PM

928 ■ Mobile Middleware

At 12 p.m., while John is still downtown, the list of advertisements he
receives is quite different. Restaurant recommendations appear at the top
of the list (see Figure 34.6E). This change in the list is due to the service
provider’s policy 8, which based on current time sets the value of the
Phase attribute to “noon” and the application logic adds the restaurant
category on top of the user’s inferred interests. Although restaurants were
not included in his explicit interests, John is particularly attracted by an
advertisement regarding a sushi bar. Note that, when not explicitly present
in profile data, preference criteria among restaurants may be derived in
various ways; for example, a guess regarding John’s culinary preference
for sushi bars may be made by finding in his profile an interest in oriental
culture. When John selects the “Sushi Bar” link, this time he receives a
low-resolution map for reaching the restaurant (see Figure 34.6F). This is
due to the fact that WiFi connectivity is not available in the current location,
and policy 7 can fire; note that policy 6 could also fire, creating a conflict
regarding the value of the MediaQuality attribute. This conflict is solved
by the IE module by considering profile-resolution directive 3, which gives
higher priority to the service provider for that attribute; for this reason,
policy 7 fires and the attribute MediaQuality is set to “Low.”

After lunch, John decides to go back home; while in the taxi, his rate
of movement makes policy 11 fire, determining a refresh interval of 3
minutes. When the taxi enters John’s neighborhood, policy 12 can also
fire, thus deriving the value of “Infinite” for the RefreshTime attribute and
conflicting with policy 11. Once again, the conflict is resolved by the IE
considering the profile-resolution directive for the attribute. In this case,
directive 5 gives higher priority to the user, so the value determined by
his policy 12 overrides the value of the service provider’s policy 11,
disabling the service.

Alternative Middleware Proposals
Many research groups and companies have been working to define and
implement middleware for supporting service adaptation and personaliza-
tion in a multiple-device, mobile environment. The Houdini middleware
[30], developed at Bell Labs, has the main goal of efficiently enabling
context-aware mobile applications while preserving the user’s privacy. In
Houdini, the sharing of context information is controlled by policies
declared by the user. The key component of the architecture is a module
that evaluates the requests of profile data issued by service providers
against the privacy policies declared by the user. The Houdini policy
language and the conflict-resolution strategy of its inference engine are
similar to ours; however, because it is primarily focused on adaptation,

AU3833_C34.fm Page 928 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 929

our policy mechanism is different, as policies are declared by both the
user and the service provider to determine customization parameters, and
the privacy of data is ensured by the appropriate UPM module. From an
architectural point of view, in Houdini the profile information is divided
into two categories: static data (e.g., personal data, buddies list, address
book, calendar) and dynamic data (e.g., preferences, location, device
status). These classes of data, provided by various sources, are handled
by two distinct modules that are responsible for their integration on a
per-request basis. In our architecture, a single Merge module is in charge
of integrating distributed context data and solving possible conflicts.

CARMEN [8] is a middleware for supporting context-aware mobile
computing. In CARMEN, service access is mediated by context-aware
mobile proxies. These intermediate proxies execute directives obtained
from Ponder [17] policies, which manage migration, binding, and access
control. The Ponder language turns out to be a good choice for the
class of policies used in this middleware; our policy language, although
less expressive, is well suited for adaptation rules, as it is extremely
efficient and has mechanisms for solving conflicts. CARMEN adopts a
profile management mechanism that is different from ours, as profile
data is stored by Lightweight Directory Access Protocol (LDAP)-com-
pliant directory services, but in our framework we make use of CC/PP
repositories.

A further interesting architecture for supporting context-aware systems
in mobile environments is the Context Broker Architecture (CoBrA) [15].
Context awareness in CoBrA is based on a formal model of context —
represented by an OWL ontology [16] — that is shared by all the system
components. The Context Broker module is in charge of gathering context
information from sensors spread throughout the environment. The Context
Broker Inference Engine performs ontology-based reasoning to derive
new context information from raw data and to detect and resolve incon-
sistencies in profile data. The privacy-enforcing mechanism of CoBrA is
based on ontologies, as well; in particular, privacy policies are represented
through an extension of the Rei [32] policy language. It is worth noting
that, because the main goal of this architecture is to support knowledge
sharing and interoperability in ambient intelligence scenarios, reasoning
efficiency is not the main focus of this work. In contrast, because our
middleware is intended to support the provision of Internet services
possibly accessed by a huge number of users at a time, we per form
ontological reasoning in advance of the service provision to preserve
system scalability.

Service-Oriented Context-Aware Middleware (SOCAM) [25] supports con-
text-aware services in intelligent environments similar to CoBrA, because
its context model is also based on ontologies. In particular, the adopted

AU3833_C34.fm Page 929 Thursday, August 17, 2006 3:20 PM

930 ■ Mobile Middleware

ontology [48] is composed of a general-purpose upper ontology and
application-specific lower ontologies. Context reasoning is performed to
check the consistency of context information and to derive higher level
context information, and it is based on both description logic and user-
defined logic rules. Experiments have shown that this reasoning approach
is computationally expensive and unfeasible for time-critical applications
that make use of a huge amount of context information. Rules in SOCAM
are declared by a single entity (which can be the final user or a service
provider), and rule inconsistencies are not addressed; thus, a scenario in
which service constraints and user preferences interact (the major focus
of our work) is not considered in this architecture.

An architecture for the user-side adaptation of applications in a mobile
environment is described in Efstratiou et al. [18]. This architecture contains
a single profile manager, which is in charge of discovering context services
(i.e., services that provide profile data). Context data is kept up to date
on the profile manager by means of asynchronous notifications of changes
sent by context services. An Adaptation Control module on the user device
is in charge of evaluating adaptation policies against profile data, modifying
the behavior of local applications as necessary. Policies are declared by
users who define priorities among applications as well as among the
resources of their devices; consequently, the behavior of applications is
adapted to obtain the optimal level of service with respect to the user’s
requirements. It is worth noting that this architecture does not support
server-side adaptation.

Riché and Brebner [46] proposed a different approach to profile man-
agement that implements a distributed and replicated storage system on
user devices. This approach is useful for preserving the privacy of data;
however, the intermittent connectivity of mobile devices, along with their
limited CPU, storage, and power resources, makes it difficult to guarantee
the availability of profiles, even if sophisticated techniques are adopted.

Open Issues and Challenges
Several issues, both practical and theoretical, still have to be investigated
further to make advanced distributed profiling an effective and viable
solution for service adaptation. We identify the following as the main open
issues:

■ Automatic recognition and representation of complex profile
attributes

■ Preservation of privacy for personal user data including location
data

AU3833_C34.fm Page 930 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 931

■ Optimization and caching techniques to provide real-time inte-
grated profile data

■ Scalability with respect to the number of users and profile managers

In this section, we briefly discuss the first two issues, which are probably
the most challenging ones and involve more theoretical aspects. The third
issue requires: (1) optimization of the algorithms for conflict resolution
and policy evaluation, and (2) addressing the crucial issue of devising
caching techniques and algorithm refinements to reduce the time delay
due to network latency when retrieving profile data from remote sources.
The last issue is also relevant because the middleware should be able to
scale to a large number of users and profile managers. This issue also
requires extensive realistic experiments, possibly using synthetic data from
profile generators and movement trace generators, as well as simple real-
user testbeds.

Ontologies and Ontological Reasoning

As mentioned earlier in this chapter, the development of profile represen-
tations that are far more expressive than CC/PP is necessary. Our favorite
example is the representation of user activities, but many other complex
profile attributes call for more expressive definitions. Ontologies are a
natural candidate, as they are emerging for a variety of services, such as
knowledge sharing and semantics disambiguation, which are very relevant
even in the context we are considering.

We have two main concerns with the use of current ontology languages
for the representation of complex profile attributes and their automatic
recognition: (1) expressiveness and (2) efficiency of reasoning. Regarding
expressiveness, we encountered several difficulties when trying to use the
well-known ontology language OWL [39] (a W3C-recommended language)
to represent user activities. In particular, OWL is very weak in reasoning
with properties, as it lacks a constructor for property composition. A
typical example is that in OWL it is not possible to define “uncle” as a
composite of “parent” and “brother.” It also lacks the ability to express
feature agreement; for example, it is not possible to force the value of
the property “has-employer” to be the same in a class of persons (without
specifying which one) to represent “colleagues.” This is essentially due
to the fact that the underlying description logic does not support role-
value maps, not even in limited forms that preserve decidability [5].
Another relevant issue regarding expressiveness is the lack of support for
the representation of rules and the integration of rule-based reasoning
with ontological (subsumption-based) reasoning.

AU3833_C34.fm Page 931 Thursday, August 17, 2006 3:20 PM

932 ■ Mobile Middleware

The introduction of first-order rules into OWL would greatly augment
the expressiveness of the language, and a number of projects are currently
addressing this issue [22,29]; for example, the Semantic Web Rule Language
(SWRL) is based on a combination of OWL-DL with the Unary/ Binary
Datalog RuleML sublanguages of the Rule Markup Language (RuleML). In
SWRL, the set of OWL axioms is augmented with Horn-like rules, where
unary and binary predicates correspond to OWL classes and properties,
respectively. A prototype implementation has been developed. Unfortu-
nately, the introduction of rules into OWL or even OWL-DL can easily
lead to the undecidability of the basic reasoning tasks, making languages
such as SWRL unsuited for real-time services that make use of large and
complex ontologies.

Efficient reasoning with ontologies is indeed the second general con-
cern mentioned above. Very good progress has been made in recent years
in the development of modal logic theorem provers that can be used to
compute subsumption and related reasoning tasks in ontologies. However,
the underlying reasoning problems are inherently difficult, and the clas-
sification task becomes unfeasible in real time even for small- to medium-
size ontologies and not very expressive languages such as OWL-Lite [26].

Privacy Issues

Another major issue involved in advanced distributed profiling is the
privacy of user data. The two main approaches to privacy preservation
are enforcement of privacy policies and the use of anonymization tech-
niques. The first approach essentially considers each request for access
to personal information and decides whether or not to grant or deny
access based on a specific policy. Policies usually consider the entity
making the request, the information requested, and the modality of the
access; in the case of mobility, spatiotemporal conditions may also be
considered. In our architecture, the distribution of user profile data may
be restricted by such a set of privacy policy rules enforced at each profile
manager. For example, a set of UPM policies could allow the user client
interface and user trusted agents to update personal data and policies,
allow the user GPS module to update location data, and allow a set of
service provider profile managers to read the profile attribute values in
certain CC/PP components. Note that profile managers are considered
trusted agents by their corresponding entities. Several formalisms that have
been proposed for database access control can be easily adapted to the
context we are considering [31]. Extensions to these basic models that
have been proposed by Bertino et al. [9] include temporal constraints that
specify periodic time windows where access is denied or accepted, as

AU3833_C34.fm Page 932 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 933

well as qualitative temporal relationships among accesses (using operators
such as aslongas, whenevernot, and until).

The presence of spatiotemporal constraints in policies to preserve
mobile user privacy has been recently identified as a requirement by
Youssef et al. [50]. They propose an access control system for moving
objects and customer profiles where each access rule is composed of a
triple <s, o, +/–> and a spatiotemporal constraint <stc>. The triple specifies
the subject (s), which may be a specific service provider; the object (o),
which may be a specific user profile; and a flag (+/–) specifying if it is
a positive or negative access rule. The implicit access mode is read. The
constraint <stc> defines the spatiotemporal context of access rule appli-
cation, and it is composed of a location and a time interval. For simplicity
in the definition of rules, the rule components can be defined at different
levels of granularity. Although this is still a preliminary study, it is an
example of adapting the general idea of database access control to the
release of mobile users’ profile data. This approach can probably be
applied without much effort to the middleware described earlier.

A general concern about the access control approach is the Boolean
result returned by the evaluation of rules at each access request. The access
is either granted or denied; this means the entire profile is either released
or not released, and, in some cases, the denial may lead to loss of service.
Bettini et al. [10] proposed an extension to the classical approach by
introducing conditional granting. In such a model, the access can be
granted provided the requester satisfies some conditions at the time of
access and accepts fulfilling certain obligations in the future — for example,
notifying the owner when the information is used for certain purposes.

A totally different approach is based on anonymization [24,47]. In this
case, instead of denying access to the information, the information is
properly manipulated so it preserves a form of anonymity. The main idea
here is to make it impossible for any sensitive information released to an
untrusted entity to be connected by this entity to the specific individual
to which it refers; that is, it should be impossible for this entity to
distinguish among k individuals to whom the released information poten-
tially refers. This can be achieved by appropriate middleware using
pseudonyms instead of real user names, hiding real network addresses,
and appropriately obfuscating information that may reveal the identity of
the user. Obfuscation techniques are usually based on generalization of
values using, for example, granularity hierarchies, or they can be based
on truncation of values. As trivial examples, consider the truncation of
Zip Codes to three or four digits, the truncation of Social Security numbers
or phone numbers, as well as the obfuscation of location data by, for
example, releasing the name of the closest city instead of the precise GPS
coordinates.

AU3833_C34.fm Page 933 Thursday, August 17, 2006 3:20 PM

934 ■ Mobile Middleware

We believe that it would be very interesting and challenging to further
investigate, in the context of advanced profiling for mobile users, both
the access control and the anonymization approaches and their possible
integration in a single privacy protection solution.

Acknowledgments
The authors wish to thank Dario Maggiorini and Nicolò Cesa-Bianchi for
their contributions to the general design of the CARE middleware and all
the students and professional programmers who worked at its implemen-
tation. This work has been supported by Italian MIUR (FIRB “Web-Minds”
project N.RBNE01WEJT_005).

References
[1] Adusei, I.K., Kyamakya, K., and Jobmann, K., Mobile positioning technol-

ogies in cellular networks: an evaluation of their performance metrics, in
Proc. of Military Communications Conf. (MILCOM 2002), Orlando, Fl, Octo-
ber 7–10, 2002, pp. 1239–1244.

[2] Agostini, A., Bettini, C., Cesa-Bianchi, N., Maggiorini, D., Riboni, D. et al.,
Towards highly adaptive services for mobile computing, in Proc. of IFIP
TC8 Working Conf. on Mobile Information Systems (MOBIS 2004), Oslo,
Norway, September 15–17, 2004, pp. 121–134.

[3] Agostini, A., Bettini, C., and Riboni, D., Demo: ontology-based context-
aware delivery of extended points of interest, in Proc. of the 6th Int. Conf.
on Mobile Data Management (MDM’05), Aiya Napa, Cyprus, May 9–13,
2005, pp. 322–323.

[4] Ardissono, L. and Goy, A., Tailoring the interaction with users in Web stores,
User Modeling User-Adapted Interaction (UMUAI), 10, 251–303, 2000.

[5] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., and Patel-Schneider,
P.F., Eds., The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, Cambridge, U.K., 2003.

[6] Bahl, P. and Padmanabhan, V.N., RADAR: an in-building RF-based user
location and tracking system, in Proc. IEEE INFOCOM’00, Tel Aviv, Israel,
March, 2000, pp. 775–784, 2000.

[7] Bajaj, R., Ranaweera, S., and Agrawal, D.P., GPS: location-tracking technol-
ogy, IEEE Comput., 35(4), 92–94, 2002.

[8] Bellavista, P., Corradi, A., Montanari, R., and Stefanelli, C., Context-aware
middleware for resource management in the wireless Internet, IEEE Trans.
Software Eng., 29(12), 1086–1099, 2003 (special issue on wireless Internet).

[9] Bertino, E., Bettini, C., Ferrari, E., and Samarati, P., An access control model
supporting periodicity constraints and temporal reasoning, ACM Trans.
Database Syst., 23(3), 231–285, 1998.

AU3833_C34.fm Page 934 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 935

[10] Bettini, C., Jajodia, S., Wang, X., and Wijesekera, D., Provisions and obli-
gations in policy rule management, J. Network Syst. Manage., 11(3), 351–372,
2003.

[11] Bettini, C. and Riboni, D., Profile aggregation and policy evaluation for
adaptive Internet services, in Proc. of the First Int. Conf. on Mobile and
Ubiquitous Systems: Networking and Services (MobiQuitous’04), Boston, MA,
August 22–26, 2004, pp. 290–298.

[12] Bittner, R., Smrcka, P., Vysok’y, P., Hána, K., Pousek, L., and Schreib, P.,
Detecting fatigue states of a car driver, in Proc. of Int. Symp. on Medical
Data Analysis (ISMDA 2000), Frankfurt, Germany, September 29–30, 2000,
pp. 260–273.

[13] Bowman, M., Chandler, R.D., and Keskar, D.V., Delivering Customized
Content to Mobile Device Using CC/PP and the Intel CC/PP SDK, Technical
Report, Intel Corp., Santa Clara, CA, 2002.

[14] Butler, M., Giannetti, F., Gimson, R., and Wiley, T., Device independence
and the Web, IEEE Internet Comput., 6(5), 81–86, 2002.

[15] Chen, H., Finin, T., and Joshi, A., Semantic Web in the context broker
architecture, in Proc. of the Second IEEE Int. Conf. on Pervasive Computing
and Communications (PerCom 2004), Orlando, FL, March, 2004, pp.
277–286.

[16] Chen, H., Perich, F., Finin, T.W., and Joshi, A., SOUPA: standard ontology
for ubiquitous and pervasive applications, in Proc. of the First Int. Conf. on
Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04),
Boston, MA, August 22–26, 2004, pp. 258–267.

[17] Damianou, N., Dulay, N., Lupu, E., and Sloman, M., The Ponder policy
specification language, in Proc. of the 2nd IEEE Workshop on Policies for
Distributed Systems and Networks (Policy 2001), Bristol, U.K., January, 2001,
pp. 18–38.

[18] Efstratiou, C., Cheverst, K., Davies, N., and Friday, A., An architecture for
the effective support of adaptive context-aware applications, in Proc. of the
Second Int. Conf. on Mobile Data Management (MDM’01), Hong Kong, Jan-
uary, 2001, pp. 15–26.

[19] European Location Based Advertising (ELBA), European Project No. IST-
2001-36530, http://www.e-lba.com/.

[20] Finin, T.W. and Drager, D., A general user modeling system, in Proc. of the
6th Canadian Conf. on Artificial Intelligence, Montreal, Canada, pp. 24–29,
1986.

[21] Fink, J. and Kobsa, A., A review and analysis of commercial user modeling
servers for personalization on the World Wide Web, User Modeling User-
Adapted Interaction (UMUAI), 10, 209–249, 2000.

[22] Gandon, F.L., Sheshagiri, M., and Sadeh, N.M., ROWL: Rule Language in
OWL and Translation Engine for JESS, Technical Report, Carnegie Mellon
University, Pittsburgh, PA, 2004.

[23] Gellersen, H.-W., Schmidt, A., and Beigl, M., Multi-sensor context awareness
in mobile devices and smart artifacts, MONET, 7(5), 341–351, 2002.

AU3833_C34.fm Page 935 Thursday, August 17, 2006 3:20 PM

936 ■ Mobile Middleware

[24] Gruteser, M. and Grunwald, D., Anonymous usage of location-based services
through spatial and temporal cloaking, in Proc. of the First Int. Conf. on
Mobile Systems, Applications, and Services (MobiSys’03), San Francisco, CA,
May, 2003, pp. 42–47.

[25] Gu, T., Wang, X.H., Pung, H.K., and Zhang, D.Q., An ontology-based context
model in intelligent environments, in Proc. of Communication Networks
and Distributed Systems Modeling and Simulation Conf. (CNDS’04), San
Diego, CA, January 2004.

[26] Guo, Y., Pan, Z., and Heflin, J., An evaluation of knowledge base systems
for large OWL datasets, in Proc. of the Third Int. Semantic Web Conf.
(ISWC’04), Hiroshima, Japan, November 7–11, 2004, pp. 274–288.

[27] Harter, A., Hopper, A., Steggles, P., Ward, A., and Webster, P., The anatomy
of a context-aware application, in Proc. of the 5th ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MOBICOM’99), Seattle, WA, August,
1999, pp. 59–68.

[28] Hightower, J. and Borriello, G., Location systems for ubiquitous computing,
IEEE Comput., 34(8), 57–66, 2001.

[29] Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., and Dean,
M., SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
W3C Member Submission, World Wide Web Consortium (W3C), May 2004
(http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/).

[30] Hull, R., Kumar, B., Lieuwen, D., Patel-Schneider, P., Sahuguet, A. et al.,
Enabling context-aware and privacy-conscious user data sharing, in Proc.
of the 5th Int. Conf. on Mobile Data Management (MDM’04), Berkeley, CA,
January 19–22, 2004, pp. 187–198.

[31] Jajodia, S., Samarati, P., Sapino, M.L., and Subrahmanian, V.S., Flexible
support for multiple access control policies, ACM Trans. Database Syst.,
26(2), 214–260, 2001.

[32] Kagal, L., Finin, T.W., and Joshi, A., A policy language for a pervasive
computing environment, in Proc. of the 4th IEEE Workshop on Policies for
Distributed Systems and Networks (Policy 2003), Como, Italy, June, 2003,
pp. 63–75.

[33] Kazantzidis, M., Slain, I., Chen, T., Romanenko, Y., and Gerla, M., End-to-
end versus explicit feedback measurement in 802.11 networks, in Proc. of
the 7th IEEE Int. Symp. on Computers and Communications (ISCC’02),
Taormina, Italy, July, 2002, pp. 429–434.

[34] Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., and
Tran, L., Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies 1.0, W3C Recommendation, World Wide Web Consortium (W3C),
2004, http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/.

[35] Kobsa, A., Generic user modeling systems, User Modeling User-Adapted
Interaction (UMUAI), 11, 49–63, 2001.

[36] Kobsa, A. and Pohl, W., The BGP-MS user modeling system, User Modeling
and User-Adapted Interaction (UMUAI), 4(2), 59–106, 1995.

[37] Lai, K. and Baker, M., Measuring bandwidth, in Proc. IEEE INFOCOM’99,
New York, March, 1999, pp. 235–245.

AU3833_C34.fm Page 936 Thursday, August 17, 2006 3:20 PM

Integrated Profiling of Users, Terminals, and Provisioning Environments ■ 937

[38] Maggiorini, D. and Riboni, D., Continuous media adaptation for mobile
computing using coarse-grained asynchronous notifications, in Proc. of Int.
Symp. on Applications and the Internet (SAINT2005), Trento, Italy, January
31–February 4, 2005, pp. 162–165.

[39] McGuinness, D.L. and van Harmelen, F., OWL Web Ontology Language,
W3C Recommendation, World Wide Web Consortium (W3C), 2004, http://
www.w3.org/TR/owl-features/.

[40] Millard, I., Roure, D.D., and Shadbolt, N., The use of ontologies in contex-
tually aware environments, in Proc. of UbiComp’04 First Int. Workshop on
Advanced Context Modelling, Reasoning and Management, Nottingham,
U.K., September, 2004, pp. 42–47.

[41] Ohto, H. and Hjelm, J., CC/PP Exchange Protocol, W3C Note, World Wide
Web Consortium (W3C), 1999, http://www.w3.org/1999/06/NOTE-CCPPex-
change-19990624.

[42] OpenMobileAlliance, User Agent Profile Specification, Technical Report WAP-
248-UAProf20011020-a, Wireless Application Protocol Forum, 2001, http://
www.openmobilealliance.org/.

[43] Prasad, R.S., Murray, M., Dovrolis, C., and Claffy, K., Bandwidth estimation:
metrics, measurement techniques, and tools, IEEE Network, 17(6), 27–35, 2003.

[44] Priyantha, N.B., Chakraborty, A., and Balakrishnan, H., The Cricket location-
support system, in Proc. of the 6th ACM/IEEE Int. Conf. on Mobile Computing
and Networking (MOBICOM’00), Boston, MA, August, 2000, pp. 32–43.

[45] Resnick, P., Iacovou, N., Sushak, M., Bergstrom, P., and Riedl, J., GroupLens:
an open architecture for collaborative filtering of netnews, in Proc. of the
Fifth Conf. on Computer Supported Cooperative Work (CSCW’94), Chapel
Hill, NC, October 22–26, 1994, pp. 175–186.

[46] Riché, S. and Brebner, G., Storing and accessing user context, in Proc. of
the Fourth Int. Conf. on Mobile Data Management (MDM’03), Melbourne,
Australia, January, 2003, pp. 1–12.

[47] Samarati, P., Protecting respondents’ identities in microdata release, IEEE
Trans. Knowledge Data Eng., 13(6), 1010–1027, 2001.

[48] Wang, X.-H., Gu, T., Zhang, D.Q., and Pung, H.K., Ontology-based context
modeling and reasoning using OWL, in Proc. of the Second IEEE Int. Conf.
on Pervasive Computing and Communications (PerCom 2004), Orlando,
FL, March, 2004, pp. 18–22.

[49] Want, R., Hopper, A., Falcao, V., and Gibbons, J., The active badge location
system, ACM Trans. Inform. Syst., 10(1), 91–102, 1992.

[50] Youssef, M., Atluri, V., and Adam, N.R., Preserving mobile customer privacy:
an access control system for moving objects and customer profiles, in Proc.
of the 6th Int. Conf. on Mobile Data Management (MDM’05), Aiya Napa,
Cyprus, May 9–13, 2005.

[51] Mutz, A., Montulli, L., and Masinter, L., User-Agent Display Attributes Head-
ers, HTTP Working Group, 1996, http://mirrors.isc.org/pub/www.water-
springs.org/pub/id/draft-mutz-http-attributes-00.txt.

AU3833_C34.fm Page 937 Thursday, August 17, 2006 3:20 PM

AU3833_C34.fm Page 938 Thursday, August 17, 2006 3:20 PM

939

Chapter 35

QoS-Aware Resource
Discovery in Mobile

Environments

Yun Huang, Shivajit Mohapatra, Qi Han,
and Nalini Venkatasubramanian

CONTENTS

Introduction... 940
A Mediation-Based Architecture for Resource Discovery.................................... 942
Adaptive Context Collection for Effective Resource Discovery.......................... 945

Collection and Maintenance of Location Information for Mobile Hosts....... 946

Static Resource Discovery .. 949
Case Study: Using Grid Resources as
Proxies for Mobile Multimedia Applications .. 951

Designing a Grid Resource Discovery Algorithm............................. 951
The Role of Device Constraints in Resource Discovery............................ 954

Dynamic Resource Reprovisioning.. 957
Dynamic Changes in Proxy Resources ... 958
Disconnections/Fluctuations in Wireless Networks 959
Fluctuations at the Mobile Device... 962
Dynamic Changes in Device/User Mobility.. 963

Summary.. 964
References ... 965

AU3833_C35.fm Page 939 Thursday, August 17, 2006 4:46 PM

940

■

Mobile Middleware

Introduction

Recent advances in high-quality digital wireless network technologies
coupled with the unprecedented growth of mobile computing devices,
such as personal digital assistants, laptop computers, mobile phones, etc.,
are enabling new classes of mobile applications with diverse quality-of-
service (QoS) requirements. Today, mobile applications span a variety of
domains — from business and entertainment to education, command and
control, and crisis response [1–3]. Mobile gaming, audio/video streaming,
and collaborative multimedia applications are becoming ubiquitous and
are projected to be the dominant applications in next-generation mobile
systems. These applications have distinctive performance and processing
requirements that tend to make them extremely resource hungry. They
also have diverse QoS requirements that determine the utility of the
(perceived) information to the end user. QoS needs can be expressed as
user-perceived quality needs (e.g., video quality) that translate into lower
level application/system parameters. In addition, QoS statements may
specify constraints on timing, availability, security, and resource utilization
at various levels of abstraction. For example, timing-based QoS require-
ments can be specified using abstract properties such as correct and timely
data delivery and uninterrupted service. These properties can be translated
to concrete application parameters, such as jitter, end-to-end delay, and
synchronization skew, or concrete resource requirements, such as network
and disk bandwidth and buffer requirements [4]. The notion of QoS can
include bandwidth management, throughput control, timeliness, reliability
(e.g., mean time to failure, mean time to repair), perceived quality and
cost (e.g., communication cost, service cost), and even battery energy
management [5]. Resources required to support these multidimensional
notions of QoS in mobile applications can be in the form of computation
(CPU), storage, bandwidth, memory, or services that must continue to be
available as the user moves in the mobile infrastructure.

One approach is to overallocate and reserve resources to meet peak
demands at all times. Overallocation is impractical in mobile environments
because (1) it results in low resource utilization, and (2) it is difficult to
predetermine where and when resources are needed. If resource avail-
abilities are known in advance, static admission control techniques com-
bined with resource reservation protocols can be used to admit requests
if the QoS demands of the services can be met adequately; however, in
mobile environments resource availabilities can change over time in a
very erratic manner rendering static reservations invalid.

Resource discovery to ensure sustained QoS for mobile applications
presents several interesting research challenges. These challenges arise at
different levels (e.g., network, server, device) and can be summarized as
follows:

AU3833_C35.fm Page 940 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

941

■

Bandwidth-limited wireless networks

 — Wireless networks are
often bandwidth constrained (e.g., 10 Kbps for cellular, 10–100
Mbps for WLAN); they are also characterized by irregular connec-
tivity, transmission errors, and frequent disconnections. Supporting
high-quality, data-intensive flows (e.g., multimedia) requires pre-
dictable mobile network behavior in terms of bandwidth availabil-
ity, network losses, and transmission delays.

■

Uncertainty due to user mobility

 — User mobility introduces uncer-
tainty in user locations and consequently in bandwidth usage at
different points. This implies that resource discovery must be able
to cope with the uncertainties and ensure consistent resource
availabilities that satisfy application QoS.

■

Insufficient

resources in mobile

devices

 — Portable devices have
limited processing capabilities, memory, and energy, and mobile
applications have significant resource needs.

■

Cost/quality tradeoffs

 — An inherent tradeoff exists between appli-
cation QoS and resource consumption; for example, dedicated net-
work resources could provide higher quality multimedia applications,
but this may result in low network utilization and hence higher cost.

■

Lack of accurate context

 — Discovering optimal resources requires
knowledge of the underlying context. Collecting and maintaining
accurate context information in mobile environments is challenging
due to user mobility and tradeoffs between context accuracy and
maintenance overhead.

Extending existing approaches for resource discovery that have been
developed in the context of wired networks directly for QoS-aware mobile
applications is problematic. For example, Common Object Request Broker
Architecture (CORBA™)-based approaches are too heavyweight for mobile
applications [6]; furthermore, they are designed for relatively stable environ-
ments where disconnections are not the norm. Java-based middleware solu-
tions such as JXTA™ [7] incorporate service-discovery techniques that are
based on object class matching. These approaches are primarily focused at
the application level, and QoS guarantees are difficult to meet because the
class files of mobile objects may be distributed over the network. In peer-to-
peer (P2P) systems [8], resources are discovered through the collaboration
among peer nodes; however, applying the P2P approach to mobile applica-
tions suffers from high connection costs, high network traffic for overlay
maintenance, low network efficiency, and high latency [9]. In addition, the
unpredictability of peer-based networks makes it difficult to ensure application
QoS. In general, none of these approaches is designed with a focus on
ensuring QoS for mobile applications; hence, it is desirable to investigate
effective resource discovery strategies appropriate for mobile environments.

AU3833_C35.fm Page 941 Thursday, August 17, 2006 4:46 PM

942

■

Mobile Middleware

In this chapter, we elaborate on why intelligent resource discovery and
provisioning are necessary to guarantee QoS requirements for mobile
applications. We argue that context (application, network, resource, device)
plays a crucial role in effective resource discovery for mobile applications.
We discuss static and dynamic aspects of the context collection and resource
allocation problem and discuss how dynamic adaptation can sustain QoS
guarantees under changing network, device, and system conditions in a
cost-effective manner. We first present approaches for performing static
resource allocation (network and server resources); subsequently, we
describe how dynamic resource reprovisioning can be effectively used to
handle dynamic changes in resource availability and system state. Using
mobile multimedia as the driving application for a case study, we illustrate
how to integrate the dynamic changes nonintrusively into a wide-area
mobile infrastructure.

Mobile applications are typically run in two types of environments:
mobile

ad hoc

 networks and infrastructure-based networks. Mobile

ad
hoc

 networks (MANETs) are wireless networks consisting entirely of
mobile nodes that communicate on the move without any infrastructure
support such as base stations or access points. Nodes in these networks
will both generate user and application traffic and carry out network
control and routing protocols. Rapidly changing connectivity, network
partitions, higher error rates, collision interference, and bandwidth and
power constraints together make routing [10–13] and topology manage-
ment [14,15] interesting and difficult problems in MANETs. To provide
focus, in this chapter, we mainly address the issues involved in resource
discovery in infrastructure-based wireless networks (e.g., cellular or wire-
less local area networks). Typically, these networks are composed of
mobile devices with wireless interfaces and a core infrastructure with fixed
and wired hosts. Mobile users move and connect to the fixed network
via wireless access points or base stations. They can access services and
possible resources provided by the end systems from the fixed network.

A Mediation-Based Architecture
for Resource Discovery

We can address the challenges that arise in cost-effective resource discovery
for QoS-aware mobile applications from the following three perspectives:

■

Adaptive context collection

 — The success of resource allocation
relies on timely and accurate knowledge of underlying context.
Efficient context collection and monitoring techniques are therefore
needed to keep track of the current global and local states and
possibly even predict future changes.

AU3833_C35.fm Page 942 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

943

■

Static resource discovery

 — QoS-based static resource allocation
mainly solves the problem of scheduling and admission control at
the initiation of an end-to-end interaction. Given an application
request from a mobile device with corresponding QoS needs, the
resource discovery and provisioning process allocates the resources
to establish end-to-end interactions by evaluating resource avail-
abilities and estimating the system performance. For example, this
process may include determining a network path with minimum
delay, choosing a video server with compressed data that matches
quality needs, or allocating a Web server that is in close proximity
to a mobile user.

■

Dynamic resource reprovisioning

 — Dynamic service adaptation
aims to maintain optimal QoS for mobile users during the service
period. When users are mobile, their wireless network connectivity
might change dynamically, causing some resources or data to be
inaccessible. This implies that resource reprovisioning is crucial to
ensure continuous services for mobile applications.

To provide coordinated resource discovery for multiple mobile applica-
tions, we introduce the notion of a mediation-based middleware architecture
(Figure 35.1). In this architecture, a mediator maintains the necessary system

Figure 35.1 A mediator-based architecture for resource discovery in mobile
environments.

AU3833_C35.fm Page 943 Thursday, August 17, 2006 4:46 PM

944

■

Mobile Middleware

context in a

context repository

 using whichever admission control, resource
allocation, and reconfiguration decisions are made to ensure QoS for mobile
applications. Traditionally, much of the system context information is gath-
ered and maintained independently; for example, network topology can be
maintained by routing information exchange, a replica map can be obtained
from a distributed domain name service, network management software
keeps track of topology and link parameters, load-balancing services mon-
itor server load patterns, and content management and replication services
manage data placement and distribution.

Integrating the above information into a common context repository
(database or directory service) has several advantages. First, effective
resource discovery and provisioning algorithms can exploit information
from various levels for better system utilization. Second, keeping track of
dynamic changes in servers, networks, and content availabilities can be
decoupled from policies for resource discovery. This provides for a clean
separation of concerns in system design. Third, using well-defined and
uniform representations for the information allows easier manageability
of data. Fourth, knowledge of cross-layer information (from the network,
application, and devices) allows for flexible and efficient context collec-
tion. Such knowledge allows us to tailor the accuracy of the data in the
context repository based on application needs, collection overhead, and
connectivity conditions; for example, we may relax collection parameters
when user QoS needs are not stringent, which will reduce collection
overhead in an already congested network.

We also advocate the use of proxy nodes as intermediate resources in
the mediation-based architecture. Due to resource constraints in mobile
devices and dynamic conditions in wireless networks, achieving sustained
QoS between the service provider (server) and mobile device is difficult.
The proxy approach attempts to use available resources in the wired
networks within close proximity to the mobile device to support strategies
such as proxy caching [16,17], proxy-based transcoding [18,19], or task-
offloading [20] that can alleviate stringent resource needs of mobile appli-
cations; however, these intermediate resources must be discovered and
deployed effectively.

A generalized architecture supports QoS-aware mobile applications as
follows: A request containing QoS parameters is initiated at a mobile
device. The mediator utilizes the resource availability information stored
in the context repository (maintained by the adaptive context collection
module) to decide an optimal allocation of network, server, or proxy
resources. Significant changes in the availability of the allocated resources
will trigger the resource reprovisioning process to adapt the resource
allocation accordingly. When the request terminates, the resources are
reclaimed along the connection and the context collection module updates

AU3833_C35.fm Page 944 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

945

the resource availability status in the context repository. Using mobile
multimedia as a driving application, we next describe techniques for
addressing the key issues in resource discovery for QoS-based mobile
applications — adaptive context collection, static resource discovery, and
dynamic resource reprovisioning.

Adaptive Context Collection
for Effective Resource Discovery

Resource discovery and reprovisioning algorithms utilize information about
the current system context to ensure that applications meet their QoS
requirements. For QoS-aware resource discovery, the relevant context can
be classified into the following three categories:

■

Network core parameters

 include link bandwidth, link delay, loss
rate, wireless channel conditions, mobility-related parameters, etc.

■

Network edge characteristics

 include parameters for servers (e.g.,
current server load, server CPU usage), clients (e.g., device resource
constraints, power levels, client locations), and content-specific
attributes (e.g., number of replicas of video files and their loca-
tions).

■

Intermediate resources

 include information on the capabilities of
intermediate proxies, knowledge about when proxies are available,
and the relative stability of the proxy.

Accurate knowledge of context such as that described above enables
optimal discovery and allocation of resources; furthermore, knowledge of
changing system context can be used by resource reprovisioning techniques
for better QoS and performance. Therefore, the dynamic changes in system
and network context must be captured rapidly with low overhead without
interfering with the resource discovery and reprovisioning process.

The accuracy of context information can play a significant role in the
efficacy of resource discovery techniques; for example, resource provi-
sioning algorithms may select a network path for a flow or connection
based on current resource availability, reserve the chosen path, and
subsequently admit the request. In this process, imprecise system-state
information can lead to two types of failures. A

routing

 failure may occur
when a feasible path cannot be found for the new connection, and a

setup

 failure may occur when a seemingly feasible path is selected that
ultimately does not have enough resources for the new connection. Neither
failure is desirable; in particular, setup failures incur extra overhead to
reserve resources that may never be used along the path. Maintaining

AU3833_C35.fm Page 945 Thursday, August 17, 2006 4:46 PM

946

■

Mobile Middleware

accurate system and network status information can therefore help in
making the correct decisions, thus ensuring the desired application QoS
and consequently better user experience for mobile applications. However,
maintaining accurate system context implies more frequent and tight
monitoring, which in turn introduces significant network traffic, resulting
in poor utilization of underlying computation, communication, and storage
resources. The challenge then is to obtain

sufficiently

 accurate state
information to reduce the cost of collection while meeting user QoS needs.

There are various strategies for context representation and collection
that address the cost/accuracy tradeoff. Information representation and
collection strategies are often intertwined. Any parameter in the context
repository can be represented by either a single instantaneous value (the
last measured value) [21] or a range-based representation that approxi-
mates the value of a parameter by using an interval with an upper and
a lower bound. The range size may remain static [22] or change dynam-
ically [23,24]. Corresponding collection policies [23] determine when and
how often to sample the network components for current status informa-
tion and whether to update the database with collected samples. Sampling
periods may be fixed or may vary over time.

The need for flexible information collection is further aggravated in
mobile environments for the following reasons: (1) Mobile devices roam
across access points that connect them to wired networks, and the constant
user mobility causes significant variations in the resource availability on
various network links; (2) handheld devices typically have highly limited
storage and computing resources; and (3) the resource availability can be
substantially affected by computation and communication profiles of the
applications executing on the device which implies that capturing device
limitations and the changes in device status as a part of the system image
is necessary.

Collection and Maintenance of Location
Information for Mobile Hosts

Of particular interest in mobile applications is user location information.
With accurate user location information, continuous service despite user
mobility becomes possible, and nearby available resources can be discov-
ered more effectively. Location information can be collected in two ways.
Fine-grained approaches maintain the current location of each individual
mobile client [25,26], and coarse-grained collection captures information
at an aggregated level for multiple clients; for example,

client aggregation

(i.e., population of mobile clients in each cell at a particular time instant)
can be used as a coarse measurement for location information.

AU3833_C35.fm Page 946 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

947

Fine-grained location information management has gained a lot of
attention from researchers over the last few years. It typically involves
three issues [25,26]: location update strategies, which decide when mobile
users should inform the network about their current locations; paging
strategies, which decide when the base station should send out queries
to search for the mobile user; and location information maintenance
architectures, which decide how to store and disseminate the location
information. In addition, user mobility patterns (such as that in Haas [27])
are studied concurrently to better capture current user location; however,
gathering individual user location does not benefit the overall goal of
efficient system status collection. Perturbation of residual resources caused
by a single mobile user is almost negligible. Furthermore, keeping track
of individual user mobility may entail significant overhead, as each mobile
host must be probed separately and constantly.

A key observation that can be exploited for cost-effective collection
of location information is that the movement of a large number of users
may lead to nonuniform distribution of mobile users across cells. Previous
work [28] has explored the use of coarse-grained mobility information
that captures the distribution or aggregation of users in the mobile network
to support cost-effective resource provisioning. In addition to lower over-
head, collection using coarse-grained mobility information is independent
of individual mobility models, so it avoids inaccuracies introduced in
modeling or predicting individual user’s mobility. One measure of macro-
level changes in mobile settings is the client aggregation status (i.e.,
number of users in a cell), which has the potential to significantly affect
resource availability in the network or system. Client aggregation status
can be obtained from cellular access points, such as base stations, that
manage the communication of the mobile hosts residing within each cell.
Base stations can apply either a simplistic strategy (e.g., an update from
the mobile host is triggered when handoff occurs) to maintain the total
population of mobile hosts or more complex prediction-based approaches.
In the absence of this information from base stations (which requires tight
coordination with the service provider), it may be possible to predict the
aggregate mobility status from an individual mobility model. Prediction
of aggregation status requires some knowledge about the distribution of
mobile hosts and their mobility patterns in a region.

When the coarse location information is obtained (either from base
stations or via model-based predictions), it can be used to enhance system
status collection. A family of collection strategies [28] have been proposed
that use client aggregation status to drive the adjustment of sampling
frequency and range size. The basic idea is as follows. The underlying
topology is first partitioned into nonoverlapping regions. Each region is
equipped with a collection point that accumulates all the state information

AU3833_C35.fm Page 947 Thursday, August 17, 2006 4:46 PM

948

■

Mobile Middleware

of the mobile hosts, servers, links for that region. A range with an upper
bound and a lower bound is used to represent the mobile host aggregation
status (e.g., number of hosts in a cell) in the directory service. The
collection algorithm itself consists of two phases: Phase 1 derives the
aggregate mobility patterns from individual user mobility patterns and
utilizes the aggregation status and current resource utilization status to
adjust the collection parameters such as sampling frequency and range
size; Phase 2 utilizes feedback from mobile devices and the resource
provisioning process for further customization of the collection process.

Figure 35.2 demonstrates the performance of resource discovery and
cost involved in maintaining resource availability information by using
three different approaches to system status collection: mobility-incognizant

Figure 35.2 Performance comparison of various system context collection
approaches.

AU3833_C35.fm Page 948 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

949

collection, collection using fine-grained mobility information, and collec-
tion using coarse-grained mobility information. The

request completion
ratio

 (the percentage of requests that successfully complete) is used as a
metric to measure the application performance. The request completion
ratio is different from the

request admission ratio

. Admitted requests may
not complete for several reasons: No route has sufficient resources (a path
failure), the locating mobile host fails (a location failure), or the alternate
rescheduling server may not have sufficient resources if the path to the
original server is not available. We observe that the request completion
ratios of resource discovery under the three approaches are close to each
other; however, the use of fine-grained mobility information introduces
significantly higher overhead, and the use of coarse-grained mobility
information incurs the lowest overhead. This demonstrates the effective-
ness of utilizing coarse-grained mobility information. With context collec-
tion strategies in place, we now describe how context information can
be used in static resource discovery and dynamic resource reprovisioning
to provide improved QoS for mobile applications.

Static Resource Discovery

In this section, we discuss the static resource discovery problem for mobile
QoS-based services. Static resource discovery addresses the issue of dis-
covering available resources (network, server, proxy) to provide accept-
able services for a mobile user when the request is initiated. In this model,
an incoming request from a mobile device expresses the service desired
along with the QoS requirements (e.g., bandwidth needs, startup latencies,
end-to-end delays) for the service. The incoming request goes through
an admission control process that determines if end-to-end QoS can be
satisfied under current (or predicted) conditions. If resources are unavail-
able to satisfy the QoS needs of the request, the incoming request is
rejected.

Resource discovery mechanisms must ensure end-to-end application
QoS while achieving an optimized resource allocation at the system level.
To begin with, server and network resources must be discovered and
provisioned. Selecting both network and server resources for multiple
concurrent requests with varying QoS needs from a limited set of under-
lying resources is a challenging problem. In addition, resource-constrained
mobile devices can benefit significantly by using fixed resources within
the wired networks (e.g., proxies, idle machines, peer nodes) that are
accessible through the wired/wireless infrastructure. Hence, the resource
discovery mechanism must also address the discovery of proxy resources
along the path of the service, preferably close to the mobile device. We

AU3833_C35.fm Page 949 Thursday, August 17, 2006 4:46 PM

950

■

Mobile Middleware

advocate this approach because accessing data from nearby resources
reduces network and server traffic; the proxy-based solution makes pos-
sible personalized services with high QoS satisfaction while improving
overall system resource utilization.

A fundamental performance/quality tradeoff exists that must be addressed
to provide effective resource discovery for mobile applications. For example,
a solution that lowers the overall network traffic (for better performance) in
the system might initiate the selection of the nearest resources; however,
this can introduce frequent switches in the multimedia stream if the user
moves rapidly, leading to increased jitter (i.e., lower QoS). Also, knowledge
of the future (of application needs and resource availabilities) plays a useful
role in supporting continued service with sustained QoS. Static resource
discovery mechanisms that exploit knowledge of user and system needs
(possibly through prediction techniques) in the long term can help better
provisioning in two ways. First, it allows the system to choose a suitable
QoS service level that can be sustained for the entire duration of service.
This is especially relevant when application QoS is constrained by available
system resources and device energy limitations. This will minimize frequent
changes in the QoS level, leading to better user satisfaction. Furthermore
the selection of network, proxy, and server resources can be globally
optimized for larger service durations which will reduce frequent switching,
thereby reducing service jitter and improving QoS.

There has been significant effort directed toward discovering network
and server resources for QoS-based applications. Server selection algo-
rithms [29–32] are often used to direct user requests to the optimal server
based on chosen metrics (such as proximity or load) when data is
replicated across multiple servers. These mechanisms often treat the net-
work path leading from the client to the server as static. Although this is
useful for computation-intensive applications, interactive applications such
as mobile multimedia must guarantee the availability of network resources
as well. QoS-based routing techniques [33–37] typically aim to select the
optimal path between a source–server pair and ignore the situation where
multiple servers might be able to serve the same request. Combined path
and server selection (CPSS) [38] is an integrated approach that allows load
balancing not only between replicated servers but also among network
links. This has the potential to achieve higher systemwide utilization and
allow more concurrent users.

In the remainder of this section, we present techniques for the static
discovery of proxy resources through a case study in infrastructure-based
wireless networks (e.g., cellular or wireless local area networks). This
case study illustrates how one might use idle grid resources as interme-
diate nodes or proxies for mobile applications. We also discuss how
knowledge or predictions of user mobility patterns, device capabilities,

AU3833_C35.fm Page 950 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

951

and system resource availabilities can play important roles in proxy
resource discovery for mobile applications.

Case Study: Using Grid Resources as
Proxies for Mobile Multimedia Applications

Grid computing [39] is a distributed, high-performance computing and data-
handling infrastructure that incorporates geographically and organizationally
dispersed, heterogeneous resources. Traditional grid-based research has
focused on facilitating computation-intensive and data-intensive applica-
tions, such as AppLes [40], GrADS [41], and Nimrod [42]. Leveraging grid
resources to facilitate mobile applications is motivated by the fact that the
proliferation of freely available idle grid resources can be exploited effi-
ciently to compensate a mobile computing environment that is short of
resources. A grid computing environment provides an ideal setting where
grid resources can act as proxies to improve the power or performance of
low-power mobile devices [43]; however, we need to address the challenge
of identifying available grid resources that can be used as proxies.

Grid resource discovery for efficient mobile services poses distinct
challenges due to the intermittent availability of heterogeneous grid
resources. The system must apply its knowledge of resource availability
(e.g., using time maps to quantify grid resource availability) when selecting
a grid resource to build an end-to-end service channel for a mobile user.
Note that the availability of grid resources is unpredictable and the amount
of available grid resources may fluctuate. Their stability features may also
have to be investigated when resource discovery is performed. We illustrate
how to apply knowledge of user mobility patterns to discover the nearby
intermittently available grid resources and how the system exploits knowl-
edge of device information (e.g., energy sufficiency) to perform better
resource discovery. The proposed approaches have been implemented
and evaluated in the context of the MAPGrid system [44]. The prototype
system is illustrated in Figure 35.3.

Designing a Grid Resource Discovery Algorithm

In the MAPGrid system, we define a grid volunteer server (VS) as a machine
that participates in the grid by supplying idle resources; that is, VSs are
intermittently available and geographically distributed. A VS (used inter-
changeably with proxy) in our case can be a wired workstation, server,
cluster, etc. that provides high-capacity storage for storing multimedia data
and a CPU for multimedia transcoding, decompression, or buffer memory.
VSs are fixed machines and connect to the network using wired connections,

AU3833_C35.fm Page 951 Thursday, August 17, 2006 4:46 PM

952

■

Mobile Middleware

whereas mobile hosts connect to the infrastructure using a locally available
wireless network. A mobile user initiates a multimedia request,

R

<

VID,T,itin-
erary(opt)

>, where

VID

identifies the requested video object,

T

represents
the entire service period, and

itinerary

 contains the user’s mobility infor-
mation (null, if no mobility information is available). Given the mobile
requests and information regarding grid resource availabilities, static
resource discovery tries to increase the overall acceptance of requests in
the system by selecting the optimal grid resources for each mobile request
while satisfying users’ QoS requirements. The QoS requirements (e.g.,
required network transmission bandwidth) will be determined by streaming
a particular video streaming object.

The approach proposed in Huang and Venkatasubramanian [45] is to
divide the entire service period (

T

) into nonoverlapping chunks (possibly
of different sizes), each of which is mapped to an appropriate VS (e.g.,
the one that is geographically close and lightly loaded). Video objects are
also divided into equal-sized segments. Corresponding video segments
are downloaded onto selected VSs. The selected VS processes the request
by transcoding the video segment and transmits the video stream via
wireless links to bandwidth-limited and performance-limited mobile cli-
ents, such as a PDA. Below we discuss a phased approach that exploits
knowledge of user mobility patterns and grid resource availabilities.

In the first step, a time-based approach or a distance-based approach
is applied to partition the service period (

T

) into chunks [45]. The time-
based policy attempts to minimize the number of VS switches, and the
distance-based policy uses knowledge of user mobility patterns and

Figure 35.3 The MAPGrid system prototype.

AU3833_C35.fm Page 952 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments

■

953

applies a well-known unsupervised neural learning technique called a

self-organizing map

 (SOM). If

itinerary

 information is given, after service
partitioning the

Focus

 of each chunk is calculated to identify the ideal
resource location for each service period. Specifically, if (

a

i

,

b

i

) represent
the coordinates of the center for region

i

, and

D

i

 represents the time
duration spent in region

i, we convert the problem of locating the chunk
Focus into a minisum planar Euclidean location problem [46]. The objective
is to minimize the overall distance cost f(x,y), where (x,y) represent the
coordinates of the Focus position of this chunk. The minimum value of
the objective function f(x,y), specified in Equation 35.1, determines the
Focus position of this chunk, which is composed of N regions:

(35.1)

In the second step, a graph theoretic technique is applied for selecting
an optimal set of grid resources to service each chunk. Decisions should
be made by taking into consideration all of the following factors: (1)
intermittent availability of grid resources, (2) currently allocated workloads
and predicted future workloads on grid resources, and (3) user’s distance
to grid resources. Basically, the goal is to select a lightly loaded and
nearby grid resource to service each chunk. To deal with heterogeneous
grid resources in a unified way and to represent how much a request
affects a server during each service period (chunk), a VSFactor is defined
to measure the desirability of a VS as a grid resource for one service
chunk of the mobile user. According to this definition, shown in Equation
35.2, a VS with a larger VSFactor value is a better choice for servicing a
particular service period [45]:

(35.2)

The problem of discovering intermittently available grid resources is
further cast as a maximum flow problem, illustrated in Figure 35.4. Nodes
O and F are artificial nodes and represent the source vertex and sink
node, respectively. Node C represents the mobile client, and the VS nodes
represent volunteer servers. A set of time nodes (TNs) is introduced, and
each TN represents a period of service time. Weights for directed edges
are also assigned as illustrated in Figure 35.4. A feasible maximum flow
solution that meets resource constraints corresponds to a possible sched-
uling solution; the basic solution has been adapted to develop a family
of policies catering to various application QoS needs [47].

f x y Di x a y bi i

i

N

(,) = −() + −()
=

∑ 2 2

1

VSFactor VS chunk
Availability of VS

VS workload
(,) =

× distance(VS, focus of this service chunk)

AU3833_C35.fm Page 953 Thursday, August 17, 2006 4:46 PM

954 ■ Mobile Middleware

The Role of Device Constraints in Resource Discovery

One of the major constraints of executing multimedia applications on thin
mobile devices is energy insufficiency. A tradeoff exists between QoS and
energy that can be exploited to overcome energy limitations on mobile
devices. This tradeoff is based on the fact that streaming lower quality video
to power-deficient mobile clients results in lighter traffic over the network
and less computation for decoding video frames and therefore less energy
consumption on the mobile device. One possibility is to use proxy resources
to perform dynamic transcoding, which can help balance application QoS
based on the residual energy of the device. Because degrading video quality
directly affects user perception (QoS), it is important to understand the
notion of video quality for a handheld device and its implications on power
consumption. Figure 35.5 illustrates an energy/quality (E/Q) matrix for
handheld computers (Compaq iPaq 3650) [19] to identify video quality
parameters (a combination of bit rate, frame rate and video resolution) that
produce user perceptible changes in video quality and noticeable shifts in
power consumption for handheld computers.

Using the E/Q matrix, we can map each video quality level to a network
transmission bandwidth and a power cost value (or vice versa). When a
mobile request R<VID,T,QMIN,QMAX,ER,itinerary(opt)> specifies the low-
est QoS level (QMIN) and the highest QoS level (QMAX) and gives information
about current residual energy ER, the E/Q matrix can be used to determine
the best QoS level for this service. A straightforward extension of the static
grid resource discovery algorithm to an energy-aware admission control
algorithm using the E/Q matrix is shown in Figure 35.6. Detailed expla-
nations of the algorithm are presented in Huang et al. [48].

Figure 35.4 Modeling the resource discovery problem.

AU3833_C35.fm Page 954 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 955

Figure 35.7 shows one experimental result that illustrates the per-
formance of the energy-aware resource discovery algorithm [48]. Three
different approaches are compared: (1) no QoS adaptation during
resource discovery, (2) proxy-based transcoding only, and (3) the
energy-aware admission control (EAC) algorithm described in Figure
35.6. With the first approach, the system streams the video with the

Figure 35.5 Energy/quality (E/Q) matrix for handheld computers (Compaq iPaq
3650).

Figure 35.6 Energy-aware admission control (EAC) algorithm.

Average power
Windows CE (w)

Average power
Linux (w)

Q8 (original)

Q7 (excellent)

Q6 (very good)

Q5 (good)

Q4 (fair)

Q3 (poor)

Q2 (bad)

Q1 (terrible)

Quality

AU3833_C35.fm Page 955 Thursday, August 17, 2006 4:46 PM

956 ■ Mobile Middleware

highest QoS level (original quality) to the devices (i.e., multiple quality
levels are not supported at the servers). With the second approach,
QoS degrades when the proxy (VS) resources in the system are not
sufficient for the highest QoS level. The result shows that the first
approach leads to the lowest request acceptance rate but the highest
QoS provisioning for each service; however, as the residual energy of
the device is not considered, it also results in the highest level of
incomplete services due to insufficient device energy. The second
approach reduces the average QoS levels for requests and therefore
accepts more requests while reducing the number of incomplete ser-
vices. The third approach takes the residual energy of the device into
account while also performing quality transcoding; thus, it accepts the
largest number of requests and completes all the accepted requests,
assuming no other dynamic changes thereafter. Other experimental
results [45,48] also show that intelligent static resource discovery not
only increases users’ QoS satisfaction but also significantly improves
the acceptance rate, completion ratio, and system throughput.

Approaches for static resource discovery, however, can often lead to
the overprovisioning of resources; that is, they may choose to deliberately
overestimate the number of resources a service is likely to require and
thereby sacrifice resource utilization. To a limited extent, static resource
discovery methods can be further optimized by using profiled or historical
information, such as demand for a particular service, bandwidth and
latency requirements for a service, or mobility patterns. In practice, though,
it is still difficult to predict resource utilization and user mobility patterns

Figure 35.7 Experimental results for static resource discovery; the energy-aware
admission control (EAC) techniques increases request acceptance and completion
rates.

AU3833_C35.fm Page 956 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 957

in a mobile and wireless infrastructure. In the next section, we describe
approaches using dynamic resource reprovisioning, which allows a system
to track dynamic changes and adapt to these changes on the fly.

Dynamic Resource Reprovisioning
For mobile environments, it is difficult to accurately discover and provision
resources using static methods for the entire duration of a service. This can
be due to several reasons: (1) In wireless networks, disconnected operation
and bandwidth fluctuations are common, making it impossible to discover/
provision network bandwidth for the entire service duration. (2) Device
mobility makes it particularly difficult to provision resources, especially when
there is no prior knowledge of how the user is expected to move. (3)
Intermediate nodes might suddenly become unavailable (user unplugs the
system) or system resources such as CPU, memory of servers, and intermediate
proxies might change unpredictably (starting or stopping applications can
affect these resource availabilities). (4) Finally, mobile hosts may have unex-
pected changes in resource availability (e.g., new applications are started)
which makes it difficult to predict how resources are being consumed. These
issues can be effectively addressed using dynamic resource provisioning,
where allocations of resources to services are automatically and continuously
adjusted in response to either changing demands for a service or dynamic
changes in resource availabilities in the system. This leads to a more accurate
provisioning of resources and greater resource utilization.

Dynamic reprovisioning in mobile environments complicates the prob-
lem of context collection and resource management, and several difficult
challenges must be addressed. What happens when an intermediate node
(proxy) suddenly becomes unavailable or severely resource constrained?
In this case, services might be degraded, improved, or terminated to free
resources or improve QoS. Strategies have to be designed to determine
which services should be affected and how. Techniques to support on-
the-fly assignments and revocations of resources must be developed.
Satyanarayanan [49] outlines several issues that must be addressed during
resource revocation, such as characterizing the impact of revocation on
services, handling deadlocks, and designing revocation strategies. The
above decisions are impossible to make without accurate knowledge of
the system context. As the global state of the system changes dynamically,
it is difficult to maintain accurate context information. Who should main-
tain context information and how often should the context be updated?
What represents accurate context? Should context collection be distributed
or centralized? Can we make global state estimation from local states? If
so, what is the accuracy (or error bound) on these estimates? Does a

AU3833_C35.fm Page 957 Thursday, August 17, 2006 4:46 PM

958 ■ Mobile Middleware

general rule or systematic way exist for quantifying adaptations? All of
these open research issues and challenges are very pertinent to modern
mobile environments and good solutions, and insights to these problems
will strongly impact mobile computing systems of the future.

To illustrate potential approaches to dynamic provisioning for mobile
services, we build upon our earlier case study. Specifically, we address
the dynamic discovery and adaptation of resources for mobile multimedia
applications that use grid resources as proxies. We focus on three aspects
of the framework that are points of dynamic changes: (1) the proxy, (2)
the network, and (3) the mobile device.

Dynamic Changes in Proxy Resources

Proxies are participating machines on which applications can be randomly
started or stopped, causing fluctuations in resource availability. Allocation
mechanism must be capable of dealing with proxy failures and changes
in proxy resources. The worst case occurs when a proxy is disconnected
from the grid or switched off (e.g., unplugged), resulting in the unavail-
ability of the proxy itself. To deal with this problem, the broker needs to
reallocate other available proxies to the interrupted requests to complete
the interrupted services. When a specific proxy becomes unavailable, the
broker retrieves information from the directory service about requests that
are scheduled on the failed proxy and triggers the rescheduling process
for each invalidated service. To reduce service failures and minimize
service recovery time, the solution determines the order in which to
migrate the disrupted services onto available proxies. To minimize service
recovery time, invalid services are classified into two categories by the
broker: (1) services that have been started, and (2) services that are not
yet started. Services in the first category receive a higher rescheduling
priority than those of the second type, for which service rescheduling can
be postponed with an acceptable delay. Furthermore, within each cate-
gory, requests with shorter remaining times of service and lower resource
requirements receive higher rescheduling priority. If requests cannot be
rescheduled, the broker downgrades a number of the disrupted services
to accommodate them in the available proxies; if they still cannot be
rescheduled, even after downgrading the service, the broker notifies the
clients that the service has failed and releases preallocated resources for
the services on the other proxies. The rescheduling process is then
triggered for each invalidated service in order of decreasing priority. If
requests cannot be rescheduled or postponed (for category two requests),
the broker reports a request failure. Note that, in the case of request
failure, any resources reserved for this request on other selected proxies
for the remaining service time should be released.

AU3833_C35.fm Page 958 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 959

The proxy also must perform dynamic adaptations when its own
resources reduce unpredictably (e.g., applications are started dynamically).
If the resource changes are small, the proxy performs local adjustments to
satisfy the QoS requirements of the current set of services. This might require
downgrading the QoS (e.g., video quality) of an existing subset of services
or allocating fewer resources temporarily to local applications; however, if
a significant change occurs in the resource availability at the proxy that
affects completion of certain services, then a subset of services must be
dynamically migrated away to another less loaded proxy. In this case, the
proxy signals the broker to initiate a service migration algorithm that migrates
a set of services to another less loaded proxy. Given system resource
limitations, however, services that cannot be scheduled on other proxies
result in service failures. After successful migration of a service, the proxy
readjusts the released resources and distributes them among the remaining
services to minimize the number of migrations. The maximum number of
migrations over the lifetime of a service can be achieved by placing an
upper bound on the total number of migrations possible for a service.
Figure 35.8 shows that, after proxies and the broker perform the above
adaptations, a significant decrease can be seen in the number of requests
that fail to complete due to dynamic changes in proxy availability [48].

Disconnections/Fluctuations in Wireless Networks

Wireless network behavior depends closely on several factors such as
wireless signal strength, congestion, and noise. Each of these factors
contributes to the connectivity and bandwidth availability of the network
and can vary erratically over time, thereby making network provisioning

Figure 35.8 Dealing with proxy failures.

AU3833_C35.fm Page 959 Thursday, August 17, 2006 4:46 PM

960 ■ Mobile Middleware

a difficult problem. To effectively provision resources and adapt services
for wireless networks, we need to (1) get accurate context information
about changing network congestion and noise levels, and (2) predict
device mobility patterns. The congestion and noise information can be
gathered from the feedback from the device and by querying the wireless
access points. With this information, the proxy can perform two different
adaptations to improve QoS for multimedia applications: (1) proactive
resource allocation and service adaptation based on device mobility and
network congestion, and (2) adaptive network traffic management.

We explain the proactive adaptation approach by first differentiating
it from the traditional reactive approaches that are representative of current
best-effort systems. In a more traditional reactive adaptation approach, a
change in resource availability is first detected (possibly due to dropped
packets, increased noise or congestion levels, or low power at the device)
at a potential loss of QoS (video jitter). The proxy then reacts to this
dynamic change by adapting the video stream (by either lowering or
improving stream quality) to improve performance. However, the video/
data packets already communicated might get dropped if a mobile device
suddenly enters a cell that is highly congested.

In dynamic environments, a proactive scheme can perform significantly
better than a reactive scheme. In such a scheme, the proxy proactively
predicts future system conditions and can determine how services can be
adapted in advance. Specifically, the scheme exploits knowledge of system
context and device mobility model to predict the number of users in a
future target cell. With the knowledge of average traffic generated by each
user, it can predict the dynamic congestion and noise levels within each
target cell. This knowledge can be used in conjunction with feedback
from the device to proactively adapt either the video stream or the
buffering (burst sizes) to maximize the application QoS; for example, the
proxy predicts the noise or congestion level of a cell just before a user
moves into the cell and determines how to adapt the stream as the user
enters the cell. In such a scenario, two factors significantly influence the
performance of the schemes: predicted dynamic noise levels within each
cell and the mobility (velocity) of the device. Mohapatra and Venkata-
subramanian [50] made a comparison between the proactive and reactive
schemes for multimedia applications. Their study also concluded that the
nature of distribution of noise induced by each mobile device has very
little effect on the overall adaptations.

Figure 35.9 shows that the proactive adaptation results in a much
smoother video when compared to reactive adaptation. We see in Figure
35.10 that a significant improvement in the overall system utilization is
achieved using a proactive adaptation scheme. An additional benefit is
that proactive proxy-based adaptations can facilitate dynamic power

AU3833_C35.fm Page 960 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 961

management of the network interface card at the mobile device. Multi-
media applications due to their periodic and predictable behavior present
opportunities to use proxy-based reprovisioning for improving the periods
of inactivity for a wireless radio without affecting the application QoS.
Mohapatra et al. [19] described an approach where a proxy can buffer
video data (as opposed to sending data on a per-frame basis) and send

Figure 35.9 Proactive versus reactive adaptation. Proactive adaptation results
in much smoother video with fewer quality fluctuations as opposed to the reactive
scheme.

Figure 35.10 Utility factor versus adaptation scheme. A proactive scheme is
able to provide higher utility to the system in terms of overall improvement in
video quality as well as battery energy savings.

AU3833_C35.fm Page 961 Thursday, August 17, 2006 4:46 PM

962 ■ Mobile Middleware

data to the mobile device in bursts along with control information con-
taining the size of the bursts. This simple adaptation facilitates network
card optimization, as the device can now transition the radio to a low-
duty cycle for longer periods, thereby saving energy. The radio can then
be switched back to active mode before the arrival of the next burst from
the proxy by using the control information. The size of the bursts is
dependent on the network congestion level and the buffering capabilities
of the wireless access point, as well as those of the mobile device and
the quality of the video stream. The mobile host saves energy during
periods of network inactivity as the radio consumes significantly less
energy when operating in low-duty-cycle mode. Energy thus saved can
result in improved QoS for the mobile service.

Fluctuations at the Mobile Device

On the mobile device, resource availabilities depend on both the number
of applications and their demands on certain resources, either of which
can change dynamically. We discuss two possible adaptations employed
by the mobile client. One approach is to dynamically migrate computa-
tionally expensive tasks from a mobile device to the proxy. Although
migrating tasks can reduce the computational load on a device, saving
both battery energy and reducing the load on the CPU, they often add
extra communication overhead. Tasks such as media composing, encryp-
tion, and decryption can be potential candidates for task migration. Such
an approach can be profitable if the benefits of migration outweigh the
overheads of migration and communication. Mohapatra and Venkatasubra-
manian [20] present a graph theoretic analysis of how tasks can be
partitioned and migrated from a local device to a proxy. When and how
often such migrations have to happen are dictated by the number of
applications and their computation and communication characteristics.
Battery energy can also be incorporated into the adaptation by further
modifying the algorithm to favor migrations when the residual battery
power is low.

In addition to adapting to local variations in resources, a proxy can
perform dynamic service adaptations based on feedback from the device
as well as network state; for example, in the MAPGrid framework, we
assume that a communication protocol is available that allows a proxy
(grid volunteer server) to continually monitor the resource availability on
a mobile device to which it is connected. This allows the proxy to
dynamically adapt services to handle changes in the resource availability
at a mobile device. We present a specific example of how a proxy can
adapt the video streaming service in response to changes in device battery
energy, but the concept can be extended to other resources.

AU3833_C35.fm Page 962 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 963

If the residual battery energy of the device changes (e.g., either due
to starting or stopping of applications on the device or as a result of
energy optimizations on the device), the proxy reacts by changing the
quality of the video stream to accommodate the changes. If the proxy
determines that the device does not have sufficient battery energy to
support the entire duration of the current service, it performs dynamic
reprovisioning by streaming video at a lower quality to adjust to the lower
residual energy at the device. If the proxy determines that the device
cannot support even the lowest acceptable quality, it notifies the device
of its depleted battery energy state. This implies that the device is con-
suming too much power (maybe due to other applications) and local
proxy-based adaptations cannot complete the service. Conversely, if an
increase occurs in the residual battery life of the mobile device due either
to energy optimization strategies or a reduction in the number of executing
applications, then proxy-based reprovisioning scheme can respond by
increasing the video stream quality. The device can also employ dynamic
adaptations at the operating system and hardware levels to optimize
resource usage; for example, techniques such as dynamic voltage scaling
(DVS) [19] can be used to improve CPU utilization dynamically while
saving energy. Note that these optimizations ultimately manifest themselves
as higher QoS for applications executing on the mobile device.

Dynamic Changes in Device/User Mobility

As discussed earlier, the static resource discovery solution optimizes the
assignment of proxies and their corresponding chunks for a particular
service on the assumption that the overall mobility pattern of the mobile
user is known. Specifically, a proxy that is geographically closest to the
mobile device is preferred over more distant proxies; however, in real
life, a user might dynamically choose to follow a different path in the
middle of a service, thereby making the assignment of proxies suboptimal
(assuming the proximity criteria for optimality).

Initial studies have tried to study this problem by developing certain
policies regarding how proxy assignments can be made when user mobility
cannot be predicted in advance. One simple policy is to use a single
proxy (single VS) for the entire duration of the service. A variation of this
is the FastStartup policy, where a proxy is assigned some initial video
segments to begin the service immediately while the algorithm searches
for an ideal proxy or a set of proxies. Figure 35.11 shows that policies
such as FastStartup that systematically use multiple proxies perform better
than the single-proxy strategy under varying device mobility patterns [45].
A seamless way of incorporating dynamicity is to initiate the FastStartup
policy when the mobile device has significantly departed from the assumed

AU3833_C35.fm Page 963 Thursday, August 17, 2006 4:46 PM

964 ■ Mobile Middleware

(predicted) path. Intelligent mobility prediction techniques can also be
applied to further improve dynamic resource reprovisioning; for example,
knowledge of (predicted) mobility patterns can be used to design space-
and time-based partitioning techniques for proxy allocation.

Summary
In this chapter, we have described the problem of QoS-aware resource
discovery for mobile applications and illustrated various elements of a
solution to this issue using a generalized mediation-based architecture. The
chapter discussed in more detail three key issues that must be addressed

Figure 35.11 Number of rejections over time with different device mobility
patterns.

AU3833_C35.fm Page 964 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 965

for resource discovery: (1) mechanisms to cost effectively capture and
maintain context information to enable resource discovery for mobile
services; (2) algorithms for static resource discovery when a request is first
initiated, using the available context information; and (3) techniques for
dynamic resource reprovisioning to deal with unanticipated changes in the
applications, devices, and distributed infrastructure. Through a case study
focusing on mobile multimedia services, we showed how to take advantage
of a priori knowledge of resource availabilities and mobility patterns to
tailor the discovery and provisioning policies for better overall performance
and enhanced user QoS. Research has also shown how context-aware
intelligent policies for static and dynamic resource provisioning can support
better application QoS, higher request acceptance rates, and longer device
lifetimes in mobile environments. One of the key observations in this
chapter is the role of in-network proxy resources in enabling effective
solutions to address the tradeoffs among quality, energy, and performance
for QoS-based mobile applications. Although service providers may choose
to install dedicated proxy resources in-network, recent efforts have shown
the possibility of leveraging additional heterogeneous machines within the
proximity of mobile devices.

Although the above steps are enabling technologies for the seamless
execution of mobile applications under highly dynamic conditions, several
challenges still remain to be addressed. Enabling QoS-based services in
MANETs where a core wireless network infrastructure is unavailable poses
new challenges. Issues of power-aware routing, QoS in the presence of
topology changes, and the ability to switch transparently between ad hoc
and infrastructure modes are still challenges further exacerbated in always-
best-connected (ABC) networks where multiple access technologies (WiFi,
cellular, Bluetooth®, wired) may all be available simultaneously to varying
degrees. Future work will also have to address the degree of location
awareness required by the middleware for efficient allocation of mobile
and fixed resources in a scalable fashion. Security (or lack thereof) of
applications executing on wireless infrastructures is a big hurdle to the
pervasive deployment of mobile services. Tradeoffs arise when timeliness
requirements interfere with other application requirements, such as secu-
rity and reliability. Many of these challenges must be addressed to truly
realize the eventual goal of widespread mobile services.

References
[1] Chen, G. and Kotz, D., A Survey of Context-Aware Mobile Computing

Research, Technical Report TR2000-381, Department of Computer Science,
Dartmouth College, Hanover, NH, 2000.

AU3833_C35.fm Page 965 Thursday, August 17, 2006 4:46 PM

966 ■ Mobile Middleware

[2] Chalmers, D. and Sloman, M., QoS and context awareness for mobile
computing, in Proc. of Int. Symp. on Handheld and Ubiquitous Computing
(HUC'99), Karlsrhue, Germany, September 27–29, 1999, pp. 380–382.

[3] ERCIM News, 54, 2003 (special issue on applications and service platforms
for the mobile user).

[4] Venkatasubramanian, N., Talcott, C., and Agha, G.A., A formal model for
reasoning about adaptive QoS-enabled middleware, ACM Trans. Software
Eng. Methodol., 13(1), 86–147, 2004.

[5] Chalmers, D. and Sloman, M., A survey of quality of service in mobile
computing environments, in IEEE Online Commun. Surv., 2(2), 1–10, 1999.

[6] Adwankar, S., Mobile CORBA, in Proc. of the Third Int. Symp. on Distributed
Objects and Applications (DOA’01), Rome, Italy, September 17–20, 2001.

[7] Yuan, M.J., Enterprise J2ME: Developing Mobile Java Applications, Prentice
Hall, Upper Saddle River, NJ, 2003.

[8] Hefeeda, M., Xu, D., Habib, A., Bhargava, B., and Botev, B., CollectCast: a
peer-to-peer service for media streaming, ACM Multimedia Syst. J., 11(1),
68–81, 2005.

[9] Bakos, B., Farkas, L., Jukka, N., and Csucs, G., Peer-to-peer protocol eval-
uation in topologies resembling wireless networks. an experiment with
Gnutella query engine, in Proc. of IEEE Int. Conf. on Networks (ICON’03),
Sydney, Australia, September 28–October 1, 2003.

[10] Perkins, C. and Bhagwat, P., Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers, in Proc. of ACM SIGCOMM’94,
London, August 31–September 2, 1994.

[11] Park, V.D. and Corson, M.S., A highly adaptive distributed routing algorithm
for mobile wireless networks, in Proc. of IEEE INFOCOM’97, Kobe, Japan,
April 7–11, 1997.

[12] Johnson, D.B. and Maltz, D.A., Dynamic source routing in ad hoc wireless
networks, in Mobile Computing, Vol. 353, Imielinski, T. and Korth, H., Eds,
Kluwer Academic, Norwell, MA, 1996.

[13] Perkins, C., Ad hoc on-demand distance vector routing, in Proc. of Military
Communications Conf. (MILCOM 1997), Monterey, CA, November 2–5, 1997.

[14] Bao, L. and Garcia-Luna-Aceves, J.J., Topology management in ad hoc
networks, in Proc. of ACM MobiHoc, Annapolis, MD, June, 2003.

[15] Godfrey, P.B. and Ratajczak, D., Naps: scalable, robust topology management
in wireless ad hoc networks, in Proc. of IEEE Information Processing in Sensor
Networks (IPSN’04), Berkeley, CA, April 26–27, 2004.

[16] Singh, A., Trivedi, A., Ramamritham, K., and Shenoy, P., Ptc: proxies that
transcode and cache in heterogeneous Web client environments, World Wide
Web, 7(1), 7–28, 2004.

[17] Raunak, M.S., Shenoy, P., Goyal, P., and Ramamritham, K., Implications of
proxy caching for provisioning networks and servers, SIGMETRICS Perform.
Eval. Rev., 28(1), 66–77, 2000.

[18] Chandra, S. and Vahdat, A., Application-specific network management for
energy-aware streaming of popular multimedia formats, in Proc. of USENIX
Annual Technical Conf., Monterey, CA, June 10–15, 2002.

AU3833_C35.fm Page 966 Thursday, August 17, 2006 4:46 PM

QoS-Aware Resource Discovery in Mobile Environments ■ 967

[19] Mohapatra, S., Cornea, R., Dutt, N., Nicolau, A., and Venkatasubramanian, N.,
Integrated power management for video streaming to mobile handheld devices,
in Proc. of the Eleventh ACM Int. Conf. on Multimedia (ACMMM 2003) ,
Monterey, CA, November 2–8, 2003.

[20] Mohapatra, S. and Venkatasubramanian, N., PARM: power-aware reconfigurable
middleware, in Proc. of IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’03), Providence, RI, May, 2003.

[21] Moy, J., OSPF Version 2, Request for Comments 1247, Internet Engineering
Task Force (IETF), 1991 (http://www.ietf.org/rfc/rfc1247.txt).

[22] Apostolopoulos, G., Guerin, R., Kamat, S., and Tripathi, S., Quality of service
based routing: a performance perspective, in Proc. of ACM SIGCOMM’98,
Vancouver, Canada, October, 1998.

[23] Han, Q. and Venkatasubramanian, N., Autosec: an integrated middleware
framework for dynamic service brokering, IEEE Distributed Systems Online,
2(7), 2001.

[24] Fu, Z. and Venkatasubramanian, N., Adaptive parameter collection in dynamic
distributed environments, in Proc. of IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’01), Phoenix, AZ, April, 2001.

[25] Akyildiz, I., McNair, J., Ho, J., Uzunalioglu, H., and Wang, W., Mobility man-
agement in next-generation wireless systems, Proc. IEEE, 87(8), 1347–1384,
1999.

[26] Wong, V.W.-S. and Leung, V.C., Location management for next-generation
personal communications networks, in IEEE Network Mag., 14(5), 18–24, 2000.

[27] Haas, Z., A new routing protocol for the reconfigurable wireless networks, in
Proc. of the Sixth IEEE Int. Conf. on Universal Personal Communications
(ICUPC’97), San Diego, CA, October 12–16, 1997.

[28] Han, Q. and Venkatasubramanian, N., Information collection services for QoS-
aware mobile applications, IEEE Trans. Mobile Comput., 5(5), 518–535, 2006.

[29] Guyton, J. and Shwartz, M.F., Locating nearby copies of replicated Internet
services, in Proc. of ACM SIGCOMM’95, Cambridge, MA, August 28–September
1, 1995.

[30] Fei, A., Pei, G., Liu, R., and Zhang, L., Measurements on delay and hop-
count of the Internet, in Proc. of Global Telecommunications Conf. (GLOBE-
COMM’98), Sydney, Australia, November, 1998.

[31] Francis, P., Jamin, S., Pasxon, V., Zhang, L., Gryniewica, D., and Jin, Y., An
architecture for a global Internet host distance estimation service, in Proc. of
IEEE INFOCOM’99, New York, March, 1999.

[32] Myers, A., Dinda, P., and Zhang, H., Performance characteristics of mirror
servers on the internet, in Proc. of Global Telecommunications Conf.
(GLOBECOM’99), Rio de Janeiro, Brazil, December, 1999.

[33] Chen, S. and Nahrstedt, K., Distributed quality of service routing in ad hoc
networks, IEEE J. Special Areas Commun., 17(8), 1488–1505, 1999 (special issue
on ad hoc networks).

[34] Zhao, W. and Tripathi, S.K., Routing guaranteed quality of service connec-
tions in integrated service packet network, in Proc. of Int. Conf. on Network
Protocols (ICNP’97), Atlanta, GA, October 28–31, 1997.

AU3833_C35.fm Page 967 Thursday, August 17, 2006 4:46 PM

968 ■ Mobile Middleware

[35] Cidon, I., Rom, R., and Shavitt, Y., Multipath routing combined with resource
reservation, in Proc. of IEEE INFOCOM’97, Kobe, Japan, April 7–11, 1997.

[36] Breslau, L. and Shenker, S., Best-effort versus reservations: a simple com-
parative analysis, in Proc. ACM SIGCOMM’98, Vancouver, Canada, October,
1998.

[37] Ma, Q., Steenkiste, P., and Zhang, H., Routing high-bandwidth traffic in
max-min fair share networks, in Proc. of ACM SIGCOMM’96, Palo Alto, CA,
August, 1996.

[38] Fu, Z. and Venkatasubramanian, N., Directory based composite routing and
scheduling policies for dynamic multimedia environments, in Proc. of IEEE
Int. Conf. on Parallel and Distributed Processing Symp. (IPDPS’01), San
Francisco, CA, April, 2001.

[39] Foster, I. and Kesselman, C., Eds., The Grid: Blueprint for a New Computing
Infrastructure, 2nd ed., Morgan Kauffman, Boston, MA, 1998.

[40] Berman, F. and Wolski, R., The AppLeS project: a status report, in Proc. of
the 8th NEC Research Symp., Berlin, Germany, May, 1997.

[41] Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I. et al., The GrADS
project: software support for high-level grid application development, Int.
J. High-Performance Comput. Appl., 15(4), 327–344, 2001.

[42] Abramson, D., Giddy, J., and Kotler, L., High performance parametric
modeling with Nimrod/G: killer application for the global grid?, in Proc. of
IEEE Int. Conf. on Parallel and Distributed Processing Symp. (IPDPS’00),
Cancun, Mexico, May 1–5, 2000.

[43] McKnight, L., Howison, J., and Bradner, S., Wireless grids: distributed
resource sharing by mobile, nomadic, and fixed devices, IEEE Internet
Comput., 8(4), 24–31, 2004.

[44] MAPGrid, http://mapgrid.ics.uci.edu/.
[45] Huang, Y. and Venkatasubramanian, N., Supporting mobile multimedia

services with intermittently available grid resources, in Proc. of Int. Conf.
on High-Performance Computing (HiPC’03), Hyderabad, India, December
17–20, 2003.

[46] Kaminsky, P.M., IEOR 251: Logistics Modeling [lecture], 2002.
[47] Huang, Y. and Venkatasubramanian, N., QoS-based resource discovery in

intermittently available environments, in Proc. of the 11th IEEE Int. Symp.
on High-Performance Distributed Computing (HPDC’02), Edinburgh, Scot-
land, July 23–26, 2002, pp. 246–254.

[48] Huang, Y., Mohapatra, S., and Venkatasubramanian, N., An energy-efficient
middleware for supporting multimedia services in mobile grid environments,
in Proc. of the 6th IEEE Int. Conf. on Information Technology (ITCC2005),
Las Vegas, NV, April 11–13, 2005.

[49] Satyanarayanan, M., Fundamental challenges in mobile computing, in Proc.
of the 15th ACM Symp. on Principles of Distributed Computing (PODC 1996),
Philadelphia, PA, May 23–26, 1996.

[50] Mohapatra, S. and Venkatasubramanian, N., Proactive energy-aware video
streaming to mobile handheld devices, in Proc. of the Fifth IFIP TC6 Int.
Conf. on Mobile and Wireless Communications Networks (MWCN 2003),
Singapore, October 27–29, 2003.

AU3833_C35.fm Page 968 Thursday, August 17, 2006 4:46 PM

969

Chapter 36

QoS Control

and Management

Xia Gao

CONTENTS

Introduction... 970
Current Status of QoS Research .. 971
QoS Issues in Heterogeneous Networks .. 973

Different Hyper Handovers.. 973
QoS Issues in Hyper Handovers ... 974
Necessity of a Unified QoS Infrastructure .. 977

New QoS Network Infrastructure for Heterogeneous Networks........................ 982
Data Plane ... 983
Control Plane... 984
Management Plane .. 986

Unified Cross-Layer Adaptation Platform.. 987
Cross-Layer Adaptation Algorithm
Abstraction and Policy Validation .. 988
Functionalities of the System PD... 991
Configuration of Layer PDP, PR, and PEP .. 992
Cross-Layer Information Exchange .. 993

An Instance of QoS Network Infrastructure.. 994
Conclusions ... 996
References ... 997

QU3833_C36.fm Page 969 Friday, August 18, 2006 11:13 AM

970

■

Mobile Middleware

Introduction

In recent years, the growth in mobile computing technology has been
explosive, and new wireless technologies have rapidly emerged. The
desire to be connected anytime, anywhere, and in any way has led to an
increasing array of heterogeneous systems, applications, devices, and
service providers. It is envisioned that this heterogeneity is unlikely to
disappear in the foreseeable future for two reasons. One is that the variety
of application requirements makes it difficult to find a single optimal and
universal solution. The other is that, in their eagerness to capture the
market, competing organizations are releasing proprietary systems. As a
result, the key to the success of next-generation mobile communication
systems is the ability to provide seamless services in such a heterogeneous
environment.

Internet Protocol (IP) is a universal network-layer protocol for the
Internet and is becoming a promising universal network-layer protocol
over all wireless systems, as well. IP provides unique addressing and packet
routing and forwarding services and acts as a common platform for services
and applications. It appears that an all-IP network layer can eventually
integrate wireless communication networks and the Internet into the so-
called “mobile Internet.” To provide users with satisfactory services, how-
ever, ubiquitous connectivity and corresponding best-effort services are not
enough. In a heterogeneous wireless network environment, application
performance could easily deteriorate for a variety of reasons, and this
performance fluctuation could be widespread. In response to this issue,
quality of service (QoS) is designed to hide low-level application variation
and to provide necessary service guarantees.

To provide QoS in the mobile Internet, many unique issues related to
heterogeneity and mobility must be addressed. Consider a user moving
from one network to another. The user may interact with a variety of
service providers with different terms of service-level agreements (SLAs),
network capacity, topology, and policies. The user may have a choice of
wireless access technologies with different channel characteristics (e.g.,
bandwidth, loss, delay) and QoS-supporting capabilities. The user may
switch to a new terminal with different computing power, display size,
and data rate, or the user may adapt applications to meet new service
requirements or network conditions. These factors can complicate the
end-to-end service provision and limit the ability of service adaptation.

A considerable amount of research has targeted QoS-related issues.
Most of the early work in this field focused on developing QoS frame-
works, such as integrated services (Inte-Serv) and differentiated services
(Diff-Serv), for the legacy best-effort Internet. Some progress has recently
been made in addressing the wireless-related QoS issues in wireless access,

QU3833_C36.fm Page 970 Friday, August 18, 2006 11:13 AM

QoS Control and Management

■

971

mobility management, and portable devices. The primary research, how-
ever, is still in the context of individual architectural components, and
much less progress has been made in addressing the issue of an overall
QoS architecture. To address the need for an overall QoS architecture,
we are investigating existing QoS research and are working to identify
the main design challenges and principles and propose a generalized QoS
architecture for the future mobile Internet.

This chapter first summarizes state-of-the-art QoS techniques and stan-
dardization activities, then examines in detail important challenges in
building a ubiquitous QoS framework over the heterogeneous environ-
ment, and finally proposes a QoS framework integrating a three-plane
network infrastructure and a unified terminal cross-layer adaptation plat-
form to provide seamless support for future applications.

Current Status of QoS Research

To provide reliable and sustained QoS in the mobile Internet, it is necessary
to efficiently manage wireless resources, adaptively cope with both tem-
poral and spatial resource dynamics, and effectively address practical
implementation issues. The ultimate solution for QoS support requires an
integrated design effort that spans every layer in the network protocol
stack. Research on the

user layer

 and

application layer

 focuses on the
specification and mapping of application and user QoS preferences on
evolving network service profiles. Different methods have been developed
to elicit a user’s cognitive and perceptual processes for network QoS. At
the

middleware

 level, new architectures (such as the agent-based model)
are proposed to create systems that are robust, adaptive, and reconfig-
urable. New middleware lies between applications and the operating
system (OS) and should provide applications with better support of
multimedia processing, seamless mobility, and QoS adaptation.

At the

transport

 layer, numerous modifications of the Transmission
Control Protocol (TCP) are proposed to improve TCP performance over
a wireless link. Some well-recognized characteristics of a wireless link are
random channel error, large and varying delay, low bandwidth, path
asymmetry, and temporary disconnection. At the

network

 layer, Inte-Serv
and Diff-Serv are two resource allocation architectures that allow for
resource assurances and service differentiation for traffic flows and users.
Multiprotocol label switching (MPLS) and related traffic engineering (TE)
techniques such as constraint-based routing and multipath load sharing
give Internet operators a set of management tools for bandwidth provi-
sioning and performance optimization. At the

link

 layer, work is underway
to add QoS support in Ethernet-type local area networks (LANs) such as

QU3833_C36.fm Page 971 Friday, August 18, 2006 11:13 AM

972

■

Mobile Middleware

802.11. Two active research areas are link-layer error recovery and wireless
scheduling. Finally, at the

physical

 layer, many channeling coding, modu-
lation, and power control schemes are proposed to increase the commu-
nication success ratio and decrease interference and power consumption.
Software-defined radio gives the physical layer the flexibility to access
different wireless systems with one single interface. Interested readers may
refer to Huston [1], Chalmers and Sloman [2], and Aurrecoechea et al. [3]
for more details on the related works mentioned here. The rest of this
section focuses primarily on the state-of-the-art research that forms the
basis for our framework.

The

policy management framework

[6] is one of the efforts intended
to simplify the definition and deployment of network behavior, including
the automatic provisioning of QoS mechanisms. This framework includes
four main elements. The

policy management tool

 (PMT) is an interface
assisting the administrator in creating network policies. These policies are
stored using standard schema in the

policy repository

(PR). The

policy
decision point

(PDP) is responsible for retrieving policy rules from the
policy repository and generating policy decisions to be executed by the
controlled

policy enforcement point

(PEP).
The Common Open Policy Service (COPS) protocol [7,8] is defined to

support policy control in an IP QoS environment. The COPS protocol is
a simply query-and-response protocol allowing the PDP to communicate
policy information with the PEP. COPS has two main models: outsourcing
(COPS-RSVP [7]), and provisioning (COPS-PR [8]). The policy management
framework provides the opportunity to combine policy control, QoS
signaling, and resource control in a unified framework. Some research is
addressing the use of different types of the COPS protocol to combine
RSVP and Diff-Serv networks, to allow dynamic SLA negotiation and
deployment, and to integrate QoS signaling with Session Initiation Protocol
(SIP) application signaling.

The

application network

refers to an application-specific overlay net-
work over the Internet. It extends the capabilities of network intermedi-
aries to provide additional services such as content adaptation,
personalization, and location-aware data insertion. The content distribution
network (CDN) and the content services network (CSN) [4] are two
examples. Unlike a CDN, the main functions of which are storage and
caching, the main focus of a CSN is to provide process ability to users,
Internet Service Providers (ISPs), and content providers. CSN interacts
collaboratively with user agents, content servers, and other network inter-
mediaries, including ISP caching proxies and CDN surrogates, in the
content delivery process to provide value-added services. CSN is composed
of

application proxy servers

,

redirection servers

, and

service distribution
and management servers

. An application proxy server hosts the software

QU3833_C36.fm Page 972 Friday, August 18, 2006 11:13 AM

QoS Control and Management

■

973

of value-added services and provides computational abilities. A redirection
server

directs a service request to an application proxy server according
to a number of attributes and measurements. A service distribution and
management server measures the demand of services and communicates
with redirection servers to route the requests.

The

next-step-in-signaling

 (NSIS)

signaling framework is being devel-
oped to investigate the requirements, architecture, and protocols for QoS
signaling across different network environments [5]. QoS signaling is
defined as a way to communicate QoS parameters and management
information among hosts, end systems, and network devices. It may
include request and response messages to facilitate negotiation or rene-
gotiation, asynchronous feedback, and QoS querying. QoS signaling sup-
ports per-flow and per-class QoS granularities. Different QoS signaling
requirements may apply to different parts of the network, such as end-
to-end, end-to-edge, edge-to-edge, or network-to-network, depending on
where the QoS initiator and QoS controller are located. When the signaling
runs across several QoS domains, NSIS allows the use of different signaling
protocols but requires the universal QoS control information.

QoS Issues in Heterogeneous Networks

As indicated earlier, a user in the converging mobile Internet may utilize
an application with different kinds of terminals across heterogeneous
wireless access technologies and among different administrative domains.
Thus, to provide seamless services for these users, in addition to solving
common problems such as time-varying and location-dependent wireless
link loss, limited bandwidth, and mobility, QoS management in the next-
generation network has to face new challenges caused by the diversity
of technologies.

Different Hyper Handovers

Handover

 is defined as a capability for managing the mobility for a mobile
terminal or a moving network in active state. Handover in a heterogeneous
network environment is different from that in a homogeneous wireless
access system where it occurs only when a user moves from one base
station to another. Handover within a homogeneous system is defined as

horizontal handover

, but handover between different administrative
domains, access technologies, user terminals, or applications is defined
as

hyper handover.

(The handover between different wireless access
technologies is usually called

vertical handover

; our definition of hyper
handover extends the dimensions of vertical handover.)

QU3833_C36.fm Page 973 Friday, August 18, 2006 11:13 AM

974

■

Mobile Middleware

Table 36.1 shows the main differences users might experience when
encountering the different kinds of hyper handover. Note that this table
separates the effect of each type, but in actual usage a user may experience
a combination of hyper handovers; for example, when moving from one
administrative domain to another, a user may also switch to a different
access technology required in the destination domain. Assuming that the
access technology in the new domain has lower bandwidth, the user may
decide to switch to another terminal to be able to use applications with
lower bandwidth requirements. In this scenario, the user experiences
handover that includes all four categories of hyper handovers.

QoS Issues in Hyper Handovers

Many works have focused on QoS provision in a wireless access network
with a single wireless access technology in the same administrative domain
and on the same terminal. These traditional QoS management methods try
to hide the transient QoS variation and violation from applications. Based
on the time scale concerned, these functions can be classified as static or
dynamic [2,3].

Static QoS functions

 usually activate in the application initi-
ation period and remain constant for a long time. Specification, translation,
negotiation, admission control, and resource reservation are static functions:

■

Specification

is the definition of the QoS requirements or capabil-
ities of applications, which encompass user preference, flow per-
formance metrics, allowed variation, adaptation policy, expected
service level, and interaction format with lower layer.

Table 36.1

Four Categories of Hyper Handovers

Categories Differences in Handover Peers

Administration
domain

ISP, ASP, AAA, SLA, policy, network topology, application
context, network traffic, available services

Access
technology

Bandwidth, loss, delay, coverage area, mobility support,
QoS support, suitable application, cost, security

Terminal CPU, memory size, display, input/output, battery,
network interface, built-in applications, software
platform

Application Traffic specification, QoS requirements, user
preference, user sensitivity, adaptation ability, network
connection

QU3833_C36.fm Page 974 Friday, August 18, 2006 11:13 AM

QoS Control and Management

■

975

■

Translation

performs the mapping between representations of QoS
at different system levels (e.g., user level, application level, mid-
dleware, transport layer) and thus automate the derivation of a
low layer’s more detailed specification from an upper layer’s more
abstract specifications.

■

Negotiation

 is the process of reaching an agreed-upon specification
among all parties on the end-to-end path. It could involve modifi-

cation of the QoS specification in case of failure during the admis-
sion control procedure or the resource reservation when an
agreement is reached.

■

Admission control

 is the procedure of comparing the resource
requirement arising from the QoS specification against the available
resources in the system. The decision regarding whether or not a
new request can be accommodated generally depends on a sys-
temwide resource management algorithm and current resource
availability.

■

Resource reservation

 arranges the allocation of prenegotiated end-
system and network resources to corresponding application flows.
It is achieved by appropriately configuring related packet process-
ing components in the QoS transport plane.

Contract specifications are often inexact because resource usage and
flow characteristics are not generally completely defined in advance.

Dynamic QoS functions

 allow the contract to be fulfilled on an ongoing
basis. The most important dynamic functions include monitoring, policing,
maintenance, renegotiation, adaptation, and feedback:

■

Monitoring

measures the QoS actually provided. It can operate in
different layers and over different time scales and plays an integral
part in the QoS control feedback loop that tracks the QoS achieved
by resource modules.

■

Policing

 ensures that all parties adhere to the QoS contract and
satisfy their part. It can occur at edge routers where the inflow
traffic is checked against its traffic specifications. It can also occur
between two administrative domains where bilateral contracts must
be satisfied.

■

Maintenance

includes the modification of the parameters of the
system to shield a lower layer QoS variation from applications.

■

Renegotiation

is the process to renegotiate service contract when
maintenance functions cannot satisfy the SLA. This usually happens
as a result of major changes such as handover or failures in the
system.

QU3833_C36.fm Page 975 Friday, August 18, 2006 11:13 AM

976

■

Mobile Middleware

■

Adaptation

refers to the situation that applications resort to their
own specific adaptation techniques to adjust to the changes of
QoS in the system when QoS maintenance functions fail to sustain
specified QoS contract.

■

Feedback

is selectively provided by a system to a user and waits
for the user to intervene. The frequency and trigger of the feedback
are predefined by the user according to the severity of the event
or other policy issues such as cost and security.

Table 36.2 shows how these QoS-related components are influenced by
the hyper handovers.

Unlike horizontal handovers, hyper handovers introduce large-grained
changes in QoS. This results in more complicated QoS management in
hyper handovers than in horizontal handovers. Here are some of the main
challenges:

■

Mobility support —

 Currently, no QoS support is available during
the handover period. When a terminal moves from one base station
to another, packets that arrived at the previous station are either
dropped or forwarded to the new station without QoS support. A
number of mobility support protocols such as Fast Handover for
Mobile IP (FMIP), Hierarchy Mobile IP, and Cellular IP [9] attempt
to shorten the handoff delay and to reduce the packet loss rate;
however, these protocols do not currently support the QoS param-
eters required by specific applications. Applications with different
QoS parameters for bandwidth, delay, and loss belong to different
QoS classes. They should receive differentiated service according
to their classes. Current mobility-supporting schemes treat appli-
cations the same way. This sometimes violates the philosophy of
differentiation and results in unnecessary system overuse.

■

Application network —

 An application proxy can help applications
to shorten response latency and to adapt to network variation;
however, an application proxy may change the end-to-end path
and complicate the resource reservation procedure. It can also
change the configuration of applications sessions by adding or
switching services which influences the QoS negotiation and adap-
tation procedure.

■

Dynamic QoS functionalities —

 Resource reservation and admis-
sion control algorithms that were originally developed in the
wired networks are modified for horizontal handover. The
changes occurring during hyper handover challenge the dynamic
QoS functionalities. For example, consider two adjacent domains
with different cost or policy requirements for application QoS.

QU3833_C36.fm Page 976 Friday, August 18, 2006 11:13 AM

QoS Control and Management

■

977

When a user moves from one domain to another, the QoS
specification may have to be changed and some QoS adaptation
functionalities may not be feasible.

Necessity of a Unified QoS Infrastructure

Previous sections have pointed out numerous QoS issues regarding provid-
ing users with a seamless mobile Internet experience. A large number of
schemes have already been proposed to solve one issue or another. Due
to a lack of coordination when deployed in the same network or device,
these schemes may conflict with each other and make the system perfor-
mance unpredictable. Furthermore, interest is increasing in protocol designs
that rely on interactions between different layers to improve the performance
of wireless networks. Generally termed

cross-layer design

, many of these
proposals are aimed at achieving performance improvements, though often
at the cost of good architecture design. Note that when the layering is
broken, the luxury of designing a protocol in isolation is lost, and the effect
of any single design choice on the entire system must be considered.
Moreover, in many cases such undesired interactions are not easily foreseen.
Hence, unbridled cross-layer design can lead to a spaghetti design that
stifles future technology innovation and proliferation because every protocol
update may require a complete system overhaul [16,18].

A unified QoS infrastructure is required to coordinate various QoS
schemes deployed in the network or on the devices and optimize user
perceived performance. A number of QoS principles guide our design of
a generalized QoS framework for the heterogeneous network:

■

Adaptation

 states that adaptation support should be included in
the design of every component because of the limited and dynam-
ically varying available resources, stringent application require-
ments, heterogeneous executing platforms, and user mobility. The
QoS specification could include adaptive parameters such as loss
percentage and service disruption probability. Seamless modifica-
tion of already reserved QoS should be allowed.

■

Reconfiguration

 states that the configuration of the whole system
or part of the system should be allowed to dynamically change to
adapt to the changes of application QoS requirements, user pref-
erences, network maintenance, or resource variation. Both hard-
ware and software organizations should be modular.

■

Robustness

 states that the system should be resistant to and able
to easily recover from temporary network disconnections and
failures. The QoS should decrease gracefully in case of sustained

QU3833_C36.fm Page 977 Friday, August 18, 2006 11:13 AM

978

■

Mobile Middleware

Ta
bl

e
36

.2

Q
oS

 I
ss

ue
s

fo
r

Ea
ch

 K
in

d
of

 H
yp

er
 H

an
do

ve
r

A
d

m
in

is
tr

at
iv

e
D

o
m

ai
n

A
cc

es
s

Te
ch

n
o

lo
gy

Te
rm

in
al

A
p

p
lic

at
io

n

Q
o

S
sp

ec
ifi

ca
ti

o
n

U
se

rs
 h

av
e

d
if

fe
re

n
t

SL
A

s
w

it
h

 e
ac

h
 d

o
m

ai
n

;
u

se
rs

 d
efi

n
e

d
if

fe
re

n
t

ad
ap

ta
ti

o
n

 p
o

lic
ie

s.

C
h

an
ge

 o
f

ac
ce

ss
 l

in
k

ca
n

 m
ak

e
u

se
rs

 a
d

ap
t;

d
if

fe
re

n
t

Q
o

S
fr

am
ew

o
rk

 r
eq

u
ir

es

d
if

fe
re

n
t

fo
rm

at
s.

Pr
o

ce
ss

in
g

p
o

w
er

 a
n

d

d
is

p
la

y
si

ze
 c

h
an

ge
 s

o

tr
af

fi
c

sp
ec

ifi
ca

ti
o

n
s

m
ig

h
t

ch
an

ge
.

Sp
ec

ifi
ca

ti
o

n
s

ch
an

ge

d
u

e
to

 c
h

an
ge

s
in

ap

p
lic

at
io

n
s.

Q
o

S
n

eg
o

ti
at

io
n

Pr

o
b

le
m

s
in

cl
u

d
e

n
et

w
o

rk
 t

ra
ffi

c
lo

ad
,

en
d

-t
o

-e
n

d
 p

at
h

, o
r S

LA

ch
an

ge
s.

Pr
o

b
le

m
s

in
cl

u
d

e
n

et
w

o
rk

 t
ra

ffi
c

lo
ad

,
ap

p
lic

at
io

n
 a

d
ap

ta
ti

o
n

,
en

d
-t

o
-e

n
d

 p
at

h
.

Pr
o

b
le

m
s

in
cl

u
d

e
n

et
w

o
rk

 t
ra

ffi
c

lo
ad

,
ap

p
lic

at
io

n
 a

d
ap

ta
ti

o
n

,
en

d
-t

o
-e

n
d

 p
at

h
.

Pr
o

b
le

m
s

in
cl

u
d

e
n

ew

Q
o

S
sp

ec
ifi

ca
ti

o
n

, e
n

d
-

to
-e

n
d

 p
at

h
 c

h
an

ge
,

n
et

w
o

rk
 t

ra
ffi

c
lo

ad
.

Q
o

S
ad

ap
ta

ti
o

n
D

if
fe

re
n

t
p

o
lic

ie
s

an
d

co

st
s

le
ad

 t
o

 d
if

fe
re

n
t

ad
ap

ta
ti

o
n

 t
ec

h
n

iq
u

es
.

V
ar

yi
n

g
b

an
d

w
id

th
,

d
el

ay
, l

o
ss

, j
it

te
r,

co
ve

ra
ge

 a
re

a,
 a

n
d

p

h
ys

ic
al

 l
ay

er
 c

au
se

p

ro
b

le
m

s.

Q
o

S
ad

ap
ta

ti
o

n
 i

n
 t

h
e

O
S

an
d

 m
id

d
le

w
ar

e
co

u
ld

 c
h

an
ge

.

C
h

an
ge

s
ar

e
b

as
ed

 o
n

th

e
ch

o
ic

e
o

f
n

ew

ap
p

lic
at

io
n

s.

R
es

o
u

rc
e

re
se

rv
at

io
n

C
h

an
ge

s
in

 Q
o

S
sp

ec
ifi

ca
ti

o
n

s,

co
n

te
xt

s,
 a

n
d

ap

p
lic

at
io

n
 n

et
w

o
rk

ad

ap
ta

ti
o

n
s

m
ak

e
it

ex

p
en

si
ve

 a
n

d

in
ac

cu
ra

te
.

Pr
o

ac
ti

ve
 r

es
er

va
ti

o
n

 i
s

b
as

ed
 o

n
 M

o
b

ile

R
eS

o
u

rc
e

re
se

rV
at

io
n

Pr

o
to

co
l

(M
R

SV
P)

;
su

ff
er

s
fr

o
m

 p
at

h

ch
an

ge
s.

Su
ff

er
s

fr
o

m
 c

h
an

ge
s

in

th
e

en
d

-t
o

-e
n

d
 p

at
h

an

d
 t

ra
ffi

c
sp

ec
ifi

ca
ti

o
n

s.

Th
is

 i
s

n
o

t
a

si
gn

ifi
ca

n
t

is
su

e
b

ec
au

se
 a

 l
o

n
g

re
se

rv
at

io
n

 d
el

ay
 i

s
to

le
ra

b
le

.

QU3833_C36.fm Page 978 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 979
A

d
m

is
si

o
n

 c
o

n
tr

o
l

Pr
o

b
le

m
s

ar
e

th
e

sa
m

e
as

 a
b

o
ve

.
W

h
en

 c
h

an
gi

n
g

fr
o

m

h
ig

h
 b

an
d

w
id

th
 t

o
 lo

w

b
an

d
w

id
th

, s
ys

te
m

co

u
ld

 f
ai

l.

Th
is

 i
s

n
o

t
a

si
gn

ifi
ca

n
t

is
su

e.
Sy

st
em

 c
o

u
ld

 f
ai

l i
f

n
ew

ap

p
lic

at
io

n
’s

 Q
o

S
ca

n
n

o
t

b
e

sa
ti

sfi
ed

.

M
o

n
it

o
ri

n
g,

p

o
lic

in
g,

 a
n

d

m
ai

n
te

n
an

ce

It
 is

 n
ec

es
sa

ry
 to

 tr
an

sf
er

th

e
cu

rr
en

t
ap

p
lic

at
io

n

p
ro

fi
le

 b
et

w
ee

n

d
o

m
ai

n
s

to
 c

o
n

ti
n

u
e

tr
ac

ki
n

g.

Pr
o

fi
le

s
m

ay
 n

o
t

b
e

co
m

p
at

ib
le

 a
n

d

p
o

lic
ie

s
co

u
ld

 c
h

an
ge

.

Po
lic

ie
s

ab
o

u
t

h
o

w
 t

o

co
m

b
in

e
p

ro
fi

le
s

m
u

st

b
e

d
efi

n
ed

.

Po
lic

ie
s

ab
o

u
t

h
o

w
 t

o

co
m

b
in

e
p

ro
fi

le
s

m
u

st

b
e

d
efi

n
ed

.

Lo
ad

 b
al

an
ci

n
g

Lo
ad

 s
h

ar
in

g
am

o
n

g
se

rv
er

s,
 a

p
p

lic
at

io
n

s,

an
d

 t
h

e
n

et
w

o
rk

 m
ig

h
t

ch
an

ge
.

Lo
ad

 i
s

re
d

is
tr

ib
u

te
d

b

ec
au

se
 o

f t
h

e
ch

an
ge

s
o

f
w

ir
el

es
s

lin
ks

.

Lo
ad

 i
s

re
d

is
tr

ib
u

te
d

b

ec
au

se
 o

f t
h

e
ch

an
ge

s
o

f
te

rm
in

al
.

Lo
ad

 b
al

an
ci

n
g

m
u

st
 b

e
d

o
n

e
fr

o
m

 s
cr

at
ch

b

ec
au

se
 o

f
ap

p
lic

at
io

n

ch
an

ge
s.

C
o

n
te

n
t-

d
is

tr
ib

u
ti

o
n

n

et
w

o
rk

C
ac

h
e

ca
n

 c
h

an
ge

 t
h

e
en

d
-t

o
-e

n
d

 p
at

h
 fo

r t
h

e
sa

m
e

fl
o

w
.

Th
is

 i
s

n
o

t
a

si
gn

ifi
ca

n
t

is
su

e.
Th

is
 i

s
n

o
t

a
si

gn
ifi

ca
n

t
is

su
e.

D
if

fe
re

n
t

ca
ch

es
 c

o
u

ld

b
e

u
se

d
.

C
o

n
te

xt
-a

w
ar

e
co

m
p

u
ti

n
g

N
ew

 l
o

ca
ti

o
n

-b
as

ed

se
rv

ic
es

 c
an

 re
p

la
ce

 o
ld

lo

ca
ti

o
n

-b
as

ed

se
rv

ic
es

; t
h

e
sa

m
e

fl
o

w

m
ig

h
t

h
av

e
a

d
if

fe
re

n
t

tr
af

fi
c

lo
ad

.

A
p

p
lic

at
io

n
 n

o
d

es
 s

u
ch

as

 t
ra

n
sc

o
d

in
g

p
ro

xy

ar
e

u
se

d
 i

n
 t

h
e

ac
ce

ss

n
et

w
o

rk
 to

 a
d

ap
t t

o
 li

n
k

ch
an

ge
.

N
ew

 k
in

d
 o

f
co

n
te

xt

co
u

ld
 b

e
re

q
u

ir
ed

;
ap

p
lic

at
io

n
 p

ro
xy

 c
o

u
ld

al

so
 c

h
an

ge
.

D
if

fe
re

n
t

ki
n

d
s

o
f

co
n

te
xt

 i
n

fo
rm

at
io

n

co
u

ld
 b

e
u

se
d

;
ap

p
lic

at
io

n
 p

ro
xy

 c
o

u
ld

al

so
 c

h
an

ge
.

Se
rv

ic
e

d
is

co
ve

ry

an
d

 s
er

vi
ce

co

m
p

o
si

ti
o

n

A
p

p
lic

at
io

n
s

co
u

ld
 a

d
d

n

ew
 s

er
vi

ce
s;

 t
h

e
sa

m
e

se
rv

ic
e

ca
n

 c
h

an
ge

ap

p
lic

at
io

n
/s

er
vi

ce

p
ro

vi
d

er
 (

A
SP

).

A
p

p
lic

at
io

n
s

ch
an

ge
 t

o

m
at

ch
 t

h
e

lin
k

p
ro

p
er

ti
es

.

A
p

p
lic

at
io

n
s

ch
an

ge
 t

o

m
at

ch
 t

h
e

te
rm

in
al

p

ro
p

er
ti

es
.

C
o

m
p

le
m

en
ta

ry
 s

er
vi

ce

ch
an

ge
s

to
 m

at
ch

ap

p
lic

at
io

n
’s

p

ro
p

er
ti

es
.

(c
o

nt
in

ue
d

)

QU3833_C36.fm Page 979 Friday, August 18, 2006 11:13 AM

980 ■ Mobile Middleware

Ta
bl

e
36

.2
Q

oS
 I

ss
ue

s
fo

r
Ea

ch
 K

in
d

of
 H

yp
er

 H
an

do
ve

r
(c

on
t.

)

A
d

m
in

is
tr

at
iv

e
D

o
m

ai
n

A
cc

es
s

Te
ch

n
o

lo
gy

Te
rm

in
al

A
p

p
lic

at
io

n

Fl
o

w

re
co

n
fi

gu
ra

ti
o

n

an
d

 fl
o

w

sy
n

ch
ro

n
iz

at
io

n

Pr
o

p
er

ti
es

 o
f fl

o
w

s
o

f t
h

e
ap

p
lic

at
io

n
s

ca
n

ch

an
ge

; r
el

at
iv

e
p

ri
o

ri
ti

es
 c

an
 c

h
an

ge
.

Pr
o

p
er

ti
es

 o
f fl

o
w

s
o

f t
h

e
ap

p
lic

at
io

n
s

ca
n

ch

an
ge

; r
el

at
iv

e
p

ri
o

ri
ty

ca

n
 c

h
an

ge
.

Pr
o

p
er

ti
es

 o
f fl

o
w

s
o

f t
h

e
ap

p
lic

at
io

n
s

ca
n

ch

an
ge

; r
el

at
iv

e
p

ri
o

ri
ty

ca

n
 c

h
an

ge
.

Pr
o

p
er

ti
es

 o
f fl

o
w

s
o

f t
h

e
ap

p
lic

at
io

n
s

ca
n

ch

an
ge

; r
el

at
iv

e
p

ri
o

ri
ty

ca

n
 c

h
an

ge
.

O
th

er
s

M
ic

ro
m

o
b

ili
ty

-b
as

ed

h
an

d
o

ve
r

sc
h

em
es

su

ch
 a

s
ce

llu
la

r
IP

 a
n

d

H
aw

ai
i

d
o

 n
o

t
w

o
rk

w

it
h

o
u

t
a

co
m

m
o

n

fo
re

ig
n

 a
ge

n
t.

Tr
an

sp
o

rt
 p

ro
to

co
ls

 t
h

at

ar
e

go
o

d
 f

o
r

o
n

e
ki

n
d

o

f l
in

k
m

ay
 n

o
t b

e
go

o
d

fo

r
th

e
o

th
er

, b
u

t
tr

an
sp

o
rt

 l
ay

er
 h

as
 n

o

kn
o

w
le

d
ge

 o
f l

in
k-

la
ye

r
ch

an
ge

s.

M
o

b
ile

 a
ge

n
ts

 m
ig

ra
ti

n
g

fr
o

m
 o

n
e

te
rm

in
al

 t
o

an

o
th

er
 m

u
st

 a
d

ju
st

 t
o

th

e
n

ew
 O

S
an

d
 c

h
o

o
se

n

ew
 Q

o
S

ad
ap

ta
ti

o
n

te

ch
n

iq
u

es
.

C
h

an
ge

 o
f

ap
p

lic
at

io
n

co

u
ld

 l
ea

d
 t

o

re
co

n
fi

gu
ra

ti
o

n
 o

f
th

e
u

n
d

er
ly

in
g

p
ro

to
co

l
la

ye
rs

 t
o

 o
p

ti
m

iz
e

Q
o

S
ad

ap
ta

ti
o

n
 a

b
ili

ty
.

QU3833_C36.fm Page 980 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 981

system failure. Automatic release of resources after failure or auto-
matic setup of resources after recovery should be possible.

■ Separation states that data transfer, QoS control signaling, and
QoS management signaling are functionally distinct architectural
activities that should be separated in the architectural QoS frame-
work.

■ Integration states that each resource module on the end-to-end
path must provide a QoS guarantee and maintenance of ongoing
flows. It requires the QoS support of OSs on both the client and
server sides and includes every single communication segment on
the end-to-end communication path.

■ Transparency states that the upper layer should be shielded from
the complexity of lower layer QoS adaptation and management
techniques.

■ Inter-layer interaction states that each protocol layer should coop-
erate with others in a systematic way to achieve globally optimal
QoS adaptation. Still under the constraints of transparency princi-
ple, the interactions between the different layers should be limited,
well defined, and standardized.

■ User orientation states that users should be considered in the end-
to-end path. The user’s perception of QoS is the optimizing objec-
tive of the overall QoS framework and is captured through user
profiling. Users should be able to set up when and how they
should be prompted when a QoS violation, adaptation, or excep-
tion occurs.

■ Maintenance states that the QoS framework should be easy to
maintain, and dynamic QoS deployment should be done in a time-
and energy-efficient manner. The error-prone and labor-intensive
manual maintenance of network equipment should be replaced by
a policy-based management system.

■ Scalability states that the QoS framework should behave normally
under extreme heavy loads. It should be scalable in the number
of active flows, signaling messages, handovers, and states per
entity, as well as in CPU usage.

In the next section, we present our QoS framework for mobile Internet
designed according to these principles. As is pointed out later, our key
observation is that the QoS frameworks of the network and terminal
should be based on different principles because of their uniqueness. As
a result, our architecture has two interacting network and terminal sub-
systems that achieve a good balance between performance and architec-
ture integrity.

QU3833_C36.fm Page 981 Friday, August 18, 2006 11:13 AM

982 ■ Mobile Middleware

New QoS Network Infrastructure
for Heterogeneous Networks
This section presents our frameworks for coping with the main QoS
challenges for hyper handovers and enabling seamless services. The
discussion focuses on the new functional blocks and new functionalities
added to the conventional framework. These new functional blocks are
proposed to alleviate the influences of hyper handovers. When examining
the QoS design principles [3], note that some principles contradict each
other, such as the transparency and user-orientation principles. Also note
that not all principles are feasible for both terminals and networks, such
as the inter-layer interaction and separation principles. For the terminal,
scalability may not be a significant issue and the performance of each
layer can be easily measured. Measurements can be used as feedback to
help achieve optimal cross-layer adaptation, so it is desirable to have
optimal inter-layer interaction and user-oriented feedback. For the net-
work, the main concerns are scalability and robustness; thus, the separation
and transparency principles are important for simplifying the design,
control, and maintenance of large-scale networks. Based on this basic
observation, we propose two QoS frameworks for the network and
terminal that support end-to-end QoS provision in the heterogeneous
mobile Internet. These two frameworks can be designed using somewhat
differing principles but should have a well-designed interface between
them to allow seamless end-to-end services [16].

The main design principles for the QoS network framework are scal-
ability, transparency, separation, robustness, maintenance, and adaptation.
User-orientated feedback and cross-layer interaction principles are sec-
ondary. As shown in Figure 36.1, the network framework is designed to
have three separate planes: management and functional signaling (or,
simply, management), QoS control and signaling (or, simply, control),
and data. This structure conforms to the separation principle and allows
scalable QoS framework and adaptation techniques to be designed trans-
parently in each layer. The policy framework is then used to provide
limited and systematic inter-layer interactions. This unifies the three func-
tional planes into a universal architecture.

The main hyper-handover-related QoS function blocks are listed in Figure
36.1. Some are completely new, but others simply have newly added
functionalities in addition to the common functions. This section highlights
some of the key blocks, either new or differing from those in existing QoS
frameworks. Note that this is an extensive list and includes the functions
that may reside in different components of the network. Any special com-
ponent, such as an access router or core router, may only implement a
subset of all the blocks or a fraction of all the functions available in a block.

QU3833_C36.fm Page 982 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 983

Data Plane

Most of the blocks in the data plane exist in other QoS frameworks, such
as Inte-Serv and Diff-Serv; the only new block is packet tunneling. In the
data plane, however, these blocks all have different functionalities con-
trolled by the control plane to enable seamless handovers. Here are some
of the most important differences:

■ Flow classifier — The common flow classifier uses 5-tuples
(source/destination IP address, source/destination port, and pro-
tocol type) to identify a flow and to differentiate packets; how-
ever, this format is no longer suitable in the mobile Internet
because in many cases either the source or destination of a flow
may change due to handover. For example, when a mobile host
(MH) subscribing to a location-based service moves to a new
domain, it must switch its connection to a new server providing
a similar service. In this case, the same flow uses different
destination IP addresses during the transmission. Other similar
cases include changes in the intermediate content caching proxy
and transcoding proxy in a CDN.

■ Flow monitoring — Common tasks of the block are to guarantee
that the coming traffic obeys its service-level specification (SLS)
and to specify how the marking block should mark a packet if it
violates the SLS. This process usually happens at the edge router,
which could change also during the hyper handover as an MH

Figure 36.1 QoS metwork infrastructure.

Management
& functional

signaling plane

QU3833_C36.fm Page 983 Friday, August 18, 2006 11:13 AM

984 ■ Mobile Middleware

migrates from one domain to another. Without the necessary history
information, such monitoring cannot be done properly so the
transfer of traffic history from the old edge router to the new one
is needed.

■ Packet tunneling — This is a new block. It not only deals with IP
tunneling in the mobile IP but also tries to provide QoS support
during a hyper handover. Each application can ask for different
QoS support during the handover. The QoS requirement during
handover may be different from the QoS requirement for the normal
data transmission. If this is the case, when handover is detected
the packets already in the forwarding queue are encapsulated first,
then they are put into a new queue that could belong to a different
out-interface and receive different scheduling treatment.

Control Plane

The data plane as a PEP has only limited QoS adaptation ability,
realized primarily through the scheduling block. Because it does not
have global knowledge, to adapt to the heterogeneous environment it
requires the control plane to set up corresponding operation policies
and parameters. The components in the data plane then process the
packets in the way specified by the control plane. The control plane
uses end-to-end signaling to integrate every host on the end-to-end
path to achieve QoS negotiation, adaptation, and feedback. It allows
a moblile host to communicate with any intermediate application server
to set up or tear down temporary connections. It also allows any pair
of interacting nodes to negotiate a QoS contract between each other.
Using a policy-based framework speeds up systemwide implementation
of the QoS framework by automating the equipment setup time;
however, because the control plane focuses primarily on the nonfunc-
tional part (improving performance), it further relies on the manage-
ment plane to decide how existing QoS support could be used to
achieve application-specific tasks.

QoS Initiator, QoS Agent, and QoS Controller

The QoS initiator (QI) and QoS controller (QC) blocks are the initiator of
and responder to the QoS signaling message, respectively. As in a more
detailed example to be given later, different signaling protocols could be
used and different QoS parameters could be transferred depending on
the network topology and traffic type (per-flow or flow aggregation). The
QoS agent block acts as the PDP. It gets input from the policy control
and admission control blocks, cooperates with other QoS agents through

QU3833_C36.fm Page 984 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 985

QoS signaling protocol, and configures the PEPs in its domain to provide
large-time-scale QoS support to normal data transmissions. It further works
together with QoS context and handover differentiation blocks to provide
short-time-scale QoS during the handover period.

Peer Discovery

This block gets information from the management plane regarding what
the destination host is and which kind of negotiation should go on. QoS
signaling assumes that the QC and QI have already existed and know
each other before the signaling happens. In the common IP network, this
assumption is valid, and, based on the destination IP address, routing and
relations between a QoS agent and other nodes can be predefined.
However, in hyper handover cases where flows keep changing their source
or destination points, a QoS agent must dynamically find out which node
is its signaling peer. This is decided by the management plane.

QoS Context

Significant QoS signaling exchanges between interacting nodes in the
network may be required in order to establish the initial QoS treatment
for the packets of an MH [10]. Preliminary studies have indicated that to
reestablish QoS in the new path from scratch can be very time consuming.
So the QoS context block is helpful in transferring the QoS context of an
MH from one node to another. Such a QoS transfer can happen not only
between two access points but also between any nodes with similar
functionalities such as edge routers. However, for end-to-end QoS support,
transferring context between parts of the nodes may be insufficient to
completely reinitiate the QoS treatment of the MH.

Handover Differentiation

Current handover schemes treat applications in a way that violates the
philosophy of differentiation and sometimes leads to unnecessary system
overuse. Although application QoS requirements will influence the handover
QoS requirements, they are not necessarily the same. To enable handover
differentiation, a number of handover classes have been defined in the
literature:

■ Fast handover is a handover that can satisfy strict delay bounds
(e.g., for real-time services).

■ Smooth handover is a handover that can minimize a loss of packets.
■ Seamless handover is a handover with minimum perceptible inter-

ruption of the services.

QU3833_C36.fm Page 985 Friday, August 18, 2006 11:13 AM

986 ■ Mobile Middleware

This block provides the applications with differentiated QoS support during
the handover period. It sets up the necessary handover tunneling path and
controls the packet tunneling block in the data plane to separate normal
QoS requirements of data transmission from handover QoS requirements.

Management Plane

The management plane behaves as the policy management tool (PMT).
The PMT produces policies based on user SLA, application network server
properties, and network load condition. Policies are stored in the policy
repository, which can be physically located anywhere in the network.
Policies can be either per-user based or per-class based. They can specify
the QoS rules during the handover and adaptation period. When a hyper
handover occurs, before the QoS signaling for the adaptation is initiated,
different entities in the network can be involved to provide seamless
service or value-added services; for example, constraint-based routing
could be used to reroute the flow bypassing the congested nodes. Servers
of location-based services, context-aware services, or content caching
could be used to improve user perception of the services. Applications
could use an application-level signaling protocol such as SIP to add or
remove servers from the session. Instead of static SLA, a different protocol
such as COPS could be used to dynamically set up user SLAs. Based on
these services, QoS signaling is then used to further negotiate the service
contract and guarantee the seamless services. Three key blocks are:

■ Session reconfiguration — In many cases mentioned earlier, the
configuration of an application session is changed. These changes
happen in many ways. The number of flows of one session could
be changed during the handover if new services in the new domain
are added to the current session. The traffic of one flow could
have different QoS characteristic if the flow attaches to a different
server after handover. The addresses of the source and destination
nodes can be different if intermediate proxies change. In all the
cases, the application must reconfigure the relative priorities among
flows of its session to optimize overall session performance.

■ Application network — An application network can improve user
perception by moving the server closer to the client or adapting
the traffic to the current context. It works together with the IP-
layer QoS framework to improve application performance. Many
issues need to be considered when evaluating an application
network; for example, because an application network may change
the traffic characteristics of flows going through it, QoS translation
is necessary and must take into account such long-term traffic

QU3833_C36.fm Page 986 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 987

changes. Another issue is possibly increased service variation dur-
ing the handover if one domain has an application network server
that another domain does not have.

■ Seamless handover — In addition to mobility support that is based
on Mobile IP and Cellular IP are many other types of mobility
support. One mechanism is an SIP-based application mobility
scheme that provides application-specific handover support [10].
Another mechanism is the predefined Handover Support Overlay
Network, which provides QoS support during the handover. All of
these different mechanisms must cooperate with the QoS signaling
protocols to perform admission control and resource reservation.

Unified Cross-Layer Adaptation Platform
Cross-layer adaptation algorithms, which are discussed here in different
contexts, are considered to be promising techniques for hiding the com-
plexity of the underlying heterogeneity from mobile applications. The
common themes of these algorithms are an understanding of the user,
application, or system performance requirements, as well as adjustment
of the behavior of configurable components to adapt to various hetero-
geneities. As discussed earlier, optimal inter-layer interaction and user
feedback are desirable for a terminal QoS framework. Furthermore, ter-
minal-based adaptation is feasible in hyper handovers because a handover
usually happens at the last wireless hop; hence, terminals can have good
knowledge about the context changes and QoS variations. It is natural
for a terminal to initiate the QoS adaptation or cooperate with the network
to adjust to the environment heterogeneity

Most of the cross-layer adaptation algorithms improve some perfor-
mance index to some extent; however, they usually only focus on the
design of the algorithm itself. Also, they assume that underlying assump-
tions are reasonable and that the overhead incurred is small compared
with the performance improvement. Unfortunately, as the number of cross-
layer adaptation algorithms on one terminal increases, the chances that
outputs from the different algorithms will conflict also increase. At the
same time, as the time-varying mobile environment changes, some adap-
tation algorithms may become inappropriate.

After carefully evaluating existing solutions, this section briefly lists
and discusses the main problems encountered in previous works and
which also serve as the motivation behind our terminal QoS framework:

■ No systemwide coordination — When multiple cross-layer adapta-
tion algorithms coexist at the same terminal, how they interact with
each other is not well studied. More specifically, possible conflicts

QU3833_C36.fm Page 987 Friday, August 18, 2006 11:13 AM

988 ■ Mobile Middleware

between different schemes, validation of each scheme’s assump-
tions, and the feasibility of each scheme under the current running
environment are not considered.

■ No systematic way to achieve cross-layer communications — Nearly
all of the cross-layer adaptation schemes rely on sharing important
information among different layers to achieve the performance
goal. Most of them focus on the design of the algorithm itself and
use some ad hoc ways to exchange information, such as specialized
APIs or header extensions.

■ Difficult to modify, extend, and interconnect — Because of the ad
hoc approach to designing cross-layer communications, the mod-
ification, extension, and interconnection with other components
become time consuming and error prone. Unnecessary details on
each layer have to be exposed to allow few variations.

To address the problems of unifying cross-layer adaptation and commu-
nication but keeping the architecture expandable, manageable, and pow-
erful, we propose the cross-layer adaptation platform (CLAP) shown in
Table 36.3.

Cross-Layer Adaptation Algorithm
Abstraction and Policy Validation

Before describing the CLAP architecture, this section first defines and gives
an expression for cross-layer adaptation algorithms. Only after the expres-
sion of the algorithms is well understood will the design choices of the
architecture become obvious. Cross-layer adaptation algorithms can be
defined in a hierarchical way as shown in Figure 36.2. Service abstraction
is used to define the behavior or functionality provided by a component.
To fully specify a service, one must define: (1) the functions, (2) the
information (parameters) required to perform these functions, and (3) the
information made available by this component to other components of
the system. To support dynamic configuration, a component also must
define: (1) the service choices inside the component, and (2) the infor-
mation needed to select the service. Cross-layer adaptation algorithms
can then be abstracted as: (1) components involved in each layer; (2)
policies used to configure each component, including policy conditions
using the output from some components and policy actions using con-
figuration parameters as the output to control some other components;
(3) priority of the algorithm in case of policy conflict; and (4) assumptions
of the algorithm (i.e., under which conditions the algorithm should be
invoked), which are expressed as another set of policies used for coor-
dination among algorithms.

QU3833_C36.fm Page 988 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 989

Ta
bl

e
36

.3
C

ro
ss

-L
ay

er
 A

da
pt

at
io

n
Pl

at
fo

rm
 (

C
LA

P)

La
ye

r
In

p
u

t/
Tr

ig
ge

r
C

ro
ss

-L
ay

er
 A

d
ap

ta
ti

o
n

Po
lic

y
En

fo
rc

em
en

t
Po

in
t

(P
EP

)

U
se

r/
p

o
in

t-
to

-p
o

in
t

m
an

ag
em

en
t

la
ye

r
(P

M
L)

M
an

ag
em

en
t;

au
th

en
ti

ca
ti

o
n

,
au

th
o

ri
za

ti
o

n
, a

n
d

ac

co
u

n
ti

n
g

(A
A

A
);

u

se
r

p
re

fe
re

n
ce

C
o

m
m

o
n

p

o
lic

y
re

p
o

si
to

ry

(C
PR

)

Sy
st

em
 P

D
P

C
ro

ss
-l

ay
er

ad

ap
ta

ti
o

n

al
go

ri
th

m
s

Po
lic

y
ch

ec
ks

:
co

n
si

st
en

cy
,

fe
as

ib
ili

ty
,

d
o

m
in

an
ce

Po
lic

y
tr

an
sl

at
io

n
Po

lic
y

d
is

tr
ib

u
ti

o
n

La
ye

r
p

o
lic

y
re

p
o

si
to

ry

(P
R

)/
p

o
lic

y
d

ec
is

io
n

p

o
in

t
(P

D
P)

G
ra

p
h

ic
al

 u
se

r
in

te
rf

ac
e

(G
U

I)

ad
ap

ta
ti

o
n

,
in

te
ra

ct
io

n
/f

ee
d

b
ac

k
ad

ap
ta

ti
o

n

A
p

p
lic

at
io

n
R

el
at

iv
e

im
p

o
rt

an
ce

,
sp

ec
ifi

c
re

q
u

ir
em

en
ts

La
ye

r
PR

/P
D

P
A

p
p

lic
at

io
n

 a
d

ap
ta

ti
o

n
,

ap
p

lic
at

io
n

re

d
ir

ec
ti

o
n

M
id

d
le

w
ar

e
A

d
ap

ta
ti

o
n

 a
b

ili
ty

La
ye

r
PR

/P
D

P
Se

ss
io

n
 m

an
ag

em
en

t,
fl

o
w

sy

n
ch

ro
n

iz
at

io
n

Tr
an

sp
o

rt
Su

p
p

o
rt

in
g

p
ro

to
co

ls
La

ye
r

PR
/P

D
P

Li
n

k-
aw

ar
e

p
ro

to
co

ls
,

ap
p

lic
at

io
n

-
aw

ar
e

lo
ss

 r
ec

o
ve

ry
 p

ro
to

co
ls

In
te

rn
et

Pr

o
to

co
l

N
et

w
o

rk
 t

o
p

o
lo

gy
,

tr
af

fi
c

lo
ad

La
ye

r
PR

/P
D

P
M

o
b

ili
ty

 s
u

p
p

o
rt

, I
n

te
-S

er
v,

 D
if

f-
Se

rv
,

m
u

lt
ip

ro
to

co
l

la
b

el
 s

w
it

ch
in

g
(M

PL
S)

, t
ra

ffi
c

en
gi

n
ee

ri
n

g
(T

E)
Li

n
k

Li
n

k
av

ai
la

b
ili

ty
,

q
u

al
it

y,
 c

ap
ab

ili
ty

La
ye

r
PR

/P
D

P
Li

n
k

se
le

ct
io

n
, s

ch
ed

u
lin

g,
 l

ay
er

-t
w

o

Q
o

S
m

ap
p

in
g,

 l
ay

er
-t

w
o

 m
o

b
ili

ty
Ph

ys
ic

al
 l

ay
er

Si
gn

al
-t

o
-n

o
is

e
ra

ti
o

 (
SN

R
),

sp
ec

tr
u

m

al
lo

ca
ti

o
n

La
ye

r
PR

/P
D

P
So

ft
w

ar
e-

d
efi

n
ed

 r
ad

io
,

ch
an

n
el

co

d
in

g,
 p

o
w

er
 c

o
n

tr
o

l

QU3833_C36.fm Page 989 Friday, August 18, 2006 11:13 AM

990 ■ Mobile Middleware

Next we provide a description of how to express these three entities
as policies. This discussion is in line with the Policy Common Information
Model (PCIM) [6] proposed by the Distributed Management Task Force
(DMTF). A policy rule has “If [condition] … then [action]” semantics. A
policy rule condition, in the most general cases, is represented as either
an ORed set of ANDed conditions (disjunctive normal form, or DNF), or
an ANDed set of ORed conditions (conjunctive normal form, or CNF).
Two steps are required to make a policy decision. The first step is
evaluation of a policy rule condition. The second step deals with the
actions for enforcement when the conditions of a policy rule are TRUE.
For each cross-layer adaptation algorithm, a number of policies could be
produced, and these policies are aggregated into a policy group. Each
policy group has a unique group ID. This systemwide ID will be used
later for applications as the index to refer to corresponding cross-layer
adaptation algorithms and interpret the attached parameters.

One of the main functionalities of the system PDP is to validate that
the policy outputs of different algorithms are consistent with each other
and feasible in the current environment and to coordinate the behavior
of each algorithm, if necessary. The policy validation algorithms carried
by the system PDP may include the following checks [3]: (1) bounds
checks, which validate that the values taken by an attribute in the policy
specification are within specific limits determined by the system; (2)
relation checks, which validate that the value taken by any two parameters
in the policy specification satisfy a relationship determined by the specific
algorithm; (3) consistency checks, which validate that any two policies
defined by different algorithms do not conflict each other; (4) feasibility
checks, which ensure that the policies of each algorithm are feasible under
current conditions; and (5) dominance checks, which find the “dominant
policies” when inconsistencies occur between policies.

Figure 36.2 Abstraction of cross-layer adaptation algorithms.

QU3833_C36.fm Page 990 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 991

Functionalities of the System PDP

The system PDP takes the cross-layer adaptation algorithms as input and
then transfers them as policies stored at the common policy repository
(CPR) or sends them to the layer PDPs to execute. In addition to these,
it also takes inputs from other layers as well as the QoS network infra-
structure and adds management polices to the CPR. Such management
policies may modify or limit the behavior of existing algorithms if needed.

As shown in the “Input/Trigger” column of Table 36.3, each layer may
send different information to the system PDP. The information may include
the capability of the system, as discussed before, or the information may
include predefined events or triggers that require the system to intervene.
At the user level, one may use the point-to-point management layer (PML)
to input high-level policies such as user preferences, service-level agree-
ments, adaptation preferences, handover preferences, business goals, secu-
rity levels, or environmental parameters. The policies may be expressed
in language closer to natural communication rather than in terms of the
specific technology implementing it. Such high-level policies at first should
be checked to ensure consistency, correctness, and feasibility. They should
then be translated to technology-oriented policies also stored in the CPR.
More generally, our schemes can easily allow remote configuration and
adaptation by taking remote control policies into account.

Such newly added policies should also be compared with existing cross-
layer adaptation policies to determine whether conflicts will occur. If so,
new policies should be added to the CPR to guide the system as to how
to operate in such cases. This may lead to new policies being also installed
in the layer PDP and PR. The comparison between high-level polices and
cross-layer adaptation policies is expedited by the use of “feasibility polices”
in the algorithm abstraction shown in Figure 36.2. In Figure 36.2, each
cross-layer adaptation algorithm expresses its assumptions regarding the
surrounding environment and limitations. For elements not covered by
these policies, some defaulted or observed values can be used.

Extra event or error triggers could also be implemented. Keep in mind
that statistics and parameters specific for the cross-layer adaptation algo-
rithm are not exposed to the system PDP because the policy framework
solves only system configuration problems. The system PDP could work
together with the layer PDP to define the globally important information
that should be reported by the layer PDP. The information could include
the change of location, network, or current battery capability. Such param-
eters are important in terms of system performance and will lead to system
reconfiguration if triggered.

The update of already installed policies in the layer PDP and PEP can
be speeded up by using “enable” attributes included in each policy rule.
Basically, the policies of each algorithm need not be uninstalled or

QU3833_C36.fm Page 991 Friday, August 18, 2006 11:13 AM

992 ■ Mobile Middleware

substituted by the policies of another one. By simply resetting the “enable”
attributes, the system PDP can easily and flexibly change support for a
specific algorithm; furthermore, the application does not have to be
changed. It still uses the same policy group number, although the support
is no longer the same. To summarize the important functionalities of the
system PDP, this section includes the general running sequence of the
system PDP shown in Figure 36.3.

Configuration of Layer PDP, PR, and PEP

Our architecture has a hierarchical PDP setup to maintain the transparency
of each layer and make the system scalable, flexible, and easy to manage.
As partly shown in Table 36.2, the PEPs of each layer are the components
involved in the cross-layer adaptation algorithm and have the abstraction
as shown in Figure 36.2. Each PEP is controlled by the layer PDP on its
own layer and can install policies locally. For PEPs supporting multiple
functions at the same time, the PEPs could evaluate the parameter values
specified by the policies and invoke corresponding procedure. Each PEP
could collect and output policy-specified statistics and parameters for
cross-layer coordination. Local PR maintains only local policies that are
either produced by layer PDP or transferred from the system PDP. Layer
PDP is the key element of the structure that allows proper operation of
the system. It has following main functionalities:

■ Maintain local adaptation abilities — Not all of the adaptation
abilities have to be cross-layer, so layer PDP is used to coordinate

Figure 36.3 System PDP functionalities.

QU3833_C36.fm Page 992 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 993

adaptation on its own layer. Furthermore, because local adaptation
may also influence some of the cross-layer components, the layer
PDP can implement local policy checks to guarantee policy con-
sistency.

■ Keep simple and well-defined interfaces — As terminals become
more and more complicated and cross-layer adaptation techniques
keep improving, more components of a layer will participate in
cross-layer coordination. To make the system scalable and extend-
able, layer PDP could choose to expose only limited components
to the system PDP by encapsulating these components.

■ Collect layered triggers of systemwide importance — As discussed
before, the system PDP could work together with layer PDP to
define important triggers on each layer. These triggers are not for
performance adaptation but for systemwide reconfiguration or
modification.

Cross-Layer Information Exchange

Cross-layer adaptation algorithms require two types of support from the
system. The first type of support is dynamically choosing services from
the same component and guaranteeing systemwide feasibility. The pro-
posed CLAP architecture provides this type of support. The second type
is supporting cross-layer information exchange. This support is applica-
tion specific and flow based and is not provided by the CLAP architecture
itself. Here, we propose a data structure referred to as a cross-layer tag
(CLT), for the information exchange. CLT is similar to the IPv6 [11]
extension header and its format is <Next Header, Header Length, Policy
Fields>.

Although the CLT is mainly for intra-terminal usage, by using the same
fields of IPv6 such as Next Header and Header Length, it can be integrated
into the IPv6 header for external communications. In this case, the CLT
header type could be zero, the same as the hop-by-hop header in IPv6,
or 60, the same as the Destination Option header in IPv6. This serves as
a mechanism to carry the end-to-end adaptation parameters to the com-
municating nodes. Depending on the specific algorithm, the CLT itself or
some modification can be used in the end-to-end communication.

Each CLT can have multiple policy fields with the same format as
<Policy Group ID, Data Length, Data Fields>. The unique Policy Group
ID is assigned to a corresponding cross-layer adaptation algorithm. This
ID is used as the index by the PEPs on each layer to understand the
usage and format of data in the data fields. The Data Length field is
designed to allow parameters of variable lengths. Based on the application
requirements and system capability, one or more cross-layer adaptation

QU3833_C36.fm Page 993 Friday, August 18, 2006 11:13 AM

994 ■ Mobile Middleware

algorithm could be used by one application. Because the system PDP has
guaranteed the consistency of each policy and modified the policy support
when necessary, applications are released from such responsibilities.

Data fields contain both normal data types, such as string, integer,
Boolean, or float numbers, and specific location pointers for cross-layer
data uploading. For information exchanges from the upper layer to the
lower layer, CLT could be appended to the normal packets and processed
by related components. On the other hand, for information uploaded from
the lower layer to the upper layer, such a channel may not exist, so the
system allocates a shared memory area in the CPR to allow information
exchange. During the application initialization period, when the adaptation
policies are chosen, the related parameter exchange can be decided. Thus,
if an uploading channel is necessary, a piece of shared memory is assigned
and the pointer is returned. The shared memory is indexed by the unique
Flow ID or Process ID. The pointer is then included in the CLT data fields
and received by the PEPs. The PEPs can then use the pointer to access
the memory to exchange information with upper layer components.

One of the functionalities of user-/application-layer PEPs is to maintain
and assign an appropriate Policy Group ID to each application. Because
the policy granularity could be an application, a flow, or a group of
packets, we propose usage of the Flow ID field in IPv6 that supports
flexible granularity adjustment. The application-layer PEP collects infor-
mation about the application, checks the cross-layer adaptation algorithm
availability (which is modified by the system PDP), and matches the
policies with application requirements.

An Instance of QoS Network Infrastructure
The first part of this chapter introduced the main functionalities of the
general QoS network infrastructure and terminal CLAP architecture. Here,
we provide an example of where these functionalities could reside and
how they interact with each other. Figure 36.4 shows an example of an
all-IP mobile Internet. Two administrative domains are attached to the
core network through dedicated gateways. All kinds of hyper handovers
occur when a user moves from domain 1 to domain 2, and we assume
that all networks have some IP-layer QoS support and domain 2 uses
application networks to further improve its performance.

The data plane consists of the user terminal, access router, core network
routers, gateways, special application network servers, and corresponding
nodes. Some of the application network servers shown in Figure 36.2 can
be designed for AAA, service discovery, service composition, and appli-
cation adaptation proxy. QoS support for handover is provided. Extra

QU3833_C36.fm Page 994 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 995

forwarding, tunneling, and reservation abilities are implemented in spe-
cialized handover servers that could have predefined QoS paths with
handover servers in other domains.

The bandwidth broker (BB) in each domain is the most important
component in the control plane. The BB has a global knowledge of
the network traffic so it can perform admission control for the network.
If the end-to-end path traverses through several administrative domains,
the BBs of different domains can contact each other to arrange the end-
to-end path and to negotiate bilateral service contracts between two
domains.

The network manager (NM) is the central controller of the management
plane that manages the network and has knowledge of each specific
application server in the network. The NM could be physically located
distributively throughout the network and carry on different functionalities.
Similar to the manager server in the CSN, the NM has a well-known
address and provides entry points for the BB or mobile host seeking to
acquire QoS-related information.

The mobile host is one end of the end-to-end communications. An MH
must support any necessary protocols to communicate with other com-
ponents in the three planes of QoS network infrastructure, including the
BB and NM. Furthermore, the MH has the flexibility to implement any

Figure 36.4 An instance of QoS framework.

QU3833_C36.fm Page 995 Friday, August 18, 2006 11:13 AM

996 ■ Mobile Middleware

cross-layer adaptation algorithms to adapt to network variations. For the
purpose of systemwide coordination, the MH abstracts all protocols and
cross-layer adaptation algorithms as a set of functional PEPs and coordi-
nation policies using the methodology discussed earlier. Functional PEPs
reside in different layers and are managed by a layer PDP. Some local
policies are installed in layer PR and other global policies are in the CPR.
CLAP then carries on all types of policy checks to ensure coordination
among algorithms and reconfigures the behavior of the MH through the
hierarchical PDP if a predefined event or trigger occurs.

When an MH moves to a new domain, it can send inquiries to the
NM about specific application servers. Based on the current load and
other performance and policy issues, the NM could send back the response
with the destined server address and related communication context. The
access point or access router on behalf of the MH could also send such
inquiries. The NM could work together with the BB to set up the desired
path. QoS signaling is used to facilitate messages of negotiation or rene-
gotiation, asynchronous feedback, and QoS querying. As shown in Figure
36.2, the end-to-end path could pass many network segments. QoS map-
ping and signaling should be performed whenever necessary — for
example, MH-to-AR signaling, local edge-to-edge signaling in each admin-
istrative domain, and signaling between gateways in the core network.
Notice that our framework allows all types of signaling schemes to be used.

Conclusions
This chapter has summarized the main QoS challenges regarding the
seamless support of the various categories of hyper handover. Our QoS
framework includes a three-plane network infrastructure and a terminal-
based hierarchical policy management system. The three-plane network
framework is based on a QoS signaling architecture and policy framework
and integrates the QoS functionalities of the IP layer with the abilities of
other layers, including application networks. A system implementation
based on network managers and bandwidth brokers was used to describe
how the framework supports end-to-end QoS provision adaptively and
seamlessly. The terminal-based hierarchical policy management system is
designed to coordinate the behavior of different cross-layer adaptation
algorithms on one terminal to achieve optimal systemwide performance.
Compared with other related work [12–15] on seamless handover support,
this framework is more generic and has some important advantages, such
as support of all kinds of hyper handover and the differentiation capability
of handover QoS for different traffic classes.

QU3833_C36.fm Page 996 Friday, August 18, 2006 11:13 AM

QoS Control and Management ■ 997

Due to the heterogeneity of the mobile Internet and the need to
maintain QoS, numerous issues remain to be addressed. Here are some
of the most relevant:

■ Interactions between application-layer signaling, mobility signaling,
and QoS signaling — These different kinds of signaling are used
for different purposes but share some common path or properties.
How to integrate these signaling schemes is a major challenge.

■ Security — It is one of the hottest topics in today’s IP world. Our
discussion does not touch on security issues but, as mentioned in
Moore et al. [6], security is mandatory in the design of the QoS
signaling protocol to avoid attacks, such as denial of service.

■ Flow identification — When hyper handover occurs, the IP address
is no longer a reliable way to identify flows and related QoS
reservation information along the path. How networks can identify
flows during the handover is an open question.

References
[1] Huston, G., Internet Performance Survival Guide, John Wiley & Sons, New

York, 2000.
[2] Chalmers, D. and Sloman, M., A survey of quality of service in mobile

computing environments, in IEEE Online Commun. Surv., 2(2), 1–10, 1999.
[3] Aurrecoechea, C. et al., A survey of QoS architectures, ACM Multimedia

Syst. J., 6(3), 138–151, 1998.
[4] Ma, W. et al., Content services network: the architecture and protocols, in

Proc. of the 6th Int. Web Caching and Content Delivery Workshop, Boston,
MA, June 20–22, 2001, pp. 83–101.

[5] Brunner, M., http://www.ietf.org/internet-drafts/draft-ietf-nsis-req-02.txt,
2002.

[6] Moore, B. et al., Policy Core Information Model, Version 1 Specification,
Request for Comments 3060, Internet Engineering Task Force (IETF), 2001
(http://www.ietf.org/rfc/rfc3060.txt).

[7] Boyle, J. et al., COPS Usage for RSVP, Request for Comments 2749, Internet
Engineering Task Force (IETF), 2000 (http://www.ietf.org/rfc/rfc2749.txt).

[8] Chan, K. et al., COPS Usage for Policy Provisioning, Request for Comments
3084, Internet Engineering Task Force (IETF), 2001 (http://www.ietf.org/
rfc/rfc3084.txt).

[9] Campbell, A. et al., Design, implementation, and evaluation of cellular IP,
IEEE Pers. Commun., 7(4), 42–49, 2000.

[10] Kempf, J., http://www.ietf.org/internet-drafts/draft-ietf-seamoby-context-trans-
fer-problem-stat04.txt, 2002.

QU3833_C36.fm Page 997 Friday, August 18, 2006 11:13 AM

998 ■ Mobile Middleware

[11] Deering, S. and Hinden, R., Internet Protocol, Version 6 (IPv6) Specification,
Request for Comments 1883, Internet Engineering Task Force (IETF), 1995
(http://www.ietf.org/rfc/rfc1883.txt).

[12] Roos, A. et al., Critical issues for roaming in 3G, IEEE Wireless Commun.,
10(1), 29–35, 2003.

[13] Aguier, R.L. et al., An IP-based QoS architecture for 4G operator scenarios,
IEEE Wireless Commun., 10(3), 54–62, 2003.

[14] Floroiu, J.W. et al., Seamless handover in terrestrial radio access networks:
a case study, IEEE Commun. Mag., 41(11), 110–116, 2003.

[15] Zhuang, W. et al., Policy-based QoS management architecture in an inte-
grated UMTS and WLAN environment, IEEE Commun. Mag., 41(11),
118–125, 2003.

[16] Gao, X. et al., End-to-end QoS provisioning in mobile heterogeneous
networks, IEEE Wireless Commun., 11(3), 24–34, 2004.

[17] Kawadia, V. and Kumar, P.R., A cautionary perspective on cross-layer design,
IEEE Wireless Commun., 12(1), 3–11, 2005.

QU3833_C36.fm Page 998 Friday, August 18, 2006 11:13 AM

999

Chapter 37

IT-Based Open Service
Delivery Platforms for
Mobile Networks: From
CAMEL to the IP

Multimedia System

Thomas Magedanz and Muhammad Sher

CONTENTS

Introduction... 1000
Mobile Service Delivery Platforms and Impact of the IT Evolution 1002

IT Evolution in a Nutshell.. 1002
SDP Evolution at a Glance .. 1004

The Intelligent Network in the Mobile Domain: CAMEL.................................. 1006
Some Words on the IN Concept ... 1006
CAMEL Principles and Architecture... 1007
CAMEL Standards and Applications .. 1008
Some Words on Wireless Intelligent Networks .. 1010

Open Network Application Programming Interfaces: Parlay, OSA, JAIN........ 1010

AU3833_C37.fm Page 999 Friday, August 18, 2006 12:49 PM

1000

■

Mobile Middleware

API Motivation... 1011
API Principles and Architecture... 1011
API Standards and Applications .. 1013

Parlay.. 1014
3GPP Open Service Access .. 1020
Java APIs for Integrated Networks .. 1020

IP Multimedia System for Emerging All-IP Networks.. 1022
IMS Motivation .. 1022
IMS Principles and Architecture... 1023

IMS Components .. 1025
IMS Standards and Applications .. 1027

Value-Added Services in IMS ... 1028
Summary and Outlook ... 1031
Acknowledgments... 1033
References ... 1034

Related Web Links .. 1035

Introduction

Service delivery platforms (SDPs) have always stood at the forefront of
telecommunications, as they are the foundation for the creation, deploy-
ment, provision, control, charging, and management of telecommunication
services provided to end users, thus enabling the generation of revenues.
The SDPs represent the programming interface that allows programming
of the underlying network capabilities and therefore are primarily based
on usage of information technologies (ITs). SDPs have continually changed
over the last decades, as innovation has been taking place at a rapid pace
in this domain.

Historically, different types of networks (fixed networks, mobile net-
works, data networks, and the Internet) have been operated by different
operators with different business models providing quite different services,
and these SDPs have been specifically designed for a given network
environment. In such an environment, referred to as the

stovepipe archi-
tectural model

 (Figure 37.1), the services are designed, deployed, provi-
sioned, controlled, and managed on top of heterogeneous SDPs with no
need for service integration. This environment has a clear separation of
fixed voice telephony, cellular voice telephony, and fixed or even mobile
Internet access for Web browsing and e-mailing.

The emergence of mobile multimedia services (such as unified
messaging, click to dial, cross-network multiparty conferencing, and
seamless multimedia streaming services) has led to the convergence of
networks (e.g., fixed/mobile convergence and voice/data integration)
and an overall Internet/telecommunications convergence. This idea is

AU3833_C37.fm Page 1000 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1001

illustrated in Figure 37.2. In the face of such convergence, the need for
universal SDPs supporting integrated services has emerged. This means
that SDPs should in principle enable the rapid and uniform programming
and provision of seamless multimedia services on top of any network
environment. Without a doubt, two of today’s important trends are pivotal
for SDP design — namely, the support of mobile users and the support
of (mobile) multimedia data services.

Figure 37.1 SDPs enable applications on networks.

Figure 37.2 Stovepipe architecture versus converged network SDP.

AU3833_C37.fm Page 1001 Friday, August 18, 2006 12:49 PM

1002

■

Mobile Middleware

In this chapter, we want to discuss the evolution of SDP concepts and
technologies over the last decades. In the following section, we look
briefly at the evolution of IT and middleware technologies, followed by
an overview of SDP evolution from intelligent networks (INs) toward the
Internet Protocol (IP) Multimedia Subsystem (IMS) defined for emerging
all-IP networks. The next section then looks at the application of the
remote procedure call-based intelligent network concept in the mobile
domain, referred to as the Customized Logic for Mobile Enhanced Logic
(CAMEL). This is followed by an introduction to the notion of telecom-
munications application programming interfaces based on Common Object
Request Broker Architecture (CORBA™) and Java 2 Enterprise Edition
(J2EE) middleware, as well as a discussion of Open Service Access
(OSA)/Parlay and Java APIs for Integrated Networks (JAIN). We also
examine the impact of Web service technologies on the definition of Parlay
X and the Open Mobile Alliance (OMA) Open Services Environment (OSE).
We then introduce the IP Multimedia Subsystem, which is today crucial
to fixed/mobile convergence and emerging all-IP networks and is regarded
as the ultimate SDP, spanning both fixed and Mobile IP networks. Finally,
the conclusion provides an outlook on emerging policy-based networks.

Mobile Service Delivery Platforms
and Impact of the IT Evolution

Service delivery platforms have had a consistent impact on the evolution
of IT and have changed the face of telecommunications and the Internet
due to the convergence of fixed and mobile telecommunications and
related changes in business models for service provision, as well as the
increasing functional complexity of services. Figure 37.3 illustrates the SDP
evolution that has been driven by the development of IT, the Internet,
telecommunications, and mobile communications toward enabling seam-
less multimedia services.

IT Evolution in a Nutshell

Information technology encompasses the

computer communications, net-
works, and information systems that allow the exchanges of digital objects

.
We can also say that IT includes all forms of technology used to create,
store, exchange, and use information in its various forms, such as business
data, voice conversations, still images, motion pictures, and multimedia
presentations. A convenient term that represents both telephony and
computer technology,

information technology

 is the technology that is

AU3833_C37.fm Page 1002 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1003

driving what has often been called the information revolution. IT addresses
matters concerned with furthering computer science and technology and
the design, development, installation, and implementation of information
systems and applications.

Historically, the telecommunications world was quite different from
the information technology and data communications world. In the tele-
communications world, whose history began in the early days of telegra-
phy toward the end of the 19th century, the prime focus was on providing
a highly reliable telephone system for real-time voice transport. This system
has evolved subsequently from manually switched phone calls (recall the
switchboard at the beginning of the 20th century) to automated switching
systems that handled the so-called basic call process. Value-added services
were implemented inside these switches by means of dedicated, switch-
specific programs (stored program-controlled switches) that interacted via
a switch-specific interface with the basic call process. The heterogeneity
of switches inside a network has made this a time- and cost-intensive
procedure.

In the data communications world, the focus was on the interconnec-
tion of remote computers without severe real-time constraints, as main-
frame computers began to be replaced by distributed computing systems
in the 1960s and 1970s. No doubt the future will evolve toward a mobile-
network environment that unites the traditionally separated telecommu-
nications and Internet worlds and will be an all-IP-based one. The reasons
for this are that IP-based technologies are much less expensive to deploy

Figure 37.3 Impact of service delivery platforms.

AU3833_C37.fm Page 1003 Friday, August 18, 2006 12:49 PM

1004

■

Mobile Middleware

and maintain and most of the future information and communication
services will be data driven, with content originating from the Internet.
This also means that the corresponding signaling and control protocols
from the Internet world will have a strong impact on the telecommuni-
cations network evolution.

Based on the invention of the remote procedure call (RPC) in the
1960s, it became possible to create programs that can talk to other
remote programs without any knowledge of their (possible) distribution.
In the face of emerging object-oriented programming languages such
as C++ and Java and the related middleware platforms, such as CORBA
and J2EE, the notion of open network application programming inter-
faces (APIs) emerged at the end of the last century as a natural evolution
of the intelligent network concept. The principle idea, which has
received global attention and acceptance, is to program services in the
programming language of choice against abstract service interfaces on
application servers connected via the object-oriented middleware to a
network gateway, which has to map the API operations onto a specific
network protocol.

With the emergence of Web service technologies defined by the World
Wide Web Consortium (W3C), these APIs also have been adapted to
benefit from this major IT trend. Parlay X represents a Web-services-based,
simpler but functionally limited interface compared to the classic OSA/Par-
lay APIs. Also, OMA’s Open Services Environment (OSE) and the Microsoft

®

Connected Service Framework (MCSF) represent similar but different ini-
tiatives in this context.

SDP Evolution at a Glance

The SDPs typically provide so-called value-added services, which extend
the basic capabilities of the underlying networks, such as by providing
flexible calling options (e.g., call forwarding) or special charging services
(e.g., free phone) on top of the plain old telephony service (POTS). Such
service capabilities include advanced (multiparty and multimedia) call
control, different kinds of messaging, data session control, flexible charg-
ing, user location, and presence status, among others. Previously, tele-
communication services such as call forwarding and call screening had
been provided by the switching nodes through an approach known as

stored program control

. However, the heterogeneity of switching nodes,
signaling protocol diversity, and lack of common standardized interfaces
for value-added service provision made this an expensive approach with
a very slow time to market.

AU3833_C37.fm Page 1004 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1005

The invention of the common channel signaling systems, particularly
signaling system number 7 (SS7), enabled the design of real-time remote
service control architectures. Based on the RPC paradigm AT&T and later
Bellcore (Telcordia) invented intelligent networks in the 1970s. Based on
a standardized call model for switches and the corresponding SS7-based
Intelligent Network Application Protocol (INAP), centralized, highly reli-
able computer systems (so-called service control points, or SCPs) have
been able to control switches remotely via the SS7 network. Various global
intelligent network standards defined by ITU-T, ANSI T1S1, ETSI, and
Telcordia that offered increasing service capabilities were developed and
implemented in the 1980s and 1990s (Figure 37.4).

The intelligent networks have changed telecommunications service
design and implementation by defining reusable service components for
rapidly implementing such new services as free phones, premium rates,
prepayment, and virtual private networks (VPNs) in a network-indepen-
dent way. Service provision times have increased significantly. In addition
to exploiting INs in the mobile world, some efforts have been undertaken
to make use of INs for controlling Voice-over-IP (VoIP) environments [1].
Despite the global success of INs and CAMEL, it became obvious over
time that the IN programming model is limited because of its use of IT
and the inherent complexity of the INAP protocol.

Figure 37.4 Service delivery platform evolution at a glance.

OSA/Parlay
interfaceOSA/Parlay gateway

OSE/Parlay X

1990s

1980s

2004

2000
(enterprises/
Internet

Third-party

AU3833_C37.fm Page 1005 Friday, August 18, 2006 12:49 PM

1006

■

Mobile Middleware

The Intelligent Network in
the Mobile Domain: CAMEL

Based on the success of the intelligent networks in the fixed network
world, the international standardization bodies adapted the intelligent
network concept for the mobile world; this new concept is known as the
Customized Application for Mobile Enhanced Logic (CAMEL) in Europe
and the Wireless Intelligent Network (WIN) in the United States [1]. The
CAMEL Application Protocol (CAP) has been defined for the implemen-
tation of IN and CAMEL environments. Four versions of CAMEL that were
defined in the 1990s extended the scope of the application so all major
intelligent network services could be provided within mobile networks.

Some Words on the IN Concept

In an attempt to provide value-added services more rapidly in response
to ever-changing user demands in the 1960s, the remote procedure call
was developed to enable remote communication and thus more economic
programming of switching systems. AT&T and Telcordia originally devel-
oped the intelligent network concept. A centralized computer-based system
(the service control point) remotely controls in real time the switching
nodes (service switching points, or SSPs) to provide value-added services
by means of a dedicated signaling protocol (INAP), on top of the basic
channel signaling network (SS7). Besides INAP, the call model (CM) was
a key component for modeling the behavior of a switch during call
processing. The centralization of service logic and data while providing
distributed service access made possible much more efficient creation,
provision, and management of services. Moreover, the idea of the intelligent
network contributed to the development of generic service-independent
building blocks (SIBs), as shown in Figure 37.5, which have allowed the
creation of a multitude of value-added services; the concept is similar to
a distributed operating system that allows many applications to be executed.
The combination of IT middleware and telecommunications systems greatly
expanded the programmability of the telecommunications network.

The Telco Lego brick system for value-added services has also been
standardized by the International Telecommunications Union (ITU-T) in the
Q.1200 Recommendation Series for Intelligent Networks Capability Sets and
by Telcordia and the American National Standards Institute (ANSI) within
the Advanced Intelligent Network (AIN) releases [1]. It should be noted that
the IN concept decoupled the service provision from the underlying net-
work, thus allowing, in principle, the provision of IN-based services on top
of different bearer networks. The IN concept was originally applied to the
Public-Switched Telephone Network (PSTN), subsequently to the Integrated

AU3833_C37.fm Page 1006 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1007

Services Digital Network (ISDN), and then to the Global System for Mobile
Communications (GSM) under the name of WIN or CAMEL

.

Today, intelligent networks are used all over the world for value-added
service provision, such as universal access numbers, virtual private networks,
free phones, premium call rates and messaging, and, most particularly,
prepaid cards. Most IN sales have been in the form of CAMEL platforms
deployed on top of GSM/GPRS networks that replace the traditional but
limited service architecture based on value-added service nodes [3]. Further-
more, studies and prototypes have also proved the applicability of IN
concepts in all-IP networks; therefore, intelligent networks represent the first
open universal value-added service platform for several bearer networks.

CAMEL Principles and Architecture

One major reason for the success of the GSM system is the strict stan-
dardization of all service aspects; however, this has also limited innovation
and competition among operators. As a result, specific service nodes have
been introduced within operator networks that provide IN-like service
capabilities, such as prepaid services. Because a user’s service-node-based
service was limited to the particular operator’s network due to the pro-
prietary interfaces, roaming users lost access to these value-added services.
Thus, ETSI and later the 3rd Generation Partnership Project (3GPP) have
looked for a standardized solution for value-added service provisioning
for roaming users. Because of the success of intelligent networks in the
fixed network world, they have been adopted for usage in the mobile
domain. One important design challenge for CAMEL was to cope with a
multi-vendor mobile environment; therefore, a stepwise standardization
has been developed that defines so-called CAMEL phases.

Figure 37.5 The intelligent network concept.

AU3833_C37.fm Page 1007 Friday, August 18, 2006 12:49 PM

1008

■

Mobile Middleware

The general CAMEL architecture is provided in Figure 37.6. A specialized
set call procedure known as the CAMEL Service Environment (CSE) in the
home network provides operator-specific value-added services for mobile
originating and mobile terminating services, such as prepaid cards and virtual
private networks. This CSE can be accessed via a simplified IN protocol —
the CAMEL Application Protocol (CAP) — from SSP-enhanced mobile-service
switching centers (MSCs), called GSM service switching functions (SSFs);
from the home network; and, most importantly, from partnering visited
networks. In addition to CAP, CAMEL is dependent on the Mobile Application
Protocol (MAP) for the dynamic provision of CAMEL subscription information
within GSM subscriber profiles and location-based CAMEL services.

CAMEL Standards and Applications

The driving force for CAMEL standardization and subsequent deployment
was the support of prepaid roaming and virtual private networks for
postpaid roaming users. CAMEL standards mainly concentrate on the
definition of the CAP based on INAP specialization and extensions to the
MAP for dynamic CAMEL service provisioning. Figure 37.7 displays the
major evolution steps.

Figure 37.6 CAMEL intelligent network within mobile networks.

AU3833_C37.fm Page 1008 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1009

CAMEL Phase 1 was developed in 1996 as the first but limited
standard; it defined mainly call control, location services, and some
charging aspects to support a simplified prepaid service and virtual
private networks. It defined a simplified IN call model and just six CAP
operations. CAMEL Phase 2 was completed in 1998 and added full
charging support and thus full prepaid support and user interaction
capabilities. The complexity of the call model and protocol were
enhanced.

CAMEL Phase 3, defined in two versions in 1999 and 2000,
extended the CAMEL capabilities to more sophisticated call control, data
session control, extended location services, and short message service
(SMS), among others; however, it required major upgrades of the
infrastructure and thus substantial investments. CAMEL Phase 4, defined
in 2001, provided the full IN Capability Set 2, call control, and a modular
CAP protocol structure. In addition, it defined the option to use CAMEL
on top of the emerging IMS.

Today, CAMEL Phase 1 and Phase 2 are primarily deployed in networks,
as these solve major operator needs. CAMEL Phase 3 and Phase 4 are
considered too expensive for most operators. Experience has shown that
CAMEL deployment is quite costly due to high interoperability testing.
Moreover, it has become obvious that both a home network and all visiting
networks have to run the same CAMEL version to take advantage of
CAMEL; otherwise, the deployment of a higher CAMEL phase in a home
network is of very limited use.

Figure 37.7 Evolution of CAMEL standards.

SGSN
(SSF)

MSC
(SSF)

CAMEL
(SCF)

AU3833_C37.fm Page 1009 Friday, August 18, 2006 12:49 PM

1010

■

Mobile Middleware

Some Words on Wireless Intelligent Networks

Wireless intelligent networks (WINs) differ from CAMEL as they focus only
on adopting intelligent networks to provide specific value-added services
on top of wireless networks. Service provision of roaming users in other
networks is not a goal. WIN is defined by ANSI, TIA, and T1 standards
bodies in the United States; ANSI represents U.S. interests abroad in terms
of technical and policy positions, and TIA and T1 create standards for
wireline and wireless networks. TR45 is a wireless division of TIA, and
the TR45.2 subcommittee focuses on standards for mobile and personal
communications. ANSI-41 and WIN T1 develop network interconnection
and interoperability standards for wireline and wireless networks, and
T1S1/T1P1 subgroups develop standards and technical reports related to
wireless networks and services [1]. The WIN standards follow a develop-
ment process different from CAMEL. When WIN standards are conceived,
they are assigned a project number and name (e.g., PN-4287 Prepaid
Charging). Once adopted by TIA, the PN becomes an interim standard,
such as IS-771 WIN Phase 1. After an interim standard has been published
by TIA, a three-year period of revision and acceptance follows. When
industry adopts the interim standard, it becomes part of ANSI 41 (e.g., IS-
771) and is targeted to become part of ANSI 41-E.

Open Network Application Programming
Interfaces: Parlay, OSA, JAIN

The notion of distributed broadband IN systems emerged in the 1990s;
however, a substantial change of the IN system architecture has not been
adopted, because, despite its advantages, the IN system has some inherent
limitations. In particular, the IN platform has not provided the desired
level of flexibility in service provisioning, as the service platform is still
coupled with the underlying network protocols and switching equipment.
As a result, full decoupling of the service level and the switching level is
not possible; the programming of IN services can be quite complex and
achieved only by a limited number of special telecom experts. Additionally,
the business models of IN-based telecommunication networks were quite
closed, which was considered a major limitation in the face of a changing
value chain of multimedia services.

Because of these limitations and the ongoing convergence of telecommu-
nications, IT, and the Internet, a new programming paradigm for telecom-
munications has emerged: open application programming interfaces (APIs).
Driven by the need for a common multimedia service platform for converging
networks and the proven commercial usability of distributed object-oriented

AU3833_C37.fm Page 1010 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1011

platforms, new standards for open service platforms are emerging. The
main reason is the ability to map the API to different network types (e.g.,
a call control API to a fixed telephony network and to a VoIP network)
and thus to run the services seamlessly across different networks [4]. One
way to do so is to implement an OSA/Parlay gateway on top of an
IN/CAMEL platform (i.e., to map the APIs onto INAP/CAP); however, direct
mappings to the ISDN User Part (ISUP) and Session Initiation Protocol
(SIP) are also feasible. Another reason is the ability to provide secure
connection of third-party providers and enterprise application servers to
the network operator’s gateway, thus allowing the operators to flexibly
implement different business models for applications.

API Motivation

A primary aspect of the IN concept was to exploit the capabilities of state-
of-the-art information technologies to enlarge the developer community
and allow more economical implementation of services. In the 1990s, the
notion of object-oriented programming, software languages such as C++
and Java, and coincidently distributed object-oriented systems such as
OMG’s CORBA and Sun’s J2EE appeared, and the IN architecture was the
subject of many R&D activities centered around the distribution of IN
components and ease of service programming. In addition, due to the
emerging content-based services, the business value chain grew increas-
ingly complex, and operators had to support more complex business
models. Making a network available to third-party service providers and
enterprises was considered as an option to generate more market-oriented
services and thus revenues. Utilizing software distribution technologies
(i.e., middleware) and developing an API offering much easier program-
ming of telecommunications services represent the main design criteria of
these merging API-based SDPs.

API Principles and Architecture

Based on the pioneering work of the Telecommunications Information
Networking Architecture (TINA) Consortium in the early 1990s, the
Parlay Group (consisting of operators, vendors, and IT companies) was
organized in 1998 to define an open-network Parlay API. This API is
inherently based on object-oriented technology, and the idea is to allow
(if desired by the business model) third-party application providers to
make use of the network or, better yet, the value-added service inter-
faces. Today, however, the best way to view Parlay is to consider it as
some kind of telecom-specific enterprise application integration (EAI)

AU3833_C37.fm Page 1011 Friday, August 18, 2006 12:49 PM

1012

■

Mobile Middleware

platform technology, allowing service providers to develop value-added
applications on top of a different or changing network environment,
as shown in Figure 37.8. This allows a smooth network technology
evolution below the developed applications.

Originally designed for use on top of IN systems (i.e., to open up IN
systems for third-party developers in fixed networks), the API evolved
quickly into a general API to be used on any underlying fixed, mobile,
voice, or packet network. In 2001, 3GPP aligned their work on the Open
Service Access (OSA) API with Parlay to further their service vision of the
Virtual Home Environment (VHE), as did ETSI for their Service Provider
Access to Networks (SPAN) APIs in the same year.

Today all three standards are completely aligned and thus represent
probably the most accepted standard in this domain. Additionally, in
the late 1990s, with the increasing commercial acceptance of the Java
language, Sun Microsystems initiated development of the Java APIs for
Integrated Networks (JAIN) as a set of specifications for implementing
Java-based next-generation IN platforms on top of different bearer
networks [2]. Recognizing the similarities in their targets, JAIN joined
the Parlay, 3GPP, and ETSI groups in 2002 and developed the JAIN
Service Provider Access (SPA) API. Figure 37.9 explains the evolution
of open network API standards.

Examining these APIs in more detail, it is important to recognize the
open/extensible nature of the API architecture. The main idea is to provide
in a dedicated network node, known as the OSA/Parlay gateway and
operated by the network operator, an open set of service interfaces that
exhibit specific value-added service capabilities, such as call control,
messaging, data session control, location, presence, and charging. Appli-
cations should be able to access these capabilities, thanks to object-

Figure 37.8 Open network APIs (OSA/Parlay).

AU3833_C37.fm Page 1012 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1013

oriented technology (i.e., CORBA, C++, Java) and easy-to-use interfaces
(optionally via a network), to implement value-added services. A dedicated
interface, known as the framework, is in charge to register and discover
new service interfaces, perform application and network authentication,
monitor service-level agreements, etc.

It is important to note that the API is network independent; that is, in
principle each network (the type of the network does not matter) will
provide its own OSA/Parlay gateway, and one application can make use
of several gateways. This means that an application can run with the same
logic simultaneously on top of a fixed telephone network and a VoIP
network. Today, OSA/Parlay technology is being deployed slowly all over
the world. Typical applications include premium content-delivery services,
location-based services, and enterprise mobile office applications. In these
cases, the network operators provide the capability to send messages and
charge for the service, mobile user location information, and third-party
call control, respectively.

API Standards and Applications

The API can be extended functionally over time by the inclusion of
new service capabilities, thus enabling some kind of telecommunications
enterprise application integration (EAI). The Parlay group, ETSI, and
the 3GPP OSA APIs represent the current aligned state of the art in this
context. These APIs support both OMG’s CORBA and Sun’s J2EE [5].
In addition, as noted earlier, Sun has created a similar Java-only tele-
communications architecture known as JAIN. The functional capabilities
of these network APIs include multimedia call control, messaging, user
interaction, charging, user status and location, presence, etc., thus
enabling services such as the implementation of click to dial, mobile
commerce, and content delivery.

Figure 37.9 Evolution of open network API standards.

JAIN Parlay

APIs for third-party service
application interface

AU3833_C37.fm Page 1013 Friday, August 18, 2006 12:49 PM

1014

■

Mobile Middleware

Parlay

The Parlay Group began in 1998 by defining the Parlay API (Figure 37.10).
Originally designed as an extension of the IN within fixed networks, the
API has been extended over the years as a generic API for any underlying
network (i.e., fixed, mobile, IP). The Parlay Group has studied the impact
of new IT on the API design and has examined the use of CORBA, Java,
and Web service technologies. The history of the Parlay Group can be
summarized as follows:

■

Phase 1

 (only for PSTN; finished end of 1998) — The Parlay
Consortium consisted of the following five companies: BT, Microsoft,
Nortel Networks, Siemens, and Ulticom (DGM&S Telecom). The APIs
developed include Framework, Call Control, Messaging, and User
Interaction. Version 1.2 of these APIs was released in 1999.

■

Phase 2

 (extended scope to wireless and IP; finished end of 1999) —

Six new consortium members were added: AT&T, Cegetel, Cisco,
Ericsson, IBM, and Lucent. Group completely opened in 2000.

■

Phase 3

 (extended toward M-business; finished June 2001) —
Alignment with 3GPP Open Service Architecture and Java APIs for
Integrated Networks (JAIN).

Figure 37.10 The OSA/Parlay API concept.

AU3833_C37.fm Page 1014 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks

■

1015

■

Phase 4

(presence, policy management; finished in September
2002) — Incorporation of Web services. Simplified interface devel-
opment: Parlay X.

■

Phase 5

— new Messaging API, enhanced Parlay WS, and Parlay X2.

Today, the Parlay APIs represent state-of-the-art technology for imple-
menting open service delivery platforms on top of various bearer networks,
including all-IP networks. The Parlay API specification itself is divided
into two main components: the

framework

and the

service capability
features

 (SCFs), as shown in Figure 37.11. The SCFs are responsible for
providing the real mapping to the underlying network resources, whereas
the framework logically ties everything together and makes a Parlay
installation manageable. The SCFs that are bundled in one server comprise
a service capability server (SCS). A minimum Parlay gateway must have
a framework and at least one SCF. Because the interfaces between the
SCF and the framework are also defined using the chosen middleware
(CORBA) technology, it is not necessary that they reside on the same host
or even that they are implemented with the same technology or program-
ming language [2]. This means that a Parlay gateway can be a compact
box but can also be designed as a heterogeneous distributed architecture.
This fact is further enhanced by fault tolerance and load balancing for
systems that require consistent availability.

Figure 37.11 Framework versus service interfaces.

Framework–service
interface

S
er

vi
ce

–
ap

pl
ic

at
io

ns
in

te
rf

ac
e

AU3833_C37.fm Page 1015 Friday, August 18, 2006 12:49 PM

1016

■

Mobile Middleware

Parlay Framework

The Parlay framework, as a core component in the interface architecture,
serves as a single entry point for all applications. Besides the initial access,
it also provides authentication (framework to application and

vice versa

),
authorization, service discovery, and service agreement. For the SCFs, the
framework provides interfaces for registration and lifecycle management.
The framework interfaces include:

■

Framework Access Session API

 — Contains the trust and security
management components that manage the initial entry point,
authentication of both framework and client applications, and
granting access (authorization) to specific SCFs.

■

Framework to Application API

 — Handles general events concern-
ing the relation and provides integrity management (load manage-
ment, fault management, heartbeat, OAM), service discovery, and
service agreement functionality for the application.

■

Framework to Enterprise Operator API

 — Provides general events
but also service subscription capabilities, which include all aspects
of client management, service contracts, service profiling, and even
operator account management.

■

Framework to Service API

 — Besides general events, this API
enables services to register, to discover other SCFs, to manage their
lifecycle, and to perform integrity management.

Parlay SCFs

The Parlay Group defines in its version 5.0 the following SCFs that provide
a more generic and abstract interface to network resources, as well as
network features and the hiding of network specific protocols and entities:

■

Call control

 — Call control consists of generic call control (up to
two parties), multiparty call control, multimedia call control (e.g.,
video calls), and conferencing call control (moderated multiparty).

■

User interaction

— One aspect is call related and allows interactive
voice response (IVR)-driven applications; another part is not call
related and its purpose is mainly for messaging, such as sending
and receiving SMS.

■

Mobility —

This SCF allows requesting, triggering, and notification
regarding user location and user status information.

■

Terminal capabilities —

This SCF includes querying terminal capa-
bilities and features.

■ Data session control — Data session control allows for third-party
control of packet-switched connections among peers.

AU3833_C37.fm Page 1016 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1017

■ Generic messaging — Generic messaging offers a mailbox function
or message-box-like access to stored messages; it has a directory-
like structure and can store and handle e-mails, SMS, multimedia
messaging service (MMS), voicemails, and video mails.

■ Connectivity management — Connectivity management handles
the quality of service (QoS) aspects of connections and services.

■ Account management — Account management allows querying,
creating, and deleting balances and vouchers for accounts.

■ Charging — Charging makes it possible for applications to charge
for their services (online or offline, prepaid or postpaid).

■ Policy management — Policy management covers the policy-driven
parts of a network and allows the management of many aspects
related to policy-driven computing, including domains, reposito-
ries, groups, rules, and conditions.

■ Presence and availability management — This SCF provides man-
agement of presence and availability information of a user. For
example, user A is currently online and can be reached via a
certain number of addresses but the same is not true for user B.
It allows an application to modify as well as watch this information.

Parlay X

A major goal of OSA/Parlay is to make networks programmable by means
of state-of-the-art middleware technologies. To make the network pro-
grammable by the application providers, the API has been enhanced by
the use of a new Web services paradigm that combines the eXtensible
Markup Language (XML), Web Services Description Language (WSDL),
and Simple Object Access Protocol (SOAP). The concept of Web services
is based on the idea that, generally, the starting point for information
services originates on the Internet (the Web). Furthermore, additional
services could be constructed from packaging other remote services avail-
able in the Web.

Consequently, Web service technology, such as .NET™ from Microsoft,
is the basic means for describing, registering, finding, and using Web
services. In the telecommunications world, Parlay Web services, and the
more simplified version of it called Parlay X (shown in Figure 37.12),
represent the state of the art in Web services [5]. These are also considered
as starting points for what the OMA is hoping to develop: mobile Web
services enablers. OMA is considered today as a super standards forum,
bringing together various others such as Wireless Village, the Wireless
Application Protocol (WAP) forum, etc. The main target is to approve
useful wireless standards for enabling rapid service delivery. Because many
Parlay gateways and applications are based on CORBA middleware, the

AU3833_C37.fm Page 1017 Friday, August 18, 2006 12:49 PM

1018 ■ Mobile Middleware

Web services specification for the classic Parlay interfaces is not really
necessary now, whereas the Parlay X Web services is becoming more and
more important. The Parlay X specification tries to simplify the Parlay
APIs, but this simplification comes at the expense of the functionality that
can be provided. It has been decided that the Parlay X specification should
follow a scheme of 20 percent functionality and 80 percent simplicity.

The latest specification, Parlay X 2.0, offers the following features:

■ Third-party calling
■ Call notification
■ Short messaging
■ Multimedia messaging
■ Payment
■ Account management
■ Terminal status
■ Terminal location
■ Call handling
■ Audio call
■ Multimedia conference
■ Address list management
■ Presence

It is obvious that most of these interfaces can be directly mapped to one
or more Parlay interfaces, but more and more implementations today are
mapped directly to related components and their corresponding interfaces

Figure 37.12 Parlay Classic API versus Parlay X APIs.

AU3833_C37.fm Page 1018 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1019

or protocols (e.g., to SIP and Diameter in case of an IMS). Parlay X Web
services have also been adopted by 3GPP CN TSG (2004) for inclusion
in the OSA Release 6 in TS 29.199-xx-600.

Open Mobile Alliance

The OMA was originally created in 2002 by consolidating the WAP Forum
and the Open Mobile Architecture initiative. Today, the OMA has also
incorporated the following organizations:

■ Location Interoperability Forum (LIF)
■ SyncML initiative
■ MMS Interoperability Group (MMS-IOP)
■ Wireless Village
■ Mobile Gaming Interoperability Forum (MGIF)
■ Mobile Wireless Internet Forum (MWIF)

Some of the most prominent members in the OMA are Cisco, Hewlett-
Packard, Sun Microsystems, and Sony-Ericsson. The OMA states in their
principles: “Open Mobile Alliance aims to enable mobile subscribers to use
interoperable mobile services across markets, operators, and mobile termi-
nals by defining an open-standards-based framework to permit application
and service to be built, deployed, and managed efficiently and reliably in
a multi-vendor environment.” To achieve these principles, the OMA has
worked with various other organizations from the mobile area, such as
3GPP and 3GPP2, ETSI, ITU-T, and Parlay, among others, to leverage existing
and approved standards in their architecture. The overall OMA system
architecture is described and defined by the architecture working group in
the OMA Service Environment (OSE) specification. It ensures that the OMA
service enablers utilize IMS capabilities whenever applicable; therefore, it
also describes the consistent usage of capabilities from the IP Multimedia
Subsystem. Ultimately, the OSE specification will describe how the archi-
tectures from different OMA working groups and external organizations can
be reworked and combined to minimize “silos” in the OMA enablers and
how all the pieces of the OMA architecture will fit together.

Microsoft Connected Services Framework

This relatively new approach was officially launched by Microsoft in
February 2005 for general availability and is built totally on Microsoft
technologies (Figure 37.13). Although the access for services is mainly built
on standardized technologies and protocols, such as Web services, XML,

AU3833_C37.fm Page 1019 Friday, August 18, 2006 12:49 PM

1020 ■ Mobile Middleware

and SOAP, the framework itself is a suite of products and services from
Microsoft. What kind of role the Connected Services Framework will play
in the future of the SDP market is not foreseeable now, but to ignore such
a large company with such a significant market share would be a mistake.

3GPP Open Service Access

The Open Service Access (OSA) was designed by the 3rd Generation
Partnership Project (3GPP) to provide intelligent services in the GSM
communications systems (a 2G cellular system originating in Europe) and
the Universal Mobile Telecommunications System (UMTS), the European
3G cellular standard that followed on the success of GSM. Figure 37.14
depicts the OSA API and how network capabilities become programmable
through the OSA/Parlay gateway. Additionally, it shows how these APIs
can benefit from advances in in-house as well as externally hosted Internet
service creation and hosting technology. Like JAIN, the OSA/Parlay APIs
combine two service creation models: the Internet service creation model
and the telecommunications service creation model [10]. Parlay and OSA
are two closely related APIs, and since 2001 they have been formally
merged so they are often referred to as OSA/Parlay.

Java APIs for Integrated Networks

Java APIs for Integrated Networks (JAIN) is an initiative led by Sun
Microsystems’ Java Community Process (JCP) to create abstractions and

Figure 37.13 Microsoft’s Connected Services Framework.

AU3833_C37.fm Page 1020 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1021

associated Java interfaces for service creation across PSTNs, packet switch-
ing, and wireless networks. The goal of JCP is to allow the broader Java
community to participate in the proposal, selection, and specification
process for the Java API. The JAIN standardization effort is organized into
two broad areas:

■ Proposal specifications that standardize interfaces to PSTN and IP
signaling protocols

■ Application specifications that deal broadly with the APIs required
for service creation within a Java framework

JAIN defines a service creation environment (SCE), a Service Logic Exe-
cution Environment (SLEE), a software component library, and a set of
development tools, as shown in the Figure 37.15. The JAIN SCE allows
the development of new service building blocks and the assembly of
services from these building blocks. Services are than deployed into the
SLEE. The SLEE is a set of software interfaces that support and simplify
the construction of portable communications services. The primary goal
of the SLEE is to ensure service portability. To achieve this, SLEE provides
a specification for APIs that are required by services and that must be
supported by JAIN-compliant SLEE vendors [15]. The second goal of the
SLEE is to simplify the services. It does this by specifying a common set
of functions or components that must be made available to application
developers.

Figure 37.14 Mapping of OSA/Parlay API to real protocols.

AU3833_C37.fm Page 1021 Friday, August 18, 2006 12:49 PM

1022 ■ Mobile Middleware

IP Multimedia System for
Emerging All-IP Networks
In light of the emerging all-IP network and development of generic Internet
protocols defined by the Internet Engineering Task Force (IETF) for
multimedia session control (i.e., SIP) and authentication, authorization,
and accounting (AAA) (i.e., Diameter), a new overlay service architecture
has been defined for fixed and Mobile IP networks: the IP Multimedia
Subsystem (IMS), which was standardized by 3GPP and 3GPP2 in 2000
and is being considered for global deployment in 2006. The main idea
of the IMS is to allow the flexible connection of the so-called SIP appli-
cation server (AS) to the IMS core infrastructure, which, when connected
via SIP and Diameter, can implement any kind of multimedia control or
content services. Besides VoIP and multimedia multiparty services, Push
To Talk (PTT) is considered to be an IMS killer application.

IMS Motivation

The all-IP network vision includes the use of fixed and Mobile IP networks
for both data and voice/multimedia information and requires a target
service control architecture. The IMS is an approach to providing an SDP
architecture for IP networks that is built entirely on Internet protocols
defined by the IETF and extended by request of 3GPP to support
telecommunications requirements, such as security, accountability, quality

Figure 37.15 JAIN and SLEE environments.

AU3833_C37.fm Page 1022 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1023

of service, etc. Mobile operators today face the problem that mobile
users can access the Internet and make use of Internet services, such
as instant messaging, chat rooms, and content download. It is necessary,
then, for the operators to define a minimum SDP architecture for
providing QoS, security, and charging for IP-based services while pro-
viding maximum flexibility for the realization of value-added and con-
tent services.

The IMS provides easy and efficient ways to integrate different services,
even from third parties. It enables the seamless integration of legacy
services and is designed for consistent interactions with circuit-switched
domains. The IMS manages event-oriented QoS policies, such as the use
of VoIP and HTTP in a single session (VoIP has QoS, HTTP is best effort).
The IMS also has event-oriented charging mechanisms for charging specific
events at the appropriate level [6]. These characteristics put the IMS into
the position of being the future technology for a comprehensive service-
and application-oriented network.

IMS Principles and Architecture

The IMS is based on Internet protocols, basically those for session
control (SIP), AAA (Diameter), and media transport (Real-Time Transport
Protocol, or RTP), and a clear separation of data transport, session
control, and application logic. Figure 37.16 displays a generic IP-based
SDP architecture (note that QoS control and charging are not addressed
in the figure). In the IMS architecture, SIP is used as the standard
signaling protocol that establishes controls and modifies and terminates
voice, video, and messaging sessions between two or more participants
(Figure 37.17). The related signaling servers in the architecture are
referred to as Call State Control Functions (CSCFs) and are distinguished
by their specific functionalities [7].

It is important to note that an IMS-compliant end-user system has to
provide the necessary IMS protocol support (namely, SIP) and the service-
related media codecs for the multimedia applications in addition to the
basic connectivity support (e.g., GPRS, WLAN). In general, SIP is a sig-
naling protocol, similar to Digital Subscriber Signaling #1 (DSS1) and ISDN
User Part (ISUP) used in circuit-switched networks and the Intelligent
Network Application Protocol (INAP) used in the telecommunications
world. However, telecom experts may argue that DSS1, ISUP, and INAP
are quite different. Indeed, DSS1 and ISUP are just signaling protocols for
ISDN telephony in between the end system and the switch and between
switches, respectively. By contrast, INAP is a service control protocol and
is used to remotely control switches for value-added service provision.
SIP is used commonly for both domains, but just in the VoIP world. Most

AU3833_C37.fm Page 1023 Friday, August 18, 2006 12:49 PM

1024 ■ Mobile Middleware

of all, SIP is a signaling protocol in between VoIP elements, but it can
also be used to talk from a SIP server to an SIP application server (SIP
AS), which de facto is a dedicated SIP element. This also means that SIP
has some inbuilt service capabilities, allowing SIP elements to implement
some IN-like services (e.g., call forwarding, call screening).

Figure 37.16 IMS high-level functionality diagram.

Figure 37.17 SIP and Diameter, key protocols in the IMS architecture.

AU3833_C37.fm Page 1024 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1025

The functionality related to authentication, authorization, and account-
ing (AAA) within the IMS is based on the IETF Diameter protocol and is
implemented in the home subscriber service (HSS), the CSCFs, and various
other IMS components to allow charging functionality within the IMS. To
avoid developing the protocol from scratch, Diameter was based on the
Remote Authentication Dial-In User Service (RADIUS), which has previ-
ously been used to provide AAA services for dial-up and terminal servers
across environments. The Diameter protocol has two parts: the Diameter
Base Protocol and the Diameter application. The Diameter Base Protocol
is necessary for delivering Diameter data units, negotiating capabilities,
and handling errors. The Diameter application defines application-specific
functions and data units.

The other protocol that is important for multimedia contents is the
Real-Time Transport Protocol, which provides end-to-end delivery for real-
time data. It also contains end-to-end delivery services such as payload-
type (codec) identification, sequence numbering, time stamping, and
delivery monitoring for real-time data. RTP provides QoS monitoring using
the RTP Control Protocol (RTCP), which also conveys information about
media session participants [6].

IMS Components

Figure 37.18 shows the important entities of the IMS. Briefly, they can be
described as follows: The first contact point within the IP multimedia core
network subsystem is the Proxy Call State Control Function (P-CSCF). The
P-CSCF behaves like a proxy, accepting internal requests and services and
forwarding them. The next component is the Interrogating Call State Control
Function (I-CSCF), which is the contact point within an operator’s network
for all connections for a subscriber of that network operator or a roaming
subscriber currently located within that network operator’s service area. The
functionalities performed by the I-CSCF assign a Serving Call State Control
Function (S-CSCF) to a user performing SIP registration/charging or utilizing
resources [7]. The S-CSCF performs the session control services for the
endpoint, and it maintains the session state as required by the network
operator for support of the services. Its functionality includes user registra-
tion and interaction with services platforms for the support of services.

After the core components we have the home subscriber service
(HSS), which is the equivalent of the home location register (HLR) in
2G systems; however, it is extended with two Diameter-based reference
points. It is the master database of an IMS that stores IMS user profiles,
including individual filtering information, user status information, and
application server profiles. The other component in the IMS service

AU3833_C37.fm Page 1025 Friday, August 18, 2006 12:49 PM

1026 ■ Mobile Middleware

layer is the SIP application server, which is the service-relevant part of
the IMS. Only well-defined signaling and administration interfaces (ISC
and Sh) and thus SIP and Diameter protocols need to be supported.
This enables developers to use almost any programming paradigm
within an SIP AS, such as legacy IN servers (e.g., CAMEL support
environments), OSA/Parlay servers or gateways, or any proven VoIP
SIP programming paradigm, such as SIP servlets, Call Programming
Language (CPL), or Common Gateway Interface (CGI) scripts. The SIP
AS is triggered by the S-CSCF, which redirects certain sessions to the
SIP AS based on the downloaded filter criteria or by requesting filter
information from the HSS in a user-based paradigm. The SIP AS itself
includes filter rules to decide which of the applications deployed on
the server should be selected for handling the session. During the
execution of service logic it is also possible for the SIP AS to commu-
nicate with the HSS to get additional information about a subscriber or
to be notified about changes in the profile of the subscriber.

The Media Resource Function (MRF) in the IMS can be split up into
the Media Resource Function Controller (MRFC) and the Media Resource
Function Processor (MRFP). It provides media stream processing resources
for media mixing, media announcements, media analysis, and media
transcoding, as well as speech. The Border Gateway Control Function
(BGCF), Media Gateway Control Function (MGCF), and Media Gateway
(MG) perform bearer coordination between the RTP and IP and the bearers
used in the legacy networks [8].

Figure 37.18 The main IMS architecture.

IMS core layer

Different
access networks legacy networks

AU3833_C37.fm Page 1026 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1027

IMS Standards and Applications

The IMS has been standardized since the beginning of this century within
Release 5 and extended in Release 6 within 3GPP and 3GPP2 as an
extension to the GPRS/packet domain network. The Release 5 standards
were driven by the vision to define the IMS for providing multimedia
services, such as VoIP, with the long-term goal of making obsolete the
circuit-switched GSM part of 3G networks. Realistically, Release 6 has
optimized the IMS to provide the envisaged IMS killer application Push
To Talk (over cellular). In addition, ETSI TISPAN is looking at service
infrastructures for fixed mobile convergence, and next-generation net-
works are extending the IMS to make it applicable on top of various
access networks (i.e., WLANs) and the fixed Internet (i.e., DSL).

The policy-based QoS control architecture in the IMS is key to providing
IP-based multimedia applications and services with an end-to-end QoS
guarantee. The reference model of a policy-based network consists of two
main elements: the policy decision point (PDP) and the policy enforcement
point (PEP) [13]. The PDP weighs the policy request sent by the PEP as
a result of a policy event conflicting with a corresponding set of policy
rules. As a response to a policy request, the PDP either evaluates the
policy rules for the request or retrieves the set of policy rules relevant for
the request. The policy decision or the set of policy rules is then trans-
ported to a PEP using the policy transaction protocol, which is called the
Common Open Policy Service (COPS), as shown in Figure 37.19. The PDP
is the final authority that a PEP must refer to for action to be taken. This
allows operators to control QoS in a user plane and exchange charging

Figure 37.19 Policy-based administration framework.

AU3833_C37.fm Page 1027 Friday, August 18, 2006 12:49 PM

1028 ■ Mobile Middleware

correlation information between the IMS and the GPRS network using the
COPS protocol [13]. COPS is a simple query-and-response protocol that
allows policy servers (PDPs) to communicate policy decisions to network
devices (PEPs) and uses TCP to provide reliable exchange of messages.
It supplies the means to establish and maintain a dialogue between the
client and the server and to identify the requests.

The IMS architecture supports both online and offline charging capa-
bilities. Online charging is a charging process where IMS entities, such as
an application server, interact with the online charging system. The online
charging system in turn interacts in real time with the user’s account and
controls or monitors the charges related to service usage; for example,
the AS queries the online charging system prior to allowing session
establishment, or it receives information about how long a user can
participate in the conference. Offline charging is a charging process where
charging information is mainly collected after the session and the charging
system does not affect in real time the service being used [6]. In this
model, a user typically receives a bill on a monthly basis that shows the
chargeable items during a particular period. Due to the varying nature of
the charging models, different architecture solutions are possible.

Value-Added Services in IMS

Value-added services can be provided in all IP environments on all
involved SIP systems that are interacting via SIP — end systems, such as
user agents (UAs); SIP servers, such as proxies or back-to-back user agents
(B2BUAs); or the SIP AS. Unfortunately, today no common programming
paradigm exists for SIP value-added services. Most frequently encountered
is the notion of service scripts — namely, SIP servlets, CPL, and CGI
scripts. Compared to IN/CAMEL and OSA/Parlay platforms, these service
scripts have severe limitations with regard to functionality and developer
support. However, as SIP has been selected as the universal signaling
protocol in the 3GPP IMS domain, the notion of SIP application servers,
which often offer a combination of CGI and servlet approaches, is emerg-
ing. OSA/Parlay, however, can also be used on top of SIP as well as
IN/CAMEL, as displayed in Figure 37.20:

■ CAMEL services via the CAMEL Service Environment (CSE) are
intended for the support of existing IN services (provides service
continuation).

■ OSA services via an OSA service capability server is intended for
the support of third-party application providers. The OSA SCS
provides access and resource control.

AU3833_C37.fm Page 1028 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1029

■ IMS services on an SIP application server are intended for new
services; a multitude of widely known APIs (CGI, CPL, SIP Servlets)
is available (see Figure 37.21).

■ IMS services directly on the CSCF are similar to an SIP AS. The
SIP AS is colocated on the CSCF, which seems to be useful for
simple services; it may be beneficial for service availability and
service performance.

Figure 37.20 3GPP IMS application server options.

Figure 37.21 IMS application server options.

OSA/Parlay
API

AU3833_C37.fm Page 1029 Friday, August 18, 2006 12:49 PM

1030 ■ Mobile Middleware

It has to be noted that the IMS itself is designed as a platform providing
service enablers. This means IMS-based services are not standardized; there-
fore, today it is difficult to identify concrete IMS services. The reason is that
the standards bodies want to provide as much freedom as possible for service
ideas and service implementations. Only absolutely necessary minimum
functionality for QoS, security, and charging capabilities has been standard-
ized to enable better value-added IP-based services, compared with classic
Internet services; however, IMS services are important for the introduction
of IMS as an SDP. The IMS services are assumed to be addressed by the
OMA. An excellent example is PTT or PTT over cellular (PoC), as shown in
Figure 37.22. The key PTT functions include presence, group list manage-
ment, PTT media processing, and the PTT application logic (including floor
control handling) [9]. These are glued tightly together in the first vendor-
specific PoC deployments, but from 2006 onward IMS-based PTT implemen-
tation will be deployed. The idea is to enable the reuse of the PTT core
ingredients for other service offers, such as presence-based services.

As seen in the PTT example, new services are beneficial combinations
of service capability features. Most likely upcoming services will also rely
on features such as presence, group-list management, additional logic, and
other features on the operator network, such as location, SMS, and MMS.
It is obvious that service capability features must be reused for scalability
and capital expense reasons. The remaining problems include how to
manage and orchestrate services, how to create efficient services that
bundle service capability features, and how to open up the network for

Figure 37.22 IMS-based PTT over cellular realization.

AU3833_C37.fm Page 1030 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1031

services in a secure way. As postulated in the 3GPP specifications, the
adoption of OSA/Parlay concepts and technologies can contribute a lot.
OSA/Parlay already provides an industry standard that provides unified
access (with a gateway character) to service capability features of the
operators’ networks. Even secure access by third parties can be handled
by the OSA/Parlay framework. This framework may control resources but
could also allow malfunctions or defective services. Assuming secure access
for third parties, not only is the network opened up for a variety of service
developers but also a milestone in service personalization is reached. By
using rapid application development tools optimized for OSA/Parlay, every
subscriber can design and specify his or her own set of services.

Summary and Outlook
In this chapter we have examined the evolution of SDPs over the last
several decades. It should have become clear by now that, in the face of
converging networks and emerging interconnected multiple-domain all-IP
networks, the provision of SDPs is a challenging task, requiring much
integration work. The IMS is today regarded as the ultimate SDP approach,
as it takes advantage of the inherent use of IP-centric protocols; however,
the deployment of IMS is driven by applications and the need to coordinate
with legacy access networks as well as legacy SDPs, such as IN/CAMEL
and OSA/Parlay. In this regard, Figure 37.22 illustrates that the adoption
of OSA/Parlay as a unifying service framework on top of both CAMEL and
IMS can unify service provision across different and converging networks.

Figure 37.23 and Figure 37.24 extend the above in regard to the ability
of OSA/Parlay to flexibly support Fixed Mobile Convergence (FMC) net-
work operators for enterprise application integration (EAI) purposes as
well as the optional and flexible support of services originating from third
parties and enterprises. The latter is an important aspect, as it is clear that
there will be no future killer applications for FMC and next-generation
networks (NGNs); rather, a myriad of customized applications will be
provided to specific user communities. In general, policies represent a
technique to describe by means of scripts the requirements and desired
behaviors of a network or network elements in a protocol-independent
way. This requires abstracting (similar to an API approach) the specific
details of the underlying network components, which may also include
service platforms.

The Internet is based on an open best-effort business model, and the
overall Internet comprises an open set of subnetworks; that is, various
Internet Service Providers (ISPs) have to cooperate with each other. In
this multiple-domain environment, end-to-end service provision, particu-
larly augmented with QoS across the different domains, is a challenging

AU3833_C37.fm Page 1031 Friday, August 18, 2006 12:49 PM

1032 ■ Mobile Middleware

task. Because various networks rely on different technologies and proto-
cols, the provision of a service (e.g., a VPN) must be accomplished in a
network-protocol-independent way. This is what policy-based manage-
ment and control have been designed for.

Figure 37.23 Summary of SDP evolution linked to network evolution.

Figure 37.24 OSA/Parlay on top of IMS and CAMEL enabling flexible service
implementations.

OSA/Parlay services (apps servers)

OSA/Parlay API vs. Web services (Parlay X)

Third-party

applications (e.g., PTT)

AU3833_C37.fm Page 1032 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1033

Today, on the Internet, policy-based service provision is considered the
major enabling technology for QoS-enabled multimedia service provision in
all IP networks, as shown in Figure 37.25. Policies are a means of program-
ming for programmable networks that provide the necessary abstraction from
the underlying network technologies. Note that this is similar to the early
intelligent network or the recent open API approach in the telecommunica-
tions world. Future networks will be all-IP networks, so policies represent
a strong starting point for the development of future value-added services
in all IP networks; that is, it can be assumed that policies can also be used
to program value-added services on top of SIP servers and other network
elements [11]. However, a lot of research still has to be performed, as this
young technology is still in its infancy but is very promising. It is important
to recognize that the IMS and OSA/Parlay, as well as associated initiatives,
such as OMA OSE and Microsoft’s CSF, are far from complete, and much
R&D work must be performed in the coming years. Corresponding open
SDP infrastructures are required to support the prototyping and validation
of new SDP concepts and multimedia applications. The FOKUS NGN Testbed,
featuring the Open OSA/Parlay playground and the Open IMS playground,
represents such a testbed infrastructure.

Acknowledgments
We are very thankful to all members of NGNI Competence Centre of 3Gb
Testbed at Fokus Fraunhofer Berlin for their valuable suggestions to improve
the draft of this text. We are especially thankful to Simon, Karsten, and
Fabricio for providing information about Parlay, open issues, and QoS in IMS.

Figure 37.25 Policy-based network management for all-IP network environments.

AU3833_C37.fm Page 1033 Friday, August 18, 2006 12:49 PM

1034 ■ Mobile Middleware

References
[1] Magedanz, T. and Popescu-Zeletin, R., Intelligent Networks: Basic Technol-

ogy, Standards and Evolution, International Thomson Computer Press,
London, 1996.

[2] Venieris, I., Zizza, F., and Magedanz, T., Object-Oriented Software Technol-
ogies in Telecommunications: From Theory to Practice, Wiley, London, 2000.

[3] Glitho, R. and Magedanz, T., Intelligent networks in the new millennium,
IEEE Commun. Mag., 38(6), 82–84, 2000.

[4] Magedanz, T. and Smirnov, M., Eds., Voice/data integration: a snapshot of
intelligent networks and Internet convergence, Computer Commun. J., 35(5),
503–505, 2001.

[5] Jain, R., Programming Converged Networks: Call Control in Java, XML, and
Parlay/OSA, John Wiley & Sons, New York, 2004.

[6] Poikselka, M. et al., The IMS: IP Multimedia Concepts and Services in the
Mobile Domain, John Wiley & Sons, New York, 2004.

[7] Knüttel, K. and Magedanz, T., IP multimedia subsystem: a system description
for a comprehensive service and application oriented network architecture,
in Proc. of the 2nd IASTED Int. Conf. on Communication and Computer
Networks (CCN 2004), Cambridge, MA, November 8–10, 2004, pp. 67–72.

[8] Knüttel, K., Magedanz, T., and Witszek, D., The IMS Playground@Fokus:
an open testbed for next generation network multimedia services, in Proc.
of the First Int. IFIP Conf. on Testbeds and Research Infrastructures for the
Development of Networks and Communities (TridentCom 2005), Trento,
Italy, February 23–25, 2005, pp. 2–11.

[9] Blum, N. and Magedanz, T., Push-to-video as a platform for NGN services,
in Proc. of the 11th European Wireless 2005: Next Generation Wireless and
Mobile Communications and Services, Nicosia, Cyprus, April 10–13, 2005.

[10] Klaus, J.M. and Magedanz, T., Parlay PAM in 3GPP’s IP-multimedia sub-
system, in Kommunikation in Verteilten Systemen (KiVS), Müller, P.,
Gotzheim, R., and Schmitt, J.B., Eds., Technische Universität Kaiserslautern,
Germany, 2005, pp. 73–80 (http://www.icsy.de/~kiv05/termine/index.html).

[11] Magedanz, T. et al., Self-adaptive service provisioning framework for
3G+/4G mobile applications, IEEE Wireless Commun. Mag., 11(5), 48–57,
2004 (special issue on applications and services for the B3G/4G era).

[12] Cortese, G. et al., CADENUS: creation and deployment of end-user services
in premium IP networks, IEEE Commun. Mag., 41(1), 54–69, 2003.

[13] Salsano, S. et al., QoS control by means of COPS to support SIP-based
applications, IEEE Network, 16(2), 27–33, 2002.

[14] Camarillo, G. and Garcia-Martin, M.A., The 3G IP Multimedia Subsystem: Merg-
ing the Internet and the Cellular Worlds, John Wiley & Sons, New York, 2004.

[15] Jain, R., Bakker, J.-L., and Anjum, F., Programming Converged Networks,
John Wiley & Sons, New York, 2005.

AU3833_C37.fm Page 1034 Friday, August 18, 2006 12:49 PM

IT-Based Open Service Delivery Platforms for Mobile Networks ■ 1035

Related Web Links
http://www.fokus.fraunhofer.de/ims (FOKUS Open IMS playground home page)
http://www.3gpp.org (3rd Generation Partnership Project)
http://www.3gpp.org/TSG/CN.htm
ftp://ftp.3gpp.org/TSG_CN/WG2_camel
http://www.3gpp.org/ftp/tsg_cn/WG5_osa/
http://www.packetcom.org
http://www.ietf.org
http://portal.etsi.org/tispan/TISPAN_ToR.asp
http://www.protocols.com/pbook/ss7.htm
http://www.parlay.org
http://www.parlay.org/docs/2003_06_01_Parlay_for_IEC_Wireless.pdf
http://www.parlay.org/specs/index.asp
http://www.parlay.org/specs/library/ParlayX-WhitePaper-1.0.pdf
http://www.parlay.org/specs/Parlay_X_Web_Services_Specification_V1_0_1r2.zip
http://www.openmobilealliance.org
http://www.openmobilealliance.org/tech/wg_committees/arc.html
http://www.openmobilealliance.org/release_program/docs/CopyrightClick.

asp?pck=RD&file=OMA-Service-Environment-V1_0-20040907-A.pdf
http://www.microsoft.com/serviceproviders/solutions/csf.mspx
http://www.microsoft.com/serviceproviders/solutions/csf_resources.mspx
http://download.microsoft.com/download/a/8/e/a8e610d8-fdd9-4529-b5b6-1a37

b342bf96/CSF_Diagram.ppt

AU3833_C37.fm Page 1035 Friday, August 18, 2006 12:49 PM

AU3833_C37.fm Page 1036 Friday, August 18, 2006 12:49 PM

1037

Chapter 38

Mobile Middleware
and Context for

Service Composition

Soraya Kouadri Mostéfaoui, Zakaria Maamar,
and Nanjangud C. Narendra

CONTENTS

Introduction... 1038
Mobile Middleware-Based Applications.. 1040

Mobile Computing Model .. 1040
Technical Challenges and Role of Context... 1042

Principles of Service Composition .. 1044
Definitions ... 1044
Taxonomy.. 1045

Proactive Composition Versus Reactive Composition 1045
Mandatory Composite Service
Versus Optional Composite Service... 1046

Requirements ... 1046
Composition Approaches in a Non-Mobile Configuration 1047
Using Context in Service Composition ... 1048

Integration of Mobile Middleware into Service-Oriented Applications............ 1050
Some Relevant Projects .. 1050

AU3833_C38.fm Page 1037 Friday, August 18, 2006 3:27 PM

1038

■

Mobile Middleware

Using Reflective Middleware.. 1052
Using Software Agents.. 1053

Conclusions and Future Directions ... 1054
Acknowledgments... 1055
References ... 1055

Introduction

The growth of Internet technologies is having a tremendous impact on
the way businesses interact with their peers, customers, and sometimes
competitors. To remain competitive, businesses need to take advantage
of the information revolution that the Internet and the Web have both
brought about. Most businesses are currently adopting Web-based solu-
tions for their applications, aiming for more automation, efficient business
processes, and worldwide visibility. Web services are among the technol-
ogies that help businesses be more Web oriented [20]. Web services can
be defined as accessible software components that other applications and
humans can discover and trigger. A Web service is associated with three
properties [2]: (1) independent as much as possible from specific platforms
and computing paradigms, (2) developed particularly for interorganiza-
tional situations, and (3) easily composable so that the development of
complex adapters is not required.

Parallel to the new role of the Internet as a vehicle for delivering Web
services, major progress in wireless and mobile technologies has been
witnessed. Users are adopting new practices such as surfing the Web from
mobile devices. Because users are extensively relying on such devices to
conduct their day-to-day operations, both enacting Web services from
mobile devices and downloading these Web services from their hosting
sites to mobile devices for execution constitute worthwhile research ave-
nues to pursue [18,41]. M-services (M for “mobile”) denote the Web services
that are intended for deployment in a wireless configuration [21].

Composing services (whether Web services or M-services) rather than
accessing a single service offers greater benefits to users. Composition
addresses the situation of a client request that cannot be satisfied by any
available service, and a composite service obtained by combining a set
of available services might be used for fulfilling the request [9]. Discovering
and selecting the component services according to user requirements,
inserting the selected component services into a composite service, trig-
gering the composite service for execution, and finally monitoring the
execution of the composite service are among the operations that users
will be responsible for. In addition, the unique characteristics and chal-
lenges of mobile computing result in a pressing need of revisiting the
fundamental design and development concepts of applications [25].

AU3833_C38.fm Page 1038 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1039

Because user expectations and requirements constantly change, it is
deemed appropriate to include their preferences in the composition of
services. Indeed, some users while on the move would like to receive
information depending on their current locations. This simple example
sheds light on the importance of making applications adjustable. This
adjustability depends on features of the environment in which service
provisioning is expected to happen. Samples of these features would
include those that are about the user (e.g., stationary user, mobile user),
computing resources (e.g., fixed device, handheld device), time of day
(e.g., afternoon, evening), and physical location (e.g., meeting room,
shopping center). Sensing, collecting, assessing, and refining the features
of a situation permit definition of its context. Prior to integrating context
into service composition and provisioning, various issues must be addressed
[32]: How is context structured? How does a service bind to context? Where
is context stored? How frequently does a service consult context? How are
changes detected and assessed for context update purposes? What is the
added load for a service to take context into account?

Applications plunged into a mobile context pose multiple challenges,
including how to locate and deliver up-to-date information to users while
they are on the move, how to guarantee a reliable delivery despite risks of
network disconnections, how to recover from disconnections with less impact
on the business process under execution, and how to secure delivered
information broadcast over the air. These challenges place an additional
burden on application developers. Developers are put on the front line of
satisfying businesses’ and service providers’ promises to deliver Internet
content to mobile users anywhere and anytime. To reduce the complexity
of some of these technical challenges, mobile middleware technologies must
be developed. Abstracting communication details, supporting communica-
tions in a transparent way, and recovering from potential crashes are some
of the objectives that such middleware must meet. As a result, application
developers can now focus on the underlying logic of the functionalities to
offer to end users, instead of low-level technical details.

The field of mobile middleware-based development encompasses the
convergence of high-speed wireless networks and personal mobile devices.
The aim of this development is to provide the ability to compute, com-
municate, interact, and collaborate anywhere and anytime. Wireless tech-
nologies for communication are the link between mobile clients and other
system components. It is expected that mobile middleware will trigger the
development of a new generation of applications that can be used in
different domains and offered to different categories of people. These
applications are multiple, including job dispatch based on the location of
employees and sending inventory requests to a supply-chain partner using
mobile devices.

AU3833_C38.fm Page 1039 Friday, August 18, 2006 3:27 PM

1040

■

Mobile Middleware

After discussing the relevancy of middleware technologies and context for
service composition, we then present applications that are based on mobile
middleware. We also discuss the principles behind service composition and
the value of adding context to service composition. Before drawing our
conclusions and highlighting future directions, we report on some experiences
of integrating mobile middleware into service-oriented applications.

Mobile Middleware-Based Applications

Mobile Computing Model

The general mobile computing model in a wireless configuration includes
two distinct sets of entities (Figure 38.1): mobile clients and fixed hosts.
Some of the fixed hosts, called

mobile support stations

 (MSSs), are enhanced

with wireless interfaces. An MSS can communicate with mobile clients
within its radio coverage area, called a

wireless cell

. A mobile client can
communicate with a fixed host/server via an MSS over a wireless channel.
The wireless channel is logically separated into two subchannels: uplink
and downlink. The uplink channel is used by mobile clients to submit
queries to the server via an MSS, and the downlink channel is used by
MSSs to disseminate information or forward the responses from servers
to specific mobile clients. Each cell has an identifier for identification
purposes that is periodically broadcast to all mobile clients residing in a
corresponding cell.

Figure 38.1 Mobile computing model.

AU3833_C38.fm Page 1040 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1041

From an operation perspective, users expect to be provided with
information through wireless communication networks. Information is to
be made available while considering the following aspects: terrain topog-
raphy, propagation techniques, and security. A security problem that is
inherent to all wireless communication networks is third parties being
able to easily capture radio signals in the air; thus, appropriate data
protection and privacy safeguards must be ensured. With regard to the
network, instances of failure and means of recovery must also be taken
into consideration. Some of the requirements that the mobile computing
model has to satisfy are listed below:

■

The

information availability requirement

 addresses the need for
a user to have uninterrupted and secure access to information on
the network. Aspects to consider are survivability and fault toler-
ance, ability to recover from security breaches and failures, network
design for fault tolerance, and design of protocols for automatic
reconfiguration of information flow after failure or security breach.

■

The

network survivability requirement

 addresses the need to main-
tain the “aliveness” of the communications network in spite of
potential failures. Aspects to consider are understanding system
functionality in case of failures, minimizing the impact of failures
on users, and providing the means to overcome failures.

■

The

information security requirement

addresses the importance of
providing reliable and unaltered information. Aspects to consider
are confidentiality to protect information from unauthorized disclo-
sure and integrity to protect information from unauthorized modifi-
cation, ensuring that information is accurate, complete, and reliable.

■

The

network security requirement

addresses information security
through network security. Aspects to consider are confidentiality,
sender authentication, access control, and identification.

Additional requirements exist. The increasing reliance and growth in
information-based wireless services impose three requirements — avail-
ability, scalability, and cost efficiency — on the offered services. Availability
means that users can count on accessing any wireless service from
anywhere, anytime, regardless of the site, network load, or device type.
Availability also means that the site provides services that meet some
measures of quality such as a short, acceptable, and predictable response
time. Scalability means that service providers should be able to serve a
fast-growing number of customers with minimal performance degradation.
Finally, cost effectiveness means that the quality of wireless services (e.g.,
availability, response time) should be achieved with adequate expenditures
in IT infrastructure and personnel.

AU3833_C38.fm Page 1041 Friday, August 18, 2006 3:27 PM

1042

■

Mobile Middleware

Technical Challenges and Role of Context

Schmidt and Beigl [30] suggest that context is more than the current
location of a user. Context should consist of the people around the user,
the situation (e.g., in a meeting, making a phone call), the environment
(e.g., location, temperature, time), and the user’s physical condition (e.g.,
pulse, body temperature). Additional information about the context can
help a computing device to act and react more promptly and efficiently.

Occasionally, users will be stymied by a lack of appropriate applications
on their mobile devices (e.g., an application that converts a drawing file
into a format that the mobile device can display). To avoid such incon-
veniences, users should be able to search for additional functions when
necessary and either invoke them remotely or download them to their
mobile devices for local performance. From a user’s perspective, it is
important to make sure that all of these operations happen in a transparent
way. From a developer’s perspective, it is important that the necessary
tools and techniques exist and can be integrated in an efficient way. A
developer should primarily focus on the business logic that implements
the offered services to users, rather than on low-level technical details.

Despite the multiple opportunities that mobile computing offers, espe-
cially to those who are on the move, various obstacles still hinder the
expansion of this model. For example, mobile devices are still limited by
their battery power, and current technologies are meant to be used for
situations with a permanent and reliable communications infrastructure.
To optimize service provisioning in mobile environments, several impor-
tant issues must be addressed, such as [22]:

■

Handling disconnections during service execution

 — In a mobile
scenario, disconnections may be frequent due to the lack of cov-
erage areas or devices changing location. As a result, minimizing
device disconnection is critical to service execution success.

■

Context-sensitive service deployment

 — In addition to such criteria
as monetary cost and time of response, service deployment should
consider the locations of users and capabilities of computing
resources on which the services will operate. Locations and capa-
bilities must be assessed before service deployment.

The traditional usage of mobile computing devices has revolved around
merely using these devices to make and answer phone calls and short
text messages. The increasing power and versatility of these devices are
beginning to enable implementing complex workflow-like scenarios com-
prising service composition [25]. In the following, a simple yet realistic
usage scenario related to vacation planning is presented, aimed at explain-
ing the role of context in service composition.

AU3833_C38.fm Page 1042 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1043

Melissa is a tourist who is visiting Dubai. After checking-in at the hotel,
Melissa browses some of the Web sites that Dubai tourism authorities
recommend in their brochures. The top-ranked Web site is built on Web
services technology and offers various Web services that can be composed
in different ways. Melissa visits this Web site and chooses sightseeing and
shopping services. Melissa’s plans are to visit outdoor places in the
morning and go shopping in the afternoon. The first part of the plan is
subject to weather forecasts, as she will not consider any outdoor activities
if the weather is too hot. Initially, Melissa is prompted to select some
outdoor locations to visit and indicate pick-up/drop-off times for her
sightseeing and shopping.

For the first activity in Melissa’s plan, the sightseeing service checks
with weather service forecasts for the next five days. Because unusually
hot weather is not predicted, scheduling the places she wants to visit
begins by ensuring that these places are open to the public on these days,
and transportation and guides are arranged. The logistics of Melissa’s
transportation is assigned to a transportation Web service. If a hot-weather
warning does arise, then the sightseeing Web service would suggest other
places (e.g., museums) offering indoor activities. Similar considerations
apply to Melissa’s shopping activity and consist of checking out current
promotions in the malls that Melissa has selected. It should be noted that
the transportation Web service coordinates the beginning time for shop-
ping with the ending time for sightseeing.

The day after her arrival, Melissa is driven to an historical site. When
she is caught in an unexpected traffic jam, her PDA compares her current
location to the location where she is supposed to be (i.e., the historical
site) and notices that she is not where she is supposed to be at that time.
Melissa’s PDA jumps into action by sending a note to the sightseeing and
transportation services so corrective measures can be taken, such as inform-
ing the guide about the delay. Figure 38.2 presents a rough representation
of the services participating in this scenario. This chronology yields insight
into the multiple challenges that a contextual service composition in a
mobile configuration faces, including: How is the context related to the
services delivered? What information applies to context? How can middle-
ware ease the development of context-aware applications? How can we
assess the context for adaptability needs? Is the location of a person
sufficient for tracking the execution of the services the person has selected?
How much does context of Web services contribute to this tracking?

Managing contextual information becomes crucial in mobile com-
puting scenarios. Context is the information that characterizes the inter-
actions between an entity and its external environment [13]. In a mobile
middleware-based configuration, contextual information resides at three
levels [5,19]:

AU3833_C38.fm Page 1043 Friday, August 18, 2006 3:27 PM

1044

■

Mobile Middleware

■

The

environmental level

 enables defining the overall environmental
context. Some examples from Melissa’s scenario would be device
types (mobile, PDA), locations (museum, shopping mall), and
weather conditions (raining, sunny day).

■

The

service level

models and manages the context surrounding
individual services offered over mobile devices. Some examples
from Melissa’s scenario are performance requirements (maximum
execution time per Web service) and architectural requirements
(point-to-point messaging, publish–subscribe messaging).

■

The

resource level

presents the context of the resources on which
the services are to operate. Some examples from Melissa’s scenario
are screen size of a mobile device, memory capacity, and process-
ing speed.

Principles of Service Composition

Definitions

Yang and Papazoglou [40] suggest that Web-services-based applications
developed in terms of Web Services Description Language (WSDL) alone
might be isolated and opaque and, moreover, cannot be easily interlinked
to express the business semantics of Web services. The authors argued
that, to break this isolation and opacity, Web services should be intercon-
nected. Thus, a composition might be defined as an approach that connects
Web services together in order to construct composite services. The

Figure 38.2 Chronology of Web services in Melissa’s scenario.

AU3833_C38.fm Page 1044 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1045

connection of Web services implements a business logic that depends on
the application domain and control flow of the business case for which
the composite service is being devised. Examples of business cases are
various and include travel planning and journal paper review. Skogan et
al. [35] reported that the objective of Web services composition is to
provide a method for creating executable compositions. The basic idea is
that the composition can be expressed in a language in the form of a
model that can be run by an execution engine.

A fine-grained decomposition of the process of composing services
reported in Shaparau [31] has five stages:

■

Definition

 — Corresponds to specification of the activities to per-
form, requirements to satisfy, and behaviors to expect; each service
is modeled regardless of other peers

■

Scheduling

 — Determines how and when services should be run

■

Construction

 — Relies on previous steps to develop an executable
scheme for service composition

■

Execution

 — Converts the aforementioned executable scheme into
structures of specific programming languages, in preparation for
running the services

■

Monitoring

 — Oversees the execution of the services for possible
adjustment

Taxonomy

The following text provides an overview of approaches for developing
composite services. We mainly rely on the works of Chakraborty and Joshi
[11] and Yang and Papazoglou [40].

Proactive Composition Versus Reactive Composition

Proactive composition is an offline process that gathers in advance availa-
ble component services to include in a composite service; thus, the
composite services are precompiled and ready to be executed upon the
users’ requests. In proactive composition, the component services are
usually stable and may possibly be running on resource-rich platforms.
Two types of proactive composition can be identified [40]. In the semi-
fixed composition, the entire service composition is specified statically,
but the actual service bindings happen only at run time. When a composite
service is invoked, the actual composition specification is generated on
the basis of a matching between the constituent services that are specified
in the composition and other available services. In the fixed composition,

AU3833_C38.fm Page 1045 Friday, August 18, 2006 3:27 PM

1046

■

Mobile Middleware

all the constituents of the composite service are synchronized in a fixed
manner. The composition structure and the component services are stati-
cally bound. Reactive composition, also called

explorative composition

 [40],

is the process of creating composite services on the fly. A composite
service is devised on a per-request basis from users. Because of the on-
the-fly property, a component manager is required to guarantee identifi-
cation and collaboration of the component services.

Mandatory Composite Service
Versus Optional Composite Service

A mandatory composite service corresponds to the compulsory participa-
tion of all the component services in the execution process. Because it is
expected that the component services will be spread across the network,
the reliability of the execution process of each component service affects
the reliability of the entire composite service. An optional composite
service does not necessarily involve all the component services. Certain
component services can be skipped during execution due to the possibility
of substitution or for nonavailability reasons.

Requirements

Milanovic and Malek [26] proposed that a composition approach must
satisfy several requirements, such as connectivity, nonfunctional quality
of service (QoS), correctness, and scalability. Reliable connectivity is useful
in determining the services to compose and the input and output messages
to exchange. Nonfunctional QoS, such as timeliness, security, and depend-
ability, ensure that the composition produces the expected results. Finally,
scalability allows complicated business transactions to scale with the
number of composed services.

More recently, another set of service composition requirements was
identified [35]. A pattern-oriented design approach was adopted for the
identification of the minimal requirements associated with service compo-
sition. The result of the approach is a set of patterns, many of which were
already described in van der Aalst [38]: sequence, parallel, split, synchro-
nization, exclusive choice, and simple merge. The two new patterns iden-
tified are discriminator and selector. Yet another set of requirements for
service composition has been proposed by Esfandiari and Tosic [14]. The
proposed requirements are split into the following groups: service discov-
ery, service selection, composition, verification, and hot-swapping support.

AU3833_C38.fm Page 1046 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1047

Composition Approaches in a Non-Mobile Configuration

Many modeling languages and techniques have been proposed to model
service composition. The first attempts toward a composition language
were the IBM Web Services Flow Language (WSFL) and BEA System’s
Web Service Choreography Interface (WSCI). These were followed by the
Business Process Execution Language (BPEL) in an attempt to combine
these languages using Microsoft’s XLANG. In the following, we survey the
most significant proposals of service composition languages and models
that are used in a non-mobile configurations.

■

Workflows

 — Workflow methods are used primarily when the
process model underlying the composition is already defined.
eFlow is a system that adopts workflows [10]. In eFlow, composite
services are represented as process schemas consisting of basic
services and are modeled by an execution graph.

■

Model-driven approaches

 — The main feature of model-driven
approaches is the separation of composition logic from composition
specifications [31]. Unified Modeling Language (UML) is among the
languages that permit modeling composition logic. Skogan et al.
[35] suggested a UML-based composition approach that aims at
forming UML models to be automatically converted into composi-
tion specifications.

■

Artificial intelligence (AI) planning

 — Given a user’s objective and
a set of available services, a planner would find a collection of
services that enables reaching the objective. In Bouguettaya et al.
[6], an AI planning approach was used to generate composite
services from high-level declarative descriptions. When the com-
posability of services has been verified, the composition specifica-
tion uses the Composite Service Specification Language (CSSL).
Another work that has adopted AI planning and particularly the
hierarchical task network planning is reported in Sirin et al. [33],
but this approach will not be further detailed here.

■

Web components

 — Yang and Papazoglou [39] proposed a Web-
component-based approach to service composition that includes
composition planning, specification, implementation, and execu-
tion. The use of Web components is backed by the concepts of
reuse, specialization, and extension. A Web component packages
together elementary or complex services and presents their inter-
faces and operations in a consistent and uniform manner in the
form of class definitions.

AU3833_C38.fm Page 1047 Friday, August 18, 2006 3:27 PM

1048

■

Mobile Middleware

Using Context in Service Composition

In Maamar et al. [23], the authors argue that, despite the tremendous interest
in service composition and provisioning, very little has been accomplished
to date regarding their context-based provisioning. Several obstacles still
hinder this provisioning, including the fact that current services act as
passive rather than active components that can be embedded with context-
awareness mechanisms; existing approaches for service composition typi-
cally facilitate choreography only, while neglecting contextual information
on users, services, and resources; and support techniques for modeling
and specifying the provisioning of services are lacking in a mobile con-
figuration. Maamar et al. [23] proposed associating users, services, and
resources with contextual structures. Users want services to satisfy their
needs, and services require resources on which to operate. To track the
progress of interactions between users and services, as well as between
services and resources, contextual structures are necessary (Figure 38.3).
The authors identified three types of context: user (U-context), service (S-
context), and resource (R-context).

Muldoon et al. [27] defined the user context of a user as an aggregation
of the user’s location, previous activities, and preferences. Sun [36] adopted
the same definition of user context but added physiological information
to this context. Maamar et al. [22] defined the service context of a service
as an aggregation of its simultaneous participations in composite services,
locations and times of execution, and constraints during execution. The
resource context of a resource was defined as an aggregation of its current
status, periods of unavailability, and capacities of meeting the execution

Figure 38.3 Use of context in a configuration of users, services, and resources.

AU3833_C38.fm Page 1048 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1049

requirements of services. According to Bellavista et al. [3], provisioning a
service in a specific context highlights the logical set of resources that are
accessible to a user during a service session. This accessibility depends
on various factors, such as user location, access device capabilities, sub-
scribed services, user preferences, and level of trust.

A service is context aware if it can transparently adapt its behavior
according to the requirements of the entities for which this service works
[15]. Users or peers of this type of service for composition are examples of
such entities. The execution of a service is adjusted (e.g., postponed) when
details on resources are known. These details concern the status of a resource
(e.g., idle, operational, busy) and are stored in its R-context, which acts as
a context source for the service. When a service is adjusted to the availability
of a resource, its respective S-context is updated. Similar consideration applies
to supplying services to users. Before a service is invoked, the user’s
preferences are handled. These preferences regard the user’s current location,
order of activities, and current time and are stored in the user’s U-context,
which acts as a context source for the service. When a service is adjusted
to the preferences of a user, its respective S-context is again updated.

Scooby is an example of a middleware language that aims at composing
services taking into account user preferences [29]. This approach explores
the issue of enabling users to employ natural language descriptions to
describe how they want their environment to be tailored according to the
available services (i.e., it enables users to express their policies). Ontology
is used to describe services and their functionalities, and user policies are
expressed in terms of the concepts known in the described ontology.
Users are able to describe, edit, and browse their policies using a multi-
modal interface combining speech, text, and diagrammatic representations.
A policy compiler is responsible for translating policy specifications in
terms of composed services in the Scooby middleware language. Finally,
a policy manager uses the policy precedence ordering to route the events
and requests to the composed services.

Although the work of Baresi et al. [1] on context-aware service provi-
sioning was not conducted within a mobile configuration, its presentation
is relevant in this chapter. The proposed approach has put forward (1)
two levels, referred to as

application

 and

technology

, and (2) perspectives,
referred to as

request

 and

provisioning

. The request perspective provides
an abstract model of the context in which the service is triggered, and
the provisioning perspective represents the available services in terms of
functional description and composition. Similarly to BPEL4WS (www.
ebpml.org/bpel4ws.htm), services are composed in a recursive manner
following workflow logic. Additionally, adaptation rules have been pro-
posed for mapping user-level requirements onto technological constraints.
This helps make the service composition specifications context sensitive.

AU3833_C38.fm Page 1049 Friday, August 18, 2006 3:27 PM

1050

■

Mobile Middleware

In addition to request and provisioning perspectives, Baresi et al. looked
into adaptation rules that handle critical situations during service compo-
sition. Service failures or lack of QoS can jeopardize the success of a
service execution scenario.

Because of the changing and complex nature of user needs, require-
ments, and expectations, it is unlikely that a certain provider would
develop all types of services. Services will be different at various levels
with regard to the functionality they offer, the reliability they guarantee,
and the context information they manage, just to cite a few. In their work
on context heterogeneity, Maamar et al. [24] suggested developing Ontol-
ogy Web Language-Based Context (OWL-C) as a language dedicated to
context specification. Ignoring the problem of context heterogeneity of
services affects the normal progress of their composition. These side effects
are multiplied by, for example, adopting the wrong strategy for selecting
a component service (e.g., favoring an execution-cost criterion over a
reliability criterion, instead of the reverse), delaying the triggering of some
urgent component services, or poorly assessing the exact execution status
of a service (e.g., service being blocked while under execution). Empha-
sizing the importance of seriously addressing the issues of context heter-
ogeneity, common attributes that should ensure the quality of contexts
are reported in Huebscher and McCann [16]. Some of these attributes are
precision, correctness probability, resolution, and refresh rate.

Integration of Mobile Middleware
into Service-Oriented Applications

Some Relevant Projects

In a mobile configuration, middleware should permit a highly configurable
and adaptive execution environment that reacts to changes when needed
and upon request [12]. This reaction depends on the quality of information
that context requires for different parties, whether users, services, or
resources. Configurability and adaptability requirements are typical of the
considerations when developing a middleware implementation in a mobile
configuration. This implementation should be modular for adjustability
purposes and robust for continuity purposes. By continuity, we mean the
capacity of an application to maintain operation and recover to normal
levels of operation after a change. Chan and Chuang [12] discussed the
concept of computational reflection, where mobile middleware is given
mechanisms that allow the middleware to carry out self-observation, model
its capabilities, oversee its computation consumption, and possibly change
the way in which a business process takes shape.

AU3833_C38.fm Page 1050 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition

■

1051

Some of the issues that Chan and Chuang [12] raised when developing
such middleware include determining how the middleware and applica-
tions know what context information to react to and how they know how
to react to the content changes. The authors considered three levels of
adaptation: interservice, intraservice, and application. The MobiPADS frame-

work constitutes the authors’ response to these issues and is an imple-
mentation of these adaptation levels. The framework consists of two
agents: a server residing in the wired part of the network and a client
residing in the mobile device. It is expected that the server will always
be in the vicinity of the client, according to the wireless access point that
is in charge of managing this client. With regard to context awareness,
MobiPADS incorporates an event notification model that monitors the
status of a particular context and reports changes in terms of events to
the appropriate parties.

Challenges that face the technical evolution of wireless networks
include the lack of means for developing intelligent middleware and a
lack of design approaches for applications called to operate on top of
these networks. To address these challenges, Sørensen et al. [37] initiated
the CORTEX project. CORTEX is geared toward the following key cha-
racteristics: sentience, autonomy, time criticality, safety criticality, geogra-
phical dispersion, mobility, and evolution. Sentience is the ability to
perceive the state of the surrounding environment. Mobility reflects the
fact that applications running on top of mobile devices must have the
capacity to physically move and discover new neighbors for interaction
and information-sharing purposes. Autonomy means that applications
should be capable of acting in a decentralized and independent way.
CORTEX includes a sentient object programming model that allows deve-
lopers to design distributed applications in terms of sentient objects,
instead of decomposing them into component parts.

Although Sørensen et al. [37] recognized the difficulty of designing an
application that has all of the aforementioned characteristics, they empha-
sized in their investigation the importance of considering applications that
combine the autonomy of application participants (sentience) with the
need to maintain a consistent view of the application environment while
cooperating with other participants. The application domain of CORTEX
is a set of intelligent vehicles. Vehicles today are being equipped with
various types of embedded sensors, such as position broadcasts and rain-
drop detection on windshields. In an environment populated with similarly
equipped vehicles, communication could occur for various purposes:
dissemination of traffic information derived from the embedded sensors,
cooperation among vehicles to assist drivers in critical situations, and
interactions among remote cars.

AU3833_C38.fm Page 1051 Friday, August 18, 2006 3:27 PM

1052

■

Mobile Middleware

Using Reflective Middleware

The CORTEX project used vehicles, which can easily offer the necessary
computing resources that bypass the limitations of mobile devices, but
work on the Context-Aware Reflective Middleware System for Mobile
Applications (CARISMA) project has helped to reduce these limitations [8].
Mobile devices will continue to be battery dependent and users will
continue to resist carrying heavy devices. Capra et al. [8] promote improv-
ing user acceptance of these limitations by deploying context-aware appli-
cations that adapt to changes in the environment. Overseeing changes in
the environment is an intense exercise of querying sensors, filtering the
collected data, and detecting changes of interest to an application. To
reduce this complexity, a layer of middleware between the network
operating system and an application is necessary [8]. Acting on behalf of
the application, the role of the middleware would consist of maintaining
updated context information and detecting changes of interest to the
application that call for a prompt reaction.

Current middleware technologies for traditional wired distributed sys-
tems have proven to be successful by adopting the principle of transpar-
ency; however, Capra et al. argue that transparency cannot be the guiding
principle for developing the new abstractions and mechanisms required
by mobile computing middleware to foster a new generation of context-
aware applications. Capra et al. adopted the reflection principle of Chan
and Chuang [12] as it offers advantages for building mobile computing
middleware. A reflective system can modify its own behavior through
inspection and adaptation. Behavior modification has to be consistent to
prevent multiple types of conflicts. In CARISMA, reflection helps achieve
dynamic adaptation to context changes [8].

Applications are offered the possibility of abstracting the middleware
as a set of services that can be dynamically customizable. Customization
takes place by means of metadata, which encodes the middleware behav-
ior to answer application service requests in various contexts. Through
reflection, the metadata can be changed and, thus, the middleware behav-
ior tuned. The risk of conflicts is addressed through a resolution strategy
that relies on a particular type of sealed-bid auction [8]. The idea is to
permit applications to compete to have the middleware deliver the quality
of service they desire. Addressing the requirements of mobility, context
awareness, and adaptation for mobile computing has been the driving
force for CARISMA.

Customizable middleware for mobile applications is also the theme of
the Fluid Computing project [7] at IBM’s Zurich Research Labs. The
emphasis here, however, has been on developing a middleware architec-
ture that implements a data and application replication mechanism across

AU3833_C38.fm Page 1052 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition ■ 1053

multiple mobile devices. This mechanism enables application state to
seamlessly flow from one device to another, much like a fluid.

The Fluid Computing middleware replicates data on multiple devices
and achieves coordination of these devices through synchronization. Each
device has a replica of the application state, which allows it to operate
autonomously. The role of the synchronization protocol is to keep the
replicas consistent, depending on the quality of the network connectivity
available (weak consistency). The Fluid Computing synchronization pro-
tocol operates in two modes. Batch mode replication occurs when con-
nectivity is regained after disconnection, exchanging all updates that have
accumulated during the disconnection. Trickle mode replication occurs as
long as there is some connectivity, propagating updates in real time as
soon as they are generated at a replica. Fluid Computing allows discon-
nected operation; the user can continue working with a device and making
updates even when the device has no connectivity. Replicas are therefore
allowed to become inconsistent when disconnected.

Using Software Agents

Another approach to mobile middleware development promotes the use
of software agents for their various appealing features, such as autonomy
and mobility. Bellavista et al. [4] have investigated the value added by
mobile agents in the development of middleware for context-aware appli-
cations. The investigation of Bellavista et al. was motivated by the fact
that service providers and network operators (wired or wireless) face new
challenges and state-of-the-art technical issues when attempting to achieve
seamless integration of mobile users with traditional fixed Internet-based
scenarios. This seamless integration can be hindered by the changing
locations of users and the limited capacities of mobile devices.

Bellavista et al. [4] argued that location visibility is not the only crucial
concern of applications in a mobile configuration, and they pointed out
the need for novel development methods for context-aware applications.
This awareness is reflected in the logical set of resources that a client can
access, subject to location, permissions, access device capabilities, etc. In
addition, Bellavista et al. addressed the combination of what mobile
middleware requires and what mobile agents offer. The success of this
combination is dependent on addressing the following issues [4]: how to
extract context and achieve its visibility, how to refine and aggregate
information about the context of mobile clients during their service ses-
sions, how to exploit context-awareness flexibility to support decision
making about service adaptation, and how to use full context visibility to
manage QoS aspects.

AU3833_C38.fm Page 1053 Friday, August 18, 2006 3:27 PM

1054 ■ Mobile Middleware

Software agents as necessary components in mobile middleware sce-
narios were discussed by Sheng et al. [34]. Services are poised to become
accessible from mobile devices, and the proliferation of such devices and
deployment of more sophisticated wireless communication infrastructures
are providing the Web with the ability to deliver data and functionality
to mobile users. However, several obstacles still hinder the seamless
provisioning of services in wireless environments. Indeed, current service
provisioning techniques are inappropriate because of the distinguishing
features and inherent limitations of wireless environments such as low
throughput and poor connectivity of wireless networks, limited computing
resources, and frequent disconnections of mobile devices. In addition, the
variability in computing resources, display terminals, and communication
channels requires intelligent support for personalized and timely delivery
of relevant data to users. This support can be achieved using software
agents, which may, for example, act on behalf of users and services.

Conclusions and Future Directions
Service-oriented computing is an emerging paradigm for distributed com-
puting that is changing the way software applications are designed, built,
delivered, and consumed. Services are platform-independent computa-
tional elements that can be described, published, discovered, and orches-
trated using standard protocols. In general, combining multiple services
rather than relying on a single service is essential and provides more
benefits to users. Composition primarily addresses the situation when a
user’s request cannot be satisfied by any available service, but a composite
service obtained by combining available services might fill the need.

In this chapter, we presented some of the state-of-the-art work on
service composition and its implementation in a mobile environment. We
also discussed the role and importance of context as a crucial element in
facilitating service composition in this environment. Techniques currently
under development for utilizing contextual information in service compo-
sition were also highlighted. We described several ongoing research
projects that are investigating how mobile middleware can be enhanced
with service-oriented computing concepts, and, finally, we briefly touched
upon the possible usage of software-agent technology for enhancing the
autonomy and proactivity of mobile middleware.

Future work in this area would involve investigating the extent to which
software agents can be used to enhance context-oriented service compo-
sition in mobile middleware. This would be made possible by leveraging
some of the advantages of software agents, such as autonomy and collab-
oration. Other exciting areas for future work would consist of tailoring

AU3833_C38.fm Page 1054 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition ■ 1055

existing work on context-aware adaptation and exception handling for
Web services [28] to mobile middleware and investigating the use of
autonomic computing middleware [17] for adaptive service composition.
Indeed, autonomic computing aims at making computer systems more
adaptive through self-configuration, self-optimization, and self-protection.
Service composition might easily benefit from that and be made more
adaptable and more manageable if it is based on autonomic middleware.

Acknowledgments
N.C.N. wishes to thank his manager, K. Muralidharan, for his support.

References
[1] Baresi, L., Bianchini, D., De Antonellis, V., Fugini, M.G., Pernici, B., and

Plebani, P., Context-aware composition of e-services, in Proc. of the 4th
VLDB Workshop on Technologies for E-Services (TES’2003), held in conjunc-
tion with the 29th Int. Conf. on Very Large Data Bases (VLDB’03), Berlin,
Germany, September 9–12, 2003.

[2] Benatallah, B., Sheng, Q.Z., and Dumas, M., The self-serv environment for
Web services composition, IEEE Internet Comput., 7(1), 40–48, 2003.

[3] Bellavista, P., Corradi, A., Montanari, R., and Stefanelli, C., Context-aware
middleware for resource management in the wireless Internet, IEEE Trans.
Software Eng., 29(12), 1086–1089, 2003 (special issue on software engineer-
ing for the wireless Internet).

[4] Bellavista, P., Bottazi, D., Corradi, A., Montanari, R., and Vecchi, S., Mobile
agent middlewares for context-aware applications, in Handbook of Mobile
Computing, Mahgoub, I. and Ilyas, M., Eds., CRC Press, Boca Raton, FL, 2004.

[5] Bellur, U. and Narendra, N.C., Towards service orientation in pervasive
computing systems, in Proc. of the 6th IEEE Int. Conf. on Information
Technology (ITCC2005), Las Vegas, NV, April 11–13, 2005.

[6] Bouguettaya, A., Medjahed, B., and Elmagarmid, A., Composing Web services
on the Semantic Web, VLDB J., 4(12), 333–351, 2003 (special issue on the
Semantic Web).

[7] Bourges-Waldegg, D., Duponchel, Y., Graf, M., and Moser, M., The fluid
computing middleware: bringing application fluidity to the mobile Internet,
in Proc. of Int. Symp. on Applications and the Internet (SAINT2005), Trento,
Italy, January 31–February 4, 2005.

[8] Capra, L., Emmerich, W., and Mascolo, C., CARISMA: context-aware reflec-
tive middleware system for mobile applications, IEEE Trans. Software Eng.,
29(10), 929–945, 2003.

[9] Budak Arpinar, I., Aleman-Meza, B., Zhang, R., and Maduko, A., Ontology-
driven Web services composition platform, in Proc. of the IEEE Int. Conf.
on E-Commerce Technology (CEC’04), San Diego, CA, July 6–9, 2004.

AU3833_C38.fm Page 1055 Friday, August 18, 2006 3:27 PM

1056 ■ Mobile Middleware

[10] Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., and Shan, M., Adaptive
and dynamic service composition in eFlow, in Proc. of the 12th Conf. on
Advanced Information Systems Engineering (CAISE’2000), Stockholm, Swe-
den, June 5–9, 2000.

[11] Chakraborty, D. and Joshi, A., Dynamic Service Composition: State of the
Art and Research Directions, Technical Report TR-CS-01-19, University of
Maryland, Baltimore County, Baltimore, MD, 2001.

[12] Chan, A. and Chuang, S.-N., MobiPADS: a reflective middleware for context-
aware mobile computing, IEEE Trans. Software Eng., 29(12), 1072–1085,
2003.

[13] Dey, A. K., Abowd, G. D., and Salber, D., A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications,
Human–Computer Interaction (HCI) J., 16(2–4), 97–166, 2001 (special issue
on context-aware computing).

[14] Esfandiari, B. and Tosic, V., Requirements for Web service composition
management, in Proc. of the 11th Workshop of the HP OpenView University
Association (HPOVUA’2004), Paris, France, June 20–23, 2004.

[15] Hegering, H.G., Kupper, A., Linnhoff-Popien, C., and Reiser, H., Manage-
ment challenges of context-aware services in ubiquitous environments, in
Proc. of the 14th IFIP/IEEE Int. Workshop on Distributed Systems: Operations
and Management (DSOM’2003), Heidelberg, Germany, October 20–22,
2003.

[16] Huebscher, M.C. and McCann, J.A., Adaptive middleware for context-aware
applications in smart-homes, in Proc. of the 2nd Int. Workshop on Middleware
for Pervasive and Ad Hoc Computing (MPAC’2004), held in conjunction with
the ACM/IFIP/USENIX 5th Int. Middleware Conf. (Middleware’2004), Toronto,
Canada, October 18–22, 2004.

[17] Kephart, J.O. and Chess, D., The vision of autonomic computing, IEEE
Comput., 36(1), 41–50, 2003.

[18] Kortuem, G. and Segall, Z., Wearable communities: augmenting social
networks with wearable computers, IEEE Perv. Comput. Mag., 2(1), 71–78,
2003.

[19] Kouadri Mostéfaoui, S. and Hirsbrunner, B., Context-aware service provi-
sioning, in Proc. of the IEEE/ACS Int. Conf. on Pervasive Services (ICPS’04),
Beirut, Lebanon, July 19–23, 2004.

[20] Ma, K.J., Web services: what’s real and what’s not, IEEE IT Prof., 7(2), 2005.
[21] Maamar, Z. and Mansoor, W., Design and development of a software agent-

based and mobile service-oriented environment, e-Service J., 2(3), 2003.
[22] Maamar, Z., Sheng, Q.Z., and Benatallah, B., On composite Web services

provisioning in an environment of fixed and mobile computing resources,
Inform. Technol. Manage. J., 5(3/4), 2004 (special issue on workflow and
e-business).

[23] Maamar, Z., Kouadri Mostéfaoui. S., and Mahmoud, Q.H., On personalizing
Web services using context, Int. J. E-Business Res., 1(3), 2005 (special issue
on e-services).

AU3833_C38.fm Page 1056 Friday, August 18, 2006 3:27 PM

Mobile Middleware and Context for Service Composition ■ 1057

[24] Maamar, Z., Narendra, N.C., and Sattanathan, S., Towards an ontology-based
approach for specifying and securing Web services, J. Inform. Software
Technol., 48(7), 540–548, 2006.

[25] Mahmoud, Q.H. and Maamar, Z., Challenges and possible solutions in
wireless application design, Cutter IT J., June, 2005 (http://cutter.com).

[26] Milanovic, N. and Malek, M., Current solutions for Web service composition,
IEEE Internet Comput., 8(1), 51–59, 2004.

[27] Muldoon, C., O’Hare, G., Phelan, D., Strahan, R., and Collier, R., ACCESS:
an agent architecture for ubiquitous service delivery, in Proc. of the 7th Int.
Workshop on Cooperative Information Agents (CIA’2003), Helsinki, Finland,
August 27–29, 2003.

[28] Narendra, N.C., Modeling adaptation in Web services execution using con-
text ontologies, in Proc. of the San Diego Information Systems Conf.
(SISC’2005), San Diego, CA, July 8–10, 2005.

[29] Robinson, J., Wakeman, I., and Owen, T., Scooby: middleware for service
composition in pervasive computing, in Proc. of the 2nd Int. Workshop on
Middleware for Pervasive and Ad Hoc Computing (MPAC’2004), held in
conjunction with the 5th ACM/IFIP/USENIX Int. Middleware Conf. (Middle-
ware’2004), Toronto, Canada, October 18–22, 2004.

[30] Schmidt, A. and Beigl, M., New challenges of ubiquitous computing and
augmented reality, in Proc. of the 5th CaberNet Radicals Workshop, Porto,
Portugal, July 5–8, 1998.

[31] Shaparau, D., Approaches to Web Service Composition, Technical Report,
University of Trento, Italy, 2004.

[32] Satyanarayanan, M., Pervasive computing: vision and challenges, IEEE Pers.
Commun., 8(4), 10–17, 2001.

[33] Sirin, E., Parsia, B., Wu, D., Hendler, J., and Nau, D., HTN planning for Web
service composition using SHOP2, J. Web Semantics, 1(4), 377–396, 2004.

[34] Sheng, Q.Z., Benatallah, B., Maamar, Z., Dumas, M., and Ngu, A., Enabling
personalized composition and adaptive provisioning of Web services, in
Proc. of the 16th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’2004), Riga, Latvia, June 7–11, 2004.

[35] Skogan, D., Gronom, R., and Solheim, I., Web service composition in UML,
in Proc. of the 8th IEEE Int. Conf. on Enterprise Distributed Object Computing
(EDOC’2004), Monterey, CA, September 20–24, 2004.

[36] Sun, J., Information requirement elicitation in mobile commerce, Commun.
ACM, 46(12), 45–47, 2003.

[37] Sørensen, C.F., Wu. M., Sivaharan T., Blair, G.S., Okanda, P., Friday, A., and
Duran-Limon, H., A context-aware middleware for applications in mobile
ad hoc environments, in Proc. of the 2nd Int. Workshop on Middleware for
Pervasive and Ad Hoc Computing (MPAC’2004), held in conjunction with
the 5th ACM/IFIP/USENIX Int. Middleware Conf. (Middleware’2004), Toronto,
Canada, October 18–22, 2004.

[38] van der Aalst, W., Don’t go with the flow: Web services composition
standards exposed, IEEE Intelligent Syst., 18(1), 72–76, 2003.

AU3833_C38.fm Page 1057 Friday, August 18, 2006 3:27 PM

1058 ■ Mobile Middleware

[39] Yang, J. and Papazoglou, M.P., Web components: a substrate for Web service
reuse and composition, in Proc. of the 14th Int. Conf. on Advanced Infor-
mation Systems Engineering (CAiSE’2002), Toronto, Canada, May 27–31,
2002.

[40] Yang, J. and Papazoglou, M.P., Service components for managing the life-
cycle of service compositions, Inform. Syst., 29(2), 97–125, 2004.

[41] Yunos, H.M., Gao, J.Z., and Shim, S., Wireless advertising’s challenges and
opportunities, IEEE Comput., 36(5), 30–37, 2003.

AU3833_C38.fm Page 1058 Friday, August 18, 2006 3:27 PM

1059

Chapter 39

Mobile Middleware
for Situation-Aware
Service Discovery

and Coordination

Stephen S. Yau and Dazhi Huang

CONTENTS

Introduction... 1060
Background ... 1062

Situation Awareness .. 1062
Service Discovery and Coordination ... 1063
Mobile Middleware ... 1066

RCSM .. 1066
MobiPADS .. 1068

Requirements for Mobile Middleware for
SA Service Discovery and Coordination ... 1069
Design Issues and Enabling Techniques for Mobile Middleware
To Achieve SA Service Discovery and Coordination .. 1071

Context Management and Situation Analysis
for Achieving Situation Awareness .. 1072

AU3833_C39.fm Page 1059 Friday, August 18, 2006 3:57 PM

1060

■

Mobile Middleware

Modeling and Specifying SAW Requirements
of Mobile Applications and Agents ... 1072
Context Management .. 1073
Situation Analysis .. 1074

Incorporating Situation Awareness in Service
Discovery and Coordination in Mobile Middleware................................ 1075

Incorporating SAW in Service Discovery
in Mobile Middleware... 1075
Incorporating SAW in Service Coordination 1077

Summary.. 1080
Acknowledgments... 1081
References ... 1081

Introduction

Recent advances in embedded systems, microelectronics, and wireless
communication technologies have increased the flexibility of using mobile
devices for various practical applications that improve the personal pro-
ductivity of users. Mobile devices, however, are still resource poor in
comparison with computing resources in network infrastructures (NIs),
such as the Internet, grid, and enterprise computing environments. Such
NIs usually consist of non-mobile computing resources to provide high-
performance computing and communication capabilities. Although these
NIs have become more flexible and interoperable by adopting a service-
oriented architecture (SOA) [1], which can enable rapid composition of
distributed applications regardless of the programming languages and
platforms used in developing and running different components of the
applications, it is still very difficult for these NIs to provide the desired
flexibility to individual users, especially to mobile users, due to their
immobility and large size. Hence, dynamic integration of mobile devices
with NIs [2] is a subject in ubiquitous computing that has attracted much
attention. Dynamic integration is the process by which a mobile device
can detect, communicate with, and use the required services in nearby
NIs in an application-transparent way. The benefit of dynamic integration
is that the applications in both a mobile devices and an NI can interoperate
with each other as if a mobile device itself is an integral part of the NI
or

vice versa

 [2]. The dynamic integration of mobile devices and NIs has
raised a number of research issues, such as wireless

ad hoc

communica-
tion, service discovery and coordination, and distributed trust management.
In this chapter, our discussion is focused on techniques for service dis-
covery and coordination for the dynamic integration of mobile devices
with service-based NIs.

AU3833_C39.fm Page 1060 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1061

In service-based NIs, various capabilities, such as storage, computation,
and communication, are provided by different organizations as services
and are interconnected by various types of networks. We consider a service
to be a software/hardware entity with well-defined interfaces to provide
certain capability over wired or wireless networks using standard protocols,
such as Transmission Control Protocol (TCP)/Internet Protocol (IP), Hyper-
text Transfer Protocol (HTTP), and Simple Object Access Protocol (SOAP).
By dynamically and seamlessly integrating mobile devices with such ser-
vice-based NIs, users can utilize various capabilities in the NIs anytime
and anywhere through their mobile devices. Moreover, the services in the
NIs can be integrated following specific workflows, which are series of
cooperating and coordinated activities designed to achieve complicated
mission goals for users. Service discovery, which is the process of locating
services that can satisfy the needs of users, is a prerequisite of accessing
the capabilities provided by the NIs. Service coordination, which is required
to ensure the correctness of workflow execution, is a process of monitoring
the status of participant services, invoking proper participant services, and
propagating necessary information to participant services to ensure the
correct results obtained from the coordinated participant services.

To enable the effective integration of mobile devices with service-based
NIs, service discovery and coordination must be situation aware (SA) for
the following reasons: (1) Services may become unavailable or may not
be able to provide desirable quality of service (QoS) due to distributed
denial-of-service attacks, system failures, or system overload; (2) workflows
may have to be adapted when the situation changes to achieve the users’
mission goals; and (3) new workflows may be generated in runtime to
fulfill users’ new mission goals. We consider

situation awareness

 (SAW) to
be the capability of being aware of situations and adapting the system’s
behavior based on situation changes [3,4]. SAW is necessary for checking
whether a service can meet the users’ requirements and should be invoked.
A

situation

 is a set of contexts in a mobile application over a period of
time that affects future system behavior. A

context

 is any instantaneous,
detectable, and relevant property of the environment, the system, or users,
such as time, location, light intensity, wind velocity, temperature, noise
level, available bandwidth, and a user’s schedule.

Achieving SA service discovery and coordination in mobile computing
environments is challenging due to the heterogeneous environments,
resource limitations of mobile devices, and user mobility. Furthermore,
developing mobile applications that make use of SA service discovery and
coordination is difficult without appropriate system support. These chal-
lenges can be effectively addressed by developing mobile middleware
that provides a set of components that can perform context management,
situation analysis, service discovery, and coordination efficiently. In this

AU3833_C39.fm Page 1061 Friday, August 18, 2006 3:57 PM

1062

■

Mobile Middleware

chapter, we first review the background of mobile middleware for situation-
aware service discovery and coordination. We then discuss the require-
ments, design issues, and enabling techniques for mobile middleware for
SA service discovery and coordination.

Background

In this section, we review the background of our topic with respect to
situation awareness, service discovery, service coordination, and mobile
middleware.

Situation Awareness

In this section, we provide an introduction to the literature on SAW and
its related areas. Early work on situation awareness, which was done
primarily in the artificial intelligence community, focused on formalizing
and reasoning on situations. Situation calculus and its extensions [5–8]
were developed for describing and reasoning how actions and other events
affect the world, assuming that all actions and events changing the world
are known or predictable. Situation calculus considers a situation to be a
complete state of the world, which leads to the well-known frame problem
and ramification problem [6].

In Barwise [9], an opposite view of situation was considered; a situation
was formally defined as a part of “the way the world

M

 happens to be,”
and a situation supports the truth of a sentence F in

M

. Barwise [9] defined
a

scene

 as a “visually perceived situation” and observed that a scene that
people perceive consists of not only objects and individual properties
associated with the objects but also relationships between any two objects.
Based on this concept of a scene, Barwise [10] introduced

situation
semantics

, in which basic properties, relations, and situations are defined
as objects. Barwise’s definition of situation is more practical compared to
the definition of situation in situation calculus, as Barwise’s definition of
situation allows the precise description of situations and can be easily
supported by the prevailing object-oriented modeling techniques.

Currently, many researchers have adopted Barwise’s definition of situa-
tion and have developed their own formalisms of situations for various
purposes, such as supporting data fusion [11,12] and SA software develop-
ment [3,13]. For example, Matheus et al. [11,12] introduced a core SAW
ontology based on a similar view of situations as Barwise’s which defines
a situation as a collection of situation objects, including objects and relations,
as well as other situations.

Since the early 1990s, much research on context-aware computing has
been conducted by the mobile computing community.

Context

 here usually

AU3833_C39.fm Page 1062 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1063

refers to the information that can be used to characterize the situations on
users, applications, and environments, although various researchers have
used slightly different definitions [3,4,14–18]; hence, context awareness is
considered to be a part of SAW. Although a number of issues related to
context-aware (or context-sensitive) computing have been discussed in the
literature [19–22], the term “context-aware computing” was first introduced
by Schilit and Theimer [14]. Since then, several frameworks, toolkits, and
infrastructures have been developed to provide support for context-aware
application development. Notable results include CALAIS [23], Context
Toolkit [17], CoolTown [24], Mobile Platform for Actively Deployable Service
(MobiPADS) [25], Gaia [26, 27], TSpaces™ [28], and Reconfigurable Context-
Sensitive Middleware (RCSM) [3,29].

CALAIS [23] focuses on applications accessible from mobile devices
and supports acquisition of contexts of users and devices, but it is difficult
to evolve existing applications when requirements for context acquisition
and the capabilities and availabilities of sensors change. Context Toolkit
[17] provides architectural support for context-aware applications, but it
does not provide analysis of complex situations. CoolTown [24] supports
applications that display contexts and services to end users. MobiPADS
[25] is a reflective middleware designed to support dynamic adaptation of
context-aware services based on which application’s runtime reconfigura-
tion is achieved. Gaia [26,27] provides context service, space repository,
security service, and other QoS for managing and interacting with active
spaces. TSpaces [28] utilizes tuple spaces to store contexts and allows
tuple space sharing for application software to read and write, but it
ignores the status of the device where the application software executes,
network conditions, and the surrounding environment as part of the overall
context. RCSM [3,29] provides development and runtime support for SA
application software, including a declarative Situation-Aware Interface
Definition Language (SA-IDL) and its compiler for automated code gen-
eration, a reconfigurable SA processor supporting runtime situation anal-
ysis and triggering proper actions of SA applications, and a RCSM Object
Request Broker (R-ORB) supporting context discovery, acquisition, and
SA inter-object communications. Readers interested in context-aware com-
puting are referred to Pokraev et al. [30] and Mostefaoui et al. [31].

Service Discovery and Coordination

Service discovery

, also known as

service location

 or

matchmaking

, is the
process of locating suitable services that can meet the users’ requirements.
During the past decade, substantial research has been done on service
discovery that has generated various service discovery protocols, such as
Jini™ [32], Salutation [33], Service Location Protocol (SLP) [34], Universal Plug

AU3833_C39.fm Page 1063 Friday, August 18, 2006 3:57 PM

1064

■

Mobile Middleware

and Play (UPnP™) [35], and Universal Description, Discovery, and Integration
(UDDI) [36]. Currently, major concerns regarding service discovery include:
(1) how to identify the most suitable services that meet the users’ needs,
and (2) how to utilize resources (e.g., network bandwidth, battery power)
efficiently in service discovery, especially in mobile computing environments.

For the first question, most existing service discovery approaches are
based on syntactical matching (i.e., keyword or table-based matching [37]),
such as UDDI; however, matching keywords or service interfaces are not
good enough in many real-world scenarios to find suitable services that
meet the users’ needs. The semantics of services, the goals of users, the
situations of users, systems and environments, the QoS that can be provided
by the services, and the security requirements for using the services have
to be considered when identifying the most suitable services. To understand
the semantics of services, various models and languages [38–40] have been
proposed to capture the service semantics. The goals of users are usually
described using the corresponding query languages of the service descrip-
tion. Based on these models and languages, techniques for semantic-based
service discovery were introduced [41–46]. Recently, security and other
aspects of QoS have been incorporated in service discovery [47–49].

It has been shown that incorporating context and situation awareness
in service discovery can greatly improve the precision and recall of the
discovery results, where

recall

 is defined as the number of relevant services
retrieved in service discovery divided by the total number of relevant
services available, and

precision

 is defined as the number of relevant
services retrieved in service discovery divided by the total number of
services discovered [45,46,50,51]. Hence, it improve the efficiency of
mobile applications and reduce distractions to users. For service discovery,

recall

 is defined as the number of relevant services retrieved in service
discovery divided by the total number of relevant services available, and

precision

 is defined as the number of relevant services retrieved in service
discovery divided by the total number of services discovered [45,46].

Doulkeridis et al. [50] used contextual information, such as time,
location, user name, and device type, to differentiate services belonging
to the same service category to increase the precision of service dis-
covery. In addition, they analyzed context history to find useful patterns
for predicting future service availability, which further increases the
precision of service discovery. Yau et al. [51] used situation information
to guide the generation of user profiles and select appropriate user
profiles for personalized information retrieval. Users’ information retrieval
requests are expanded based on their profiles and situations, which
capture some implicit but important characteristics of the information that
the users want to retrieve and hence improve the precision and recall of
information retrieval.

AU3833_C39.fm Page 1064 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1065

Although the work of Yau et al. [51] was mainly directed toward
information retrieval, the idea can easily be applied to service discovery.
In Broens [45] and Broens et al. [46], contextual information is used in two
ways: (1) It is used to expand service requests with more information to
retrieve more relevant services and increase the precision of service dis-
covery, and (2) it is used to complete the contextual inputs required by
relevant services when some of these inputs are not provided by service
requestors to allow the retrieval of relevant services with missing inputs
and to increase the recall of service discovery. So far, however, no unified
service discovery approach considers service semantics, security policies,
SAW, and other QoS properties in the discovery process. Other noteworthy
work on context- and situation-aware service discovery includes the dis-
covery mechanisms in several context- and situation-aware platforms and
middleware, such as CoolTown [24,52], Context Toolkit [17], and RCSM
[2,53]. Although much progress has been made on SA service discovery,
it is still a relatively new area, and much work remains to be done. Later
in this chapter, we discuss the design issues and enabling techniques for
mobile middleware for SA service discovery.

With regard to contextual inputs, because centralized service directories
and registries are not always available in mobile computing environments
lacking infrastructure support, service discovery in such environments
often has characteristics similar to peer-to-peer (P2P) service discovery
[54–57]. Given the very limited communication bandwidth and battery
power of mobile devices, the efficiency of service discovery protocols in
mobile computing environments is of special interest to researchers in
this area. Much research effort has been directed toward efficient service
discovery in mobile computing environments [58–63].

Industrial standards on service coordination include Web Services
Coordination (WS-Coordination) [64] and the Web Services Coordination
Framework (WS-CF) [65], as well as some notable approaches to context-
aware service coordination [18,66–68]. Some industrial standards [64,65]
aim at providing standard and extensible coordination frameworks to
support coordinated workflows and transactions on Web services but do
not address situation awareness in service coordinations. Braione and

Picco [18] developed a formal specification framework for modeling dynam-
ically changing contexts and rules in contextual reactive systems for coor-
dinating distributed systems. Mobile Agent Reactive Spaces (MARS) [67]

aims at promoting context-dependent coordination by incorporating the
concept of programmable coordination media in distributed systems. Using
coordination contracts to support the construction and evolution of com-
plex service coordination was proposed by Andrade et al. [66]. In Ego-
Spaces [68], a coordination model focuses on the context of a particular
component in a mobile

ad hoc

 network and provides a middleware for

AU3833_C39.fm Page 1065 Friday, August 18, 2006 3:57 PM

1066

■

Mobile Middleware

context specification and runtime reconfiguration. Elsewhere [18,66-68],
service coordination is based only on the current context information;
however, changes in contexts over a period of time can be useful infor-
mation and should not be neglected. Later in this chapter, we discuss the
design issues and enabling techniques for mobile middleware for SA
service coordination.

Mobile Middleware

Existing mobile middleware can be divided into two major categories
depending on how it supports coordination among mobile devices: (1)
tuple-space based, and (2) message based. Notable work in the first
category includes LIME (Linda in a Mobile Environment) [69], TSpaces
[28], and Limone [70]. The tuple-space-based coordination model supports
location transparency and disconnected operations, and mobility is viewed
as transparent changes in the content of the tuple space. Hence, this
approach can easily support interactions among mobile devices. For tuple-
space-based mobile middleware, the major concerns are the scalability
and performance of this type of middleware. Notable work from the
second category includes ALICE (Architecture for Location-Independent
Computing Environments) [71], Mobiware [72], Gaia [26,27], Reconfigurable
Context-Sensitive Middleware (RCSM) [3,4], and MobiPADS [25]. ALICE [71]
adds a mobility layer between the transport and the Common Object
Request Broker Architecture (CORBA™) Internet Inter-ORB Protocol (IIOP)
layers of the CORBA architecture to support both mobile clients and
servers. Mobiware [72] provides the facilities for managing an open, active,
and adaptive mobile network by utilizing a CORBA-based architecture
and using different adaptive algorithms as Java objects, which can be
injected dynamically into mobile devices, access points, and mobile-
capable network switches or routers. In the following subsections, we
provide a brief overview of RCSM and MobiPADS, which provide context
and situation awareness.

RCSM

Reconfigurable Context-Sensitive Middleware (RCSM) is a lightweight
situation-aware middleware that provides development and runtime
support for SAW, dynamic service discovery, and group communication
for ubiquitous computing applications [2–4,29]. A conceptual architec-
ture of RCSM is shown in Figure 39.1. RCSM consists of the following
major components:

AU3833_C39.fm Page 1066 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1067

■

SA Processor

 provides the runtime services for situation analysis
and manages the SAW requirements of SA objects. The SAW require-
ments of situation-aware objects are defined using the Situation-
Aware Interface Definition Language (SA-IDL) [3,29]. An SA-IDL
compiler has been developed to generate the situation-aware object
skeleton codes and corresponding configuration files, which will
be used by the SA Processor to perform situation analysis accord-
ingly. The SA object skeleton codes provide the standard interfaces
for SA objects to interact with the SA Processor.

■

RCSM Object Request Broker (R-ORB)

 provides the runtime services
for context discovery and acquisition, as well as SA communication
management. The context manager in R-ORB implements an efficient
context discovery protocol [73] to support adaptive context discovery
and acquisition in ubiquitous computing environments based on the
requirements on contexts extracted from the configuration files of
SA applications by the SA Processor. SA object discovery protocols
have also been developed to enable efficient and spontaneous
communication among distributed SA objects [29,53].

Figure 39.1 RCSM architecture.

AU3833_C39.fm Page 1067 Friday, August 18, 2006 3:57 PM

1068

■

Mobile Middleware

A unique feature provided by RCSM is support for SAW. Using SA-IDL,
contexts can be precisely described as context objects, and situations can
be defined not only by the current values of multiple contexts but also by
the historical values of multiple contexts over a period of time. The SA
Processor is designed to cache and analyze the context history to determine
the situation. In addition, the SAW requirements, such as definitions of
situations, can be modified in runtime through the SA Processor. When
the requirements have been changed, the R-ORB and SA Processor will
reconfigure themselves to collect necessary contexts and perform situation
analysis based on the new requirements.

MobiPADS

The Mobile Platform for Actively Deployable Service (MobiPADS) [25]
is a reflective middleware that serves as an execution platform for
context-aware mobile computing. MobiPADS enables active service
deployment and reconfiguration in response to context changes and
can optimize the operation of mobile applications when the operating
context changes. MobiPADS consists of two types of agents: (1) Mobi-
PADS server agents and (2) MobiPADS client agents. MobiPADS server
agents reside in the network infrastructure and are responsible for most
of the optimization computations. MobiPADS client agents reside in the
mobile devices and provide various services for mobile applications.
MobiPADS adopts the idea of mobile codes and stores the codes of
service objects in MobiPADS agents. Service objects can be deployed
on either the client or server agents and can migrate between the client
and server agents when needed (e.g., when the device where the client
agent resides moves), thus enabling the flexible reconfiguration of
mobile applications. Each MobiPADS agent also has a set of system
components for managing system configurations (MobiPADS client and
server and service objects), migrating service objects between the Mobi-
PADS server and client, recording known services, sending contextual
event notification, and establishing virtual communication channels
between service objects. Each MobiPADS service is a pair of mobilets,
which consists of a slave mobilet at the server agent for providing actual
processing capabilities and a master mobilet at the client agent for
instructing the slave mobilets and presenting results to the client. In
MobiPADS, the mobilets can be chained together to support necessary
service composition for mobile applications, which is similar to work-
flows in workflow systems. An eXtensible Markup Language (XML)-
based language has been developed in MobiPADS to describe how
service objects interact with each other and how they are configured.

AU3833_C39.fm Page 1068 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1069

MobiPADS utilizes an event subscription-notification model to provide
context awareness. The idea is similar to the event–condition–action (ECA)
model in active databases. All contexts are modeled as event sources,
which will generate contextual events when certain conditions are satisfied.
In MobiPADS, all the entities (system components, mobilets, and mobile
applications) can subscribe to contextual events of interests and will be
notified when certain events occur, hence achieving context awareness.
MobiPADS also supports event composition, which allows combining mul-
tiple events from different context sources together to express complex
semantics; however, MobiPADS only focuses on the current events and
does not consider historical events, which are important for achieving SAW.

Requirements for Mobile Middleware
for SA Service Discovery and Coordination

To present mobile middleware for SA service discovery and coordination
to enable the dynamic integration of mobile devices with service-based
network infrastructures, it is necessary to first identify the requirements
for mobile middleware for SA service discovery and coordination. The
following is a list of requirements for such a middleware:

■

The capability to achieve SAW. To achieve SA service discovery
and coordination, the mobile middleware must be situation aware.
Ranganathan and Campbell [27] and Yau et al. [29] identified several
requirements for middleware for context and situation awareness.
Although the term “context awareness” is used by Ranganathan
and Campbell [27], their concept of context is broader than the
definitions of context awareness used by other researchers and is
closer to our concept of situation awareness [3,4]; hence, we
consider the requirements identified by these authors also to be
requirements for mobile middleware for situation awareness. The
following is a summary of the requirements for mobile middleware
for situation awareness [27,29]:

(R1.1) Support for specifying SAW requirements for mobile
applications/agents, including the contexts and situations of
interests and the behaviors of applications and agents in differ-
ent situations

(R1.2) Support for discovering contexts from the ambient envi-
ronments based on the needs of various mobile applications
and agents, acquiring contexts from various sources, and deliv-
ering acquired context data to mobile applications and agents

AU3833_C39.fm Page 1069 Friday, August 18, 2006 3:57 PM

1070

■

Mobile Middleware

(R1.3) Support for analyzing the acquired context data to deter-
mine the situation and delivering the results of situation analysis
to mobile applications and agents in a timely manner to trigger
proper actions or adaptations

(R1.4) Support for sharing situation and context information
among different mobile applications and agents

(R1.5) Support for runtime reconfiguration due to changes in
SAW requirements of mobile applications and agents

(R1.6) Support for incorporating various reasoning and learning
mechanisms for situation analysis

(R1.7) Syntactic and semantic interoperability among various
mobile applications and agents

Among these seven requirements for achieving situation awareness,
R1.1 through R1.3 are the three basic requirements that a mobile
middleware must satisfy for achieving situation awareness; whereas,
R1.4 through R1.7 are desirable for better performance, flexibility,
interoperability, and extensibility.

■

The capability to accurately and efficiently locate necessary services
to satisfy the users’ needs. The purpose of service discovery is to
locate services that can satisfy the needs of users. The needs of users
are determined by the users’ goals. Whether a service is necessary
for achieving a specific goal of users depends on the service seman-
tics, such as what the service can do and how the service works.
In a dynamic environment, such as a mobile computing environment,
both the users’ goals and the service semantics may depend on the
situations; that is, the users’ goals may vary and the services may
have different behaviors when the situation changes. Also, the users
may have certain preferences for different choices of services in
different situations; therefore, the mobile middleware must provide
the following support for SA service discovery:

(R2.1) Support for developers or system administrators to specify
service semantics precisely, especially with regard to how a
service behaves when the situation changes

(R2.2) Support for users to specify their goals and preferences
in different situations

(R2.3) Support for efficiently and accurately matching the service
semantics and users’ goals to locate the necessary services based
on the situation

■

The capability to adaptively coordinate the execution of workflows
consisting of multiple services to achieve the users’ goals. Some-
times a user’s goal cannot be achieved by invoking any one service
alone but can be achieved by invoking multiple services in a

AU3833_C39.fm Page 1070 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1071

coordinated manner. This is usually referred to as

workflow plan-
ning

 or

service composition

, neither of which is within the scope
of this chapter. Here, we simply assume that a workflow planner
[74,75] is available and can communicate with the mobile middle-
ware. The workflows generated by existing workflow planners are
usually static; that is, it is assumed that the workflow planners have
complete knowledge of the planning domain and can precisely
(usually by reasoning) determine the status of the entire system in
each step of the workflow execution. In real-world applications,
however, this assumption tends to be invalid, so SA service coor-
dination is necessary to ensure the correct execution of workflows.
Because workflows usually consist of distributed services and the
execution of each service may have certain situational constraints
(e.g., a service can only be invoked in certain situations or a service
may have different behaviors when the situation changes), the
following support must be provided by the mobile middleware for
SA service coordination:

(R3.1) Support for analyzing a workflow to identify all of the
participant services in service coordination

(R3.2) Support for invoking appropriate participant services
based on the workflow and the situation, monitoring the status
of participant services, and reporting the status of participant
services to users or mobile applications and agents

(R3.3) Support for detecting failures (e.g., violations of situational
constraints on the execution of participant services, unavailability

of participant services) in workflow execution, identifying alter-
native services that can be used, and reporting the failures and
current situation to the workflow planner when no alternative
services can be found

Design Issues and Enabling Techniques
for Mobile Middleware To Achieve
SA Service Discovery and Coordination

In this section, we discuss the design issues and enabling techniques for
mobile middleware to achieve SA service discovery and coordination from
the following two perspectives:

■

Context management and situation analysis for achieving situation
awareness

■

Incorporating situation awareness in service discovery and coordi-
nation in mobile middleware

AU3833_C39.fm Page 1071 Friday, August 18, 2006 3:57 PM

1072

■

Mobile Middleware

Context Management and Situation
Analysis for Achieving Situation Awareness

As discussed in the previous section, mobile middleware for SA service
discovery and coordination must be capable of achieving situation aware-
ness. Although existing mobile middleware, such as RCSM [2–4,29,53,73],
MobiPADS [25], and Gaia [26,27], utilizes various approaches to achieve
context and situation awareness, three important aspects for designing
such middleware can be identified as follows.

Modeling and Specifying SAW Requirements
of Mobile Applications and Agents

To satisfy R1.1, R1.6, and R1.7, suitable models and languages for SAW
requirements of mobile applications and agents must be developed.
Based on a model proposed by Yau et al. [3], an interface definition
language (SA-IDL [3,29]) was developed to allow developers to specify
interfaces of SA objects and support the automated code generation of
SA object skeletons. Each SA application is considered to be a set of
SA objects [3,4] that will take various actions in various situations. These
actions are abstracted as various functions of the SA objects. SA-IDL
supports the specification and inheritance of context classes and allows
specifying the frequency of context acquisition [29]. For specifying
situations, SA-IDL provides operators for context preprocessing and
logical connectives for composing complex situations with various
contexts within a certain time range. Compilation of SA-IDL specifica-
tions will generate SA object skeletons, which can be extended by
application developers by adding the implementations of functions to
be triggered, and SA files for configuring RCSM. In Chan and Chuan [25],
context-awareness requirements are expressed by adaptive policies
describing service composition and reconfiguration upon detection of
contextual events; XML is used to maintain the system profile, which
contains adaptive policies for services and applications.

Ranganathan and Campbell [27] presented a predicate model of con-
texts that can support the use of various reasoning mechanisms, such as
first-order logic and temporal logic by agents, to reason about contexts
and determine their behaviors in different contexts. Ontologies are used
to describe context predicates for semantic interoperability. Other models
and languages for SAW exist; however, several important issues have not
been addressed in modeling and specifying SAW requirements: (1) incor-
poration of model and language primitives for representing spatial prop-
erties in SAW to support mobility, (2) analysis of the expressiveness of
various SAW models and specification languages, and (3) verification of

AU3833_C39.fm Page 1072 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1073

SAW requirement specifications. Further investigation for these issues may
utilize the results from existing research on ambient logic [76] and model
checking [77].

Context Management

To satisfy R1.2 and R1.5, it is necessary to develop components or services
in mobile middleware to manage various sensing units (context sources)
available on the mobile device, dynamically discover remote sensing units
connected to other mobile devices in the neighborhood, and acquire and
propagate context data from local or remote sensing units to mobile
applications. MobiPADS [25] features an

event register

that enables appli-
cation objects to subscribe to contextual event sources, and objects are
notified when the subscribed events occur. Gaia [27] includes a

context
provider lookup service

 that allows context providers to advertise the
contexts they provide and supports software agents that search for context
providers having the necessary contextual information. In RCSM [29,73],
a component (context manager in R-ORB) has been developed to manage
local sensing units, acquire necessary contexts for applications, and per-
form context discovery, if necessary.

Because context discovery and context acquisition from remote
sensing units require communication among mobile devices, which is
likely to cause long delays and consume much energy, a key issue for
developing such components or services in mobile middleware is the
development of an adaptive, lightweight, and energy-efficient protocol
to perform context discovery and remote context acquisition in a timely
manner. MobiPADS and Gaia do not address this issue. Yau et al. [73]
proposed a context discovery protocol (R-CDP) to address this issue.
R-CDP combines pull and push communication paradigms for dynamic
context discovery and efficient context retrieval. In R-CDP, context
requesters dynamically discover contexts from context providers using
the pull communication paradigm, and the context providers proactively
push updated context values to the requesters whenever the contexts
undergo measurable variations. To improve energy efficiency, R-CDP
has been designed to be aware of network conditions, and it adaptively
changes the interval of context request advertisements to alleviate
network congestion, thus reducing retransmissions of context requests.
R-CDP utilizes transmission probabilities to reduce redundant context
result transmissions when multiple context providers are in the network,
and it adaptively changes transmission probabilities as the number of
context providers in the network changes. R-CDP also adopts and
extends the refresh priority (RP) function [78] to determine when context
providers should send updates of contexts by calculating the RP based

AU3833_C39.fm Page 1073 Friday, August 18, 2006 3:57 PM

1074

■

Mobile Middleware

on the divergence of contexts (the difference between the previous and
current context values) and energy consumption of context providers.
However, R-CDP matches contexts using keywords in context advertise-
ments which cannot provide semantic interoperability (i.e., when different
providers have different interpretations for the same keyword or use
different keywords for the same context). Ontology-based approaches
[11,12,27,87–89] could be combined with context discovery protocols such
as R-CDP to solve this problem.

Situation Analysis

To satisfy R1.3, R1.4, and R1.5, it is necessary to develop components or
services in mobile middleware to manage the SAW requirements of mobile
applications and agents, maintain a history of contexts and situations of
interests to mobile applications and agents, analyze relevant contexts and
situation histories to determine the current situation based on SAW
requirements, and notify applications and agents when a situation of
interest changes. A common approach to situation analysis is to define
situations in the form of logical rules and to use a rule engine to infer
situations in runtime. For example, in RCSM, situations the actions to be
triggered in different situations are defined by SA-IDL rules, and the SA
Processor in RCSM is a rule engine that can process SA-IDL rules to
analyze situations and determine what actions should be triggered [29].
The advantage of using a rule engine for situation analysis is that
whenever a rule is changed the rule engine will automatically perform
reasoning with the new rule, thus allowing SAW requirements to be
changed in runtime; however, such an approach also has the disadvantage
that it is difficult for normal users to define complicated rules without
making mistakes. Furthermore, in a rule-based approach, situations are
inferred based on predefined rules that cannot be changed without human
interference. Ranganathan and Campbell [27] developed context synthe-
sizers that can deduce higher level contexts (situations) using machine
learning techniques such as Bayesian networks. The context synthesizers
with learning capability are used with the context synthesizers based on
rules. Combining learning with a rule-based approach may overcome the
aforementioned disadvantage but also poses a serious performance prob-
lem, as machine learning techniques are computationally intensive and
are not suitable for resource-poor mobile devices. Further investigation
is required with regard to efficient online learning techniques or proper
architecture that can offload the computationally intensive learning task
from the mobile devices.

AU3833_C39.fm Page 1074 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination

■

1075

Incorporating Situation Awareness in Service
Discovery and Coordination in Mobile Middleware

Service discovery and coordination are generally provided as middleware
services, such as the naming service and object transaction service in
CORBA, to ease the burden of service and application developers. As
discussed earlier, the major advantages of incorporating SAW in service
discovery and coordination, compared with traditional non-SAW service
discovery and coordination techniques, include the following:

■

It can greatly improve the

precision

 and

recall

 of discovery results
[45,46,50,51].

■

It enables adaptable service coordination [13,25], which allows
efficient and reliable workflow execution in unpredictable and
dynamic environments.

Because of these advantages, SA service discovery and coordination can
greatly improve the capability of mobile applications and agents to utilize
various services in service-based network infrastructure effectively, thus
improving the performance and robustness of mobile applications and
agents; therefore, mobile middleware should provide services for SA
service discovery and coordination. In this section, we discuss the issues
and enabling techniques for incorporating SAW in service discovery and
coordination in mobile middleware.

Incorporating SAW in Service Discovery
in Mobile Middleware

Although various middleware may utilize different service discovery mech-
anisms, service discovery generally occurs in three phases [46]: (1) service
request advertising, (2) matchmaking (i.e., matching service semantics with
service requests), and (3) discovery result delivery. Situation information
can be utilized in many useful ways in service discovery:

■ Situation information can be used to expand service requests to
provide more relevant information that is not explicitly specified
by users [45,46,51].

■ Services may behave differently when situations change; that is,
services are situation aware. Situation information is required in
the matchmaking phase in service discovery for inferring the service
semantics based on service descriptions.

AU3833_C39.fm Page 1075 Friday, August 18, 2006 3:57 PM

1076 ■ Mobile Middleware

■ Situation information can be used to further categorize services for
retrieving better results [50]; for example, services can be grouped
by their locations, and the services close to the user are returned
as the results.

■ Situation information can be used in describing users’ preferences
for different services; for example, people usually make appoint-
ments with their regular doctors for routine care, but in emergencies
they need to find the nearest hospital emergency room as quickly
as possible.

■ Situation information can be used by service providers to control
their willingness to provide services; that is, the service providers
can define policies to determine whether their services are allowed
to be discovered. This is a very useful feature, especially for
collaborative applications in which users may provide some ser-
vices through their mobile devices. Although many security mech-
anisms exist to control access to services, a user may not even
want other users to know of the existence of a service running on
the user’s device in some situations due to performance and privacy
concerns. For example, when a user’s device is being used for
other critical tasks, the user may want to make the services on the
user’s device temporarily invisible to other users to save resources.
No existing discovery techniques, however, can provide this kind
of feature.

The following issues must be considered when designing mobile middle-
ware for SA service discovery:

■ The service semantics, users’ goals and preferences, and service
providers’ policies under different situations should be described
by appropriate languages (R2.1 and R2.2).

■ Mechanisms for matching service semantics and users’ goals and
preferences based on situation information must be developed and
incorporated in the matchmaking process (R2.3).

Among existing service description languages, the Web Services Descrip-
tion Language (WSDL) [79] and Ontology Web Language for Web Services
(OWL-S) [38] are the most popular ones. WSDL is an XML-formatted
language for describing the capabilities of a Web service as collections of
communication endpoints capable of exchanging messages. It provides a
basic and simple abstraction of Web services. It is a contract or complete
description that describes the components being exposed and provides
names, data types, methods, and parameters required to call them. The
overall structure of OWL-S includes three main parts: (1) the service profile

AU3833_C39.fm Page 1076 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination ■ 1077

for advertising and discovering services; (2) the process model, which gives
a detailed description of a service’s operation; and (3) the grounding,
which provides details on how to interoperate with a service via messages.
OWL-S provides primitives for service descriptions in Semantic Web;
however, no existing service description language provides the necessary
constructs for describing situations.

Some researchers have developed languages for service descriptions
to support context-aware service discovery [45,46,80], but their languages
provide only limited capability for expressing current context and do not
have the capability to define complex situations. As discussed earlier,
various languages have been developed for describing the SAW require-
ments of mobile applications. These languages provide the necessary
constructs for describing situations and the behavior of applications in
various situations. Although these languages have not been developed for
describing service semantics, the way they model SAW can be adopted
and combined with existing service description languages [38,79] to sup-
port SA service discovery. Different service providers may use different
languages to describe the services they provide or may have different
interpretations of the terms used in service descriptions, even with the
same language; therefore, among the existing models and languages for
SAW, the ontology-based approaches [11,12,27,87–89] appear to be good
candidates for incorporating with service descriptions.

The mechanisms for matching service semantics and users’ goals and
preferences based on situation information depend on how the services
are described. For services described using OWL, various inference engines,
such as F-OWL [81] and Pellet [82], are available to provide formal reasoning
support for inferring service semantics and matching service semantics with
users’ goals. Broens et al. [45,46] use OWL for describing service ontology,
and contextual information is expressed as contextual attributes of services.
In the matching algorithm [45,46], concept lattices [83] are used to rate the
resulting services based on their contextual attributes. Doulkeridis et al.
[50] used a multidimensional object exchange model (OEM) graph [84] to
represent a service directory in which each service is a leaf node on the
graph and contextual information is used to determine which service should
be used in different contexts. Based on such a representation of the service
directory, a breadth-first search algorithm is used to locate necessary
services based on users’ requests (goals).

Incorporating SAW in Service Coordination

As discussed before, service coordination is a process of monitoring the
status of participant services, invoking proper participant services, man-
aging dependencies among participant services, and propagating necessary

AU3833_C39.fm Page 1077 Friday, August 18, 2006 3:57 PM

1078 ■ Mobile Middleware

information to participant services to ensure the correct results obtained
from the coordinated participant services. In mobile computing environ-
ments, service coordination is difficult due to the mobility of devices,
which makes the set of participant services very dynamic. Recent work
on context-aware service coordination [18,66–68] has shown the advan-
tages of coordinating services based on contextual information. Incorpo-
rating SAW in service coordination will be more beneficial because not
only the current context but also the context history are considered.

Existing mobile middleware provides various coordination mecha-
nisms. Middleware based on tuple space, such as LIME [69], TSpaces [28],
and Limone [70], adopts the Linda communication model [85], in which
distributed processes communicate implicitly through a shared tuple space.
Because of such a communication model, tuple-space-based middleware
decouples application behavior and communications between application
components and uses the shared tuple space to store application data
available to mobile units, which represents part of the context for mobile
applications [86]. Murphy and Picco [86] provided a case study based on
LIME that further exploits usage of this type of middleware to manage
physical context, such as the location and battery power of mobile devices,
for context-aware computing. A very nice feature of this type of mobile
middleware that makes it suitable for SA service coordination is that it is
not necessary for applications and agents to know the participant services
in advance. Applications and agents simply specify their requests and
advertise the requests in the shared tuple space, and the services that can
handle these requests automatically react to the requests. Such a process
seamlessly combines service discovery and coordination, and it is very
easy to adapt to context/situation changes; however, a problem that must
be addressed is that applications and agents do not have much control
over the participating services. Although applications and agents can
specify the desirable characteristics of participant services, services can
ignore such specifications (maliciously or carelessly) and fail the entire
service coordination process.

Another coordination approach used by many other types of mobile
middleware, such as Gaia, MobiPADS, and RCSM, manages coordination
based on predefined profiles or rules and explicitly defines how contexts
and situations will affect the coordination. In MobiPADS [25], service chains
that explicitly define service coordination are defined in system profiles,
associated with various contextual conditions. In runtime, service chains
can be reconfigured based on current context and system profiles. In
RCSM [2–4,29,53], service coordination is supported by inter-object com-
munications. Rules that determine when an object can interact with which
object through what interface are specified during the development of
applications. In these rules, situations are used as the condition for

AU3833_C39.fm Page 1078 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination ■ 1079

triggering the communications between objects in runtime to fulfill the
application requirements. Object discovery protocols [2,53] are provided
in RCSM to address the dynamicity of mobile computing environments.
This type of middleware has more control over the participating services,
but it is not as flexible as tuple-space-based middleware due to the need
to predefine profiles or rules for coordination; also, it requires additional
overhead for service discovery.

Yau et al. [13] introduced an agent-based approach combined with
artificial intelligence planning techniques to enable more flexible service
coordination. Figure 39.2 illustrates the agent-based approach for SA
service coordination [13]. It is assumed that the service-based system has
a mission planner (MP), which accepts mission goals specified by users
and generates execution plans based on available services and current
situation. The generated execution plan is a series of service compositions
to be executed to fulfill the overall mission goal. A step (service invoca-
tion) in the execution plan may have certain dependencies on situations;
that is, a step can be executed only when a certain situation is detected.
As discussed earlier, it is unlikely that the MP will have complete knowl-
edge of the planning domain in real-world applications, especially in
service-based mobile applications where the users are moving, central
control over adding or removing services is not available, and services
may become unavailable without notifying users. A consequence of
planning without complete domain information is that the generated
workflows may not be executable due to dependency violations in a
service invocation caused by situation changes due to uncontrollable
external agents. For this reason, SAW agents must be developed to

Figure 39.2 SA service coordination.

AU3833_C39.fm Page 1079 Friday, August 18, 2006 3:57 PM

1080 ■ Mobile Middleware

coordinate the execution of services in the execution plan based on
situations. SAW agents are distributed autonomous software entities that
have the necessary capabilities to support SA service coordination, includ-
ing participant service management, agent discovery, context acquisition,
and situation analysis.

With these capabilities, SAW agents can adaptively coordinate services
in execution plans as follows:

■ In each step of the workflow execution, SAW agents check whether
all the dependencies on situations are satisfied.

■ If the dependency on a situation is not satisfied in a certain step,
the SAW agents will check whether this step can be undone.

■ If the step is undoable, the SAW agents will first undo the step
and then search for an alternative service.

■ If an alternative service is found, the SAW agents will resume the
execution using the new service; otherwise, the SAW agents will
notify the MP of the current situation, and the MP will perform
replanning to find another workflow that can fulfill the mission
goal.

These approaches to service coordination have their advantages and
disadvantages. Further investigation is required to evaluate and compare
their complexity and performance to determine which approaches are
more effective for SA service coordination.

Summary
In this chapter, we discussed the motivation for developing mobile mid-
dleware for situation-aware service discovery and coordination for effective
integration of mobile devices with service-based network infrastructures.
We presented the current state of the art on situation awareness, service
discovery and coordination, and mobile middleware. In particular, we
discussed the use of RCSM and MobiPADS mobile middleware for pro-
viding context and situation awareness to the application layer. The
requirements, design issues, and enabling techniques for mobile middle-
ware for situation-aware service discovery and coordination were also
presented. Although context- and situation-aware mobile middleware and
various techniques for context- and situation-aware service discovery and
coordination have been developed, no mobile middleware exists today
that can fully support situation-aware service discovery and coordination.
Further investigations on incorporating situation awareness in service
description languages, situation-aware matchmaking mechanisms, new

AU3833_C39.fm Page 1080 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination ■ 1081

coordination models, and an adaptive middleware architecture are neces-
sary for the design and development of mobile middleware supporting
situation-aware service discovery and coordination.

Acknowledgments
This work was supported in part by the National Science Foundation
under grant number ANI 0123980 and the Department of Defense, Office
of Naval Research (DoD/ONR), under the Multidisciplinary Research Pro-
gram of the University Research Initiative, Contract No. N00014-04-1-0723.

References
[1] Web services architecture, http://www.w3.org/TR/2004/NOTE-ws-arch-2004

0211/.
[2] Yau, S.S. and Karim, F., A context-sensitive middleware-based approach to

dynamically integrating mobile devices into computational infrastructures,
J. Parallel Distributed Comput., 64(2), 301, 2004.

[3] Yau, S.S., Wang, Y., and Karim, F., Development of situation-aware appli-
cation software for ubiquitous computing environments, in Proc. of the 26th
IEEE Int. Computer Software and Application Conf. (COMPSAC 2002),
Oxford, England, August 26–29, 2002, p. 233.

[4] Yau, S.S. et al., Reconfigurable context-sensitive middleware for pervasive
computing, IEEE Pervasive Comp., 1(3), 33, 2002.

[5] McCarthy, J. and Hayes, P.J., Some philosophical problems from the stand-
point of artificial intelligence, Machine Intelligence, 4, 463, 1969.

[6] Pinto, J.A., Temporal Reasoning in the Situation Calculus, Ph.D. thesis,
University of Toronto, 1994.

[7] McCarthy, J., Situation Calculus with Concurrent Events and Narrative,
Stanford University, Stanford, CA, 2000 (http://www.formal.stanford.edu/
jmc/narrative/narrative.html).

[8] Plaisted, D., A hierarchical situation calculus, J. Computing Res. Repository
(CoRR), cs.AI/0309053, 2003.

[9] Barwise, J., Scenes and other situations, J. Philosophy, 77, 369, 1981.
[10] Barwise, J., The Situation in Logic, CSLI Lecture Notes 17, Stanford Univer-

sity, Stanford, CA, 1989.
[11] Matheus, C.J., Kokar, M.M., and Baclawski, K., A core ontology for situation

awareness, in Proc. of the 6th Int. Conf. on Information Fusion (FUSION
2003), Cairns, Queensland, Australia, July 8–11, 2003, p. 545.

[12] Matheus, C.J. et al., Constructing RuleML-based domain theories on top of
OWL ontologies, in Proc. of the 2nd Int. Workshop on Rules and Rule Markup
Languages for the Semantic Web (RuleML 2003), Sanibel Island, FL, October
20, 2003, p. 81.

[13] Yau, S.S. et al., Situation awareness for adaptable service coordination in
service-based systems, in Proc. of the 29th IEEE Int. Computer Software and
Application Conf. (COMPSAC 2005), Edinburgh, Scotland, July 26–28, 2005.

AU3833_C39.fm Page 1081 Friday, August 18, 2006 3:57 PM

1082 ■ Mobile Middleware

[14] Schilit, B. and Theimer, M., Disseminating active map information to mobile
hosts, IEEE Network, 8(5), 22, 1994.

[15] Brown, P.G., Bovey, J.D., and Chen, X., Context-aware applications: from
the laboratory to the marketplace, IEEE Personal Commun., 4(5), 58, 1997.

[16] Brézillon, P. and Pomerol, J.C., Contextual knowledge sharing and cooper-
ation in intelligent assistant systems, Le Travail Humain, 62(3), 223, 1999.

[17] Dey, A.K. and Abowd, G.D., A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications, Human–
Computer Interaction (HCI), 16(2–4), 97, 2001.

[18] Braione, P. and Picco, G.P., On calculi for context-aware coordination, in
Proc. of the 6th Int. Conf. on Coordination Models and Languages (COOR-
DINATION 2004), Pisa, Italy, February 24–27, 2004, p. 38.

[19] Want, R. et al., The active badge location system, ACM Trans. Inform. Syst.,
10(1), 91, 1992.

[20] Schilit, B.N., Theimer, M., and Welch, B.B., Customizing mobile application,
in Proc. of USENIX Symp. on Mobile and Location-Independent Computing,
Cambridge, MA, August 1993, p. 129.

[21] Spreitzer, M. and Theimer, M., Providing location information in a ubiquitous
computing environment, in Proc. of the 14th ACM Symp. on Operating
System Principles, Austin, TX, November, 1993, p. 270.

[22] Harter, A. and Hopper, A., A distributed location system for the active office,
IEEE Network, 8(1), 62, 1994.

[23] Nelson, B.J., Context-Aware and Location Systems, Ph.D. thesis, University of
Cambridge, 1998 (http://www.sigmobile.org/phd/1998/theses/nelson.pdf).

[24] Caswell, D. and Debaty, P., Creating Web representations for places, in
Proc. of the 2nd Int. Symp. on Handheld and Ubiquitous Computing (HUC
2000), Bristol, U.K., September 24–27, 2000, p. 114.

[25] Chan, A.T.S. and Chuang, S.N., MobiPADS: a reflective middleware for
context-aware computing, IEEE Trans. Software Eng., 29(12), 1072, 2003.

[26] Roman, M. et al., A middleware infrastructure for active spaces, IEEE
Pervasive Comput., 1(4), 74, 2002.

[27] Ranganathan, A. and Campbell, R.H., A middleware for context-aware agents
in ubiquitous computing environments, in Proc. of the 4th ACM/IFIP/USENIX
Int. Middleware Conf., Rio de Janeiro, Brazil, June, 2003, pp. 143–161.

[28] Lehman, T.J. et al., Hitting the distributed computing sweet spot with
TSpaces, Comput. Networks, 35(4), 457, 2001.

[29] Yau, S.S. et al., Development and runtime support for situation-aware appli-
cation software in ubiquitous computing environments, in Proc. of the 28th
Annual Int. Computer Software and Application Conf. (COMPSAC 2004),
Hong Kong, September 27–30, 2004, p. 452.

[30] Pokraev, S. et al., Context-Aware Services: State of the Art, TI/RS/2003/137,
Xerox Corp., Stamford, CT, 2003 (https://doc.telin.nl/dscgi/ds.py/Get/File-
27859/Context-aware_services-sota,_v3.0,_final.pdf).

[31] Mostefaoui, G.K., Pasquier-Rocha, J., and Brezillon, P., Context-aware com-
puting: a guide for the pervasive computing community, in Proc. of IEEE/ACS
Int. Conf. on Pervasive Services (ICPS’04), Beirut, Lebanon, July 19–23, 2004,
p. 39.

AU3833_C39.fm Page 1082 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination ■ 1083

[32] Jini architecture specification, Sun Microsystems, Santa Clara, CA, 2001
(http://www.sun.com/software/jini/specs/).

[33] Salutation architecture specification, The Salutation Consortium, 1999
(http://www.salutation.org/spec/Sa20e1a21.pdf).

[34] Guttman, E. et al., Service Location Protocol, Version 2, Request for Com-
ments 2608, Internet Engineering Task Force (IETF), 1999 (http://www.ietf.
org/rfc/rfc2608.txt).

[35] Understanding Universal Plug and Play, White Paper, Microsoft Corp.,
Redmond, WA, 2000 (http://www.upnp.org/download/UPNP_ Understand-
ingUPNP.doc).

[36] UDDI technical white paper, Universal Description, Discovery, and Integra-
tion (UDDI), 2000 (http://www.uddi.org/pubs/Iru_UDDI_Technical_White_
Paper.pdf).

[37] Klein, M. and Bernstein, A., Toward high-precision service retrieval, IEEE
Internet Comput., 8(1), 30, 2004.

[38] OWL-S 1.0, http://www.daml.org/services/owl-s/1.0/.
[39] W3C Resource Description Framework (RDF), World Wide Web Consortium

(W3C) (http://www.w3.org/RDF/).
[40] Web service modeling ontology, http://www.wsmo.org/.
[41] Trastour, D., Bartolini, C., and Gonzalez-Castillo, J., A Semantic Web

approach to service description for matchmaking of services, in Proc. of the
1st Int. Semantic Web Working Symp. (SWWS’01), Stanford, CA, July, 2001.

[42] Paolucci, M. et al., Semantic matching of Web services capabilities, in Proc.
of the 1st Int. Semantic Web Conf. (ISWC2002), Sardinia, Italy, June 9–12,
2002, p. 333.

[43] Paolucci, M. et al., Using DAML-S for P2P discovery, in Proc. of the First
Int. Conf. on Web Services (ICWS’03), Las Vegas, NE, June, 2003, p. 203.

[44] Paolucci, M. et al., A broker for OWL-S Web services, in Proc. of AAAI Spring
Symp. Series on Semantic Web Services, 2004 (http://www.daml.ecs.soton.ac.
uk/SSS-SWS04/40.pdf).

[45] Broens, T., Context-Aware, Ontology-Based, Semantic Service Discovery,
Master thesis, University of Twente, The Netherlands, 2004.

[46] Broens, T. et al., Context-aware, ontology-based service discovery, in Proc.
of the 2nd European Symp. on Ambient Intelligence (EUSAI’04), Eindhoven,
The Netherlands, November 8–10, 2004, p. 72.

[47] Czerwinski, S. et al., An architecture for a secure service discovery service,
in Proc. of the 5th ACM/IEEE Int. Conf. on Mobile Computing and Networking
(MOBICOM’99), Seattle, WA, August, 1999, p. 24.

[48] Yolum, P. and Singh, M., An agent-based approach to trustworthy service
location, in Proc. of the 1st Int. Workshop on Agents and Peer-to-Peer Com-
puting (AP2PC’02), Melbourne, Australia, July 14–15, 2002, p. 45.

[49] Liu, J. and Issarny, V., QoS-aware service location in mobile ad hoc net-
works, in Proc. of the 5th Int. Conf. on Mobile Data Management (MDM’04),
Berkeley, CA, January 19–22, 2004, p. 224.

[50] Doulkeridis, C., Valavanis, E., and Vazirgiannis, M., Towards a context-aware
service directory, in Proc. of the 4th VLDB Workshop on Technologies for E-
Services (TES’03), Berlin, Germany, September 8, 2003.

AU3833_C39.fm Page 1083 Friday, August 18, 2006 3:57 PM

1084 ■ Mobile Middleware

[51] Yau, S.S. et al., Situation-aware personalized information retrieval for mobile
Internet, in Proc. of the 27th IEEE Int. Computer Software and Application
Conf. (COMPSAC 2003), Dallas, TX, November 3–6, 2003, p. 638.

[52] Debaty, P., Goddi, P., and Vorbau, A., Integrating the Physical World with
the Web To Enable Context-Enhanced Services, Technical Report HPL-2003-
192, HP Labs, Palo Alto, CA, 2003 (http://www.hpl.hp.com/techreports/
2003/HPL-2003-192.pdf).

[53] Yau, S.S. and Karim, F., An energy-efficient object discovery protocol for
context-sensitive middleware for ubiquitous computing, IEEE Trans. Parallel
Distributed Syst., 14(11), 1074, 2003.

[54] Stoica, I. et al., Chord: a scalable peer-to-peer lookup service for Internet
applications, in Proc. of ACM SIGCOMM’01, San Diego, CA, August, 2001,
p. 149.

[55] Balazinska, M., Balakrishnan, H., and Karger, D., INS/Twine: a scalable
peer-to-peer architecture for intentional resource discovery, in Proc. of the
1st Int. Conf. on Pervasive Computing, Zurich, Switzerland, June, 2002, p.
195.

[56] Crespo, A. and Molina, H.G., Routing indices for peer-to-peer systems, in
Proc. of IEEE Int. Conf. on Distributed Computing Systems (ICDCS’02),
Vienna, Austria, July, 2002, p. 23.

[57] Kashani, F.B., Chen, C., and Shahabi, C., WSPDS: Web services peer-to-peer
discovery service, in Proc. of Int. Symp. on Web Services and Applications
(ISWS’04), Las Vegas, NE, June 23, 2004, p. 733.

[58] Nidd, M., Service discovery in DEAPspace, IEEE Pers. Commun., 8(4), 39, 2001.
[59] Chakraborty, D. et al., GSD: a novel group-based service discovery protocol

for MANETs, in Proc. of the Fourth IFIP TC6 Int. Conf. on Mobile and Wireless
Communications Networks (MWCN 2002), Stockholm, Sweden, September
9–11, 2002, p. 140.

[60] Denny, M. et al., Mobiscope: a scalable spatial discovery service for mobile
network resources, in Proc. of the 4th Int. Conf. on Mobile Data Management
(MDM’03), Melbourne, Australia, January 21–24, 2003, p. 307.

[61] Helal, S. et al., Konark: a service discovery and delivery protocol for ad
hoc networks, in Proc. of IEEE Wireless Communications and Networking
Conf. (WCNC 2003), New Orleans, LA, March 16–20, 2003, p. 2107.

[62] Berger, S. et al., Towards pluggable discovery framework for mobile and
pervasive applications, in Proc. of the 5th Int. Conf. on Mobile Data Man-
agement (MDM’04), Berkeley, CA, January 19–22, 2004, p. 308.

[63] Tchakarov, J. and Vaidya, N., Efficient content location in mobile ad hoc
networks, in Proc. of the 5th Int. Conf. on Mobile Data Management
(MDM’04), Berkeley, CA, January 19–22, 2004, p. 74.

[64] Web Services Coordination (WS-Coordination), http://www-106.ibm.com/
developerworks/library/ws-coor/.

[65] Web Services Coordination Framework (WS-CF), http://www.ora-
cle.com/technology/tech/webservices/htdocs/spec/WS-CF.pdf.

[66] Andrade, L.F. et al., Coordination for orchestration, in Proc. of the 5th Int.
Conf. on Coordination Models and Languages (COORDINATION 2002),
York, U.K., April 8–11, 2002, p. 5

AU3833_C39.fm Page 1084 Friday, August 18, 2006 3:57 PM

Situation-Aware Service Discovery and Coordination ■ 1085

[67] Cabri, G., Leonardi, L., and Zambonelli, F., Engineering mobile agent
applications via context-dependent coordination, IEEE Trans. Software Eng.,
28(11), 1039, 2002.

[68] Julien, C. and Roman, G., Egocentric context-aware programming in ad hoc
mobile environments, in Proc. of the 10th Symp. on the Foundations of
Software Engineering, Charleston, SC, November 18–22, 2002, p. 21.

[69] Murphy, A., Picco, G., and Roman, G., LIME: a middleware for physical
and logical mobility, in Proc. of IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’01), Phoenix, AZ, April, 2001, p. 524.

[70] Fok, C.L. et al., A lightweight coordination middleware for mobile comput-
ing, in Proc. of the 6th Int. Conf. on Coordination Models and Languages
(COORDINATION 2004), Pisa, Italy, February 24–27, 2004, p. 135.

[71] Haahr, M., Cunningham, R., and Cahill, V., Supporting CORBA applications
in a mobile environment, in Proc. of the 5th ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’99), Seattle, WA, August, 1999, p. 36.

[72] Campbell, A.T. et al., The Mobiware toolkit: programmable support for
adaptive mobile networking, IEEE Pers. Commun., 5(4), 32, 1998.

[73] Yau, S.S., Chandrasekar, D., and Huang, D., An adaptive, lightweight and
energy-efficient context discovery protocol for ubiquitous computing envi-
ronments, in Proc. of the 10th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS’04), Suzhou, China, May 26–28, 2004, p. 261.

[74] Doherty, P. and Kvarnstrom, J., TALplanner: a temporal logic-based planner,
AI Mag., 22(3), 95, 2001.

[75] Davulcu, H., Kifer, M., and Ramakrishnan, I.V., CTR-S: a logic for specifying
contracts in Semantic Web services, in Proc. of the 13th Int. World Wide Web
Conf., New York, May 17–22, 2004, p. 144.

[76] Gordon, A.D. and Cardelli, L., Equational properties of mobile ambients,
Math. Structures Comput. Sci., 13(3), 371, 2003.

[77] Clarke, E.M., Grumberg, O., and Peled, D.A., Model Checking, MIT Press,
Cambridge, MA, 2000.

[78] Olston, C. and Widom, J., Best-effort cache synchronization with source
co-operation, in Proc. of ACM SIGMOD Int. Conf. on Management of Data,
Madison, WI, June 3–6, 2002, p. 73.

[79] Web Services Description Language (WSDL) 1.1, World Wide Web Consor-
tium (W3C), http://www.w3.org/TR/wsdl.

[80] Mostefaoui, S.K. and Hirsbrunner, B., Context aware service provisioning,
in Proc. of IEEE/ACS Int. Conf. on Pervasive Services (ICPS’04), Beirut,
Lebanon, July 19–23, 2004, p. 71.

[81] F-OWL, http://fowl.sourceforge.net/index.html.
[82] Pellet OWL Reasoner, http://www.mindswap.org/2003/pellet/index.shtml.
[83] Ganter, B. and Stumme, G., Formal Concept Analysis: Methods and Appli-

cations in Computer Science, Technische Universitat Dresden, Germany
(http://www.aifb.uni-karlsruhe.de/WBS/gst/FBA03.shtml).

[84] Stavrakas, Y. and Gergatsoulis, M., Multidimensional semistructured data:
representing context-dependent information on the Web, in Proc. of the
14th Conf. on Advanced Information Systems Engineering (CAiSE’2002),
Toronto, CA, May 27–31, 2002, p. 183.

AU3833_C39.fm Page 1085 Friday, August 18, 2006 3:57 PM

1086 ■ Mobile Middleware

[85] Gelernter, D., Generative communication in Linda, ACM Comput. Surv.,
7(1), 80, 1985.

[86] Murphy, A. and Picco, G., Using coordination middleware for location-
aware computing: a LIME case study, in Proc. of the 6th Int. Conf. on
Coordination Models and Languages (COORDINATION 2004), Pisa, Italy,
February 24–27, 2004, p. 263.

[87] Yau, S.S. and Liu, J., Incorporating situation awareness in service specifica-
tions, in Proc. of the 9th Int. Symp. on Object- and Component-Based Real-
Time Distributed Computing (ISORC 2006), Gyeongju, Korea, April 24–26,
2006, p. 287.

[88] Yau, S.S. and Liu, J., Hierarchical situation modeling and reasoning for
pervasive computing, in Proc. of the 3rd Workshop on Software Technologies
for Future Embedded and Ubiquitous Systems (SEUS 2006), Gyeongju, Korea,
April 27–28, 2006, p. 5.

[89] Yau, S.S. et al., Support for situation awareness in trustworthy ubiquitous
computing application software, J. Software Pract. Experience, 36(9), 893,
2006.

AU3833_C39.fm Page 1086 Friday, August 18, 2006 3:57 PM

Section 7

CURRENT EXPERIENCES
AND ENVISIONED
APPLICATION
DOMAINS FOR
SERVICES BASED ON
MOBILE MIDDLEWARE

AU3833_S07.fm Page 1087 Friday, August 18, 2006 4:12 PM

AU3833_S07.fm Page 1088 Friday, August 18, 2006 4:12 PM

1089

Chapter 40

Mobile Middleware
for Integration with
Enterprise Applications:
WebSphere

®

 Everyplace

®

Access

David Reich

CONTENTS

Introduction... 1090
Mobile Enterprise Middleware... 1091
Elements of a Mobile Enterprise Client .. 1092
Things That Must Be Served ... 1093
The Server Side... 1095
From Top to Bottom, Through the
Mobile EnterpriseMiddleware Stack .. 1096
User Interface Considerations.. 1101

Rich Graphical User Interface.. 1101
Other User Interfaces ... 1102

AU3833_C40.fm Page 1089 Friday, August 18, 2006 4:24 PM

1090

■

Mobile Middleware

Eclipse, the RCP, and SWT .. 1102
Application Development Tools .. 1103
Final Thoughts on Enterprise Integrated Mobile Middleware 1104

Introduction

This chapter outlines a way to extend traditional enterprise applications
and their associated programming models such as Java 2 Enterprise Edition
(J2EE) from the desktop client down to mobile devices. These mobile
devices are not just laptop or table computers, but rather handheld devices
such as PDAs, personal communicators, or even cellular telephones. This
technology allows us to extend the applications to these devices, not
rewrite them. Herein lies the power of these programming models — the
ability to extend applications and the associated middleware to new modes
of interaction.

The goal of mobile middleware is to provide information to users
anywhere, anytime, and on (almost) any device. Although various segments
of the mobile marketplace focus on end users (e.g., location-aware services
such as mapping) and consumers (e.g., games and perhaps somewhat
integrated PIM and e-mail functions), mobile middleware focuses on knowl-
edge workers.

Mobile knowledge workers

, in this context, are those who
conduct business transactions on their mobile devices. They can be sales
representatives who need to place orders and query inventory and delivery
schedules or insurance adjusters working in disaster areas. They can even
be rental car bus drivers taking passengers to a parking garage to pick up
their cars; these bus drivers have to be able to check passengers in on the
bus and show them where their cars are. All of these applications are
different from the consumer or traditional end-user of a mobile device.
These are enterprise transactions that have to be conducted on the go,
with intermittent and, as far as the application is concerned, indeterminate
states of connectivity.

The requirements for mobile enterprise transactions include local data,
secure transaction processing, and reliable data synchronization, as well
as acceptibility to the user community, seamless and transparent applica-
tion provisioning and upgrades, transparent synchronization and transac-
tion transmission, and, ideally, the same application user interfaces as
those on their desktop machines. Also desirable are alternative access
methods depending on the device — for example, voice access for a very
restricted screen size (or no screen for that matter) or in-car operation.
This chapter focuses on the technologies to bring the enterprise or
knowledge worker transactions to mobile devices. First, it presents the
big picture and then proceeds to dissect it into its component parts to
see how they all interoperate.

AU3833_C40.fm Page 1090 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1091

Mobile Enterprise Middleware

Figure 40.1 provides a high-level view of how all of the elements of
mobile enterprise middleware come together. The client (the left side)
along with the application server (the right side) and the components that
enable the mobile enterprise transaction capability are the main elements.
A lot is going on inside this seemingly simple diagram, but it is very well
componentized and is all based on industry standards, making under-
standing the interactions (which we will go into shortly) and the program-
ming model very straightforward. Also note that at the bottom is a
connectivity layer.

In the mobile space, one must assume that connectivity is intermit-
tent, or occasional. While it is certainly feasible for users to (re)connect
wherever they happen to be at the moment, that can be cumbersome.
One example of a network “roamer” is the WebSphere

®

 Everyplace

®

Connection Manager (WECM). WECM is a product from IBM that enables
network roaming across intermittent connections. Not only does it
provide secure virtual private network (VPN) tunneling, but it also
supports a hierarchy of network connectivity, whereby it will suspend
a virtual connection when, for example, a user roams between wireless
access points or even from a wired to a wireless to a dial-up physical
connection. This form of network roaming allows applications or appli-
cation services to maintain a virtual connection regardless of the physical
network, suspending transactions in the middle to be completed when
the connection is reestablished, regardless of whether the new connec-
tion is through the same physical medium. For the sake of the discus-
sions here, connectivity is assumed, and we will focus on the enterprise
transactions for mobile devices.

Figure 40.1 Enterprise middleware high-level interaction architecture.

AU3833_C40.fm Page 1091 Friday, August 18, 2006 4:24 PM

1092

■

Mobile Middleware

Let’s move on now to the client stack and the server elements. First,
understand that, while Figure 40.1 shows the server elements in one box,
it is certainly possible and in most cases desirable to separate many of
these elements across multiple servers in the infrastructure. They were
placed this way in this first figure to ease the understanding of all of the
elements and to simplify the graphic.

Elements of a Mobile Enterprise Client

In a mobile enterprise client, many things have to be taken into account.
The first thing that comes to mind is the application programming and
presentation model. Because of the heterogeneous nature of the mobile
market, this seemingly simple decision can be very complex. After all,
not only do you have to contend with the differences in the different
types of devices, but you also have to deal with the differences between
manufacturers of similar devices (e.g., all of the cellphone makers and
service providers).

Java provides the Java Micro Edition (J2ME™) specifications to help
address this quandary and profiles and configurations to address the
granularity in capabilities of the different classes of devices; however, a
number of challenges remain:

■

How does the user start and stop applications?

■

How do the applications get delivered to the device? How are they
updated and maintained?

■

What kind of overhead is required to run an application? After all,
one Java Virtual Machine (JVM), one application.

■

What can be done to provide enterprise services to these limited
capacity devices?

Figure 40.2 shows a block diagram of the client stack. The native
operating system (OS) of the platform along with the JVM form the
foundation of the stack. On top of the native OS runs applications the
reader is used to. These include the device configuration, games,
perhaps calendar or messaging functions, and so on. Where the enter-
prise part of this comes in is on the Java side of the client. The JVM
is generally used to run only one application at a time; however, through
the power of the OSGi (http://www.osgi.org) framework and, in this
case, the IBM reference platform called the Service Management Frame-
work (SMF), multiple applications and services can be provisioned and
dynamically started and stopped on this single JVM instance. This is
vitally important in a limited-footprint device.

AU3833_C40.fm Page 1092 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1093

OSGi provides a framework for componentizing applications into bundles
and also a specification for delivering these bundles to a client through a
device management server (DMS). In Figure 40.2, the client part of the device
management is shown as the

device agent

. It is through this DMS mechanism
that applications or, more specifically, bundles are delivered to the client.

OSGi is designed to facilitate the structure, lifecycle, execution envi-
ronment, and provisioning of applications (components) to clients. The
OSGi specification offers a framework for bundle structure, starting, stop-
ping, allocation, and release of resources and system, as well as application
services to be added together to provide and consume services to construct
an overall software stack. This stack can provide services to other appli-
cations as well as consume services. One of the biggest advances of OSGi
is that it enables the sharing of a JVM instance among multiple applications.
Traditionally, Java applications are allocated one per JVM; when the
application terminates, the JVM is torn down and a new one instantiated
for another application. The OSGi framework allows and enables appli-
cations to share the JVM, thus creating a new lifecycle model for appli-
cations, especially where the teardown and restart of a JVM can be very
expensive. The OSGi platform (SMF) lives as an application on the JVM
(refer back to Figure 40.2) and hosts the other bundles and applications
to provide these services to the system and application code.

Things That Must Be Served

The next part of the diagram as we move up the stack is “Enterprise and
Access Services.” These are platform extensions that enable applications
to access functions such as database, message queuing, and even the

Figure 40.2 Client stack.

AU3833_C40.fm Page 1093 Friday, August 18, 2006 4:24 PM

1094

■

Mobile Middleware

presentation container. These are detailed later in Figure 40.4, but for now
just understand that this set of extension services is what allows coding
to Java Database Connectivity (JDBC) and message queuing (MQ) services
and provides services for presentation. These extensions are themselves
bundles and can be referred to as

system bundles

, because they extend
the platform, as opposed to

application bundles

, which are, as the reader
might guess, applications. In addition to the links to enterprise function-
ality, this set of access services also provides the container for the exe-
cution of the J2EE functionality on the device. In many cases, server
processing is required to complete a task. In the J2EE model, this pro-
cessing is done with Servlets, beans, Java Server Pages (JSPs), and the
like. This services layer provides the containers that make these services
available to the applications.

So how does this all get onto the device? This question can require a
complex answer, based not on technological issues but on business ones.
You can safely assume a device has a native operating system. You might
also be able to assume that it comes with a JVM (this is not always the
case, but as time goes on more and more device makers are preinstalling
Java). The big question, then, is how does the SMF core platform and
extension services get to the device?

We begin by looking at the business issues. SMF does not have a zero
footprint. It takes up space. It takes a piece of work to install it on a
device. It is not something that the end user of the device should do, or
should even want to do. End users should not have to know about
anything called SMF; they should just know that they can do their work
on their devices. So, it might be up to the operating platform (software)
vendor to include it in their image. Perhaps the device makers (who
usually customize the native operating system) will add it to the image
and preload it on the devices. It could also be the service providers or
carriers, such as cellular phone companies, who load it on the devices
after they get them from the manufacturers. Still another way the platform
could get to the device is in an information technology shop; for example,
suppose a large insurance company wishes to equip its 10,000 agents
with a device and use SMF as the enterprise application platform. This
insurance company might preload the devices with the platform and then
send the agents on their way.

When the platform is on the device, the rest is technologically straight-
forward. OSGi specifies a framework for delivery of bundles to a system.
These bundles can be application bundles, further system bundles, or
even updates to existing bundles. This is the beauty of OSGi. If the user
wants to start a program, the platform looks to see if all of the required
bundles are present, checks the server to ensure that the bundles that are
already there are the correct version, dynamically downloads the new or

AU3833_C40.fm Page 1094 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1095

updated bundles, starts them up, and runs the application, with all of this
other work being done out of sight of users. All the users know is that
they have started an application. The rest of the work is set up by system
administrators and performed dynamically, over the air, with no user
interaction required.

The Server Side

Now that we have examined the coarse-level architecture of the client
and the basics of how these elements get to the client, let’s now turn our
attention to the server. Figure 40.3 shows the same coarse-grained archi-
tecture for the server as for the client. Recall that, for the sake of
explanation, all of the servable elements are on one server. In practicality,
this could be implemented across multiple servers in the infrastructure.

The core server platform in this case could be constructed from
different products. We could create a DMS server from Tivoli software on,
say, a Linux™ platform, with database services from a different place,
Web serving from still another place, and so on. Or, IBM has an offering
called WebSphere

®

 Everyplace

®

 Access (WEA), in which the server is
integrated with all of these components in either a loosely or a tightly
coupled environment. The WEA server provides the infrastructure and
integrates all of the components seen in Figure 40.3. Although a WEA
server can do it all, it is apparent that the server has several distinct duties
to perform:

Figure 40.3 Server components.

AU3833_C40.fm Page 1095 Friday, August 18, 2006 4:24 PM

1096

■

Mobile Middleware

■

Serve up the application and system bundles to the clients.

■

Provide database access and synchronization gateways to the data-
base engines.

■

Run the database engines.

■

Provide a messaging gateway for secure transactions to an appli-
cation server.

■

Run the application server engine (Web application server).

■

Publish and provide Web services.

■

Run server-side application logic.

So, as we can see, the WEA server can do all of this, but we will want
to separate these functions into distinct servers in the overall IT infrastruc-
ture. For discussion purposes and, in fact, for architectural purposes, we
can consider utilizing this one server, especially if we use the WEA product,
rather than trying to build all of the parts ourselves.

This leads to an interesting side note: Because the elements of OSGi,
Java, and WEA are built on widely accepted industry standards, it is
possible to put one’s own choice of components into just about any part
of this infrastructure. WEA offers the advantages that everything has all
been put together and tested as such and it does not lock customers into
utilizing the entire product. If other server elements are already in place
or some things do not specifically suit particular needs, because these
standards are adhered to it is even possible to create one’s own infra-
structure elements.

From Top to Bottom, Through
the Mobile Enterprise Middleware Stack

Let’s discuss the server side for a moment, then move on to taking this
discussion a little deeper technically and walking through a real-life
example to bring the picture back together. At the beginning of the stack,
where applications come from, is the device management server. This
brings us to Figure 40.4, where the action begins to happen. The figure
illustrates a further detailed breakout of both the client and server that
enables enterprise applications to perform on mobile devices. In this
particular scenario, the client uses a Web container (browser) presentation
for the application. The stacks are shown in their functional layers, but
the transactions as the application loads and executes are shown from
the top down in between the stacks.

In this example, the application is an order entry for, say, a mobile
sales representative. Via the browser, the sales rep (user) instantiates an
application. This application may or may not be present on the device,

AU3833_C40.fm Page 1096 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1097

but at least the SMF platform and a link for the application are already
there. Recall that the core platform (J9 JVM and SMF) is on the device
courtesy of the manufacturer, service provider, or IT shop, so the device
is ready to receive and run application bundles. The bundle behind the
activation of the application comprises at least part of the application. At
this point, the SMF platform queries the server to determine if any system
bundles have to be updated and also checks the application bundle
manifests to determine dependencies and communicates with the device
management services to develop the list of needed application bundles.

The system and application bundles are delivered to the client, and
the application is instantiated. Now, the obvious question here is what
happens if no live connection to the server is available. If the platform
is fully functional, the latest-version dependency checks can be bypassed
(dependent on the configuration by the administrators when the platform
was loaded and configured). If the application bundle being instantiated
has all of its (cascading) dependencies met, then the application can run
without a live connection. If any of these tests fail, the platform will return
an error telling the user that not enough of the platform or application is
present to run the application, and the user will have to wait until he is
connected to perform the requested work.

Assume that the application is there or a live connection is available.
Now the application is on the device and displays forms to the user. In
this scenario, the application is order entry. An important piece of an

Figure 40.4 Detailed flow across mobile clients and server.

AU3833_C40.fm Page 1097 Friday, August 18, 2006 4:24 PM

1098

■

Mobile Middleware

order entry application is ensuring that inventory exists to satisfy the order
(or seeing that inventory is on order) so the sales representative is not
placing an order that cannot be filled. This order entry process can take
one of several paths.

To enable offline operation, some local data must be present to perform
transactions. This, along with all other options, is totally under the control
of the application designer and programmer. This data is stored locally
in a system such as DB2

®

 Everyplace

®

 (DB2e), designed for small-footprint
devices. Using JDBC, applications can access the data stored in DB2e
databases. Of course, it is possible to code the application to attempt to
contact a live server database, but, depending on the device, connectivity
options, or reliance on such a connection, it may be desirable to have a
several-step approach whereby the application queries the active connec-
tion state and, if the connection does not exist, goes against the local data
store (DB2e), with optionally a check to see when the last synchronization
was to determine if the data is too stale to be reliable. It may be preferable
to not even bother to try to go to a live database server because of the
overhead required or the nature of the device, where a connection could
go away in the middle of the transaction. These are all tradeoffs based
on the nature of the application and the level of offline interaction
required.

Looking back at the order entry application, the database can be
queried to determine available inventory and show the results to the user.
Another function a sales representative must perform is entering new
orders. This can be for an existing customer or for a new customer. Again,
based on the design decisions of the application programmer, the customer
information can be queried from the local database (or a synch will have
to be triggered if the data does not reside on the device), or, in the case
of a new customer, a new customer order transaction would be submitted

Assuming that the customers for this sales rep’s region have been
synchronized to the device, the data for an existing customer is readily
accessible to the application and the form can be completed with the
customer information. (Depending on the nature of the business, the
device, and so on, it may have been decided to synch the entire customer
database to every client device based on the parameters of the business
and client platforms.) If this is a new customer, however, no data exists,
and the sales rep will have to decide how to get this new customer record
into the company’s data systems. This is the same decision process that
must be gone through for other types of transactions as well, such as
entering new orders.

Several options are available for processing the new data. One is to
have the user enter the data and store it in the local database. At some
time in the future, this data will makes its way to the company’s central

AU3833_C40.fm Page 1098 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1099

servers via a synchronization operation. When a new customer is entered
into the system, some other business processes might take place — for
example, offering a welcome gift. This requires some processing outside
the client (data entry) device and business logic back on the server. (It
may be desirable to initiate a welcome gift from the client, but it seems
to make more sense to do this from the server.) In a traditional application
against a live server, the welcome gift can easily be triggered when the
data is entered. Due to the mobility of the client device, however, it is
necessary to look at new ways of triggering server-side actions with the
application from a device that may or may not be connected at the time
of the transaction. This can be accomplished in a number of ways.

A server-side trigger could be set up such that when new data is
synchronized to the central database, business logic is activated (such as
sending the welcome gift for a new customer). Or, a system such as MQ
(or MQe, for MQ Everyplace

®

), also part of the big WEA picture, could
be utilized for secure, reliable delivery messaging; this message could take
the form of a “new customer entered and here is the customer ID number”
message. Rather than rely on a server-side trigger to notice when new
data is there, however, it might be preferable to send the new customer
transaction to the server in the MQ message. The data could be taken
from the message and added to the server database, and an acknowledg-
ment could be sent back to the client to be added to its database. This
begs the question of what happens if the customer places another order
before the data is loaded into the central database server and synchronized
back to the client devices, but such design decisions are based on the
nature of the business and must be made to ensure that the business
processes are reliable and no data is lost.

It is important to note that this is not a radical departure from appli-
cation design seen before. This is just intelligent partitioning of the
application assuming intermittent states of connectivity and using an
application architecture other than EXE or large JAR files (using bundles
instead). The beauty of all of this is that if you use this architecture for
your applications, knowing that a device is a device is a device, the
application runs on handhelds to desktops and everything in between,
with no (or at least minimal) changes to the application. This is really
scaling your applications.

So, back to the application. We are now at the point where the
inventory information is available, the customer information has been
input (or obtained from the customer database), and the order is ready
to be input. Using the same theory as for the customer information, a list
of available products is displayed (pulled from the local copy of the data),
and the order information is entered into the form. Local application logic
and form validation can be used to ensure, for example, that:

AU3833_C40.fm Page 1099 Friday, August 18, 2006 4:24 PM

1100

■

Mobile Middleware

■

Sales reps are not trying to sell more than they have.

■

Customers are not trying to order more than their credit limit.

■

The requested delivery dates are reasonable based on current
inventory information.

Herein again lies the power of the OSGi/SMF platform and application
bundles. We can front-end much of the processing into the device to
avoid round-trips to the server on intermittent (and usually low-bandwidth)
connections and allow users to work anywhere, anytime, and on almost
any device, with the same user interfaces as if they had gone to the home
office to process orders.

When the order is ready to be placed (the form is completed and
validated), the user will press the “submit” button. At this point, the
decisions to be made are similar to those made when entering a new
customer record. Fundamentally, we have only three types of transactions:

■

New record entry (new customers, new orders)

■

Query (inventory, customer information)

■

Update or delete existing records or data

For all of these, it will be necessary to look at the attributes of the
transactions and the business processes behind them to determine how
they will get into the enterprise infrastructure. Realize that this is a different
type of transaction than a new customer record. It may not be of timely
importance to add a new customer record to a central database, but orders
must be processed quickly so the inventory can be updated and customer
service is prompt. Based on the same parameters analyzed to determine
how to process a new customer record, the best solution may be simply
to queue up the data for transmission to the central server (see Figure
40.4). It may not be necessary to store the transaction locally, but it would
be good to receive notification when the order is received at the central
system, because the inventory will have to be adjusted, accounting pro-
cesses will have to be triggered, and other business processed will have
to be initiated. This is not to say that just storing the data locally for later
synch and server-side triggering is wrong. There is almost no right and
wrong way to do this; it is up to a particular business’s needs. Again,
coming back around to the WEA server, all of this is standards-based work,
so it is possible to plug different elements into the infrastructure and
leverage the code across platforms. Users not being locked into a technol-
ogy and using the standards allows reference implementations on multiple
platforms (servers and devices).

AU3833_C40.fm Page 1100 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1101

To close out this transaction, assume we have a live connection and
the message is transmitted quickly. An acknowledgment comes back to
the device, and the order application is updated with a confirmation
number. At this time, a message may also get pushed to the device, where
an application bundle removes the items that were just ordered from
inventory, or the server sends a message telling the user that the inventory
database now must be synchronized. All of these tools are enterprise
functions enabled on the client device through SMF and bundle manage-
ment and the J9 JVM.

User Interface Considerations

Thus far, we have assumed a Web container presentation for this applica-
tion, but this class of applications has a number of user access mechanisms.
Although a Web container is assumed on every device for presentation, it
is possible to have a rich graphical user interface (GUI) experience on the
device, as well as even voice or multimodal applications.

Rich Graphical User Interface

The J2ME programming model provides for several classes of GUIs based
on the device characteristics. Mobile Information Device Profile (MIDP),
CDC/Foundation, and Personal Profile provide for native Java UI widgets
and rich user interfaces, but they raise the issue of coding different UIs
for different classes of devices. In addition, the Java widgets were designed
for desktop systems, and on embedded devices they can be very limiting.

The Standard Widget Toolkit (SWT), introduced with the Eclipse™
platform (more on Eclipse later in this chapter) was designed to be a
rich widget toolkit that maps easily to native widgets for a platform.
(“Easily” meaning that for application programmers it is easy, but quite
a bit of work for the Eclipse development team to port to dif ferent
platforms. That is really the goal of all of this, though — to make it
easy for the application developer.) The SWT runs across multiple
platforms and has an embedded version under development at the time
of this writing. This means that it is possible to create a user experience
much richer than just browser-presented forms and have it consistent
across the range of client devices supported. The use of standards-
based enterprise elements results in very low maintenance costs across
the range of devices in the infrastructure. Looking back at Figure 40.2,
this is the UI services layer of the client stack.

AU3833_C40.fm Page 1101 Friday, August 18, 2006 4:24 PM

1102

■

Mobile Middleware

Other User Interfaces

Although we can create rich GUI interfaces with the core J2ME API, the
IBM product portfolio includes other user interface technologies that can
be used with the client stack. One such example is voice-enabled appli-
cations. The UI access services layer has a number of extension points
that allow plugging in different user access methods. In the case of voice,
the WebSphere

®

 Voice Server and Voice Application Access Server provide
voice browser and voice portal functions, respectively. They can be put
into the infrastructure and, again, because of the adherence to standards,
can be used as a user access device in place of, say, the visual browser.
Applications could be written to emit VoiceXML (another industry stan-
dard) rather than Hypertext Markup Language (HTML), and, with the voice
servers connecting to the application via Hypertext Transfer Protocol
(HTTP), just like a visual browser, a voice-enabled device could access
these enterprise services, as well.

Voice access adds another dimension to the mobile experience because,
let’s face it, devices are getting smaller but our fingers are not. By putting
a voice server in front of this entire mobile infrastructure or, alternatively,
putting a voice engine and the browser inside the device, we can extend
access to devices that may otherwise be out of reach for enterprise
applications. Examples would include devices that traditionally have no
keyboard, mouse, or screen or perhaps situations where hand- and eye-
free operation is essential (for example, a system built into an automobile).

Because of the componentized nature and standards used by WEA
and the enterprise mobility stack, again you can see how you can easily
plug in components to enhance the user experience.

Eclipse, the RCP, and SWT

Another facet of the rich user experience is the Workplace Client Tech-
nologies, Micro Edition (WCTME). WCTME is the marketing term for the
client described in this chapter, with yet another user access alternative.
The Eclipse project (http://eclipse.org), an open source project, was
originally conceived as a plug-in framework for writing software devel-
opment tools. It has morphed into a more general-purpose platform —
specifically, the core Eclipse platform of a plug-in architecture, tool bar,
help subsystem, and update manager framework. On top of that is a
graphical editing framework, a source editing framework, project naviga-
tors, builders, wizards, and other tooling functions. It was discovered that
Eclipse can be a very nice general-purpose, plug-in framework when the
software-tooling-specific functions are dropped.

AU3833_C40.fm Page 1102 Friday, August 18, 2006 4:24 PM

Mobile Middleware for Integration with Enterprise Applications

■

1103

In version 3, Eclipse adopted the OSGi framework for the foundation
of the plug-in architecture because of the dynamic load/unload nature
of bundles, as well as the JVM sharing and bundle provisioning features
mentioned earlier in this chapter. So, now the Eclipse platform turns
into a general application platform, a rich user interface alternative to
Web container application presentation. This general-purpose platform
is called the Rich Client Platform (RCP). Along with SWT, RCP has an
embedded version (eRCP) under development to run on small footprint
devices.

Eclipse and SWT are ported to different platforms, and when that
happens it is possible to write applications with a rich UI to Eclipse
on that platform. The Eclipse RCP and SWT allow us to write applica-
tions to the Web container user interface, replace the browser with
voice access, use the core J2ME UI frameworks, or completely forget
about what OS is running on the device and write a rich UI to the RCP
and SWT. Doing so further insulates users from the underlying operating
system platform, and they do not have to worry whether the application
will be deployed to Windows, Linux, or any other platform under
Eclipse. Best of all, this is all, once again, standards based (SWT and
open source Eclipse, OSGi, and Java), thus providing the flexibility to
mix and match as desired.

Application Development Tools

The remaining piece to any application development puzzle is the tools
that developers use to write the applications. IBM offers a toolkit based
on Eclipse, called the WebSphere

®

 Studio Device Developer (WSDD).
This toolkit targets J2ME devices and enables a set of extensions (plug-
ins) to allow development of OSGi bundles and linkages to other
enterprise middleware functions such as Web services. WSDD provides
linkages to the Rational

®

 tools, such as Rational Application Developer
(RAD) and Rational Web Developer (RWD). Specifically, if a copy of
RAD or RWD is detected when WSDD is installed, WSDD can be
installed either separately and distinctly from the Rational tools or as a
linkage. If the latter option is chosen, end-to-end application develop-
ment is enabled in one Integrated Drive Electronics (IDE) interface,
from the J2EE, database, and Messaging and Web services artifacts to
the RCP/SWT and client/bundle functionality. The full details of the
toolset are beyond the scope of this book, but information can be
obtained from the IBM Web site or the link mentioned in the chapter
summary.

AU3833_C40.fm Page 1103 Friday, August 18, 2006 4:24 PM

1104

■

Mobile Middleware

Final Thoughts on Enterprise
Integrated Mobile Middleware

This chapter has illustrated how enterprise applications can be made
mobile through the OSGi stack; current presentation standards including
Web container, Eclipse RCP, and SWT; and advanced UI alternatives such
as voice access. This picture has actually been available in varying flavors
for a while now, and recently IBM delivered a fully functional server that
can serve up any or all parts of this infrastructure in WEA. WEA is the
mobile-middleware-enabling server that provides the services for WCTME
clients. How the server components are configured in terms of what runs
on what boxes in the infrastructure depends on the business processes
that will be supported. The net result is that a standards-based, flexible,
full-functioned server and client infrastructure exists today for mobile
access to enterprise applications. Readers can learn more about this
infrastructure and obtain a working case study, complete with code, by
looking for the IBM Redbook number SG24-6496.

AU3833_C40.fm Page 1104 Friday, August 18, 2006 4:24 PM

1105

Chapter 41

Context Middleware for

Adaptive Mobile Services

Theo Kanter, Carl-Gustav Jansson, Martin Jonsson,
Fredrik Kilander, Wei Li, Peter Lönnqvist,
and Gerald Q. Maguire, Jr.

CONTENTS

Introduction... 1106
Motivations .. 1106
Challenges.. 1107
Adaptive and Context-Aware Services .. 1107
Related Work ... 1108

Service Architecture Framework.. 1109
Introduction ... 1109
The Context Information Network .. 1109
Context Networks Using the SIP Presence Framework 1110
Context Information Networks .. 1110
Context Sensing... 1112

Physical Sensors .. 1112
Software Sensors ... 1112

Distributed and Shared Context Sensing .. 1113
Context Description Language... 1113

Context Managers.. 1114
Context Servers.. 1115

AU3833_C41.fm Page 1105 Friday, August 18, 2006 4:53 PM

1106

■

Mobile Middleware

Context Repository.. 1117
Processing Context Information .. 1118

Context Refinement .. 1118
Context Subscriptions ... 1119
Reasoning Issues ... 1119

Context-Aware Service Discovery.. 1120
Approach ... 1120
Peer Discovery Protocol in LANs and MANs ... 1121
Peer Discovery in Personal Area Networks ... 1122

Bluetooth-Capable Devices .. 1122
Bluetooth- and WLAN-Capable Devices ... 1122

Proximity-Based Discovery... 1123
Proximity Detection .. 1123
Service Allocation.. 1124

Discussion .. 1126
Service Description Format .. 1126

Managing and Protecting Context Information .. 1127
Protecting Privacy in a Public Service Infrastructure............................... 1128

Mobile Applications and Services ... 1129
Context-Aware Call Delivery .. 1129
Automatic Call Diversion.. 1130
Opportunistic Communication ... 1130
Context-Aware Mobile Audio... 1131
Field Trial... 1131

Conclusions ... 1132
Accomplishments .. 1132
Lessons Learned .. 1133
Future Work... 1133

Third-Generation Mobile Networks ... 1133
Service Aggregator .. 1134
Security, Privacy, and Trust.. 1134

Acknowledgments... 1134
References ... 1135

Introduction

Motivations

Increasingly, wireless access becomes heterogeneous, consisting of cellular
systems interspersed with IEEE 802.11 wireless local area network (WLAN)
access and other access technologies (3G and beyond). This poses new
challenges for delivering services to users who move about in such a
heterogeneous infrastructure. Users of mobile communication can access
services via multiple access networks with varying properties in terms of
price, data rates, latency, error rates, etc. Multiple devices may be used

AU3833_C41.fm Page 1106 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1107

to interact with services, which further adds to the complexity faced by
a user. Some of these devices will allow truly mobile access due to their
form factor, function, etc. (e.g., mobile phones or mp3 players with
wireless interfaces); therefore, to facilitate mobile communication, we must
enable automatic rearrangement of communication, services, and interac-
tion with services. New usage patterns are expected to emerge as a result
of minimizing the effort required by users to arrange and manage their
communication, services, and interaction.

Adaptive

 services can make

opportunistic

 use of available communication. In addition, adaptive ser-
vices must be centered around the user, as we can no longer rely on a
single network or single operator to arrange and manage these services.
This has caused us to investigate new architectural choices that move
service control and coordination closer to the user.

Challenges

A number of challenges must be addressed as a result of this approach.
Relocation of service control and coordination mandates investigating the
properties of a service architecture that centers services on users, devices,
and objects that people may use. These services as well as the arrangement
and the delivery of services must take into account the goal the user is
trying to achieve. Information from sensors provides data related to the
user’s communication or to the user’s context; this defines a service

context

. Thus, services can adapt and hence can be context aware. How
do we model such context data? How do we create or refine context data
from raw sensory data? Given that context data is available, how do we
make it available to different entities that participate in arrangement of
the service? How can context data help minimize the user’s exposure to
an increasingly diverse infrastructure? Finally, what are the benefits of
adaptive services for mobile users?

Adaptive and Context-Aware Services

The Adaptive and Context-Aware Services (ACAS; see Figure 41.1) research
project [1] at the Center for Wireless Systems at KTH is part of the Adaptive
Wireless Service and Infrastructure (AWSI) research program [2]. ACAS has
investigated the specific challenges involved in creating support for groups
of users who move within a heterogeneous wireless infrastructure to utilize
adaptive user-centric Internet services. The ACAS project identified three
main research areas: (1) adaptive user interaction with services, (2) seam-
less adaptive services, and (3) a smart adaptive infrastructure.

AU3833_C41.fm Page 1107 Friday, August 18, 2006 4:53 PM

1108

■

Mobile Middleware

Related Work

Numerous attempts have been made to create context-aware systems
supporting personal mobility and context awareness. Here, we address
only those that are most relevant to the challenges listed earlier. The
Aura project [3] and related work on SenSay, a context-aware mobile
phone [4], are investigating how a small set of sensors may relieve the
user from being constantly aware of and having to manage the state
of the telephone. The Solar system [5] is a prototype implementation
of a graph-based abstraction for context collecting, aggregation, and
dissemination of (sensor) generated events passing one or more oper-
ators and finally being delivered to a subscribing application. The
Context Toolkit [6] supports the development of context-aware appli-
cations using context widgets that provide context information to appli-
cations. The lowest level interfaces to a physical sensor, the middle
layer is concerned with abstracting and combining data, and the highest
level coordinates the underlying components and provides a callback
interface to applications.

The Web Architectures for Service Platforms (WASP) [7] was designed
to support context-aware applications specifically in a 3G environment.
Use of Web services technologies and the WASP Subscription Language
(WSL) to communicate with the platform connects context-aware appli-
cations with context providers (sensors) and third-party service providers.

Figure 41.1 Overview of the ACAS project.

AU3833_C41.fm Page 1108 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1109

The Context Recognition by User Situation Data Analysis (Context) Project
[8] studied the characterization and analysis of information about users’
context and how to use it in adaptation. The project developed a context-
aware application on a Nokia smart phone that predicts its owner’s
behavior as it learns about the user’s preferences by logging calls and
user location and noting when applications such as cameras are used.

Service Architecture Framework

Introduction

In response to the challenges outlined earlier, the ACAS project endeavored
to design mobile middleware that would enable plug-and-play services
in both the local area and the wide area with a minimal set of

a priori

knowledge, going beyond the design goals of Universal Plug and Play
(UPnP™) or Jini™ [9]. This mobile middleware is intended to enable
automatic configuration of services between entities without having to
know the services or their properties beforehand.

The Context Information Network

The proposed infrastructure for supporting adaptive and context-aware
services and applications is a context information network, which
acquires context data from sensors, processes context information, and
distributes context information to context managers (CMs) within the
context information network to make it available to services and appli-
cations via context APIs. The context information network provides
context management, context manager discovery, and policy-based
management. The proposed service architecture of the context infor-
mation network consists of application-layer entities (Figure 41.2) with
three different abstraction levels:

Figure 41.2 Service architecture layers.

AU3833_C41.fm Page 1109 Friday, August 18, 2006 4:53 PM

1110

■

Mobile Middleware

■

Application level

 — The application level has end consumers of
context information closest to the applications. Applications them-
selves are typically not interested in low-level sensor data; instead,
they prefer to react to particular abstractions such as: “A friend is
close right now.”

■

General level

 — The general level is where context is distributed
and abstractions of a general nature are created.

■

Sensor level

 — This level is closest to physical or virtual sensors. This
level transcribes or interprets sensor readings into context information
languages that can be subjected to generalization by reasoning.

Context Networks Using the SIP Presence Framework

The previous subsection proposed a context information network as an
intermediate middleware layer for the acquisition, processing, and distri-
bution of context information. The purpose of this middle layer is to
connect producers and consumers of context information and enable
application-level entities (e.g., people, meeting places, robots) to find
services and facilitate automatic decision making regarding the allocation
and invocation of services, using available devices and resources.

The Internet Engineering Task Force (IETF) SIMPLE working group
extended the Session Initiation Protocol (SIP) by creating SIP for Instant
Messaging and Presence Leveraging Extensions (SIMPLE) [9]. These exten-
sions, together with presence and watcher information event packages, the
publish mechanism for presence, and the event notification extension for
collections fulfill important requirements derived from the challenges out-
lined above; therefore, we chose SIMPLE as the base for our context
information delivery infrastructure and extended it to create a context
information network. This choice of framework was also important as far
as providing input regarding future steps in standardization efforts in the
3rd Generation Partnership Project (3GPP) in liaison with the Open Mobile
Alliance (OMA). Both efforts focus on creating an application and service
infrastructure based on SIP/SIMPLE. Furthermore, our choice of SIP as the
underlying protocol was not only because of its popularity and availability,
but also because it provides user addressing, session initiation, and control;
however, our middleware goes beyond simply that of a SIP/SIMPLE infra-
structure, as will be seen as we examine the details of the middleware.

Context Information Networks

A context information network has context sources and context-aware
applications, distributed over a set of mobile and fixed devices. As the core
of our context network infrastructure, we propose

context management-

AU3833_C41.fm Page 1110 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1111

enabled entities

 (CMEs; see Figure 41.3). Applications connect these CMEs
to access relevant context information. By interconnecting these CMEs,
requests for context information can be forwarded between entities, allow-
ing for context information to be shared between applications and between
devices. Interconnected CMEs form a context information network in
which subscribers and publishers may deliver their context information
(Figure 41.3).

We argue that general context information distribution can be efficiently
achieved by establishing a network of CMEs. These CMEs have a uniform
core that is surrounded by the appropriate functionality to make it deploy-
able in applications, have a user and organizational infrastructure, and
are on top of sensors (Figure 41.4). Context information in the network

Figure 41.3 Context management entities.

Figure 41.4 Generalized context management entity.

AU3833_C41.fm Page 1111 Friday, August 18, 2006 4:53 PM

1112

■

Mobile Middleware

is likewise expressed in a common form to facilitate rule-guided selection,
translation, and inference. When access to the context manager is mediated
and policed, we say that it is a

context service

, a publicly recognizable,
addressable, and tangible entity. Clients wishing to consult a context
manager for updated context information use the service interface (API)
where they may or may not be served for reasons of security, personal
integrity, or workload [11].

The CMEs consist of a context manager and a context server (the client
and server part of the context management network). Context-aware
applications access managed context information through the context
server API. The context server uses service policies to make decisions
regarding whether to serve a request or not and passes them to the context
manager for processing and management. CMEs use the SIP for addressing
and accessing other local or remote CMEs and can use the Context Data
eXchange Protocol (CDXP) [12] to transport context information directly
between hosts, which is more efficient than SIMPLE; this is important for
wireless links.

Context Sensing

Context information originates in sensors. Sensors measure features of the
physical world (such as temperature or acceleration) or logical properties
of a computer system (such as disk allocation, service availability, or an
error condition).

Physical Sensors

The information available from a physical sensor is usually in the form
of a number or string label. Very often the raw sensor data must be
interpreted according to some model to be meaningful. The conversion
to a meaningful temperature that includes the relevant units is assumed
to be done by appropriately written, installed, and calibrated driver
software. The driver can reuse the same physical reading to present a
number of interpretations (e.g., Fahrenheit, Kelvin, or Celsius). Depending
on the connection topology, the same driver instance may utilize several
physical sensors in different locations or a group of sensors that cluster
around a shared power and communications resource.

Software Sensors

Software sensors are typically built into software, and the properties they
measure are based on the behavior and particulars of other software. One

AU3833_C41.fm Page 1112 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1113

particular software sensor of interest is the service sensor. The sensing
part of the service sensor has components that are able to detect the
presence of services such as file servers and printers. Service sensing and
detection techniques are typically employed in client–server systems where
clients discover services dynamically.

Distributed and Shared Context Sensing

In addition to SIP, the context manager is also able to communicate using
CDXP [12]. This allows for more efficient transportation of context infor-
mation, which is advantageous when local applications wish to commu-
nicate with the context manager, as they may use the loopback interface
to achieve inter-process communication. When the IP address of an entity
is known, CDXP may also be used to minimize overhead and delay.

The Sensor Sampling Control Protocol (S2CP) [12] and CDXP are two
core components of a context-aware infrastructure. CDXP is used for
subscribing to and sharing context information between CDXP clients and
servers — for example, as shown in Figure 41.5 located on a corresponding
host (CH) and a mobile host (MH), respectively. S2CP is used to control
sampling of sensors. A CDXP server will trigger a S2CP component as
needed to obtain local sensor information to serve requests.

Context Description Language

The context description language used in the ACAS project is based on
the eXtensible Markup Language (XML). The central item of the language
is the context element, an object composed of the following attributes (all
names are in the ACAS namespace):

Figure 41.5 Acquisition of sensor data.

AU3833_C41.fm Page 1113 Friday, August 18, 2006 4:53 PM

1114

■

Mobile Middleware

id

 — A unique identifier

value

 — The value of a property of some entity

datatype

 — The datatype of the value, such as integer, real, string,
or XML

unit

 — The property to which the value refers

entity-reference

 — The Uniform Resource Identifier (URI) to the
entity that the context element describes

time

 — Time and date when the value was captured or composed

source uri

 — The URI to the entity that captured or composed the
context element

source content

 — Optionally, a description that explains the context
element

Here is an example of a context element formulated in XML:

<acas:contextelement id="123c">

<acas:value datatype="integer"

unit="temperature/kelvin">292</acas:value>

<acas:entity-reference rel="acas:dsv.su.se/k2/r7741/t"/>

<acas:time>Sat Apr 24 00:05:21 CEST 2004</acas:time>

<acas:source uri="uri:acas:dsv.su.se/k2/csf/apax"/>

</acas:contextelement>

Context Managers

Context information originates in sensors; it is made available by publish-
ing and reaches clients through subscriptions. The gap between funda-
mental sensor information and the abstract relationships convenient to
end-user applications is bridged by context refinement. This refinement
occurs in the CME’s refiner. Adaptation and context-based responses can
extend the standard behavior of an application. It is desirable that the
effort of extending an application with context awareness is small, thus
increasing the probability that application writers will use context infor-
mation. Another consideration is that many different applications are likely
to benefit from the

same

 context information. Location, for example, is a
powerful concept that can be exploited in many ways; thus, it is likely
that several applications concurrently executing for the benefit of a par-
ticular user can utilize the same location information and hence should
share subscriptions. We hypothesize that endpoint applications in a context
information network are best served by subscribing to a minimum of
information. In practice, this means that they will receive only context
data elements with abstractions that are

directly

 and

immediately relevant

AU3833_C41.fm Page 1114 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1115

to the application (thus using the

correct

 minimum of information). This
simplifies the matching process in the application, as it reduces the size
of the state description that must be maintained, and (for battery-powered
and wireless units) it reduces the amount of information that must be
exchanged across the network.

Our approach is to avoid duplication of effort and to move context
refinement out of the applications and into the context data network. This
is achieved by allowing the clients to program the context manager. In
the simplest scenario, applications pass a set of context rules (originally
provided by the application developer) over the context API and are
subsequently notified whenever the state description generated by the
output of the rules is updated.

Context-sensitive applications on a laptop or personal digital assistant
(PDA) would benefit from an onboard context service. If the context
managers embedded in the applications can pass on their subscription
requests to a device-specific context service, they will each require less
processing and memory to serve their applications. The device context
service in turn will be able to collapse subscriptions for common context
information (e.g., location) and thus reduce network traffic. The details
are given later in this chapter.

Context Servers

The context server provides a gateway to the context manager and thus
polices access to the information within. This is necessary because there
may be situations when the owner of the context server is willing and ready
to share parts of the context repository with certain other clients. Policing
subscription requests means that the request must be evaluated, accepted,
or modified before being submitted to the context manager; for example,
the user may be willing to share fine-grained location information with
personal friends and coarse-grained location information with an employer
or customers, but may prefer to reveal no location to everyone else.

The context server aggregates, refines, or creates context information
for one or more subscribers. In general, the CME has a service interface,
a refinement and subscription module, and a client role. Remote subscrib-
ers announce themselves and their needs on the service interface. The
CME splits the subscription into two parts, one that it believes it can
answer locally and one that must be obtained by resubscribing at other
CMEs in its client role. When updated context information becomes
available, the CME notifies each subscriber according to the local part of
the subscription. We believe CMEs have three distinct and vertically
ordered classes (see levels provided earlier).

AU3833_C41.fm Page 1115 Friday, August 18, 2006 4:53 PM

1116

■

Mobile Middleware

The application-level CME (Figure 41.6) is loaded or consulted by an
application to serve that application with context information. In this case,
the CME’s service interface is likely to appear as a separate thread of
execution, controlled by a set of functions in the application’s address
space rather than as a remote service, although the latter is not prohibited.
Likewise, notifications from the CME are implemented as callbacks to
functions specified by the application, again within the address space of
the application.

The general CME (Figure 41.7) appears as a stand-alone service,
running either in a single instance on a small device or on behalf of a
user or organizational element on a persistent and connected server
computer. A general CME implements the full remote service interface
and client role, as well as the capacity to host multiple subscribers. A
sensor CME (Figure 41.7) transforms sensor data to the context description
languages in use. This CME has the full service interface and subscription
machinery, and the client role is replaced by access mechanisms to
whatever sensors this CME supports.

Typically, each context-sensitive user application would be equipped
with an instance of an application. Each of the user’s computers (PDA,
laptop, PC) would have a general CME local to the device which consults
a persistently installed general CME dedicated to the user. The user’s
personal general CME is distinguished, not because of its technology
but by its role. Its peers are the personal CMEs of other users and those
CMEs that represent parts of the environment (rooms, stores) or an
organization.

Figure 41.6 Application-level CME.

AU3833_C41.fm Page 1116 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1117

Distributed throughout the network, running on whatever hardware is
appropriate, are sensor CMEs. These provide underlying data that is
transformed into information. Access to context information is controlled
by a set of policies in the context server of each CME. We do not specify
how these are to be defined, expressed, or implemented, nor do we
dictate how clients identify themselves or the mechanism used to authen-
ticate them. All this is future work.

Context Repository

To maintain state descriptions for client applications, even though the
clients themselves are not online, a user’s personal general CME generally
executes on a robust, stationary, and main powered processor, with access
to nonvolatile storage. This context repository of the CME is the primary
store of context information that has been requested by a CME’s owner.
This repository could be layered on top of a database management system
so the CME can be restarted without adversely impacting applications.
This context repository is updated based on sensor data or context data
arriving from other CMEs. Due to the ephemeral and time-varying nature
of the data, the CME is not obligated to retain the information in the
repository longer than is needed to serve the current set of subscriptions.

Figure 41.7 General (left) and sensor (right) CMEs.

AU3833_C41.fm Page 1117 Friday, August 18, 2006 4:53 PM

1118

■

Mobile Middleware

If resources are limited, then the CME should reject new subscriptions,
rather than attempting to serve the current set of clients with insufficient
resources.

Processing Context Information

Processing of context information ideally occurs on three distinct levels,
as presented earlier. At the lowest level, sensor readings are converted
into observations expressed in a suitable format, thus becoming context
information. On the top level, applications consume these observations
or abstractions drawn from them and adjust their behavior to comply
with application-specific logic. Between the top and bottom levels,
middleware in the form of a network of CMEs ensures that context data
is routed and abstracted according to the needs of applications. Our
central concept builds upon a context management entity. A CME must
have the ability to cater to several subscriptions simultaneously; there-
fore, at the application library level, multiple threads are used. Below,
we provide some of the details about modules present in a context
management entity.

Context Refinement

Context refinement and subscriptions are unified in the Tryton rule lan-
guage, an experimental production language developed by the ACAS
project for this purpose. Essentially, when a client wishes to subscribe to
context, it composes a Tryton program in which production rules imply
the necessary context information. The left-hand side of each rule requires
the corresponding context information to be available in the context
manager, and the right-hand side specifies the context element that is to
be sent to the client. The context manager must examine the left-hand
side of each rule and assign it the following properties:

■

The context relation is known and can be provided locally (as in
the context manager for a sensor).

■

The context relation is local to the rule set (an abstraction produced
by the right-hand side of other rules in the subscription).

■

The context relation is unknown and must be subscribed for
elsewhere.

For the last case, the local context manager turns to other context managers
that have knowledge and requests subscriptions as needed.

AU3833_C41.fm Page 1118 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services

■

1119

Context Subscriptions

Publishers and subscribers are the writers and readers of context informa-
tion that have a means to communicate and therefore are able to establish
a subscription relationship. A subscription consists of two parts: (1) a
header with essential properties (such as the address back to the client)
and (2) a Tryton program that specifies the context to retrieve. When the
context repository has accumulated a sufficient data set, the Tryton program
is executed against it and any productions it yields are sent back to the
subscriber. A subscription should include at least the following properties:

■

The subscription ID

■

Address of the subscriber

■

A matching expression provided by the subscriber

■

A matching expression used by the publisher

■

Expiration time of the subscription

■

Confirmation interval of the publisher

■

Minimum update interval of the subscriber
■ Credentials provided by the subscriber

As can be seen from the example of the context rule provided below,
the subscriber needs to subscribe to context elements that contain the
location of user fk. The current value of this element is then compared
against the temperature readings currently available in the state descrip-
tion. To find a match and thus deduce the temperature in fk’s current
location, a subscription for the corresponding elements must exist. In our
example, we know that there exists a dependency between the result of
the user location pattern (the inner select in the Structure Query Language
[SQL] code example) and the subscription for temperatures. Whenever the
location of user fk changes, the temperature subscriptions must be reeval-
uated and possibly modified.

SELECT value FROM state
WHERE unit = ’temperature/celsius’
AND eref = (SELECT value FROM state

WHERE unit = ’location/room’
AND eref = ’staff/fk’)

Reasoning Issues

Each Tryton rule in a subscription can examine a copy of a simple element
found in the context repository, or it can also execute a computed element
(based on several elements, including the output of other rules from the
same subscription). This enables the Tryton language to create abstractions

AU3833_C41.fm Page 1119 Friday, August 18, 2006 4:53 PM

1120 ■ Mobile Middleware

based on the state of the context repository; however, the unbounded,
forward-chaining nature of the language makes it a potential efficiency
hazard, not to mention the considerable problems with respect to ontol-
ogies and how to choose and express them. This is not particular to the
Tryton language but is a general concern for any effort to perform
automated abstraction. A typical example of a Tryton rule is one that
equips an entity that has a location with the Centigrade temperature of
that location if a Kelvin reading is available. In the rule, variables corre-
spond to context elements in the context repository; strings such as
location, eref, and unit are properties of an element. Running the
rule involves making all possible matches of variables to elements and
evaluating the condition. With more than two variables and a large context
repository, the effort is considerable, and as a result a potential efficiency
issue arises.

Context-Aware Service Discovery

Approach

We envision context-aware services that are built upon peer-to-peer net-
works. Service discovery is an important and required mechanism for
CMEs to find each other and to discover which one provides a given
service or where context information is located. Context managers should
be able to automatically formulate subscription requests for context infor-
mation by analyzing the rules given to them by applications. To subscribe
with useful sources (other context services), CMs must have some notion
of where to send them. Proximity-based detection combined with URI
exchange is one way to find this information [15]. Another way is to use
static configurations and long-term relationships with trusted parties who
always subscribe to the same information. The policies of a context service
to restrict uninhibited data exchange must be built upon longer-term
relationships or the existence of searchable directories over public context
information and context information sources. An example of “friend-of-a-
friend” information propagation is described in Delgado [16].

For service discovery in a local area network (LAN) or metropolitan
area network (MAN), we initially used SIP/SIMPLE for the acquisition and
exchange of context information between peers; therefore, we have inves-
tigated the conditions and possible design choices involved in using
SIP/SIMPLE in peer discovery and handovers for building reconfigurable
application networks in a heterogeneous infrastructure. As a result of this
work, we propose a Service Peer Discovery Protocol (SPDP) that uses
SIP/SIMPLE but is better targeted at supporting service discovery in LANs
and WANs than previous protocols (e.g., SLP). Details are provided below.

AU3833_C41.fm Page 1120 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1121

We also anticipate certain interesting scenarios in which the user moves
in and out of different local environments where support for context
information exists. Later in this chapter we cover specific requirements
and methods for both local and remote service discovery in Bluetooth®

personal area networks (PANs) and methods for proximity-based discov-
ery, in which Bluetooth is used as the carrier.

Peer Discovery Protocol in LANs and MANs

The Service Peer Discovery Protocol is designed to discover services
and to offer a model for negotiating services between endpoints without
requiring third-party negotiation [16,17]. SPDP is defined as an extension
of the SIP event framework [9]; thus, its messages are carried in SIP
packets and it inherits all the request routing and security features of
SIP, as well as using SIP for naming and localization of users. SIP event
notification defines two methods, SUBSCRIBE and NOTIFY, to handle
signaling of events. All the messages are expressed in XML following
the knowledge representation described earlier. In our prototypes, we
used a simplified representation of the entities and services organized
in taxonomy trees for straightforward and unique identification of the
resources. These simplifications did not affect measurements regarding
the performance of the discovery process but did avoid addressing
issues of ontology.

The protocol identifies two types of entities: (1) user agents, which
are uniquely identified by their SIP URIs as they move in the network
and which are served by zero or more (2) context registrar servers (CRSs),
which store peer presence and capabilities. A peer can locate a CRS using
SIP localization for servers, based on the Domain Name System (DNS).
The mapping of CMEs onto SDPD entities is straightforward, as CMEs can
be designed to assume the role of a SDPD user agent that is colocated
with the SIP user agent, or a CME can assume the role of a CRS that is
colocated with a SIP server.

The Service Peer Discovery Protocol has some characteristics that
distinguish it from other service protocols. It interacts very closely with
SIP, which it uses as a carrier for the protocol messages. SDPD uses XML
to represent the protocol information and has a more flexible represen-
tation of services as compared to the Service Location Protocol (SLP) [18].
SDPD relies on unicast to perform discoveries, which makes it better
suited for peer-to-peer communication in wireless scenarios. Delgado [16]
has shown that SDPD, in comparison with other approaches (e.g., SLP),
is more traffic and time efficient and much better suited in terms of
flexibility and scalability to support searches in peer-to-peer scenarios in
wireless networks, leveraging the expressiveness of XML.

AU3833_C41.fm Page 1121 Friday, August 18, 2006 4:53 PM

1122 ■ Mobile Middleware

Peer Discovery in Personal Area Networks

Service discovery is a basic function in a PAN. The properties of a PAN
differ from those of a LAN in two areas: (1) A PAN is a highly dynamic
environment, so service discovery must be carried out frequently to
maintain an up-to-date picture of the available services of the local
network; and (2) the service discovery protocol should minimize the use
of communication. The native Bluetooth Service Discovery Protocol (SDP)
is inefficient for several reasons [19] and should be enhanced to work
with services on top of the IP. In our solution, we considered two different
scenarios: (1) a PAN composed only of Bluetooth-capable devices, and
(2) a PAN composed of Bluetooth- and wireless local area network
(WLAN)-capable devices. In the latter case, context information about
Bluetooth devices and additional service providers, attached to an IP
infrastructure, are known in the WLAN and distributed via the WLAN to
the PAN gateway; thus, this information can be known in both networks.

Bluetooth-Capable Devices

In the case of Bluetooth devices, we enhanced the native Bluetooth SDP
with a coordinator-based service discovery [19]. Coordinator-based service
discovery relies on a central coordinator node that holds the complete
service information for all Bluetooth nodes in range. The coordinator,
however, must be a device with sufficient computational, power, and
memory resources. The result is that a device entering a PAN must establish
only one connection and perform only one service discovery process.

Bluetooth- and WLAN-Capable Devices

When the PAN is composed of Bluetooth- and WLAN-capable devices,
context information about Bluetooth devices and additional service pro-
viders attached to an IP infrastructure are known in the WLAN. In the
first scenario, we assume that one or more devices supporting both
Bluetooth and WLAN technology are present to access the services pro-
vided by the WLAN devices, and a Bluetooth device sends its request to
the coordinator. If the coordinator is not able to answer this request, it
forwards it to a node with access to other networks. In the same way, a
WLAN device that wants to request a service in the Bluetooth network
forwards that request to the node supporting both Bluetooth and WLAN
technology [19]. The implemented service discovery allows faster service
discovery than is otherwise possible with the native SDP for more than
one device and a coordinator in range; for example, if a user entering
the PAN discovers the coordinator before the end of the inquiry process,
the application can be much faster.

AU3833_C41.fm Page 1122 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1123

Proximity-Based Discovery

For a mobile user, we anticipate certain interesting scenarios in which the
user moves in and out of different environments where support for context
information exists. Detectors and emitters are mounted in fixed locations
or worn by mobile users (Figure 41.8). When two emitters and detectors
make contact, each notes the identity of the other (Media Access Control
[MAC] address or similar) and responds with a URI that is the address of
its own context service. The two parties, user and room, are now aware
of each other and can receive or exchange whatever context information
each sees fit to expose to the other.

Proximity Detection

We have developed a set of detection services for use in a ubiquitous
computing environment. The first implementation was based on the MICA
mote [20]. We equipped mobile users with motes to locate their positions
(based on stationary motes in known locations where users were likely
to be or to pass through). This did not turn out to be an efficient means
to discover the user’s location due to the time delay and uncertainty
regarding the ability of a mobile mote to establish communication with
another (stationary) mote in a new location; however, it is very cost
efficient to use motes to acquire context data about a static environment.

Another detection service we implemented is based on Bluetooth. It
runs on a desktop PC with a 3COM Bluetooth USB dongle with BlueZ (a
Linux Bluetooth Stack) installed on Redhat Linux 9.0. A nearby user carrying
a Bluetooth mobile phone or PDA will be discovered by this service. This
discovery process is reasonably fast (less than 2 seconds for five devices
simultaneously), as we only inquire for the Bluetooth device address
(BD_ADDR). The detection service then tries to obtain a vCard [22] from

Figure 41.8 Proximity-based discovery.

AU3833_C41.fm Page 1123 Friday, August 18, 2006 4:53 PM

1124 ■ Mobile Middleware

the discovered devices using OBEX [22], a standard protocol for informa-
tion exchange over Bluetooth supported by most Bluetooth mobile phones
and PDAs. If that attempt is successful, we can then extract a temporary
token from the “home address” field of the vCard file. Privacy issues this
approach raises are discussed further later in this chapter.

Please note that we have used the low-level Bluetooth device address
only for bootstrapping the association of the local infrastructure with a
user’s home personal CME (PCME) systems, not for identifying users. The
user and the user’s PCME are addressed by the temporary token set by
the user (or by autonomous applications) which is intentionally changeable
according to the user’s configuration (such as once an hour); however,
we are aware of the possibility of permanently identifying users via
Bluetooth device addresses. The reason why we selected Bluetooth for
our prototype was the wide support for Bluetooth by many commodity
devices, such as mobile phones, and its low power consumption.

The token generated from proximity detection in a Bluetooth cell could
be formatted as 12345@anonymizer, which gives the proxy’s domain
address (“anonymizer”) and a pseudonym-enabled neutral reference num-
ber (“12345”), which is the PCME’s address in that proxy. Only the proxy
knows how to map this reference to the user’s PCME address.

Service Allocation

One way to make portable devices such as cellular phones, PDAs, and
laptops even more useful is to interconnect them in a PAN; via this PAN,
a single dual-interface device could enable all local devices to access
services in other networks. To be able to reach the devices in the PAN
from outside in a simple manner, some location-independent form of
addressing may be used. One attractive approach is to use SIP. For a user
anywhere in the Internet, SIP enables that user to reach another user
within the PAN by an address that does not depend on where the user
is located. To make life more convenient for the callee, the selection of
device for an incoming multimedia invitation can be made automatically,
by utilizing context information when selecting the device; consequently,
a method is necessary for allocating services to the devices that are most
suitable for the service and for the moment. The current context in the
PAN will affect this decision. This context information includes the current
status and capabilities of devices, the user, and the user’s surroundings.
The environment of a PAN is dynamic so this context information may
change. This knowledge has to be reflected in the service allocation.
Jansson [23] has investigated and proposed a context-driven, policy-based
method for how this service allocation is best performed, building on the

AU3833_C41.fm Page 1124 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1125

results of Avgeropoulos [24]. The Context-Aware Service Allocator (CASA)
system eases communication between users in two ways.

The allocation will be based on context information from the PAN, user
settings, and information contained in the incoming request (e.g., the media
descriptor located in the SDP body); consequently, high demands are
placed on the accuracy of the context information. The decisions made by
the CASA must always be based on up-to-date information. A goal of the
system design is to provide the allocating algorithm with information that
is as current as possible.

The CASA system acts as an SIP proxy server to devices in the PAN
that register with it, hence it provides a registrar server. This local registrar
will work closely with the location service, which keeps mappings between
the network address and the SIP address stored in a hash table. Observe
that the SIP addresses registered at the CASA will only be used internally.
The location service will later be used when a service allocation occurs
and the network address is required to locally route the SIP message to
the appropriate device; thus, CASA acts as a proxy. Each device will be
managed by a service controller (SC) (see Figure 41.9). This SC is respon-
sible for communication with the device, and consequently an incoming
message will be passed on to one or more SCs by CASA. The service
allocation process determines which SCs will be selected if the message
is not part of an existing transaction. If it is, the message will be sent to
the SC that is already participating in the transaction. All communication
between the PAN and outside nodes will go via CASA, which works as a
switch for these SIP messages. When a register request is received from a
device in the PAN, it is switched to the registrar.

Figure 41.9 Context-aware service allocation.

AU3833_C41.fm Page 1125 Friday, August 18, 2006 4:53 PM

1126 ■ Mobile Middleware

Discussion

Performance measurements related to CASA considered three different
methods for fetching context information:

■ On-demand information fetching — When an incoming request
arrives, the IC will be consulted to get context information. The
IC connects to the context management network and queries the
CME for the information.

■ Prefetching — The IC will periodically contact the context infor-
mation network and fetch context information that will be stored
locally.

■ Call-backs — The CASA will be fed continuously with fresh infor-
mation in the background, such that when the information is needed
by the discovery agent it will already be there, fully updated.

We have seen that the context information fetching method affects the
accuracy of the allocation, utilization of the context management network,
and delays associated with allocating a service request in different ways.

Jansson’s thesis [23] discussed the different tradeoffs and performances.
Depending on the algorithm, the allocation time can be as low as 10 msec
for 100 devices; for example, prefetching (at a 1-msec interval) can make
a difference but should not be done uniformly. CASA should use prefetch-
ing for a period of time and then fetch on demand before switching back
to prefetching when the delays add up above a certain threshold. CASA
would benefit from a service discovery method that could identify available
services and include them in the set of services provided in the PAN. Such
protocols exist [19] but are not yet integrated.

Service Description Format

The proposed service description format consists of several parts. First, each
service is identified with service name and a globally unique service ID:

<service name="ProjectorControl7514"
id="hostname.dsv.su.se:foobar"
targetNamespace="urn:acas:servicedescription"
xmlns:acas="urn:acas:servicedescription"/>

The next part consists of static metadata concerning this instance of the
service, relating mostly to the function of the service. The dominant part
is a keyword list that can contain any number of keywords to be used
when querying for services. The readable-description tag becomes very
important in semiautomatic service discovery tasks, where in the end a

AU3833_C41.fm Page 1126 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1127

user has to make a selection among a selection of services, and this tag
is what is presented to the user:

<serviceDescription>

<readable-description>

"Projector control service for the projector
in lab room 7514"

</readable-description>

<serviceType>

"projectorControl"

</serviceType>

<keywordList>

<keyword>projector</keyword>

<keyword>projectorControl</keyword>

…

</keywordList>

…

</serviceDescription>

Because the description format is intended to be a metalevel format,
it contains only information that is related to the service discovery process
and little information regarding how the service is to be invoked, which
methods it uses, etc.; however, the document must contain pointers to an
instance of the service for the description to be useful. Additional descrip-
tions provide information on how and where the service is implemented
and the protocols the service implements for communication.

One of the main reasons for inventing a new description format is to
make it possible to provide information about the context in which the
service is embedded. This information is encoded in the same context
information protocol as the context information for the sensor data used
within the rest of the system — namely, in the form of context element
records. By using the same context representation, the same rule machin-
ery can be used to process the service description documents to enable
context-aware service discovery. The context information embedded with
the document could contain information about the location of the service,
if it is owned by a specific person, etc.

Managing and Protecting Context Information
In the case of managed networks, the operator can access and collect
context information in context registrar servers (CRSs) and set access
policies to ensure privacy. In an unmanaged network consisting of peers,

AU3833_C41.fm Page 1127 Friday, August 18, 2006 4:53 PM

1128 ■ Mobile Middleware

the users themselves must set policies to protect their privacy. A CRS
must, as is true for any service, protect its resources against abuse, mischief,
and other kinds of unauthorized intrusions. Because we are dealing with
data captured by real-world sensors and the possibility that the data can
be used for monitoring and tracking a user, the information must be used
appropriately on behalf of the user. To this end, we assume that access
to a CRS requires proper authentication by the client and a means is in
place for the CRS to verify this authorization. Obviously, this does not
prevent a public CRS from accepting anyone as a client (i.e., providing
public context information to all who ask). Once the client’s identity has
been established, three kinds of filters may be applied before the client’s
subscription is incorporated in the context server’s set of requests.

The first of these filters is the server policy, which specifies the general
conditions under which to accept a request or not, without any particular
focus on the identity of the client; instead, the server policy is concerned
with computational resources and possibly priorities between categories
of clients. The second filter is the sharing policy, where access to sensitive
information is regulated on a per-client basis, very similar to user rights
in a database management system. Note that this policy is local to the
context service instance; no central authority exists to fall back on, and
if a distribution system is in place it must be able to cache policy definitions
for use in fragmented networks. Finally, the third filter is the abstraction
policy. It is an elaboration of the second one which makes a binary
decision. With an abstraction policy, it becomes possible to serve part of
a request, without giving complete information. The location of a person,
for example, can be given with high accuracy to family, friends, and
rescue services, while other people and organizations may have to be
content with less detail.

Protecting Privacy in a Public Service Infrastructure

To simplify context acquisition about a physical or virtual environment
(e.g., a room, a vehicle, an organization, or some real or abstract bound-
ary), we define a CME that has context generators attached to hardware
sensors that measure physical properties or software sensors that measure
computation and communication properties of the CME. To protect the
user’s real identity in their communication with context-aware systems
(Figure 41.10), we introduce the Anonymizer proxy, which is designed to
hide the real communication address from others even if they have been
granted some (context) information access. In other words, through the
proxy, the communicating parties can exchange information (such as
context) without revealing their communication addresses and real-world
identities. This behavior is also referred to as pseudonymous access. It is

AU3833_C41.fm Page 1128 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1129

analogous to the scenario where people in an online chat room establish
discussions without knowing each other.

The Anonymizer proxy is situated between the communicating parties
(e.g., the context consumer and provider). It translates between some
temporary address and the real communication address, and then it delivers
the message (reconstructed) to the destination party. To achieve better
privacy, more than one proxy can be placed between the communicating
parties. This is comparable to mixers in anonymous networks [25]. We
expect that an Anonymizer proxy could be provided as a commercial
service as with a mixer, with the larger the volume of use, the better.

Mobile Applications and Services
This section discusses results from previous prototypes, works in progress,
and a field study in the ACAS project.

Context-Aware Call Delivery

In the case of call delivery in an SIP telephony infrastructure, the user
may have several options regarding how to receive the call, depending
on available devices in a certain location. Available devices could be
shared or personal. Requiring the user to make manual decisions would
burden the user. Ayrault [19] demonstrated automatic discovery of devices
with mixed Bluetooth and WLAN capabilities that are near the user. As
noted earlier, service allocation can be as fast as 10 msec for 100 devices.
By colocating a PCME that receives context from sensors with the SIP UA
that gets the call invite, the decision about how to take the call can take
into account which device is available near the user and automatically

Figure 41.10 Protecting privacy in public service infrastructure.

AU3833_C41.fm Page 1129 Friday, August 18, 2006 4:53 PM

1130 ■ Mobile Middleware

allocate the call to the appropriate device that is near the user according
to policies in place.

We can conclude [20,23] that calls (or other invitations, such as content
delivery) can be allocated automatically with low delays to an appropriate
available device. As multiple devices per user become the common model,
this will relieve people from having to manually configure or even con-
sidering which device to use for which service.

Automatic Call Diversion

Consider the following scenario in which user A enters the office building
and user B enters a conference room that has a detector that determines
that a meeting has begun (Figure 41.11). A call for user B comes to B’s
SIP proxy, which diverts it to B’s voice mail server. This could be manually
configured by Users A and B pushing a button on their phone, PDA, etc.,
indicating that they are in a meeting (this is currently the method for most
cellphone users). This could be done automatically if:

■ The infrastructure can determine that these two users are in a
meeting room.

■ Users update their proxies regarding their location.
■ Local information is exploited to affect the remote state of the

user’s SIP proxy (this could be centralized versus distributed).

The conclusion is that adding context awareness can free users from
having to pay attention to certain communication events (when the user
or company has opted for such a policy).

Opportunistic Communication

Escudero’s thesis [25] showed how we can use policy to make, at a low
cost (computation, power), per-packet decisions for any of the IP protocols
on how to use wireless interfaces and thus avoid unnecessary vertical

Figure 41.11 Meeting detection with CMEs.

AU3833_C41.fm Page 1130 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1131

handoffs. Because of the low costs, we can make better use of multiple
interfaces. Wennlund’s thesis [12] provided context sockets that software
(e.g., applications) running in end devices can use to transport context
between devices. The theses of Jansson [23] and Avgeropoulos [24] provide
the mechanisms for policy-driven allocation of services; therefore, the
policy-driven, per-packet decisions on how to use wireless interfaces can
be much more informed about the purpose of the communications and
what access conditions may be expected over time. The conclusion is that
mobile devices can become much smarter in communicating if the policy-
based decisions are aware of nearby devices, access networks, and the
urgency and timeliness of information to be sent across wireless links.

Context-Aware Mobile Audio

In ongoing work in our context-aware mobile audio prototype [30], we
provide a user with a single device allowing the user to use the audio
for different purposes, such as streaming audio, Internet radio, or voice
calls (VoIP). Vacas’s thesis [27] added a speech interface and leveraged
information from different context sources (e.g., storage space, battery
capacity, access conditions, location, speaker identification) for optimizing
the user utility of mobile audio by clever (context-aware) use of available
resources. The application does so by utilizing context information when
making decisions about fetching content; thus, the device would be able
to sustain audio playout much longer, make better use of bandwidth, and
pre-cache content whenever applicable and possible. Vacas’ thesis [27]
presents sample programs and measurements showing the improvements
that can be made by adding context awareness to mobile audio.

Field Trial

The ACAS user study was conducted in the spring of 2005 and included
27 students recruited from an international masters program at KTH. Each
user was loaned an HP iPAQ 5550 handheld running a standard Microsoft®

Pocket PC operating system. The study consisted of the following phases:

■ Phase 1 – Phase 1 took several weeks and allowed the students
to familiarize themselves with the iPAQs before answering a ques-
tionnaire about the use of the iPAQs and to identify popular
applications suitable for context adaptation in the later stages of
the study. Not surprisingly, uses of the devices differed among
individual users; entertainment (music, games) and instant com-
munication (VoIP and messaging) were among the most popular

AU3833_C41.fm Page 1131 Friday, August 18, 2006 4:53 PM

1132 ■ Mobile Middleware

applications. Several participants complained that the device was
heavy, bulky, and difficult to use and that it had poor battery
performance. The result indicated that communication was impor-
tant to a majority of the users and was selected as the application
area in which to pursue practical context sensitivity. This was to
be based on the Spot system, a prototype localization system similar
to other WiFi-based localization systems, except that localization
is user relative (meaning that the position of a user or device is
not given in absolute coordinates but rather expressed in terms of
spots). Locations were created and named by the users.

■ Phase 2 — In Phase 2, we deployed the Spot system and enforced
its use (via the iPAQs) by including it as an essential element in
a course, informing students that unidentified locations would be
registered. Although the Spot system performed as expected, stu-
dents updated their positions as circumstances dictated, which was
often very infrequently.

■ Phase 3 — In Phase 3, we enhanced the prototype with automatic
meeting detection of groups of students based on proximity-based
discovery. Based on the positive results of this experiment, we had
planned on conducting further user studies and extensions of the
prototype, capitalizing on the ability to increase users’ awareness
of location information, but we were unable to do so because of
a lack of resources.

Conclusions

Accomplishments
The ACAS service architecture moves decisions closer to the users or
objects; therefore, service decisions can be better informed as to what the
user or service is doing or intends to do through the acquisition, process-
ing, and management of context data. The ACAS project has made con-
tributions in the following respects:

■ Defining a service architecture (the context information network)
to sense, manage, store, and exchange context information

■ Designing middleware components to prototype this context infor-
mation network

■ Developing context-aware mechanisms for service discovery and
service allocation and protecting user privacy

■ Evaluating location and proximity sensing
■ Conducting early demonstrators of opportunistic wireless and

mobile communication and prototypes, including a field trial

AU3833_C41.fm Page 1132 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1133

Lessons Learned

Our approach differs from related work in that a user’s personal CME
receives context information from a local or non-local infrastructure instead
of simply the user’s mobile device; also, we have introduced a context
refiner concept to infer high-level context information. Nodes utilizing
ACAS middleware can participate in service delivery of mobile applications
that are aware of the purpose of the sessions and can thus make more
informed decisions about their combined operation, thus improving the
usability of the application.

The applications, the service architecture, and its components have
developed over several years. They have evolved as a result of the cross-
fertilization of concepts, application ideas, and results from measurements
and field trials. We continue to recognize that our understanding of what
services are useful and how services will be used is not always what we
expect. Many of the properties in user-centric mobile applications are
emergent in the sense that they stem from the combined operation of
several components in the service layer or as a result of interaction
between components in different layers. We expect that context informa-
tion will result in even more combinations of components.

Future Work

For future work, we suggest that more emphasis should be placed on
actually building prototypes of context-aware mobile applications and
evaluating the contribution of different components or their combined
operation for achieving application transparency for users, given the
available resources (devices, services, and communication technolo-
gies), as well as the selection of appropriate resources in users’ work
situations and maximizing user utility (QoS or uptime) when situations
change.

Third-Generation Mobile Networks

The 3GPP and OMA service architectures build on SIP/SIMPLE for presence-
enabled services as does ACAS context middleware; thus, 3GPP and OMA
could leverage ACAS middleware components and extend the presence layer
with context. Coordination can be achieved via SIP/SIMPLE and XDM [28],
allowing optional extensions of PIDF+LO profiles [29]. This would allow
3G mobile applications to include context in service decisions but would
require further work to incorporate policy-based context sensing and
context dissemination in 3G networks.

AU3833_C41.fm Page 1133 Friday, August 18, 2006 4:53 PM

1134 ■ Mobile Middleware

Service Aggregator

To better serve service requests in public spaces, we propose a service
aggregator to:

■ Maintain a collection of service descriptions joined by a common
property (e.g., a physical location, an organizational entity, the
consensus of a user group).

■ Answer queries for services and aggregates of services.
■ Produce context information; the aggregator should act as a soft-

ware sensor, thus presenting a context service interface to middle-
ware and applications.

■ Consume context information; the aggregator should be able to
detect temporary services (e.g., in a mobile user’s laptop) so they
can be aggregated into the correct context, such as the user’s
current location.

Security, Privacy, and Trust

Our work brought to light a number of threats to the privacy and integrity
of users, and in this chapter we presented a solution for protecting the
user’s privacy in public places. CASA revealed additional problems related
to connections via wireless interfaces on personal devices which pose
additional security threats, although these were not describe here. These
security threats can lead to passive or active attacks; for example, passive
attacks (e.g., eavesdropping, traffic analysis) or active attacks (e.g., mas-
querading, replay, message modification, denial-of-service attacks) can
occur. Moreover, security features are sometimes not enabled, even when
installed; cryptographic keys may be too short, shared, or not updated
automatically and frequently. All of these problems make networks more
vulnerable to attacks; for example, PAN service discovery can face a denial-
of-service attack when a malicious user entering the PAN pretends to be
a coordinator, thus getting information from other devices within range
but hiding it from these devices. The above mandates further apply to
developing a policy framework for dissemination, sharing, and accessing
context information in wireless networks.

Acknowledgments
This research was conducted with partial support from the Swedish
Foundation for Strategic Research (SSF), Ericsson, Hewlett Packard, Telia
Sonera, Netlight, and R2M.

AU3833_C41.fm Page 1134 Friday, August 18, 2006 4:53 PM

Context Middleware for Adaptive Mobile Services ■ 1135

References
[1] Adaptive and Context-Aware Services (ACAS) project, http://psi.verkstad.

net/acas.
[2] Adaptive Wireless Service and Infrastructure (AWSI) research program,

http://www.wireless.kth.se/AWSI/.
[3] Project Aura, distraction-free ubiquitous computing, http://www-2.cs.

cmu.edu/~aura/.
[4] Siewiorek, D. et al., Sensay: A Context-Aware Mobile Phone, Technical

Report, Human–Computer Interaction Institute and Institute for Complex
Engineered Systems, Carnegie Mellon University, Pittsburgh, PA, 2004.

[5] Chen, G. and Kotz, D., Solar: A Pervasive-Computing Infrastructure for
Context-Aware Mobile Applications, Technical Report, Department of Com-
puter Science, Dartmouth College, Hanover, NH, February, 2002.

[6] Dey, A.K., Salber, D., and Abowd, G.D., A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications,
Human–Computer Interaction (HCI) J., 16(2–4), 97–166, 2001.

[7] Web Services: The Cement for Mobile, Context-Aware Services, May 13, 2004,
http://www.freeband.nl/projecten/wasp/ENindex.html.

[8] The Context Project, http://www.cs.helsinki.fi/group/context/.
[9] Hedlund, H., A Gateway Between JINI and UPnP, M.Sc. thesis, Royal Institute

of Technology (KTH), Stockholm, Sweden, 2000.
[10] IETF Secretariat, IETF Charter SIP for Instant Messaging and Presence Lever-

aging Extensions (Simple), Internet Engineering Task Force (IETF), 2006
(http://www.ietf.org/html.charters/simple-charter.html).

[11] Li, W., Jonsson, M., Kilander, F., and Jansson, C.G., Building Infrastructure
Support for Ubiquitous Context-Aware Systems, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 2004, pp. 509–518.

[12] Wennlund, A., Context-Aware Wearable Device for Reconfigurable Applica-
tion Networks, M.Sc. thesis, Microelectronics and Information Technology,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2003.

[13] Sedov, I., Preuss, S., Cap, C., Haase, M., and Timmermann, D., Time and
energy efficient service discovery in Bluetooth, in Proc. IEEE Vehicular
Technology Conf. (VTC’03), Seoul, Korea, April, 2003.

[14] Freeman-Hargis, J., Rule-Based Systems and Identification Trees, AI Depot,
http://ai-depot.com/Tutorial/RuleBased-Methods.html.

[15] Pradhan, S., Brignone, C., Cui, J.-H., McReynolds, A., and Smith, M.T., Websigns:
hyperlinking physical locations to the Web, IEEE Comput., 34(8), 42–48, 2001.

[16] Delgado, D.U., Implementation and Evaluation of the Service Peer Discovery
Protocol, M.Sc. thesis, Microelectronics and Information Technology, Royal
Institute of Technology (KTH), Stockholm, Sweden, 2004.

[17] Cascella, R., Reconfigurable Application Networks through Peer Service
Discovery and Handovers, M.Sc. thesis, Microelectronics and Information
Technology, Royal Institute of Technology (KTH), Stockholm, Sweden, 2003.

[18] Guttmanm, E., Perkins, C., Veizades, J., and Day, M., Service Location
Protocol, Version 2, Request for Comments 2608, Internet Engineering Task
Force (IETF), 1999 (http://www.ietf.org/rfc/rfc2608.txt).

AU3833_C41.fm Page 1135 Friday, August 18, 2006 4:53 PM

1136 ■ Mobile Middleware

[19] Ayrault, C., Service Discovery in Personal Area Networks, M.Sc. thesis,
Microelectronics and Information Technology, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2004.

[20] Crossbow, http://www.xbow.com/.
[21] Internet Mail Consortium, vCard Specification, http://www.imc.org/pdi/.
[22] http://www.irda.org/standards/pubs/OBEX13.zip.
[23] Jansson, J., Context-Aware Service Allocation in Personal Area Networks,

M.Sc. thesis, Microelectronics and Information Technology, Royal Institute
of Technology (KTH), Stockholm, Sweden, 2004.

[24] Avgeropoulos, K., Service Policy Management for User-Centric Services in
Heterogeneous Mobile Networks, M.Sc. thesis, Microelectronics and Infor-
mation Technology, Royal Institute of Technology (KTH), Stockholm, Swe-
den, 2004.

[25] Escudero-Pascual, A., Anonymous and Untraceable Communications: Loca-
tion Privacy in Mobile Internetworking, Licentiate of Technology thesis,
Telecommunication Systems Laboratory, Microelectronics and Information
Technology, Royal Institute of Technology (KTH), Stockholm, Sweden, 2001.

[26] Mola, G., Interactions of Vertical Handoffs with 802.11b wireless LANs:
Handoff Policy, M.Sc. thesis, Microelectronics and Information Technology,
Royal Institute of Technology (KTH), Stockholm, Sweden, 2004.

[27] Vacas, I.R., Context Aware and Adaptive Mobile Audio, M.Sc. thesis, Micro-
electronics and Information Technology, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2005.

[28] http://www.openmobilealliance.org/release_program/XDM_v10.html.
[29] IETF Secretariat, Geographic Location/Privacy (geopriv), Internet Engineer-

ing Task Force (IETF), 2006, http://www.ietf.org/html.charters/geopriv-char-
ter.html.

[30] Domínguez, M.J.P., Audio for Nomadic Users, M.Sc. thesis, Microelectronics
and Information Technology, Royal Institute of Technology (KTH), Stock-
holm, Sweden, 2003

[31] Forgy, C.L., RETE: a fast algorithm for the many pattern/many object pattern
matching problem, Artificial Intelligence, 19(1), 17–37, 1982.

AU3833_C41.fm Page 1136 Friday, August 18, 2006 4:53 PM

1137

Chapter 42

Middleware Support for

Autonomous Cellphones

Nayeem Islam, Manuel Roman, and Dong Zhou

CONTENTS

Introduction... 1138
Advanced Scenarios.. 1139
Next-Generation Cellphone Challenges .. 1140

Platform Openness.. 1141
Variation in Resource Availability .. 1142
Shared Access to Services .. 1142

Functional Requirements.. 1143
Middleware Support ... 1143

Supporting Autonomous Middleware Services... 1143
Middleware Externalization .. 1144
Micro Building Blocks .. 1146
Architecture Descriptors.. 1149
MBBs and Autonomic Middleware Services 1153
MBBs and Flow Languages .. 1154

Mervlets.. 1155
AOE Architecture... 1156
The Replication Manager.. 1158
UI Composer ... 1159
Reliable Messaging System ... 1159

AU3833_C42.fm Page 1137 Monday, August 21, 2006 8:25 AM

1138

■

Mobile Middleware

Replets.. 1160
Replet Model ... 1161
Preference Management ... 1162
Replication Process ... 1164

Conclusions ... 1167
References ... 1168

Introduction

Cellphone functionality has evolved tremendously over the last ten years.
First, we had just voice transmission, then short message service (SMS)
and Web browsing (WAP and iMode) were added. Later, interactions with
vending machines (cMode [1]) and multimedia messaging service (MMS)
became available. More recently, video conferencing, Internet access, and
interaction with the surrounding physical environment (iArea [1]) has
become possible. Phones are poised to replace our keys [2], identification
cards, and money with digital counterparts. Furthermore, increasing data
transmission rates (2 Mbps with UMTS or 14.4 Mbps with Japan’s FOMA
networks [3]) enable the development of applications that allow cellphones
to interact with distributed services (e.g., Web services) and access and
share rich multimedia contents.

The increasing number and sophistication of cellphone applications
demand a cellphone middleware infrastructure to assist in the development
and execution of applications. Examples of middleware services include
communication (e.g., RPC), discovery, security, quality of service (QoS),
group management, event distribution, and publish–subscribe systems.
Furthermore, due to the ubiquity of cellphones, these services must be
reliable to guarantee uninterrupted execution. According to existing stud-
ies, 10 percent of cellphones are returned due to software problems. With
over 1200 million subscribers worldwide, that means that over 120 million
phones are returned every year. Asking cellphone users to take their
devices to customer support centers to correct software errors is frustrating
for cellphone users and too costly for carriers.

Unlike the PC world, the large majority of cellphone users have little
understanding of the technical issues involved and simply expect their
phones to work flawlessly all the time — which presents an interesting
challenge to middleware researchers who have to provide mechanisms
guaranteeing that the middleware infrastructure running on cellphones is
reliable and capable of reacting to errors. The goal is to build autonomous
middleware services that are able to monitor their own status, detect
anomalies, and correct problems transparently — that is, without requiring
user intervention and minimizing the disruption of normal cellphone
functionality.

AU3833_C42.fm Page 1138 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones

■

1139

Advanced Scenarios

Mobile handsets have evolved from voice transmission devices to
sophisticated digital assistants that are permanently connected to the
Internet and play a central role in users’ everyday activities. New mobile
handsets provide advanced digital services and include hardware attach-
ments that allow capturing images and video, triggering payments, and
tracking the position of the handset accurately. Japan has one of the
most advanced cellular phone infrastructures in the world, and it offers
services that are described as future ubiquitous computing services in
most research papers. We present here a list of these services (http://
www.nttdocomo.com):

■

Pay by credit card infrared —

 Launched in 2003, this service allows
customers to enter their VISA credit card data in their phones and
send the information via infrared to authorized establishments.

■

Mobile wallet service —

This service allows users to utilize their
phone as an electronic wallet or a digital key to identify users at
places such as airports. This service is currently implemented by
embedding Sony’s IC card (FELICA) into the cellphones. Users
charge the digital wallet using the phone’s Internet connection and
use the IC card to pay at authorized locations. Service trials started
in 2004 at designated train and bus stations for purchasing tickets.

■

Mall personalized info distribution (radiofrequency identification,
or RFID) —

The trial service began in 2003. This service allows
RFID-enabled phones to deliver customized information to users
at designated commercial centers based on location and time.

■

Amusement park reservation and payment —

This service was
launched in 2003. It allows users to make advanced reservations
for various attractions at the LaQua amusement park; furthermore,
the service allows users to check real-time congestion at rides to
help them decide where to go next.

■

E-tickets and e-coupons —

 Launched in 2003, this service offers
online shopping for tickets and covers everything from search and
purchase to payment and admission; furthermore, the service pro-
vides discount coupons.

■

Cmode —

 This service started in 2002 and allows users to interact
with enhanced Coke

®

 vending machines from their phones. The
interactions include buying drinks, downloading content to phones,
and printing maps and tickets.

■

Bus location notify service —

 This service allows users to check
the location of city buses in real-time from their phones. It was
launched in 2003.

AU3833_C42.fm Page 1139 Monday, August 21, 2006 8:25 AM

1140

■

Mobile Middleware

■

Area information delivery —

 Launched in 2003, this service allows
users to receive location-specific information from approximately
500 different segments of Japan. Information includes detailed
weather forecasts, maps, traffic information, restaurants, and sales
at local stores.

■

FOMA remote control —

This service allows videophone-compati-
ble terminal users to check video images of their homes and control
their home appliances. The system requires a device at home that
transmits the images and uses infrared to control the various
appliances. The service was launched in 2004.

■

Barcode shopping —

 This service utilizes two-dimensional barcodes
(QR codes), which can encode up to 652 full-size characters. Users’
phones can scan these QR codes to obtain such data as contact
information (business card QR codes) or shopping information.
With regard to shopping information, users can obtain details about
products and even purchase them using their phones. The service
requires phones enabled with cameras and specialized software to
process the QR code images.

■

Personal navigation system —

 The service allows users with global
position system (GPS)-enabled phones to check their positions on
a map in real time and receive turn-by-turn directions to reach
their destinations; furthermore, the service allows users to locate
other users and see their location in real time. This service was
launched in Japan in 2003.

All of these advanced scenarios have one point in common: They require
middleware services to enable their functionality, but we cannot rely on
users to configure the functionality or fix problems; instead, these mid-
dleware services must be able to monitor themselves and ensure proper
behavior at any time.

Next-Generation Cellphone Challenges

Advanced scenarios described in the previous section present a number
of research and development challenges for middleware targeting next-
generation cellphones. For example, in most of these scenarios the devices
must communicate with services residing outside of the traditional cellular
communication world, and in some cases software components need to
be downloaded, installed, and executed on the device for the mobile client
to best consume the services. Services illustrated by the scenarios typically
require one or more means of communication chosen from a collection
of communication apparatuses supported by the device, and such choices
may vary with different services. Connectivity provided by each means of

AU3833_C42.fm Page 1140 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones

■

1141

communication may change with the location of the device and the number
of peers located nearby the device. Additionally, a service must be able
to support a wide spectrum of mobile devices with very different commu-
nication and computation capabilities. Finally, in contrast to functionalities
provided by software on today’s cellphones (such as preinstalled games
or PIM applications), the services offered in these advanced scenarios are
shared by a group of users. These advanced scenarios present a number
of challenges to next-generation mobile middleware — namely,

platform
openness

,

variations in resource availability

, and

shared access to services

.
We next further explain each of these challenges.

Platform Openness

As cellphones evolve from simple voice communication devices into
sophisticated personal digital assistants permanently connected to the
Internet, they are morphing from closed instruments into open platforms.
The openness of such platforms imposes further requirements on the
functionalities of next-generation cellphone middleware:

■

Open computing —

 Future cellphones will be open computing
platforms for downloadable software. Next-generation cellphones
are expected to download more and more software components
from the Internet or proprietary portals and then install and run
them locally. Such downloadable software components include
both those written in intermediate language (such as Java) and
executed in confined environment as well as those written in native
language with fewer constraints in accessing device resources. Such
an open-computing platform requires sophisticated device man-
agement along with a secure runtime, as downloaded applications
generally have lower quality than preinstalled applications and are
likely to cause problems for either the entire cellphone or some
other application on the cellphone.

■

Open communication —

 Next-generation cellphones will gradually
employ open protocols such as TCP/IP, XHTML, and SOAP to
replace wireless proprietary protocols such as WAP and WML. This
openness in communication platform is driven by the need for
interoperability with the rest of the Internet and requires the
customization of some open specifications because of the relative
resource limitations of cellphones (e.g., kUDDI [4] and kXML [5]).

■

Open data and service access —

 Cellphones will generate more
data. Such data includes pictures, audio/video clips, personal infor-
mation management (PIM) data, and productivity software data, as
well as presence and location information. Such data must be able

AU3833_C42.fm Page 1141 Monday, August 21, 2006 8:25 AM

1142

■

Mobile Middleware

to be accessed by other people or by the owner of the cellphone
from other devices. In addition, cellphones are beginning to make
services such as Web services available to the outside world. Such
open access requires proper access control, as well as techniques
such as service delegation and network storage for data replication.

■

Open device provisioning —

 A next-generation cellphone should
support provisioning the device for different wireless operators, so
cellphone owners can freely choose among different carriers with-
out changing their cellphones.

Device provisioning

 refers to the
processes of bootstrapping the device, restoring the device con-
figuration after failure, and configuring key services provided by
operators. Some future cellphones will also support multiple air
interfaces (e.g., WCDMA and WLAN) and require devices simulta-
neously provisioned for multiple access networks. Such open-
device provisioning requires flexibility in device management.

Variation in Resource Availability

Compared with stationary hosts, such as desktop PCs, cellphones have
considerable variability in the resources available to them; for example,
the processing capability of a cellphone may change when energy man-
agement scales down CPU frequency to conserve energy. As another
example, the connectivity of a cellphone changes when it roams from
areas with good coverage into areas with weak coverage or no coverage
or when the cumulative wireless traffic within the cell dynamically
changes. Such dynamism in resource availability, along with the hetero-
geneity in the communication and computation capabilities of the spec-
trum of devices that future mobile middleware must support, requires an
advance application model that is more flexible and adaptive than either
the straightforward preinstall-based or client–server-based model; that is,
the advanced application model should intelligently exploit both the
communication efficiency of the preinstall-based model and the compu-
tation efficiency of the client–server-based model.

Shared Access to Services

As we mentioned earlier, many services for future cellphones will be
accessed by a group of users or by the same users from different devices.
Many of these services will maintain states that change as the result of
serving client requests or interacting with other server-side software com-
ponents. It is important to present a consistent view of such states to
users of each of these services; on the other hand, the availability of such
services to mobile clients is also important. Providing access to such

AU3833_C42.fm Page 1142 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones

■

1143

services even when the clients are experiencing weak connections or
disconnection helps improve the user experiences of such services. It is
a challenge to maintain, as much as possible, both state consistency and
service availability under unfavorable environmental conditions.

Functional Requirements

To meet the challenges presented by next-generation cellphones, future
mobile middleware should provide the following functionalities:

■

Advanced device management

, which helps cellphones to deal
with the potential results of platform openness

■

Adaptive application model

, which intelligently adjusts to deal with
changes in resource availability and provides synchronization and
consistency support for access-shared services during weak con-
nections or disconnection

■

Autonomous service infrastructure

, which is capable of monitoring
itself, detecting anomalies, and correcting or requesting assistance
to avoid such anomalies

Other types of functionality that are also required but not further discussed
in this chapter include customizability and adaptability in mobile commu-
nication, as well as security and access control during device runtime, as
required by support for platform openness.

Middleware Support

In this section, we briefly describe three projects that address the major
requirements of next-generation cellphone middleware. The first project,
called MBB, uses externalization concepts and a state machine approach
to enable fine-grained software inspection, diagnosis, and reconfiguration
and serves as the foundation for advanced device management. The second
and third projects (Mervlet and Replet) dynamically select between a stand-
alone version and a client–server version of an application to adaptively
respond to variations in resource availability, thus providing support for
state synchronization and consistency of access to shared services.

Supporting Autonomous Middleware Services

According to Dashofy et al. [6], the four requirements for building a
repairable autonomous system are:

AU3833_C42.fm Page 1143 Monday, August 21, 2006 8:25 AM

1144

■

Mobile Middleware

■

Ability to describe the current architecture of the system

■

Ability to express arbitrary changes to the architecture

■

Ability to analyze the result of the repair

■

Ability to execute a repair plan without stopping the system

 We add an additional requirement:

■

Ability to detect errors in the execution of the system

We refer to the second requirement as

configurability

 — that is, the
functionality to modify any aspect of the software (state, logic, structure)
at runtime; furthermore, we use two terms to refer to structural changes:

updates

 and

upgrades

. Updates correspond to the functionality to replace
existing pieces of software (e.g., to correct errors). Upgrades refer to the
ability to add additional functionality to the existing software. Reflective
middleware services [7,8] provide functionality for configurability. They
support the replacement and assembly of certain components to adapt to
changes and create certain device dependent configurations; however,
most reflective systems assume a basic skeleton where only certain pre-
defined changes and configurations are allowed. We seek a mechanism
that allows modifying every aspect of the system (including the static
skeleton) and enables fine-grained customizations.

In this section, we present a new middleware construction approach
that assists in the development of configurable autonomic middleware
services. These services are assembled dynamically from small execution
units (micro building blocks) and can be reconfigured at runtime. Our
approach externalizes three key middleware execution elements:

state

,

structure

, and

logic

. As a result, we obtain fine-grained control over
running middleware services in terms of runtime modifications. We have
used this construction technique to build a communication middleware
service that we can manipulate at runtime.

Middleware Externalization

Middleware externalization relies on three key aspects:

state externalization

,

structure externalization

, and

logic externalization

. State externalization
exports the internal middleware state attributes. Structure externalization
exports the list of components that compose the middleware service, and
logic externalization exports the interaction rules among the structural com-
ponents (logic of the middleware service). Externalization allows inspecting
and modifying internal execution parameters of the middleware services,
thus giving users the ability to understand the execution state and to introduce
arbitrary changes at runtime without stopping the system.

AU3833_C42.fm Page 1144 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones

■

1145

The main benefit of architecture externalization is maintaining the
ability to learn, reason, and modify every aspect of a middleware service.
The notion of architecture externalization is similar to computational
reflection [9], which is a technique that allows a system to maintain
information about itself (meta-information) and use this information to
change its behavior (adapt); however, the key differences between com-
putational reflection and architecture externalization are the scope of
information maintained by the software and the scope of the changes
allowed. Existing computational reflection middleware services [10,11]
explicitly define the internal aspects they export and the changes they
accept; however, middleware services based on architecture externaliza-
tion export every detail in terms of structure, logic, and state and accept
arbitrary changes in any of the three categories.

Building an externalized middleware service requires identifying the
functional units of the service (we call them

micro building blocks

) and
defining their state, input parameters, output parameters, and interactions
(logic) explicitly. Externalized middleware services are assembled at run-
time using an architecture descriptor that contains information about the
components that compose the system (structure), the interaction rules for
these components (logic), and a descriptor with detailed information about
each structural component (input parameters, output parameters, and state
attributes). The collection of all state attributes corresponds to the global
middleware service state. These descriptors are the service blueprints and
provide the information required to assemble the service at runtime. We
use the descriptors to configure middleware services to different devices.
Furthermore, these blueprints constitute a valuable formalism that aids in
understanding the composition and behavior of existing middleware ser-
vices. Developers can access these descriptors (or extract them directly
from a running system), determine the internal details of the system, and
introduce changes to customize the service without reading a single line
of source code.

Another benefit of architecture externalization is that it exports the
execution state of the system which includes information about the cur-
rently executed internal component. This information becomes essential
in determining safe reconfiguration points, which correspond to execution
states where it is safe to replace components, modify the logic, and modify
state attributes. The system can determine these safe points without
requiring any support from the software developers. Finally, another
benefit of architecture externalization is the ability to virtualize the software
infrastructure and create snapshots of the running system. This function-
ality is particularly useful to suspend, resume, and migrate software
automatically; furthermore, heterogeneous systems can exchange archi-
tecture definitions and reconfigure themselves to enable interoperability.

AU3833_C42.fm Page 1145 Monday, August 21, 2006 8:25 AM

1146

■

Mobile Middleware

We have built a software construction mechanism that relies on architecture
externalization. We refer to this type of software as micro building block
(MBB)-based software.

Micro Building Blocks

In this subsection, we provide a detailed description of the abstractions
we have defined for MBBs. We also describe the descriptors that specify
the details of the system. There are four abstractions and four system
descriptors. The four abstractions are

micro building blocks

,

actions

,

collections

, and

domains

. The four system descriptors are

domain

descrip-
tor

,

structure descriptor

,

logic descriptor

, and

MBB descriptor

.

Micro Building Blocks

An MBB is the smallest addressable functional unit in the system. An MBB
receives a collection of input parameters, executes an action that might affect
its state, and generates a collection of output parameters. An example of an
MBB is

registerObject, which receives two input parameters (a name
and an object reference), updates a list of registered objects (its state) with
the new entry, and returns the number of registered objects. MBBs store
their state attributes as name and value tuples in a system-provided storage
area. This mechanism avoids implementing state transfer protocols to replace
MBBs. Replacing an MBB requires registering the new MBB instance and
providing it with a pointer to the existing state storage area. Storing the state
in a designated storage area allows external attribute manipulation. External
services operate on the existing state, and the MBBs obtain the new values
when they resolve them by name during execution of their algorithm.
Furthermore, storing the state as a collection of name and value tuples
simplifies state suspension, resumption, and migration. We provide services
that implement this functionality transparent to MBBs. Figure 42.1 illustrates
the structure of an MBB. The execution model invokes a collection of MBBs
according to the action definition (see next section); however, MBBs do not
store references to the next MBB in the chain. This mechanism implies that
no MBB in the system stores references to any other MBB. This approach
allows replacing MBBs easily. It is not necessary to notify any MBB about
the replacement because no MBB knows about any other MBB.

Actions

Actions specify the MBB execution order and therefore define the logic of
the system. An action is a deterministic directed graph where nodes are
MBBs that denote execution states, and edges define the transition order.

AU3833_C42.fm Page 1146 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1147

The MBB infrastructure provides a runtime component called MBB sched-
uler that parses actions and invokes the appropriate MBB. Executing an
action corresponds to traversing the graph; furthermore, every action
invocation has an associated tuple container that we refer to as an action
state, which stores the input and output parameters that the different MBBs
generate. Figure 42.2 depicts an action example where MBB1 is the start
node. The action begins with invocation of MBB1, continues with invoca-
tion of MBB2, then (depending on the value of X) invokes MBB3 or MBB4,
and, finally, invokes MBB5. The value of variable X either is provided by
the client invoking the action or is an output parameter generated by MBB1
or MBB2. This value is stored in the action execution state.

Action graphs include additional nodes and edges that specify the
transitions in case of errors. If no errors are detected, the system uses the

Figure 42.1 Micro building block structure.

Figure 42.2 Action example.

AU3833_C42.fm Page 1147 Monday, August 21, 2006 8:25 AM

1148 ■ Mobile Middleware

default action graph (for example, the one depicted in Figure 42.2);
however, if execution errors are detected, then the system uses the error
nodes and edges. For example, Figure 42.2 has an additional edge that
goes from each node to the end state (not included in the figure); thus,
if an error is detected then the action simply terminates. Note, however,
that it is possible to define more sophisticated behaviors. Action graphs
allow cycles to support loop statements, such as “while,” “for,” and “repeat.”

Actions provide reflection at the execution level by exporting information
about the current execution state and by providing support to modify the
action graph at runtime; furthermore, the explicit representation simplifies
reasoning about the logic of the system, supports static analysis, and allows
third parties to modify the behavior of the system by adding or removing
states and configuring the graph. Actions contribute to MBB replacement.
One of the key requirements to automate runtime MBB replacement is
detecting when the system has reached a safe execution state. With actions,
these safe states can be determined automatically. The safe reconfiguration
states correspond to MBB invocations. Finally, actions contribute to the ability
of systems to be updated and upgraded. Updating an action corresponds to
replacing an existing action or modifying the execution graph. Upgrading
the system implies adding new actions or, in the case of interpreted actions,
modifying the action graph to incorporate or modify states.

Collections

A collection is an abstraction that allows defining groups of MBBs that
can be treated as a single unit. Every collection stores a list of internal
MBBs, and the system assigns them a state memory area where its MBBs
store their state; furthermore, the system provides the functionality to load
collections, unload collections, inspect and modify collections, and migrate
collections across machines. By default, every collection has its own state
area that it is not shared with other collections; however, the system
provides the functionality to access the state memory of other collections.
When assembling a system, it is common to have different functional
categories; for example, most of our systems require communication
middleware and a runtime infrastructure with the functionality to execute
actions (MBB scheduler) and to manipulate MBBs, such as loading, unload-
ing, and inspecting their states. Each of these functional categories consists
of several MBBs, and we group them together into collections.

Domains

A domain provides the execution environment for MBBs. This execution
environment includes a storage area to store the structure of the domain
(list of MBBs), the logic of the domain (list of actions), and the state

AU3833_C42.fm Page 1148 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1149

of the domain (MBB state attributes and execution state values). Figure
42.3 illustrates the components and structure of a domain. All three
memories (structure, logic, and state) store name and value tuples. The
structure memory maintains a collection of tuples that correspond to
MBBs registered in the domain. The tuple name refers to the name of
the MBB (every MBB is assigned a name at registration time), and the
value stores the reference to the MBB. Note that the reference can be
a local pointer or a pointer to a remote MBB. The MBB execution
model makes local or remote invocation transparent to developers. The
logic memory stores a list of actions exported by the domain. Similar
to the structure memory, the logic memory refers to actions by name.
Finally, the state memory stores the state attributes for the MBBs
registered in the domain. During the MBB registration, the system
assigns a pointer to the state memory to the MBB. MBBs belonging to
the same collection share the same state memory. We refer to the three
memories as the domain memory.

Architecture Descriptors
Micro building block systems are assembled at runtime using structure,
logic, and MBB description files. We refer to these files as architecture
descriptors, and they are the blueprints of the system. A domain contains

Figure 42.3 Domain components

AU3833_C42.fm Page 1149 Monday, August 21, 2006 8:25 AM

1150 ■ Mobile Middleware

collections, and each collection has structure and logic. We call the file
that describes the overall list of collections the domain descriptor, the file
that describes the structure of a collection the structure descriptor, and
the file that describes the logic of a collection the logic descriptor. Finally,
for each MBB is a file that describes the state, input, and output parameters,
as well as the component that implements the MBB (e.g., Java class, .NET™
object, or a native DLL). We refer to this file as an MBB descriptor. For
the following subsections, we will refer to the example domain illustrated
in Figure 42.4.

Domain Descriptor

The domain descriptor provides a list of collections that compose a system.
The descriptor is an XML file that contains a number of collection entries.
Each entry has the name of a structure file (structure descriptor) and the
name of a logic file (logic descriptor). Figure 42.5 depicts the domain
descriptor corresponding to the domain presented in Figure 42.4.

Structure Descriptor

The structure descriptor provides a list of MBBs that compose a collection.
The descriptor is an XML file that includes a list of MBB names and MBB
descriptors. The system uses the MBB descriptor to instantiate the appro-
priate MBB and to retrieve information about the MBB (state variables,
input and output parameters) and uses the MBB name as the key to access
the MBB in the domain structure memory. All MBBs are registered in the
domain structure memory as a <name, MBB reference> tuple. Figure
42.6 illustrates an example of a structure descriptor that specifies the
structure of the Collection1 defined in Figure 42.5.

Figure 42.4 Example domain containing two collections.

AU3833_C42.fm Page 1150 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1151

MBB Descriptor

Every MBB has an associated description that includes a list of input
parameters, a list of output parameters, a list of state attributes, and a
platform-dependent field that specifies the component that implements the
MBB (e.g., a Java class file, a .NET object, or a DLL). Figure 42.7 presents
the descriptor file for MBB1 of Collection1. The class tags denote the
implementation for each platform. The state tags include a name and type
tuple for each state attribute. The input tag describes the input parameters
in terms of name and type tuples. Finally, the output tag denotes the
parameters the MBB generates in terms of name and type tuples.

Figure 42.5 Domain descriptor example.

Figure 42.6 Structure descriptor for Collection1.

AU3833_C42.fm Page 1151 Monday, August 21, 2006 8:25 AM

1152 ■ Mobile Middleware

Logic Descriptor

The logic descriptor is an XML file with a description of each action. This
description includes the name of the action and a list of the action’s states,
including the name of the state, the name of the MBB to invoke, the next
state in normal conditions, and the next state when an exception is
detected during the execution of the current state. The logic descriptor
allows defining conditional transitions. Figure 42.8 illustrates an example
of an action that uses MBB1 and MBB2. State 1 invokes MBB1 and relies
on the value of nextState to transition to the next state. If the value
of nextState is 1, then the action transitions to state 2; otherwise, if
the value is 2, the action ends. The nextState variable is stored in the
inputParameters tuple container that the scheduler provides to each
MBB invoked during an action. In the example, MBB1 has to provide the

Figure 42.7 MBB descriptor for MBB1.

AU3833_C42.fm Page 1152 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1153

value of nextState. According to Figure 42.8, both states 1 and 2 define
an error state transition to end. This means that, in case of an exception
during the execution of the MBB, the scheduler will end the execution
of the action. Note that we can transition to any state and we can also
define conditional transition statements.

MBBs and Autonomic Middleware Services

Micro building blocks support the construction of autonomic middleware
services. MBBs meet the five requirements we introduced earlier; therefore,
the resulting middleware services can be manipulated at runtime. The first
requirement concerns describing the current architecture of the system.
MBBs use descriptors with information about the architecture, structure,
and logic of the system to assemble the system at runtime; furthermore,

Figure 42.8 Action specification example.

AU3833_C42.fm Page 1153 Monday, August 21, 2006 8:25 AM

1154 ■ Mobile Middleware

MBBs maintain runtime information about the internal details of the system
and provide an application programming interface (API) to access this
information. The second requirement addresses being able to express
arbitrary changes to the architecture. MBBs allow modification of every
aspect of the system, including logic, structure, and state. MBBs also meet
the third requirement, analyzing the results of a repair. After introducing
a change, we can analyze the resulting structure, state, and logic of the
system to confirm that the changes meet the expected results. The fourth
requirement concerns the ability to execute a repair plan without stopping
the system. As we explained earlier, the execution model of MBBs can
detect safe reconfiguration points automatically and therefore does not
require stopping the system. Finally, the fifth requirement addresses the
importance of detecting errors in the execution of the system. The MBB
runtime infrastructure relies on a component called the MBB scheduler to
drive execution of the system. This MBB scheduler uses the actions to
determine the MBB invocation order and invokes the MBBs. If an MBB
crashes, the scheduler detects it and uses the error state transitions to
determine the next MBB to invoke. This behavior allows us to detect
errors in the execution of the system and take the required steps to correct
them or abort execution of the system. MBBs meet all five requirements
and therefore provide the basis for constructing mechanisms to monitor
and correct the behavior of middleware services automatically.

MBBs and Flow Languages

Micro building blocks explicitly externalize their logic using graphs where
the nodes are MBBs and the links determine the invocation order of these
MBBs. This concept is similar to existing flow languages such as the
Business Process Execution Language for Web Services (BPEL4WS) [12,13].
BPEL4WS allows defining business processes that make use of Web
services. These business processes rely on four key abstractions:

■ Partners
■ Flows
■ Containers
■ Properties

Partners are the components that implement the functionality in the
business process. They implement a Web service and specify the Web
services on which they rely. Flows are directed graphs that determine the
order in which partners are invoked. A container is responsible for storing
messages exchanged among partners (WSDL messages); these messages
store information about the context of the business process and are key

AU3833_C42.fm Page 1154 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1155

to preserving the business process session. Finally, a property is data stored
in the container that helps to correlate a message with the appropriate
business process.

BPEL4WS provides a language to define the interaction among Web
services. On the other hand, MBBs provides an infrastructure to define
the interaction of the components that compose each individual Web
service. The goal of both solutions is similar, but their scales are different;
BPEL4WS operates at a macro scale, and MBBs operate at a micro scale.
Both, however, rely on a similar technique (although BPEL4WS does not
externalize the state). In MBB terms, the partner is an MBB, the flow is
an action, the container is the tuple container with the invocation param-
eters that traverses the different MBBs that belong to an action, and a
property is a tuple contained in this tuple container.

Mervlets

The Mervlet project targets dynamic Web applications — that is, applica-
tions that use constructs such as Servlets to dynamically generate responses
for requests received from Web clients [13]. The primary target of the
Mervlet project is to support an adaptive application model for dynamic
Web applications under resource variation. The project also addresses
auxiliary services (namely, preference management and application and
environment profiling) that can be used for middleware autonomy.

Traditional wireless data service systems, such as i-mode [14] and WAP
[15], assume a relatively simple client that is browser based and not
programmable. Such systems suffer from a variety of problems, including
poor interaction performance, inability to allow the user to work under
conditions of network disconnection or weak connections, and a poor
user interface, thus leading to overall poor user experience. The advent
of smarter phones with faster processors, more memory, and persistent
storage makes it possible to provide a better user experience and new
classes of applications. Taking full advantage of such rich client-side
resources, however, is difficult, as no application model closely based on
current Web protocols allows full exploitation of client-side resources and
is able to deal with the huge divergences in and dynamics of handset
capabilities, such as CPU speed, memory and storage sizes, battery power,
connection bandwidth and stability, and user interface resources.

The Mervlet project is part of our Agile Operating Environment (AOE),
which provides generalized yet agile support for the improvement of the
user Web experience and construction of new types of Web applications
by judiciously exploiting client device resources for system functions such
as partial application caching, optimized logging for fault tolerance, and
application user interface presentation generation. It is agile as these

AU3833_C42.fm Page 1155 Monday, August 21, 2006 8:25 AM

1156 ■ Mobile Middleware

facilities can be customized for devices of different capabilities or recon-
figured by users or applications to adjust to runtime resource availability.
Also, they are self-adaptive to changes in resource availability, thus further
enhancing the user experience in mobile environments.

AOE Architecture

The AOE supports Web-based applications where users request services
through a browser from their user client devices. It specifically targets
applications that involve dynamic, personalized content. A typical AOE
application consists of a cluster of Mervlets that can dynamically generate
Web pages, where a Mervlet is similar to a Servlet except that it can be
replicated and executed on client devices, its user interface can be dynam-
ically attached, and it may recover from faults in the client device, network,
or server. Each Mervlet within an AOE application implements the Mervlet
interface, which consists of methods that can be used to help replicate the
Mervlet and synchronize states among replicas. A developer of each Mervlet
can also provide implementations of adaptation helpers that can help the
AOE runtime to make adaptation decisions. An application developer can
optionally create user interface widgets used specifically for a particular
device. These widgets can be dynamically bound to the application. For
each application there is an application preference file that is specific for
the particular deployment and will be combined with client and server
preferences to form the runtime preference of the application instance.

The AOE runtime is the environment for the execution of AOE appli-
cations. The client and the server each run an instance of the runtime
(Figure 42.9). Hypertext Transfer Protocol (HTTP) requests sent from the
browser are intercepted by the AOE runtime on the client device (termed
client AOE). The client AOE then does one of the following:

■ Passes the request to the AOE runtime on the server side (server
AOE) using any transport, one option being a reconfigurable
messaging system (RMS), in which case the server AOE receives

Figure 42.9 Symmetric AOE model.

AU3833_C42.fm Page 1156 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1157

and serves the request and sends response to the client AOE
using AOE messages

■ Serves the request locally, when the requested page is locally
available or when the client AOE decides to execute the requested
Mervlet locally

The response, which is usually the presentation of the application described
in languages such as Hypertext Markup Language (HTML), is then option-
ally rebound with the user interface library deployed on the client device
and finally returned to the browser in HTTP format. During the process,
when required, the client and server AOEs cooperatively ensure that when
the client AOE receives an HTTP request from the browser it will serve
according to a reliability guarantee such as processing the request once
and only once. Such reliability assurances are provided by the Adaptive
Reliability Manager inside the AOE runtime, and the ability to decide where
to serve the request and the ability to dynamically rebind the user interface
of the application are supported by the Replication Manager and UI
Composer, respectively (Figure 42.10). The details of the Replication Man-
ager, UI Composer, and Reliability Manager are described in later sections.

A key feature of our system is that basic system facilities are adaptable.
The three key facilities (UI Composer, Replication Manager, and Recon-
figurable Messaging System) are made adaptable by using three adaptation

Figure 42.10 Layered components of AOE runtime.

AU3833_C42.fm Page 1157 Monday, August 21, 2006 8:25 AM

1158 ■ Mobile Middleware

managers (UI Adapter, Replication Adapter, and Adaptive Reliability Man-
ager, respectively) that make their adaptation decisions based on input
from the Preference Manager and the Capability Profiler. An Adaptation
Coordinator coordinates the individual adaptation managers of each facil-
ity. Specifically:

■ The Adaptation Coordinator is responsible for resolving conflicts
between adaptation decisions made by the three adaptation man-
agers (i.e., UI Adapter, Replication Adapter, and Adaptive Reliability
Manager). The adaptation managers consult the Adaptation Coor-
dinator about whether they should proceed before making any
adaptation decisions.

■ The Preference Manager provides a means for devices, servers,
and applications to jointly configure and reconfigure an AOE
runtime, to allow devices and servers to control the behaviors of
applications, and to allow the exchange of preferences between
two AOE runtimes.

■ The Capability Profiler of an AOE runtime is a repository for
maintaining device and network capabilities, as well as some
application characteristic data. Some of the capability or character-
istic data (such as installed memory) is static, and other data (such
as current CPU load) is dynamic.

■ The Replication Manager, the UI Composer, and the RMS are three
fundamental facilities provided by the AOE for client resource
utilization. They rely on the Adaptation Coordinator for agility.

The Replication Manager

Mobile users may perceive poorer experiences because of longer and
wider variations in response latency, lower throughput, and a greater
likelihood of disconnection. Although existing Web caching and prefetch-
ing techniques are applicable to mobile Web applications for static and
some dynamically generated Web pages, these technologies do not
improve user experience for highly dynamic, highly personalized Web
content that is generated by server-side code units (such as Servlets) and
widely used in mobile Web applications. The AOE handles such highly
dynamic and personalized Web content by allowing the caching of server-
side code units onto client devices and by dynamically making per-
invocation decisions about whether to invoke the replica on the server
or the replica on the device. Details about replication support in AOE are
described in the later Replet section.

AU3833_C42.fm Page 1158 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1159

UI Composer

A problem confronting Web applications targeted to mobile devices today
is the heterogeneity in the interaction capabilities of these devices. Ideally,
an application should be written only once, independent of any specific
device; yet, when the application is used on different devices, its presen-
tation should be automatically adjusted to a form optimal to the device.
The AOE allows binding between the abstract description of the presen-
tation and its implementation to occur on the client device whenever
there is enough resource on the device to do so. In addition, such binding
is dynamic so implementation of the presentation can change in accor-
dance with the change in resource availability.

In AOE, we require applications to write their presentations in tags [16]
to translate XML for rendering; however, the tags are not statically bound
to the application but are constructed as dynamically attachable libraries
that may be chained together at runtime in a specific order. At runtime,
the UI Adapter attaches the appropriate library to enable presentation of
the application. Presentations are implemented by user interface libraries.
Each user interface library (UIL) has an interface (UILInterface) and
an implementation (UILImplementation). Each implementation is
tagged by a capability specification.

At runtime, when the generated Mervlet makes a call that involves any
aspects of presentation the appropriate user interface library is called. The
proxy asks the UI Adapter service to provide an implementation of the
specified library interface that is suitable for the device capabilities. The
UI Adapter uses the characteristics of the device to find the appropriate
library to install and link to the application.

Reliable Messaging System

Transient failures in networks and devices are common for mobile hand-
sets. User reliance on mobile devices for important daily activities such
as e-commerce, online shopping, and personal information management
is increasing, and such applications require some degree of confidence
that these activities will be performed reliably [17]. One problem with
current approaches is that they are inflexible and do not adapt to changing
system conditions or application requirements, but mobile environments
are characterized by change so no one fault-tolerance mechanism will
work for all instances or all the time. We believe that dynamically adapting
fault tolerance addresses this issue. In this chapter, we propose adaptive
fault tolerance through the use of a reconfigurable messaging system.

AU3833_C42.fm Page 1159 Monday, August 21, 2006 8:25 AM

1160 ■ Mobile Middleware

Support for fault-tolerance is realized with the reconfigurable messaging
system (RMS) and the recoverable Mervlets. The RMS provides configurable
message delivery functionality in the Mervlet environment. The RMS failure-
free strategy interface encapsulates the RMS functionality. An application
only calls methods on the interface. The actual implementation to be used
is set by the Adaptive Reliability Manager (ARM) based on user or appli-
cation requirements; for example, the RMS can be configured as a point-
to-point messaging service or to use a centralized messaging server (such
as the Java Message Service [JMS]). At the application level, recoverable
Mervlets are used to provide fault tolerance. During failure-free operation,
the Mervlet engine invokes the methods on the recoverable Mervlets by
retrieving the current failure-free strategy first and then calling the desired
method (e.g., doPost, doGet) on the strategy. Recoverable Mervlets allow
the same application to have different fault-tolerance mechanisms in dif-
ferent contexts; for example, a Web mail application may be configured
to be more reliable for corporate e-mail than personal e-mail.

Dynamic reconfigurability support in fault tolerance is achieved by
allowing the two main components (RMS and recoverable Mervlets) to
have different failure-free and recovery strategies which can be set
dynamically by the ARM, as shown in Figure 42.11. The separation
between failure-free and recovery strategies helps in the development
of multiple recovery strategies corresponding to a failure-free strategy;
for example, in the case of RMS, one recovery strategy may prioritize
the order in which messages are recovered but another recovery strategy
may not.

In our current implementation, the adaptability in fault-tolerance sup-
port is reflected in the ability to dynamically switch on and off server-
side logging, depending on current server load. Under high server load,
the Adaptive Reliability Manager can reconfigure the RMS to stop logging
on the server side. This, in some cases, can result in marked improvement
in the client-perceived response time.

Replets

The Replet project evolved from the Mervlet project and is also part of the
Agile Operating Environment. A Replet is a Mervlet that can be shared by
a group of users and can be accessed by the same user from different
devices. Compared with the Mervlet project, the Replet project fulfills
additional requirements of next-generation mobile middleware by targeting
dynamic Web applications that provide services to a group of mobile clients.
It provides a flexible framework for the on-device replication of such
services. This framework in particular addresses the issue of maintaining

AU3833_C42.fm Page 1160 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1161

both state consistency and service availability under unfavorable conditions
by providing facilities for exploiting application-, server-, and device-
specific consistency and availability requirements [18].

Replet Model

A Replet replica is explicitly divided into code, immutable data, and
mutable data. The code part includes the class files that define the Web-
related application logic, and it is identical for all replicas of the same
Replet; however, the mutable and immutable data (which can be a
combination of in-memory objects, files, and mobile database tables
with records and attributes tailored to the client’s needs) of a specific
client replica can be different from that of a server replica or other
client replicas. For example, a client replica can have rows of a database
table filtered out that are different from another client replica. The
mutable data of a replica, which can be modified by clients, is further
divided into a public fragment and a private fragment. The public
fragment is shared by a number of clients and thus is accessible to the
server replica and the client replicas on those clients. The private
fragment is specific to a client and is only accessible to the client replica
and its server replica.

Figure 42.11 Reliability support in AOE.

AU3833_C42.fm Page 1161 Monday, August 21, 2006 8:25 AM

1162 ■ Mobile Middleware

Figure 42.12 depicts a server replica. The client replica on a client
device is slightly different in that it only has the private mutable data for
that given client. At a given moment for a given client, a server replica
can be in one of following three states (Figure 42.13):

■ App-synchronized — The server replica has up-to-date public
mutable data but does not have up-to-date private mutable data
for the client.

■ Client-synchronized — The server replica has synchronized copies
of both public mutable data and the private mutable data for that
given client.

■ Invoked — The server replica was in a client-synchronized state
and has been selected to serve a request from the client, and the
invocation is in the process.

Note that a server replica can be in the client-synchronized state for one
client but in the app-synchronized state for another.

A client replica has an additional selected state, meaning that the replica
has not yet been populated with code and data, or the code and data
have been removed to allow the replication of other applications (see
Figure 42.14). Note that, after invocation, a server replica transits into the
app-synchronized state, but a client replica transits into the client-synchro-
nized state.

Preference Management

Preference information consists of preferences prespecified by the appli-
cation server, the user, or the application, such as the required memory
and the preferred response time. Preference information helps a Replet
to determine which replica to use or whether to download a replica from
the server. Three participating entities, also called roles, take part in

Figure 42.12 Replet server replica.

AU3833_C42.fm Page 1162 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1163

preference derivations: the client, the server, and the application. The
entities often have conflicting or overlapping preferences; for example,
an impatient user wants to get results in 10 seconds but the application
estimates the acceptable response time to be within 15 seconds. Preference
Management merges potentially conflicting partial preferences from dif-
ferent roles into a unified global preference.

Figure 42.15 illustrates how Preference Management works. Each entity
specifies a partial preference that consists of a set of partial properties. A
partial property is a <property, precedence> pair, where property
is a property and precedence is a number denoting priority. Each
property is a <name, value> pair, where name is a string and value
can be an arbitrary object. For example, as shown in the fi gure,
<<ResponseTime, 10s>, 8> in the Device Preference means that the
device preferred response time should be within 10 seconds with a
precedence level of 8. To derive a Global Preference, we must first validate

Figure 42.13 State transition of a server replica.

Figure 42.14 State transition of a client replica.

-

-

-

-

AU3833_C42.fm Page 1163 Monday, August 21, 2006 8:25 AM

1164 ■ Mobile Middleware

each partial property with a Preference Derivation Template. The Prefer-
ence Derivation Template sets maximum priority levels for each partial
property. If a partial property contains a precedence value higher than
the maximum level specified in the template, then the partial property
will be considered invalid; for example, ResponseTime in the Applica-
tion Preference will be invalid when its precedence (i.e., 6) exceeds the
maximum priority (i.e., 5). Finally, we merge all valid properties into the
Global Preference. If there are conflicting properties, we keep only those
with higher precedence values. Suppose, for example, that two valid
ResponseTime properties are specified in the Client Preference and
Server Preference. In this case, we keep the one in the Client Preference
because its precedence value (i.e., 8) is higher.

Replication Process

The process of Mervlet replication can be divided into four phases:
Selection Phase, Populating Phase, Invocation Phase, and Synchronization
Phase. In the Selection Phase, before sending an HTTP request to the
server, an AOE-enabled client will check the local Device Preference to
see if the device allows Mervlet replication. If it does, the client will insert
a field into the header of the HTTP request to indicate its willingness to
be considered as a site for replicating the service. Upon receiving such a
request, the server will first serve the request and generate a usual
response. It then checks whether or not the application allows itself to

Figure 42.15 Example of Preference Management.

Application Preference

Device Preference

Server Preference

Global Preference

Preference Derivation Template

AU3833_C42.fm Page 1164 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1165

be replicated, and if it does then it will send application and server
preference and capability information to the client, again in the form of
HTTP header fields. The profile of the application includes hints on the
application’s usage of memory, storage, CPU, and the application’s con-
sistency requirement and data update frequency. Also included in the
header is a private ID created by the server for the client.

In the Populating Phase, the client uses the private ID received from
the server earlier to identify proper session states to be downloaded, in
addition to classes, immutable data, and shared mutable data. In the
Invocation Phase, when a client receives a request from a user or other
applications, it will check preference and profiling information, derived
both locally and received from the server, to decide whether to serve the
request locally or remotely. If the decision is to serve the request remotely,
then the service request will be forwarded to the server with no additional
header fields. In the Synchronization Phase, state modifications made in
the Invocation Phase will be synchronized to maintain a consistency level
that satisfies the requirements of the application. Note that only application
global states have to be synchronized at all times among replicas. Session
states only have to be synchronized when changing from invoking client
replicas to server replicas, or vice versa.

The selection and populating of a replica are customizable and adapt-
able in that devices, servers, and applications can define their own triggers
for selecting a device as a replication site and populate the site, and the
dynamic capabilities provided by the AOE runtime are used to automatically
evaluate the prerequisites for the trigger. Adaptation in replica invocation
is supported by per-request replica selection for invocation; that is, for
each request received by the client, the client- and server-side AOE runtime
will collaboratively decide which replica to use for the particular request.

The Synchronization Phase in Replet replication is separated into two
stages by the Invocation Phase: a Read Stage before the Invocation Phase
and a Write Stage after the Invocation Phase (see Figure 42.16):

■ Read Stage — On the client side, when the Replication Manager
decides to serve a request locally, it consults the client copy of
the Synchronization Helper (SH) specified by the preference to see
if it is necessary to read the most up-to-date version of the Replet’s
public data from the server replica. On the server side, when such
a read request is received, the Replication Manager consults the
server copy of the SH for the client to determine if it is necessary
to apply a write-lock to the server replica to prevent concurrent
access. The lock expires after a time defined by the preference.
Note that, because there is one preference for each client, poten-
tially each client can have a different SH.

AU3833_C42.fm Page 1165 Monday, August 21, 2006 8:25 AM

1166 ■ Mobile Middleware

■ Write Stage — On the client side, after an invocation on the client
replica that modifies the Replet’s public data, the Replication Man-
ager again consults the SH to see if it is necessary to propagate
the modification to the server replica immediately. On the server
side, when such a modification propagation message is received,
the Replication Manager consults the SH of the client to detect
potential update conflicts and resolve such conflicts. The Replica-
tion Manager then releases the lock on the server replica if the
client acquired one during the Read Stage. Finally, the Replication
Manager consults the SHs of other clients to see if the modification
has to be pushed to these clients.

Note that the actuation of the Read and Write Stages depends on whether
the invoked method reads or writes public data. If the method does not
read or write public data, then the Read and Write Stages are bypassed.

The SH is also part of the preference and can potentially be defined
by the client, the server, or the application. Some sample consistency
maintenance schemes that can be implemented using the SH include:

Figure 42.16 Flow chart for data synchronization.

AU3833_C42.fm Page 1166 Monday, August 21, 2006 8:25 AM

Middleware Support for Autonomous Cellphones ■ 1167

■ Pessimistic replication, where one-copy serializability is achieved
by demanding refreshment from the server replica before each
invocation that reads Replet public data, locking the server replica
after the refresh, and contacting the server replica after invocation
for update propagation and lock release

■ Optimistic replication with 1/K synchronization, where the data
refreshment and update propagation are carried out once for every
K invocations that access public data, and no lock is applied on
the server replica

■ Optimistic replication with push approach, where the client
depends on updates pushed from the server to maintain the
freshness of the Replet’s public data

The pessimistic replication scheme is practical if only a small fraction of
the invocations involve access to public data or if the data synchronization
overhead is much less costly than the overhead associated with the
transport of request and response messages and the processing of the
request on the server. Other sample consistency schemes include one that
chooses the appropriate update rate depending on client capability and
current server load for self-refreshing Web contents and another one
enforced by a server under unusually high load to temporarily disable a
device from reloading the content until sometime later.

Conclusions
Platform openness, resource availability variation, and service shared
access are three main obstacles to constructing middleware for autono-
mous cellphones that are being increasingly utilized in advanced scenarios.
Requirements for such middleware include functionalities such as
advanced device management, adaptive application models, and autono-
mous service infrastructures. Our work in this area has addressed these
requirements. The MBB project uses externalization concepts and a state
machine approach to enable fine-grained software inspection, diagnosis,
and reconfiguration, and it serves as the foundation for advanced device
management. The Mervlet and Replet projects together provide mecha-
nisms for dynamically selecting between a standalone version and a client–
server version of an application to adaptively respond to variations in
resource availability, and the project provides support for state synchro-
nization and consistency for access to shared services. Our future work
will further our efforts in this area and target building truly autonomic
mobile middleware.

AU3833_C42.fm Page 1167 Monday, August 21, 2006 8:25 AM

1168 ■ Mobile Middleware

References
[1] http://www.nttdocomo.com/technologies/present/imodetechnology/index.html.
[2] Beaufour, A. and Bonnet, P., Personal servers as digital keys, paper pre-

sented at the Second IEEE Int. Conf. on Pervasive Computing and Com-
munications (PerCom 2004), Orlando, FL, March, 2004.

[3] http://www.3gnewsroom.com/3g_news/dec_02/news_2861.shtml.
[4] kUDDI Project, http://kuddi.enhydra.org.
[5] kXML 2 Project, http://kxml.objectweb.org/project/aboutProject/index.html.
[6] Dashofy, E.M., van der Hoek, A., and Taylor, R.N., Towards architecture-

based self-healing systems, in Proc. of the First Workshop on Self-Healing
Systems (WOSS 2002), Charleston, SC, November 18–19, 2002, pp. 21–26.

[7] Kon, F., Costa, F., Blair, G., and Campbell, R.H., The case for reflective
middleware, Commun. ACM, 45, 33–38, 2002.

[8] Capra, L., Blair, G., Mascolo, C., and Emmerich, W., Exploiting reflection
in mobile computing middleware, Mobile Comput. Commun. Rev., 6, 34–44,
2002.

[9] Maes, P., Concepts and experiments in computational reflection, paper
presented at the ACM Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA’87), Orlando, FL, October 4–8, 1987.

[10] Roman, M., Kon, F., and Campbell, R.H., Design and implementation of
runtime reflection in communication middleware: the dynamicTAO case,
paper presented at IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’99), Austin, TX, May, 1999.

[11] Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M. et al., The design
and implementation of open ORB v2, IEEE Distributed Syst. Online, 2, 2001
(special issue on reflective middleware).

[12] Leymann, F. and Roller, D., A Quick Overview of BPEL4WS, IBM, White
Plains, NY, 2002.

[13] Islam, N., Zhou, D., Shaoib, S., Ismael, A., and Sajith, K., AOE: a mobile
operating environment for Web-based applications, in Proc. of Int. Symp.
on Applications and the Internet (SAINT 2004), Tokyo, Japan, January 26–30,
2004.

[14] NTT DoCoMo R&D, Special issue on i-mode services, DoCoMo Tech. J.,
1(1), 1999.

[15] van der Heijden, M., Heijden, M., and Taylor, M., Understanding WAP:
Wireless Applications, Devices and Services, Artech House, Norwood, MA,
2002.

[16] Shannon, B. et al., Java 2 Platform, Enterprise Edition: Platform and Com-
ponent Specifications, Addison-Wesley, Boston, MA, 2000.

[17] Joseph, A. and Kaashoek, F., Building reliable mobile-aware applications
using the Rover toolkit, in Proc. of the 2nd ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’96), White Plains, NY, November,
1996.

[18] Zhou, D., Islam, N., and Ismael, A., Flexible on-device replication with
Replets, in Proc. of the Thirteenth Int. Conf. on the World Wide Web (WWW
2004), New York, May, 2004.

AU3833_C42.fm Page 1168 Monday, August 21, 2006 8:25 AM

1169

Chapter 43

Middleware for

Wearable Computing

Chandra Narayanaswami

CONTENTS

Introduction... 1170
Applications of Wearable Computing ... 1174
Middleware Components ... 1176

Context... 1176
Sensor Interfaces ... 1177
Data Logging and Analysis .. 1178
Software, Service, and Device Management... 1179
Privacy and Security ... 1181
Multimodal and Multiform User Interfaces ... 1182
Energy Management ... 1183
Suspend/Resume ... 1183
Rapid Prototyping ... 1184

Conclusions ... 1185
References ... 1185

AU3833_C43.fm Page 1169 Monday, August 21, 2006 8:59 AM

1170

■

Mobile Middleware

Introduction

Wearable computing has existed as an independent field for more than a
dozen years now, and its impact is being felt today by millions of people.
So, what is a wearable computer? Broadly speaking, a wearable computer
is typically worn directly on the body or attached to clothes worn on the
body. Sometimes, the wearable computer is even implanted inside the
body. The overall vision is that, by integrating the wearable computer into
something the user always wears, it will be available to the user almost
all the time. Research in wearable computing [2,5,20,21,25,26,29,39,42,43]
attempts to bring the power of computing technologies into our daily lives
at a much more pervasive level than the traditional desktop computer.
Unlike traditional computing where humans explicitly go to a computing
device to use its services, the approach of wearable computing is one
where the computer is with the user and continually augments the capa-
bilities of the individual.

Over the years, as shown in Figure 43.1, Figure 43.2, Figure 43.3, and
Figure 43.4, wearable computers of several types have been designed,
prototyped, and manufactured. They range from general-purpose personal
computers that are essentially PCs packaged differently (with a head-
mounted display and single-handed keyboard and mouse) to single-
function devices such as a one-way pager. Many wristwatches, pagers,
hearing aids, pacemakers, and heart-rate monitors are specialized wearable
computers. The most popular wearable computer is undoubtedly the
cellphone. Though it started out as a device for just voice communication,

Figure 43.1 IBM’s Linux watch prototype.

AU3833_C43.fm Page 1170 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1171

recent cellphones incorporate powerful processors, disk drives, high-
resolution displays, general-purpose operating systems, and a variety of
applications. Many cellphones now also include digital cameras and radio-
frequency identification (RFID) tags. In the very near future, we expect
cellphones to include even RFID readers. Though they fit in a shirt pocket
or can be worn as a pendant, the amount of raw computing power in

Figure 43.2 Belt computer. (Image courtesy of Wearable Computing Lab, ETH
Zurich.)

Figure 43.3 Sony Vaio U70P portable computer.

AU3833_C43.fm Page 1171 Monday, August 21, 2006 8:59 AM

1172

■

Mobile Middleware

today’s cellphone far exceeds that of even PCs from a decade ago, and
they are regarded as a general-purpose computing platform [48].

Developments in mechanical engineering over the last 200 years have
allowed us to reduce the physical strength required to perform many tasks;
for example, a person with average physical ability can operate an excavator
and succeed in a construction job. Before the advent of such tools, however,
jobs in construction were for only the very hardy. Computing technology
offers the promise of augmenting the capabilities of individuals in a variety
of ways — for example, by keeping track of pieces of information that we
find difficult to remember, by performing complex calculations much more
rapidly than is humanly possible, and by making information readily available
from remote sources. So, just as mechanical engineering advances leveled
the playing field in terms of physical ability, wearable computing has the
potential to level the playing field in an intellectual sense.

Key aspects of a wearable computer include the following: form factor
(size, shape, and where on the body it will be worn), the environments
in which it will be used, and whether it is special purpose or general
purpose. Clearly, wearable computers have to be smaller and lighter than
traditional computers. Wearable computers are designed for users who
may be engaged in other tasks, so usability is a critical aspect that has to
be addressed. Well-designed wearable computers allow the user to focus
on the primary activity of the moment while providing the support the

Figure 43.4 IBM Personal Mobile Hub prototype.

AU3833_C43.fm Page 1172 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1173

user needs. Users should find interaction with the computer intuitive and
easy to understand. Wearable computers cannot afford to place a high
degree of cognitive load on users because doing so may result in diverting
attention away from their activities.

As the capabilities of wearable computers increase, the complexity of
interacting with the wearable computer also increases. User interface
paradigms that are popular in traditional desktop systems do not map
well to wearable computers. The wearable computer as well as its user
interface must be carefully designed, taking into consideration the types
of activities the user is engaged in and the kinds of services the wearable
device will provide to the user.

The flexibility of wearable computers comes at a price. The size
constraints on a truly wearable device permit the inclusion of only a small
set of user interface controls. Users also find it difficult to remember which
combinations or sequence of button pushes are required to accomplish
the functions they are interested in. Other input modes, such as voice,
may not be appropriate in many situations for wearable computers, as
the user is likely to be in a social setting. The user may also be on the
move, and the user’s environment may be too noisy for voice input. Size
limitations on wearable computers also translate to a limited amount of
display area. Any information that is displayed on the device must take
into account the user’s visual acuity. Although users may have the option
of positioning the device closer or farther away from their eyes to make
reading the display easier, such positioning may not always be desirable
or even possible depending on the task the user is engaged in. The
appearance of information presented on the display of a wearable com-
puter must be designed to change depending on whether the user seeks
to obtain that information at a glance or is willing to devote more attention
and consciously study the display for a longer duration. The amount of

battery energy that can be packed into wearable computers is also fairly
limited [17–40]. The energy density of batteries in these computers is already
at dangerous levels, so one cannot expect significant improvements in
battery capacity. Wearable computers also typically communicate through
wireless means. Wireless communication consumes more energy, especially
at higher data rates and longer ranges; thus, energy efficiency must be
considered at all levels, including hardware, base software, middleware,
and applications.

The above limitations in input and output capabilities and limited
energy capacity can be compensated for to some extent if the user could
transfer sessions and running applications seamlessly from the wearable
device to more powerful stationary devices when necessary. In this way,
the flexibility of wearable devices could be combined with the inherent
advantages of stationary devices [33].

AU3833_C43.fm Page 1173 Monday, August 21, 2006 8:59 AM

1174

■

Mobile Middleware

Finally, wearable computers are often used in environments that are
harsher compared to desktop computers. Being rugged is often a man-
datory feature of wearable computers. Another item of concern in domains
where the wearable computers may be shared among users is the issue
of hygiene. Replaceable covers or similar techniques will be necessary to
overcome that barrier. Heat dissipation from wearable computers may
have to be addressed, as well [41].

Applications of Wearable Computing

We first consider a few applications of wearable computing before we
discuss how suitable middleware can be designed to help address the
concomitant challenges. Advances in wearable computing technology and
sensors are beginning to impact the administration of health care in both
inpatient and outpatient settings. The increasing costs of inpatient hospital
stays combined with the growing evidence that faster recovery and immunity
from infections are possible when the patient is back at home and ambu-
lating are also motivating the deployment of patient monitoring applications.

Pacemakers have been used for several decades to adjust heart rhythms
and help patients live a more satisfying life. Several wearable devices that
can measure and track, for example, pulse rates are also available now at
modest costs for casual use. Some of them can be connected to fitness
equipment and to personal computers. More recently, efforts are being
addressed not only at measuring health signs but also on analyzing the
measured data and then relaying the measured data to healthcare personnel
for immediate consultation or action. Typical areas include glucose monitor-
ing, blood pressure monitoring, coronary event prediction, and pill regimen
compliance. Another area where wearable computing technology is being
used is in drug trials. By being able to monitor the effects of the drug on
the patient in real time and in less controlled settings, researchers are able
to improve the process and recruit more subjects for trials while reducing
the cost of the trials. In addition, wearable monitors embedded in clothes
are allowing more direct and accurate measurement of some parameters that
had not been possible earlier. Researchers are also exploring brain–computer
interfaces for the disabled [11,28,45]. Signals received from electrodes or
sensors attached to the brain can be captured and used to move cursors,
select items, etc. Such work is in the early stages but looks promising.

The nature of medical applications dictates that they must be reliable.
Rebooting a wearable device in the middle of a monitoring application
may not be a viable option. This means that applications must be resilient
against loss of connectivity, failure to deliver messages, loss of battery,
etc. Fallback options have to be designed from the beginning.

AU3833_C43.fm Page 1174 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1175

The relaying and sharing of medical information brings some unique
challenges in terms of security and privacy. In many parts of the world,
people want to keep their health issues private for a variety of reasons
and want tight control over who has access to that data. In fact, several
regulations such as the Health Insurance Portability and Accountability
Act (HIPAA) specify how medical information can be shared and dissem-
inated; thus, wireless security, theft of wearable devices, and unauthorized
access to medical databases are some of the issues that have to be handled.

Armed forces personnel were early adopters of wearable computers.
Wearable computers provide quick access to necessary information in
battlefield situations. The computer is typically in a backpack or worn
around the belt, and displays are provided as helmet-mounted units. One
can imagine that the latest information, such as enemy area maps and
enemy positions, can be sent to soldiers just in time. Information about
fallen soldiers can be sent precisely to nearby personnel for possible
recovery. The soldier’s condition can be monitored regularly and relayed
to command centers. Police officers in several civilian communities have
also started to adopt wearable computing technology; for example, a
wearable computer saves a trip back to the police car to verify a license
or compare images or fingerprints.

Repair technicians in certain domains have been early adopters of
wearable computing. Bell Canada, for example, reported that its utility
workers were able to save about 50 minutes per day on average by not
having to get down from poles to go to their trucks to use their computers.
Typically, workers are able to bring up repair manuals while they are still
in front of complex equipment and thus are better able to correlate data
from the manuals with the real equipment. Wearable computers have been
used in the aircraft maintenance industry, as well [3,27]. Workers at
warehouses typically wear barcode scanners to help manage inventory
more efficiently because the fingers are left free and the scanner is
exceptionally well suited for package-handling-intensive activities such as
order picking, stock pulling, and restocking.

Drishti [35], a prototype wearable system that includes a global position
system (GPS) and audio output, helps blind people navigate streets by
correlating the GPS data with spatial databases that include walkways,
benches, poles, and other obstacles and providing just-in-time information
to the user. The remembrance agent [37,38] is another application of
wearable computing. The user’s wearable computer provides information
that is relevant to what the user may be reading or writing, such as e-
mails from reviewers or relevant papers to cite. An often-quoted extension
is the following: The agent helps the user with the name of the person
the user is talking to, the date and time of the last conversation with that
person, etc.

AU3833_C43.fm Page 1175 Monday, August 21, 2006 8:59 AM

1176

■

Mobile Middleware

Other common wearable computers are found in the entertainment
field. Music players such as the iPod

®

 are an example. Echo-canceling
headsets and Bluetooth

®

 headsets are other examples.
In summary, wearable computing is transforming several business

processes by either increasing the efficiency or expanding the conditions
under which work can be done. In addition, wearable computing has
improved the quality of life for several individuals and is poised to have
a more significant impact in the years to come.

Middleware Components

Given that we now have a reasonable understanding of some of the
challenges faced by wearable computers and some of the popular appli-
cations, we are in a position to look at middleware components that can
help accelerate their reach.

Context

Because a wearable computer may be used in many locations other than
the office, the

context

 in which it is used is rather varied. Context could
include the user’s location, physical activity, intellectual activity, emotional
state, future activity, and information about his environment, such as the
names and pictures of people who are with him and what those people
are doing. The context information can then be used to adapt user
interfaces, route messages, present pending tasks, etc.

Location is a well-studied topic, and several methods are available to
obtain location to a varying degree of accuracy [6]. Context middleware does
not particularly care about which physical method is used as long as the
location data is reported. Location data can specify the location in some
absolute or abstract way, the accuracy of the information, the method that
was used, etc. Sometimes location data is stale. In these cases, the middleware
function could specify additional location data that specify the last reliable
location of the user. The user’s estimated trajectory can also be provided.

The user’s physical activity can be derived directly from wearable sensors
or by more indirect means such as looking up the user’s calendar. Several
researchers have used accelerometers to reliably determine whether the
user is stationary, walking, or running. The user’s physical activity can also
be determined from studying images from cameras near the user in the
environment. The middleware function that reports the user’s physical
activity should specify the confidence level with which it is reported.

The user’s intellectual activity can be determined by analyzing what
the user is working on — namely, reading, writing, or speaking. In the

AU3833_C43.fm Page 1176 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1177

future, it may be possible to even determine what the user is thinking by
attaching sensors to the brain. In some cases the user’s calendar may be
accurate enough to determine the activity. If the intellectual activity needs
to be deduced it can be done by analyzing the text that is being composed
by the user or the words being spoken, looking at the most active and
recent processes running on the user’s computer. The user’s future activity
can sometimes be deduced from the above analysis and by looking at
the user’s calendar. The middleware function that reports the user’s mental
activity should specify how the activity was determined.

The user’s environment can be deduced in many ways; for example,
the user’s location may give an indication of whether the user is outdoors
or indoors or in a warm area or cold, or it can provide the user’s time
zone. The user’s wearable computer can record voices of people around
the user and arrive at how many people are in the user’s immediate
vicinity at a given time. Images from the user’s camera may also give an
indication of the number of people around the user.

We believe that eXtensible Markup Language (XML) representations
and Web services interfaces for the above types of context will be very
useful. For one, they will allow a machine to parse the user’s context and
take appropriate action. Web services also remove the programming
language dependencies and allow heterogeneous environments to mix.
Standardized toolkit concepts such as Context Toolkit [10] can be adapted
to the field of wearable computing.

Another area where middleware can help is in context prediction.
Although knowing the user’s current context is useful, it can be even
more helpful if the user’s future context can be deduced. A variety of
means can be used for this purpose; for example, if the user is on a bus
going from place A to B, the future location of the user is known assuming
that information about the bus route and traffic information is available.
The user’s calendar is another rich source for this information and works
if the calendar is accurate. Typically, calendars for more than 50 percent
of the users are inaccurate because of the difficulty of keeping calendars
up to date. If the user’s wearable device knows that the user is going to
run into person X in the corridor a minute from now, the system can
quickly check to see if any messages need to be communicated in person
when person X actually encounters the user.

Sensor Interfaces

Wearable devices must provide low-power hardware interfaces and data
formats for a variety of sensors that can help get some of the context
information described above. The IBM Personal Mobile Hub [16] (see
Figure 43.4) is an example that uses this philosophy. By standardizing the

AU3833_C43.fm Page 1177 Monday, August 21, 2006 8:59 AM

1178

■

Mobile Middleware

hardware and software interfaces, the sensor manufacturers can focus on
designing the best sensor instead of worrying about the complete software
and hardware stack. Clearly, this technique has worked well in the PC
industry; for example, a GPS sensor designer can make his design more
compact by not having to build long-range wireless communication capa-
bilities into the GPS unit and instead relying on short-range wireless
communication that consumes less power.

Wireless means are clearly preferred for connecting the sensors to the
wearable unit; for example, a sensor in the shoe may transmit a signal
indicating whether the user is walking, running, or stationary. Running a
wire from the shoe to the user’s wearable unit, such as a cellphone, is
rather inconvenient. Researchers [18,19] have placed accelerometers in var-
ious locations on the human body to determine the user’s physical activity
more accurately. Some clothes now have moisture, temperature, and ambi-
ent light sensors. The user’s wearable unit can periodically communicate
with all of the body worn sensors to determine the user’s context.

Data from the sensors can be used to enhance user experience; for
example, imagine that a music player with a disk drive can be told ahead
of time that the user is going to jog. The player may be able to avoid disk
accesses during the jogging period by copying to RAM or flash memory
the songs in the playlist that the user is going to use while jogging, as such
memory is less susceptible to read errors while in motion. Ambient light
sensors can be used to modify the colors and brightness levels of the user
interface or to switch to another modality, such as voice, if appropriate. If
the user is expected to travel into a zone with poor wireless coverage based
on past history, the user’s mail replication schedule could be advanced.

In summary, sensors that we can expect to communicate with the
user’s wearable unit include temperature, ambient light, moisture, location,
and physical activity. A common event model that delivers a piece of
information consistently and reliably would significantly help in stream-
lining data transfer and delivery.

Data Logging and Analysis

Wearable devices are capable of holding several tens of gigabytes of storage
today. An iPod with a 60-GB disk drive is already available. Cellphones
have begun to incorporate 4-GB drives. We can only expect this number
to go up over time. One of the consequences of this is that the user can
carry a lot of information on the wearable device itself. In fact, the SoulPad
model [7,34] allows users to carry their entire suspended computer state
on the disk drive and resume the suspended state on any PC.

The information stored on the wearable unit could be captured from
attached sensors or from other traditional sources such as databases and

AU3833_C43.fm Page 1178 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1179

Web servers. Middleware components that will be useful are embedded
versions of databases that can be synchronized with larger versions on a
server; for example, a jogger can log details about a particular run, such
as the time of day, length of run, period of run, number of paces taken,
and instantaneous heart rate. Such data can be stored in databases for
further analysis, either locally or in a more global fashion.

Data analysis on captured data is an important area. In our jogger
example, the events can be examined to look for patterns. Middleware
to specify rules for patterns becomes essential [44]. Statistical packages,
event correlation engines, neural networks, etc. can be used to launch
software agents that take further action; for example, a simple rule might
say that, if the instantaneous heart beat exceeds 165 beats per minute for
45 minutes and the temperature is above 85°F, then the user should be
notified and asked to slow down. The rule engine should allow specifi-
cation of simple rules and include a rule composition language that allows
several rules to be compounded to derive a complex rule. More complex
rules could look for patterns over longer periods of time and at multiple
streams of data; for example, a user attending a conference might specify
a rule requesting that his wearable notify him whenever a talk is taking
place that cites one of the user’s technical papers and the user’s schedule
is free for that time. Because rules can change over time, the middleware
must allow the addition of new rules and refinement of existing rules. It
is also important to verify that the compound rules do not contain cyclic
dependencies, etc. Formal verification of rules can be performed in the
background. Stream data processing is an emerging field [8,9,22] with
particular applicability to wearable computing because multiple sensors
can stream data to the user.

When local data analysis on the wearable unit will not suffice, the
collected data can be sent to remote locations for further analysis, perhaps
with larger groups of users; for example, if a rule is triggered and detects
a suspicious medical event, the data supporting the triggering of the rule
can be sent to an expert for further analysis. The expert may have a larger
collection of rules or data samples and may be able to better analyze the
data than the user’s wearable unit. Standard methods to synchronize
different data types are evolving. Technologies such as SyncML

®

 [15] may
prove to be useful.

Software, Service, and Device Management

One of the big challenges for wearable computers is the availability of
software when it is needed dynamically. Users cannot expect to have all
of the necessary software they will need on their wearable computers due
to the number and frequency of novel situations they are likely to

AU3833_C43.fm Page 1179 Monday, August 21, 2006 8:59 AM

1180

■

Mobile Middleware

encounter; for example, if the user wishes to utilize services available in
an active space around him, suitable mechanisms have to be available for
service discovery and dynamic software provisioning. Fortunately, stan-
dards such as the Open Services Gateway Initiative (OSGi) [0] provide
methods to publish and dynamically provide code bundles to the wearable
device from a bundle server. Mechanisms are also available to update
older versions of code and keep the device software up to date.

Several service discovery mechanisms are also available. They include
Domain Name System (DNS)-based service discovery (DNS-SD); the Sim-
ple Service Discovery Protocol (SSDP); Universal Description, Discovery,
and Integration (UDDI) for Web services discovery; the Bluetooth

®

 Service
Discovery protocol; etc. Some of these mechanisms such as DNS-SD and
Bluetooth Service Discovery are closely coupled with lower levels of the
networking stack. Others operate at higher levels and are programming
language independent and typically use newer Web-based standards
including XML for service descriptions. Protocols such as Universal Plug
and Play (UPnP™) leverage SSDP to help discover devices. Near Field
Communication (NFC) [49] technology is beginning to gain momentum
as an aid to device and service discovery within short ranges. The basic
idea is to use RFID tags and readers to discover services that are available
in the immediate vicinity.

The next challenge is to create suitable middleware that allows active
spaces to be populated with services to make it easy to create new active
spaces — say, at bus stops, coffee shops, or campus sign boards. Middle-
ware to test whether the services available in the active spaces are func-
tioning correctly also becomes crucial.

The World Wide Web Consortium (W3C) has several activities
directed toward mobile devices. These activities include the Dynamic
Properties Framework (DPF) [47] and the Device Independence Activity
[47]. DPF defines platform- and language-neutral interfaces that provide
Web applications with access to a hierarchy of dynamic properties
representing device capabilities, configurations, user preferences, and
environmental conditions. The W3C Device Independence Activity is
working to ensure seamless Web access with all kinds of devices and
the development of worldwide standards for the benefit of Web users
and content providers alike. The Bluetooth Human Interface Devices (BT-
HID) profile defines a set of services that can be used between a host
capable of supporting HID devices and a BT-HID device. More specifi-
cally, the HID profile defines a mechanism through which Bluetooth-
enabled devices such as phones, PDAs, etc. can communicate with another
device. Configuration files on the device define its behavior by mapping
particular keys or joystick movements to particular events or actions
on the remote device. All of the above activities will help address device

AU3833_C43.fm Page 1180 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1181

heterogeneity in the device space that arises due to the personal
preferences of users and intense competition between device vendors
to provide well-designed appliances.

Privacy and Security

It is clear that wearable computers can collect and analyze a significant
amount of data. A natural question that people often raise is one of
privacy. Who can be given access to information about the user’s current
physical activity? How can we ensure that data from a heart-rate monitor
does not fall into the wrong hands? How should privacy permissions
be propagated? If someone has agreed to release location information
to a colleague, is that colleague at liberty to reveal that person’s location
to others?

Let us look at data security before we suggest possible approaches to
handle the privacy issues above. Because data may be received from
body-worn sensors it is necessary to protect such data during transfer.
The sensors could have a shared secret with the wearable computer and
use it to encrypt data transfers. Recently, it has been shown that Secure
Sockets Layer (SSL) can be implemented even on resource-constrained
devices [13]. Because body-worn sensors typically have short ranges, the
security issues can generally be met without requiring significant innova-
tions. Because wearable devices could potentially be lost, sensitive data
on the devices should be protected using standard security mechanisms.
Periodic data backups, similar to those for PCs today, are also essential.

Privacy management middleware could help define the level of
privacy for each data element; for example, a user could specify that
his calendar entries will be viewable by person X between 9 a.m. and
noon on Tuesday the 7th. Another example that is coupled to rules is
that if the user’s heart rate is above 165 beats per minute then person
X can access the user’s location. By being able to place conditions
under which some information is revealed, the user retains the privacy
he desires most of the time, while still allowing for divulging data in
case of emergencies.

A big challenge to specifying the privacy properties for any data is
the usability of the system. If the method for entering the rules is
complex, most users will take the default privacy levels that the system
offers. The privacy middleware must have good support for cloning
rules defined earlier and for editing them. A system than can learn the
user’s predilections for privacy will be of immense value. When such
systems become available, privacy tags can be assigned automatically
by the system.

AU3833_C43.fm Page 1181 Monday, August 21, 2006 8:59 AM

1182

■

Mobile Middleware

Multimodal and Multiform User Interfaces

Because the user of the wearable computer can be in many different types
of environments, the user interface that is most suitable for communicating
with the user may change; for example, although pen-based text input may
be fine when users are at their desks, the application must seamlessly allow
the users to switch to a voice-based text input system when they are walking.
In essence, middleware to switch the modality of the user interface becomes
critical. The application designer must take into account that the modality
of the user interface could change during the course of the application and
provide suitable transition points where the modality can be changed.

Wearable computers may have lower resolution direct-view displays
and may allow the attachment of high-resolution, eye-mounted displays.
Applications have to be cognizant of this fact and adjust to varying display
size and also exploit the two displays whenever practical and useful. The
eye-mounted display may be more suitable for private information, and
the direct view display may be easier to access in a variety of day-to-day
settings. Projection-based and flexible displays [23] can also change the
size of the display dynamically. Middleware that estimates the size of the
active display or displays will be necessary to adjust to viewing conditions.
Similarly, the wearable device may be operated with a limited number of
dedicated buttons on the device itself or through auxiliary input devices
such as full-function keyboards. User interfaces have to reconfigure them-
selves as different input mechanisms are added.

Tactile- and vibration-based user interfaces are useful in a mobile
scenario [12,31]; for example, patterns of vibration can distinguish between
calls from family versus non-family. Gestures made by moving the wear-
able device [14,36] can be sensed by accelerometers housed in the device
and can be used to control the device. Middleware for gestures and for
vibration-based output have to be developed.

Voice input is generally not used widely in a desktop environment. It
appears that, in spite of deficiencies in the keyboard and mouse interface,
people still find it superior to other interfaces on the desktop; however,
when the user is mobile and the task is more complex, voice-based
technologies can play a role. As an example, voice-based dialing on
cellphones is popular. Using voice and using natural language processing
to specify rules for event correlation seems simpler than doing it with a
keyboard and mouse.

The context of the user can be used to modulate the volume of an
audio interface. Clearly, the volume can be increased in noisy environ-
ments. Middleware that connects the user’s context to the output interface
is therefore essential. In addition, instead of having the same fixed volume
for all applications on the device, volume could be customized for each

AU3833_C43.fm Page 1182 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1183

application depending on the current context. Some applications may
warrant a higher volume and others may be muted. These parameters
have to be captured by suitable functions in the middleware layer.

In summary, knowing the user’s precise context can help tailor the
user interface. Evolution of suitable middleware to support multimodal
input and output and seamless switching between modalities will improve
the usability of wearable computing.

Energy Management

Energy is an important consideration in wearable computing. The simplest
form of middleware allows the applications to get the status of the battery
powering the device. This middleware will take the user’s battery recharging
strategy into account, as well; for example, if the user typically charges his
wearable computer in the car when returning home, the system will not go
into the lowest power mode if it detects a relatively low battery level toward
the end of the day. Energy management middleware will help determine
the amount of energy that will be consumed for certain tasks. The user may
specify in some high-level terms the nature of the task, and the middleware
will determine an energy consumption profile for the task depending on
other tasks that are running on the system. Such middleware should also
measure and learn the energy consumption of installed applications as a
background activity. Energy management middleware can help tune the user
interface; for example, if the battery level is low and the user is not expected
to recharge the battery any time soon, the user interface can be modified
to perhaps be a bit less friendly but more frugal from an energy consumption
angle. Energy management middleware to perform clock and frequency
scaling to reduce energy consumption can be integrated with other contextual
information about the user; for example, if a user wants to finish viewing a
video before getting off the bus but does not see any benefit to finishing
viewing the video any sooner, then that information can be provided to the
clock and frequency scaling middleware as a constraint.

Suspend/Resume

Although wearable computers provide the flexibility of being available
all the time, they come with several disadvantages compared to sta-
tionary counterparts; for example, a wearable computer may have a
Twiddler

TM

 keyboard, and the user may have a slower data input rate
on such a keyboard. Wearable computers also have smaller displays
and may have weaker processors and less memory than stationary PCs.
Wearable computers also have limited energy sources. For these reasons,

AU3833_C43.fm Page 1183 Monday, August 21, 2006 8:59 AM

1184

■

Mobile Middleware

users of wearable computers may want to switch their computing sessions
from the wearable to a stationary computer. Essentially, users should be
given the ability to suspend the computing state on their wearable com-
puters and then transfer it to a more convenient machine and resume the
computation with out losing the context (e.g., the tasks that were running,
the windows that were open).

Such functions are indeed provided by the SoulPad approach [34]. The
SoulPad technique allows users to carry just a small portable device with
sufficient storage so it can be attached to a public PC to give the users
access to their complete personal computing environment (data and
applications) and allow them to resume prior suspended sessions without
requiring network connectivity. The SoulPad software stack has three
layers: an autoconfiguring operating system (OS), a virtual machine (VM)
monitor, and a suspended VM image (includes guest OS and applications).
The SoulPad stack can be carried on a portable disk drive or on devices
that include a drive such as an iPod. Because all of the software that runs
on the PC comes from SoulPad, it does not rely on any installed software
on the PC and does not even access the internal disk on the PC. SoulPad
can work with diskless PCs, as well. One area that requires further
investigation is the seamless handoff of the user interface when compu-
tation is transferred among devices with differing I/O interfaces.

Another useful technology is the Session Initiation Protocol (SIP) [51].
Acharya et al. [1] used SIP to control media sessions to wearable computers.
SIP separates the data path for a piece of communication from the control
path. In a sense, it is analogous to using pointers to refer to a data object.
This technology allows the user, for example, to receive a call on his wearable
device that he can subsequently transfer to a stationary device nearby. The
wearable device can either remain in the control path or drop off. A user
may seamlessly transfer an ongoing conversation from his office phone at
the end of his day to his cellphone while on his way to the car and then
to his car phone and finally to his home phone without dropping the call.

Seamless mobility between devices will be important in some domains.
The application and user interface must both be considered. This may
change the way applications are written, because an application can be
started on one platform and resumed on another. Applications will have
to define suitable points at which the application may be suspended for
later resumption.

Rapid Prototyping

Wearable devices may have short lifecycles due to rapid advances in
technology. This means that rapid prototyping and development are
crucial. Tools that facilitate rapid prototyping of the function of a wearable

AU3833_C43.fm Page 1184 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing

■

1185

device will be of significant value; for example, as discussed in Naraya-
naswami and Raghunath [24], the design of a new form factor can be
separated into a wirelessly connected physical piece that models the input
and output devices of the form factor and several software components
running on standard PCs that perform the actual function of the device.
This separation allows faster debugging of the system and parallel devel-
opment of system software and applications. Typically, this approach is
an improvement over software device emulators because the usability and
human interface aspects can be tested more accurately. Middleware that
allows users to specify standard input output devices and connect them
to software emulators will help this process.

Conclusions

Wearable computing is an emerging field with great potential to change
the way business is conducted and the way people entertain themselves.
Over the last several years, the wearable computing community has
worked toward addressing some of the fundamental challenges that face
this emerging field. The broad functionality provided by modern cell-
phones demonstrates that the basic challenges have largely been addressed
in some areas. We are now at an exciting point where increasingly larger
segments of the general population can benefit from wearable computing
technologies. Well-designed middleware that makes it less expensive,
faster, and easier to develop personalized applications is critical for
expanding the possible impact from wearable computing. The develop-
ment and eventual availability of middleware components discussed in
this chapter will also make it easier for users to build their own personal
constellation of devices. The user’s personal constellation of devices can
interact with devices in the environment to make users more productive
in a more diverse set of situations than was possible earlier without well-
defined middleware components.

References

[1] Acharya, A., Berger, S., and Narayanaswami, C., Unleashing the power of
wearable devices in a SIP infrastructure, in

Proc. of the 3rd Int. Conf. on
Pervasive Computing and Communications (PerCOM’05)

, Kauai Island,
Hawaii, March 8–12, 2005, pp. 159–168

.

[2] Bass, L.J., Kasabach, C., Martin, R., Siewiorek, D.P., Smailagic, A., and
Stivoric, J., The design of a wearable computer, in

Proc. of ACM SIGCHI
Conf. on Human Factors in Computing Systems (CHI’97)

, Atlanta, GA, April
18–23, 1997, pp. 139–146.

AU3833_C43.fm Page 1185 Monday, August 21, 2006 8:59 AM

1186

■

Mobile Middleware

[3] Bass, L., Siewiorek, D., Bauer, M., Casciola, R., Kasabach, C. et al., Con-
structing wearable computers for maintenance applications, in

Fundamen-
tals of Wearable Computers and Augmented Reality

, Barfield, W. and
Caudell, T., Eds., Lawrence Earlbaum Associates, Mahwah, NJ, 2001.

[4] Bigus, J.P., Schlosnagle, D.A., Pilgrim, J.R., Mills, III, W.N., and Diao, Y.,
ABLE: a toolkit for building multiagent autonomic systems,

IBM Syst. J.

,
41(3), 350–371, 2002.

[5] Billinghurst, M. and Starner, T., Wearable devices: new ways to manage
information,

IEEE Comput

., 32(1), 57–64, 1999.
[6] Borriello, G., Chalmers, M., LaMarca, A., and Nixon, P., Delivering real-

world ubiquitous location systems,

Commun. ACM

, 48(3), 36–41, 2005.
[7] Caceres, R., Carter, C., Narayanaswami, C., and Raghunath, M.T., SoulPad:

reincarnating PCs using portable devices, in

Proc. of the Third Int. Conf.
on Mobile Systems, Applications, and Services (MobiSys’05),

Seattle, WA,
June, 2005, pp. 65–78 (www.research.ibm.com/WearableComputing/Soul-
Pad/soulpad.html).

[8] Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S. et al., Moni-
toring streams, a new class of data management applications, in

Proc. 28th
Int. Conf. on Very Large Data Bases (VLDB’02)

, Hong Kong, August, 2002.

[9] Chandrasekaran, S. and Franklin, M.J., Streaming queries over streaming
data, in

Proc. of the 28th Int. Conf. on Very Large Data Bases (VLDB’02)

,
Hong Kong, August, 2002.

[10] Dey, A.K., Providing Architectural Support for Building Context-Aware
Applications, Ph.D. thesis, College of Computing, Georgia Institute of Tech-
nology, Atlanta, 2000.

[11] Farwell, L.A. and Donchin, E., Talking off the top of your head: toward a
mental prosthesis utilizing event-related brain potentials,

Electroencephalogr.
Clin. Neurophysiol.

, 70(6), 510–523, 2002.

[12] Gemperle, F., Ota, N., and Siewiorek, D., The design of a wearable tactile
display, in

Proc. of

the Fifth IEEE Int. Symp. on Wearable Computers (ISWC’01)

,
Zurich, Switzerland, October 7–9, 2001.

[13] Gupta, V., Millard, M., Fung, S., Zhu, Y., Gura, N. et al., Sizzle: a standards-
based end-to-end security architecture for the embedded Internet, in

Proc.
of the 3rd IEEE Int. Conf. on Pervasive Computing and Communications
(PerCom’05)

, Kauai Island, Hawaii, March 8–12, 2005, pp. 247–256.
[14] Hamburgen, W.R., Wallach, D.A., Viredaz, M.A., Brakmo, L.S., Waldspurger,

C.A. et al., Itsy: stretching the bounds of mobile computing,

IEEE Comput.

,
34(4), 28–36, 2001.

[15] Hansmann, U., Thompson, P., Mettala, R.M., and Purakayastha, A.,

SYNCML:
Synchronizing Your Mobile Data

, Prentice Hall, Upper Saddle River, NJ, 2002.

[16] Husemann, D., Narayanaswami, D., and Nidd, M., Personal mobile hub, in

Proc. of the Eighth IEEE Int. Symp. on Wearable Computers (ISWC’04)

,
Arlington, VA, October 31–November 3, 2004, pp. 85–91.

[17] Kamijoh, N., Inoue, T., Olsen, C.M., Raghunath, M., and Narayanaswami,
C., Energy trade-offs in the IBM wristwatch computer, in

Proc. of the Fifth
IEEE Int. Symp. on Wearable Computers (ISWC’01), Zurich, Switzerland,
October 7–9, 2001, pp. 133–140.

AU3833_C43.fm Page 1186 Monday, August 21, 2006 8:59 AM

Middleware for Wearable Computing ■ 1187

[18] Kern, N., Schiele, B., and Schmidt, A., Multi-sensor activity context detection
for wearable computing, in Proc. of European Symp. on Ambient Intelli-
gence (EUSAI’03), Eindhoven, The Netherlands, November 3–4, 2003, pp.
220–232.

[19] Kern, N., Antifakos, S., Schiele, B., and Schwaninger, A., A model for human
interruptability: experimental evaluation and automatic estimation from
wearable sensors, in Proc. of the Eighth IEEE Int. Symp. on Wearable Com-
puters (ISWC’04), Arlington, VA, October 31–November 3, 2004, pp. 158–165.

[20] Kortuem, G., Bauer, M., and Segall, Z., NETMAN: the design of a collabo-
rative wearable computer system, Mobile Networks Appl., 4(1), 49–58, 1999.

[21] Kortuem, G., Segall, Z., and Bauer, M., Context-aware, adaptive wearable
computers as remote interfaces to “intelligent” environments, in Proc. of
the 2nd IEEE Int. Symp. on Wearable Computers (ISWC’98), Pittsburgh, PA,
October 19–20, 1998, pp. 58–65.

[22] Madden, S., Shah, M.A., Hellerstein, J.M., and Raman, V., Continuously
adaptive continuous queries over streams, in Proc. of ACM SIGMOD Int.
Conf. on Management of Data, Madison, WI, June 3–6, 2002, pp. 49–60.

[23] Narayanaswami, C. and Raghunath, M.T., Unraveling Flexible OLED Displays
for Wearable Computing, IBM Research Report RC23622, IBM Corp.,
Armonk, NY, 2005.

[24] Narayanaswami, C. and Raghunath, M.T., Designing a new form factor for
wearable computing, IEEE Pervasive Comput., 1(4), 42–48, 2002.

[25] Narayanaswami, C. et al., IBM’s Linux watch: the challenge of miniaturiza-
tion,IEEE Comput., 35(1), 33–41, 2002.

[26] Narayanaswami, C., Raghunath, M., Kamijoh, N., and Inoue, T., What Would
You Do with a Hundred MIPS on Your Wrist?, IBM Research Report RC22057,
IBM Corp., Armonk, NY, 2001.

[27] Nicolai, T., Sindt, T., Kenn, H., and Witt, H., Case Study of Wearable
Computing for Aircraft Maintenance, Universität Bremen, Germany, Ger-
many Center for Computing Technologies (TZI), 2005.

[28] Nykopp, T., Laitinen, L., Heikkonen, J., and Sams, M., Statistical methods
for MEG based finger movement classification, IEEE Trans. Neural Syst.
Rehabilitation Eng., 2006 (in press).

[29] Pentland, A., Human design: wearable computers for human networking,
in Proc. of IEEE Int. Conf. on Distributed Computing Systems (ICDCS’03),
Providence, RI, May, 2003, pp. 264–265.

[30] Pinhanez, C., The everywhere displays projector: a device to create ubiq-
uitous graphical interfaces, in Proc. of Int. Symp. on Ubiquitous Computing
(Ubicomp’01), Atlanta, GA, September 30–October 2, 200, pp. 315–331.

[31] Poupyrev, I., Maruyama, S., and Rekimoto, J., Ambient touch: designing
tactile interfaces for handheld devices, in Proc. of the 15th Ann. ACM Symp.
on User Interface Software and Technology, Paris, France, October 27–30,
2002.

[32] Raghunath, M.T. and Narayanaswami, C., User interfaces for applications
on a wrist watch, J. Pers. Ubiquit. Comput., 6, 17–30, 2002.

[33] Raghunath, M.T., Narayanaswami, C., and Pinhanez, C., Fostering a symbi-
otic handheld environment, IEEE Comput., 36(9), 55–65, 2003.

AU3833_C43.fm Page 1187 Monday, August 21, 2006 8:59 AM

1188 ■ Mobile Middleware

[34] Raghunath, M.T., Narayanaswami, C., Carter, C., and Caceres, R., Soulpad:
Reincarnating PCs Using Portable Devices, IBM Research Report 23418, IBM
Corp. Armonk, NY, 2005.

[35] Ran, L., Helal, S., and Moore, S., Drishti: an integrated indoor/outdoor blind
navigation system and service, in Proc. of the Second IEEE Int. Conf. on
Pervasive Computing and Communications (PerCom 2004), Orlando, FL,
March, 2004, pp. 23–32.

[36] Rekimoto, J., GestureWrist and GesturePad: unobtrusive wearable interac-
tion devices, in Proc. of the Fifth IEEE Int. Symp. on Wearable Computers
(ISWC’01), Zurich, Switzerland, October 7–9, 2001, pp. 21–28.

[37] Rhodes, B.J., Using physical context for just-in-time information retrieval,
IEEE Trans. Comput.,52(8), 1011–1014, 2003.

[38] Rhodes, B.J., The wearable remembrance agent: a system for augmented
memory, in Proc. of the First IEEE Int. Symp. on Wearable Computers
(ISWC’97), Cambridge, MA, October 13–14, 1997, p. 123.

[39] Smailagic, A., Siewiorek, D., and Luo, L., A system design and rapid
prototyping of wearable computers, course 2003, in Proc. of IEEE Int. Conf.
on Microelectronics Systems Education (MSE’03), Anaheim, CA, June 1–2,
2003.

[40] Starner, T., Human-powered wearable computing, IBM Syst. J., 35(3/4),
618–629, 1996.

[41] Starner, T. and Maguire, Y., A heat dissipation tutorial for wearable com-
puters, in Proc. of the 2nd IEEE Int. Symp. on Wearable Computers
(ISWC’98), Pittsburgh, PA, October 19–20, 1998, pp. 140–148.

[42] Starner, T., The challenges of wearable computing, part 1, IEEE Micro, 21(4),
44–52, 2001.

[43] Starner, T., The challenges of wearable computing, part 2, IEEE Micro, 21(4),
54–67, 2001.

[44] Yemini, S.A., Kliger, S., Mozes, E., Yemini, Y., and Ohsie, D., High speed
and robust event correlation, IEEE Commun. Mag., 34(5), 82–90, 1996.

[45] Wolpaw, J.R., McFarland, D.J., Neat, G.W., and Forneris, C.A., An EEG-based
brain-computer interface for cursor control, Electroencephalogr. Clin. Neu-
rophysiol., 78, 252–259, 1991.

[46] Bluetooth Human Interface Devices (HID), Bluetooth SIG, http://www.blue-
tooth.com/.

[47] W3C Device Independence Activity Statement, http://www.w3.org/2001/
di/Activity.

[48] IEEE Pervasive Comput., 4(2), 2005.
[49] Near Field Communication (NFC) Forum, www.nfc-forum.org/.
[50] Open Services Gateway Initiative, http://www.osgi.org/.
[51] Session Initiation Protocol (SIP), http://www.sipforum.org/.

AU3833_C43.fm Page 1188 Monday, August 21, 2006 8:59 AM

1189

Chapter 44

Middleware for
Mobile Entertainment

Computing

Vittorio Ghini, Fabio Panzieri, and Marco Roccetti

CONTENTS

Introduction... 1190
Entertainment Computing .. 1192

A Taxonomy: On-Demand Applications ... 1192
A Taxonomy: Live Streaming Applications... 1195
A Taxonomy: Games .. 1200

System Architecture for Online Entertainment... 1204
Discovery Service.. 1204
Accounting Service.. 1205
User Interface and Graphics .. 1205
Event Notification and Management ... 1205
Communication Subsystem .. 1206
Application Logic .. 1206

Mobility.. 1207
A Middleware-Based Approach to Mobile Entertainment................................. 1209

On-Demand Applications ... 1209
Nomadic Behavior and Handovers.. 1209

AU3833_C44.fm Page 1189 Monday, August 21, 2006 9:34 AM

1190

■

Mobile Middleware

Seamless and Always-Best-Connected... 1211
Transparency.. 1214

Live Streaming Applications ... 1215
Bandwidth Availability and Distribution Trees 1216
Fault Tolerance .. 1217

Games .. 1218
Gaming Architectures.. 1218
Multiple-Platform Support... 1220
Graphical Libraries .. 1220
CPU Workload ... 1220

Conclusions ... 1221
References ... 1222

Introduction

Entertainment is a cornerstone of communication. The shared enjoyment
of music, stories, games, and other entertainment experiences allows peo-
ple to communicate and socialize. Conventional forms of entertainment
include reading a book, listening to music, watching a video, playing a
game, chatting with friends, and sharing fun. The deployment of Internet-
based technology enables the dissemination of these forms of entertainment
on a large (possibly planetary) scale, as well as the development of
additional, more sophisticated forms of entertainment (e.g., multiparty
network games, media streaming, online news) [1].

The architecture of an online entertainment application can be thought
of as consisting of the five principal macrocomponents illustrated in Figure
44.1 and summarized below:

■

The

content

 represents the data the application requires for its
execution.

■

The

pipe

 includes the network infrastructure and the protocol stack
(from the physical layer to the application layer) that transports
and delivers the content to the user. This component may include
wireless and wired links and may require specialized hardware in
the user device.

■

The

platform

 represents the hardware and the operating system on
both the server and client end systems. End systems can be general-
purpose end systems (e.g., desktop PCs, laptops, PDAs) or special-
ized devices such as the PSP™, Xbox

®

, and N-Gage™ game consoles.

■

The

user interface

 (UI) is the hardware and software required for
human interaction (e.g., graphic interface, touch-screen display).

■

The

connecting

component

 represents the hardware and software
involved in the service provision (i.e., service discovery, account-
ing, and billing software).

AU3833_C44.fm Page 1190 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1191

Mobile communication technologies are encouraging the development
of new entertainment models that meet such emerging user requirements
as mobile and nomadic user behavior, multimodality, and context aware-
ness. Thus, new communication protocols must be devised to offer uni-
versal access to online entertainment services from anywhere, at any time,
and from any device [2]. Examples of online entertainment services that
may benefit from universal access include: (1) network games that can
be played via complex, possibly dedicated, interfaces, as well as simple
keyboards; (2) music downloading services that can be carried out while
the user moves across heterogeneous, both wired and wireless, commu-
nication technologies; and (3) applications that use such context informa-
tion as the user location or the current time and temperature to provide
their services (e.g., an online city guide application that provides its users
with direction information, relative to their current geographical position).

A number of design issues must be addressed in the development of
an online mobile entertainment architecture. These issues include the
provision of support for communications, scalability, mobility, and content
and format runtime adaptation to varying operational conditions. More-
over, the architecture should accommodate applications developed using
different programming languages for different application modules; thus,
support can be required for general-purpose programming languages, as
well as scripting languages for high-level control logic and artificial intel-
ligence (e.g., Quake™ 3, Unreal

®

, Spades), and dedicated languages for
graphic three-dimensional (3D) tools (e.g., MEL™ for Maya

®

, MAXScript™
for 3D Studio MAX

®

, VEX for Houdini

®

). In addition, the architecture

Figure 44.1 Online entertainment components.

AU3833_C44.fm Page 1191 Monday, August 21, 2006 9:34 AM

1192

■

Mobile Middleware

should enable the development of a platform that allows the application
designer to incorporate third-party modules in its application so as to
simplify the application implementation. Finally, that platform should
support application code portability.

We argue that, to master and control the complexity inherent in the
development of an online entertainment application, the majority of the
design issues introduced above can be dealt with in a middleware layer
designed to support both application development and execution. This
middleware layer should effectively meet the nonfunctional requirements
of the application (such as those for scalability, mobility, code portability,
etc., mentioned earlier) to allow the application designer to concentrate
only on the design and implementation of the application logic.

Entertainment Computing

Online entertainment computing includes a large set of different applica-
tions, devices, and technologies. A basic taxonomy of these technologies
is illustrated in Figure 44.2. This taxonomy distinguishes online entertain-
ment in two basic categories, based on

passive

 and

interactive applications

.
The passive category includes those applications that meet the user
demand for stored or live information and collect and reproduce that
information using different media formats. These applications can be
further classified as

on-demand

 and

live streaming

 applications and are
characterized as described below.

A Taxonomy: On-Demand Applications

Downloading and playing music and video represents a typical prestored
form of entertainment (also referred to as on-demand). The user may use
a wide set of devices, ranging from a so-called

home theater

 system (i.e.,
an enhanced PC-based system located in the home and served by a
broadband connection) to a dedicated portable device with a wireless
interface that allows communications with a distribution infrastructure. A
notable example of home theater systems is the Microsoft

®

 Media Center
(MC), illustrated in Figure 44.3. This is a PC-based system, with high-
capacity memory and hard disk and a CD-ROM/DVD unit, powered by
Windows

®

 XP Media Center Edition 2005. The MC allows the user to store,
share, and render photos, music, home video, and even recorded television
programs from a large set of devices and interfaces.

In addition to PC-based systems, the class of on-demand applications
includes a variety of small portable devices that can store and play music
files but are not directly connected to the Internet. Thus, downloading

AU3833_C44.fm Page 1192 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1193

music via the Internet using these devices requires a PC intermediate
system, as depicted in Figure 44.4. A representative of this class of devices
is the Apple

®

 iPod

®

 family. The iPod devices can store the music files in
an internal hard disk with a capacity ranging from 512 MB to 60 GB. A
song library available via the Internet (iTunes

®

) allows the user to purchase
and download songs to a Mac or Windows-based PC connected to the

Figure 44.2 A taxonomy for online entertainment.

Figure 44.3 Microsoft Media Center.

AU3833_C44.fm Page 1193 Monday, August 21, 2006 9:34 AM

1194

■

Mobile Middleware

Internet. The user connects the iPod to the PC through a FireWire™ or
USB cable and stores the songs in the iPod for final listening on the move.

The peer-to-peer (P2P) paradigm has enabled the implementation of
very popular on-demand applications for online entertainment. These
applications are typically based on PCs connected to the Internet. As
depicted in Figure 44.5, one or more overlay networks without centralized
servers, such as WinMX or Overnet, store and distribute media contents.
Each network’s node may discover and download contents depending on
the availability of other peers and on the connectivity provided by the
underlying network subsystem. After the download phase, the user enjoys
the contents by using a common application, such as Windows Media
Player or VNC Player.

Figure 44.4 Apple iPod/iTunes system.

Figure 44.5 A peer-to-peer system.

AU3833_C44.fm Page 1194 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1195

Peer-to-peer applications can be also applied to a general-purpose
laptop or palmtop device connected to the Internet by means of a wireless
network (see Figure 44.6); however, the success of a wireless P2P approach
depends on the availability of a peer application compiled for the specific
target device. Moreover, if this approach is adopted, the problem emerges
of providing continuity of content downloads on a wireless link.

In general, issues of scalability and platform independence characterize
the design and development of applications for mobile entertainment. Open
problems concerning mobility when downloading include: (1) discovering
the location or locations from which the contents can be retrieved; (2)
guaranteeing that the download can be resumed after temporary unavail-
ability of the wireless link; (3) selecting and using the

best

 connection when
the user device holds two or more wireless interfaces of possibly different
technologies; and, in this latter case; and (4) using concurrently all the
connections to augment the aggregated bandwidth available. Finally, an
additional desirable functionality is to enable the user to switch the download
of a music file among different devices while the download is in progress
(e.g., to have the music file downloaded to the best available output device).

A Taxonomy: Live Streaming Applications

Live streaming is a method for transferring digital data with real-time
characteristics in such a way that the recipient can enjoy the content while
the data is being delivered. The advantage of streaming compared to
downloading is that it makes it possible for the recipient to begin using the
content as it is delivered. Thus, an entire file does not have to be down-
loaded and stored on the client device before rendering; however, the
quality of a presentation is constrained by the underlying network. Moreover,
the user may use the content only once for each download phase.

Figure 44.6 A peer-to-peer system over a wireless network.

AU3833_C44.fm Page 1195 Monday, August 21, 2006 9:34 AM

1196

■

Mobile Middleware

A stream is a flow of data packets containing media contents. The
packets are normally generated by a streaming media server from an
arbitrary data source, which can be media content stored or captured from
a live source (e.g., camera, microphone, television broadcast). The content
data is usually packed using a codec targeted for compressing that par-
ticular content. The bit rate of the stream specifies how much compressed
payload data is sent in a time unit. The stream bit rate can be either
constant or variable. The used bit rate and codec highly affect the quality
of the encoded content. The generated data packets are continuously sent
to the recipient over a packet-switched network, using some streaming
protocol. The recipient runs a streaming media player software, which
receives the packets, decodes the contents data with an appropriate codec,
and finally renders the presentation to the user.

The live-based streaming applications introduce more issues from a
technical standpoint than from a user perspective. In fact, live streaming
entertainment, such as watching the Olympic games, imposes strong time
constraints that severely tax the network and raise the need for a dedicated
set of protocols, data formats, and adaptive services. Streaming is sensitive
to errors and delays in the transmission, as a continuous flow of data is
required for an uninterrupted presentation. If some data packets are lost
or delayed during the transmission, the media player may not be able to
decode the data correctly, and some errors, or interruptions, may occur.
Hence, properties of the underlying network, such as error rate, latency,
delay, and throughput, may have a significant effect on the streaming
quality. To compensate for possible delays, streaming media players
usually receive some amount of packets before beginning to play the
content. This is referred to as

buffering

.
The term

mobile streaming

 is used if the content is streamed to a
terminal over a mobile network. A terminal is usually a mobile phone or
a personal digital assistant (PDA) plus a streaming media player software.
A typical mobile streaming architecture is depicted in Figure 44.7. In
mobile streaming, interoperability between different streaming compo-
nents (servers, encoders, and players) is an emergent issue (see Figure
44.8). The most important organizations that define the standards for
mobile audio/video streaming are the Internet Streaming Media Alliance
(ISMA) and the 3rd Generation Partnership Project (3GPP). ISMA is a
consortium focused on the dissemination of an open standard for stream-
ing on IP networks that has defined five functional areas (formats, storage,
transport, description, and control) and adopted the MPEG-4 standard for
data coding. 3GPP is aimed toward the specification of standards for
wireless networks. For the purposes of our discussion, we are interested
in the part of these specifications that describes a framework for guaran-
teeing interoperability among streaming services on mobile networks. That

AU3833_C44.fm Page 1196 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1197

framework is named the Packet-Switched Streaming Service (PSS) and
reuses the work made available by other organizations (e.g., IETF, W3C,
MPEG, ISO, ITU).

The protocol architecture defined by the 3GPP PSS is illustrated in
Figure 44.9. The transport service is provided by the Real-Time Transport
Protocol (RTP) on the User Datagram Protocol (UDP); the transport control
relies on the Real-Time Control Protocol (RTCP); the Real-Time Streaming
Protocol (RTSP) performs the session control; and, finally, the multimedia

Figure 44.7 A mobile streaming architecture.

Figure 44.8 Relationships among standards for streaming.

AU3833_C44.fm Page 1197 Monday, August 21, 2006 9:34 AM

1198

■

Mobile Middleware

content description is based on the Session Description Protocol (SDP).
Synchronized Multimedia Integration Language (SMIL) provides scene
description and content adaptation to the devices. In addition, the Session
Initiation Protocol (SIP) can be used for commencing the session.

The live streaming applications deliver data using UDP and do not
assume reliable communications; thus, these applications may tolerate the
loss of a small percentage of data packets without degradation of the
quality perceived by the users. With this approach, streaming audio/video
from a mobile device can be possible even if the wireless network
introduces packet losses. The only requirement is bandwidth availability.
In a context in which the network bottleneck is close to the client, while
the server holds a broadband connection (as depicted in Figure 44.10a),
the streaming server may adapt at runtime the content to the available
bandwidth at the client side by changing the codec. In a server-based
scenario, the server bandwidth is sufficient to serve many clients.

The 3GPP PSS architecture is rather complex but still leaves some
problems unsolved. One of these problems is related to the provision of
live streaming services in a peer-based context, in which a single user,
rather than a large organization, publishes its contents for free (see Figure
44.10b). In this context, it can be difficult to provide streaming services,

Figure 44.9 3GPP Packet-Switched Streaming Service protocol architecture.

AU3833_C44.fm Page 1198 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1199

as: (1) the bandwidth of the data producer can be very limited, (2) the
number of users that enjoy the streaming service is unpredictable and
possibly too large to be served effectively with the limited bandwidth
available to the data producer, and (3) the communications may be
unreliable. Recent works propose the adoption of a multipath approach
to be incorporated at a middleware layer, as discussed later in this chapter.

The interactive category in our proposed taxonomy consists of two
principal classes of applications — namely, the so-called

human interac-
tion

applications and

games

 applications. The former class includes con-
ventional, interactive applications, such as chatting, Voice-over-Internet
Protocol (VoIP), and video conference applications, generally used for

Figure 44.10 Mobile streaming scenario.

AU3833_C44.fm Page 1199 Monday, August 21, 2006 9:34 AM

1200

■

Mobile Middleware

enabling interactions among humans. We assume that the reader is familiar
with this class of applications and will not discuss them further in this
chapter. Instead, the latter class of applications is discussed below.

A Taxonomy: Games

The size and economical relevance of the game market can be perceived
by observing the rankings of the top-selling console games in 2004, shown
in Table 44.1, where the top game sold over 5.1 million copies in 2004,
and the number two game in the classification sold 4.2 million copies.
Games can be classified as action, adventure, combat, music, puzzle, racing,
role-playing, first-person shooter, sports, strategy, or turn-based, among
others. Regardless of the game classification, however, the principal issues

Table 44.1

2004 Top 10 Video Game Titles, Ranked By Units Sold

Rank Title Platform Publisher
Release

Date Price

1 Grand Theft
Auto: San
Andreas

PlayStation

®

 2 Take-Two
Interactive
Software

10/2004 $49

2 Halo 2 Xbox

®

Microsoft 11/2004 $52
3 Madden NFL

2005
PlayStation

®

 2 Electronic
Arts

8/2004 $49

4 ESPN NFL 2K5 PlayStation

®

 2 Take-Two
Interactive
Software

7/2004 $19

5 Need for Speed:
Underground 2

PlayStation

®

 2 Electronic
Arts

11/2004 $48

6 Pokemon Fire
Red W/Adapter

Game Boy

®

Advanced

Nintendo 9/2004 $32

7 NBA Live 2005 PlayStation

®

 2 Electronic
Arts

9/2004 $33

8 Spider-Man:
The Movie 2

PlayStation

®

 2 Activision 6/2004 $43

9 Halo Xbox

®

Microsoft 11/2001 $29
10 ESPN NFL 2K5 Xbox

®

Take-Two
Interactive
Software

7/2004 $19

Source:

NPD Group/NPD Funworld

®

 2004 Annual Report on U.S. Video Game
Industry Retail Sales, http://www.npdfunworld.com/funServlet?nextpage=pr_
body.html&content_id-2076.

AU3833_C44.fm Page 1200 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1201

a game designer has to address include: (1) targeting the design and
implementation of a game application to the devices that will host that
application; (2) evaluating the expected degree of interactivity between
the players; (3) anticipating the maximum number of players that are to
be allowed to play the game concurrently; (4) examining the characteristics,
or properties, of the available network infrastructures; (5) understanding
the application requirements for graphic effects, the need for artificial
intelligence (AI) and physic simulation modules; and (6) developing the
high-level control logic. Some of these issues are introduced below.

A first crucial issue the game designer must address in the design of
a game for mobile online entertainment is to identify the set of target
devices that will run the game application. This set can include various
classes of diverse devices (Figure 44.11). The first class consists of general-
purpose devices. Among these devices, we can identify the networked
fixed devices, such as desktop PCs, and mobile devices, such as laptop
and handheld devices equipped with wireless interfaces. A second class
consists of mobile phones equipped with small displays and low-power
CPUs that can run simple games only. A third class includes those
networked fixed devices explicitly designed for games — that is, the so-

Figure 44.11 Devices for games.

AU3833_C44.fm Page 1201 Monday, August 21, 2006 9:34 AM

1202

■

Mobile Middleware

called consoles such as the Microsoft

®

 Xbox

®

, Sony PlayStation

®

 2, Sega

®

Dreamcast™, and Nintendo™ GameCube™ (see Table 44.2). These devices
are composed of a central box that runs the games and is equipped with
cabled or wireless sockets for the controllers and a cabled Ethernet socket
for Internet connections. Each user connects the box and plays using one
of these controllers. Finally, the fourth class is that of portable consoles,
such as the Sony PlayStation Portable (PSP), Nintendo DS, and Nokia N-
Gage. In spite of their small size, these devices are equipped with high-
performance CPUs and graphics hardware and hold a wireless interface
(such as General Packet Radio Service, or GPRS) that allows low-band-
width communications while the user moves around.

Typically, these devices may differ from each other in such components
as the user interface, CPU power, operating systems, library availability,
monitor resolutions, graphic cards, accelerators, and so on; however, to meet
the demand of a wide market area, game applications should be developed
so as to work on different devices, regardless of the heterogeneities among
these devices. This problem can be dealt with according to the following
two alternative approaches. Using the first approach, different versions of
the same game can be implemented, with each version targeted to a given
device. In contrast, using the second approach, a middleware layer should
first be implemented to resolve issues of application portability across dif-
ferent platforms and to shield the applications from possible platform het-
erogeneities. Second, the game application can be developed on top of that
middleware layer. Provided that this layer can be ported on different plat-
forms, the game application can be ported as well, with no modifications.

A second critical issue the game designers must address is interactivity
among users and between the user and the server. In practicality, a turn-
based game, such as online chess, does not require strict interactivity. In
contrast, a first-person shooter game, in which players must react as
quickly as possible to eliminate adversaries, requires high performance
from both the user device graphic module and the network layer. Note
that the higher the number of players, the heavier the workload for the
network subsystem and the CPU (particularly at the server side); thus, the
game application architectural support must be designed accurately so as
to provide sufficient computing power; different approaches to this design
issue include the use of hierarchical server mirroring techniques and P2P
architectures. Moreover, the player’s device may access the network using
different network technologies. In particular, the presence of wireless
access technologies may strongly influence the design of the game, as
specific software layers and protocols may have to be introduced to
provide sufficient network guarantees.

Artificial intelligence techniques can be applied to a variety of tasks
in modern electronic games [3]. A game may use probabilistic networks

AU3833_C44.fm Page 1202 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing

■

1203

Ta
bl

e
44

.2
Te

ch
ni

ca
l

C
ha

ra
ct

er
is

ti
cs

 o
f

Po
rt

ab
le

 G
am

e
C

on
so

le
s

N
in

te
n

d
o

 D
S

So
n

y
Pl

ay
St

at
io

n
 P

o
rt

ab
le

 (
PS

P)
N

o
ki

a
N

-G
ag

e
Q

D

C
o

m
m

u
n

ic
at

io
n

 t
yp

e
IE

EE
 8

02
.1

1
IE

EE
 8

02
.1

1
G

PR
S

(4
0.

2
K

B
/s

ec
)

Pr
o

ce
ss

o
r

ty
p

e
A

R
M

 9
—

—

Pr
o

ce
ss

o
r

sp
ee

d
67

 M
H

z
33

3
M

H
z

—

A
u

d
io

 s
u

p
p

o
rt

16
-c

h
an

n
el

, A
D

PC
M

/P
C

M
st

er
eo

 s
p

ea
ke

rs
St

er
eo

 s
p

ea
ke

rs
—

B
at

te
ry

10
 h

o
u

rs
2.

5
h

o
u

rs
6

h
o

u
rs

D
is

p
la

y
ty

p
e

LC
D

 T
FT

 (
ac

ti
ve

 m
at

ri
x)

LC
D

 T
FT

 (
ac

ti
ve

 m
at

ri
x)

—

D
is

p
la

y
si

ze
3

in
.

4.
3

in
.

—

D
is

p
la

y
re

so
lu

ti
o

n
25

6
×

19
2

48
0

×
27

2
17

6
×

20
8

To
u

ch
 s

cr
ee

n
?

Ye
s

N
o

N
o

G
ra

p
h

ic
s

ca
rd

 m
em

o
ry

65
6

K
B

—
—

Fi
ll

ra
te

30
 m

ill
io

n
 p

ix
el

s/
se

c
—

—

Po
ly

go
n

s
p

er
 s

ec
o

n
d

12
0,

00
0

—
—

M
ax

im
u

m
 n

u
m

b
er

 o
f

co
lo

rs
26

0,
00

0
16

.7
6

m
ill

io
n

—

R
A

M
4

M
B

36
 M

B
—

Si
ze

3.
36

 ×
 1

.1
4

×
5.

85
 i

n
.

—
13

.4
 ×

 7
 ×

 2
 c

m

W
ei

gh
t

61
 l

b
—

13
7

g

R
el

ea
se

 d
at

e
20

04
20

05
—

AU3833_C44.fm Page 1203 Monday, August 21, 2006 9:34 AM

1204 ■ Mobile Middleware

to predict the player’s next move to precompute graphics. The increasing
complexity of AI technology makes necessary the use of third-party mid-
dleware to enable code reuse and to simplify the game implementation.
The same requirements apply to the design of the game control logic. As
of today, middleware-layer scripting languages and interpreters are avail-
able to implement high-level control logic; these languages and interpreters
(e.g., Quake 3, Unreal, and Spades) can simplify the game design and
make it less expensive.

A third critical issue the game designers have to deal with is related to
the mathematical knowledge required, in general, in the design of game
applications. Typically, notions of both calculus and physics may be nec-
essary in the design and implementation of any kind of simulation, render-
ing, and signal-processing task used for application development purposes;
however, this knowledge may not fall within the field of expertise of the
game designer [4]. Thus, supplying that expertise as part of the middleware
layer can be a valuable approach to addressing this third issue.

System Architecture for Online Entertainment
In spite of their different scopes, requirements, and behavior, applica-
tions for online entertainment present the same set of basic problems
and share a common structure consisting of the six principal modules,
introduced below.

Discovery Service

Online entertainment applications can be thought of as being constructed
out of entities (e.g., clients and servers, peer systems) interacting with
each other. The number of entities involved in an application may vary
at runtime; for example, a game application may enable entities to join
or leave the game at runtime, or entities may be forced to leave the game
as a consequence of a failure. Thus, any online entertainment application
requires a discovery service to locate the set of entities participating in
the application itself and maintain this set of entities at runtime. Note that
some applications may require a discovery service that simply maps a
host name into an Internet Protocol (IP) address and whose implemen-
tation can be based on the Domain Name System (DNS). This is the case
of a simple video-on-demand (VoD) application; a client can reach a VoD
server by means of the server host name, which the DNS resolves in that
VoD server host IP address. More complex is the case in which the client
requests a download operation involving more than one server; in this
case, the discovery service module may have to maintain state information

AU3833_C44.fm Page 1204 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1205

about the locations of all the servers involved in the download and their
contents. A further level of complexity can be introduced in the discovery
service of an online entertainment application by requiring that entities
be allowed to join or leave that application or to change their geographical
location at application runtime. In this latter case, the discovery service
may have to maintain the state of the application entities, and reconfigure
the application at runtime, if the circumstances require it to do so.

Accounting Service

As the discovery service discovers that an entity (a client or a server) is
part of an application, that application needs to enter an accounting phase
in which the identity and privileges of that entity are controlled. An
accounting service can implement this functionality. In addition, that
service may well be made responsible for both billing the application
entities and providing information on (or even negotiating) the quality of
service the application can provide.

User Interface and Graphics

The friendliness and elegance of the user interface play a key role in the
success of modern online entertainment applications; thus, a number of
tools, such as Maya and 3D Studio MAX, are currently available for building
three-dimensional scenes, animation, and sound effects that can charac-
terize the user interface of one such an application. The user interface
and graphics module is particularly complex as it must take into account
the characteristics of a very large set of different devices on which the
applications may be required to run. Several techniques (e.g., simulation-
based prerendering) are currently adopted to solve issues of rendering
on different devices. Moreover, to support the development of the user
interface, languages are available that simplify the use of 3D graphic tools.
A relevant example of these languages is MEL, which is interpreted by
Maya, MAXScript for 3D Studio Max, and VEX for Houdini.

Event Notification and Management

Online entertainment applications may consist of a number of entities that
exchange data, such as audio/video frames (as in VoD and streaming
applications) and character movements and actions (as in game applica-
tions). In particular, for live streaming applications and games, the data
must reach its destination within a given time interval. If a video frame
reaches its destination too late to be played out, the video frame results

AU3833_C44.fm Page 1205 Monday, August 21, 2006 9:34 AM

1206 ■ Mobile Middleware

are useless; moreover, the bandwidth used to transmit that frame will have
been wasted. Hence, event notification systems are deployed for band-
width usage optimization and message management [5]. To this end, the
event notification and management system is typically strictly integrated
with the network subsystem and the event scheduler and makes use of
logical clocks and network latency monitoring for event synchronization
purposes.

Communication Subsystem

The network plays a key role in online entertainment applications; it may
consist of a large set of different communication infrastructures that can
operate under varying runtime conditions. Depending on the application
requirements, different protocol stacks can be adopted to provide the
applications with sufficient interactivity and reliability across the network.
For mobile applications, in particular, the communication subsystem must
be designed so as to enable the use of heterogeneous, both wired and
wireless, networks. Moreover, issues of scalability of live streaming appli-
cations can be met at the communication subsystem level by adopting a
multipath networking approach that makes this subsystem responsible for
setting up and monitoring an overlay network.

Application Logic

Finally, the module implementing the application logic is constructed on
top of the five modules introduced above. Specifically, for game applica-
tions, this module implements the behavior of the game characters and
provides support for rigid body/physics systems. In addition, this module
supports the implementation of rag-doll character animations, complex
vehicles, separable objects, and the interactions among them. Moreover,
the application logic module implements AI techniques that can be
deployed to learn the behavior of the users and create virtual clones of
those users; thus, if a user is temporarily unreachable while a game is in
progress, that user can be replaced by his or her virtual clone, and the
game can carry on uninterrupted. Typically, the application logic module
is implemented using middleware services and tools based on scripting
languages, such as Quake 3, Unreal, and Spades. An example of use of
one of these tools is shown in Figure 44.12.

To conclude this section, we wish to observe that the majority of the
modules described above can be conveniently instantiated in a middleware
layer to provide the online entertainment application developer with
adequate services that effectively meet such nonfunctional application
requirements as scalability and mobility.

AU3833_C44.fm Page 1206 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1207

Mobility
The principal problem in supporting mobility in online entertainment
applications originates from the requirement of reaching a large number
of potential users using a variety of possibly different and mobile devices.
Thus, online entertainment application designers need to develop their
applications so they can run on devices such as PCs, PDAs, mobile game
consoles, and mobile phones. Moreover, as these devices can typically be
managed by different operating systems, a requirement for multiplatform
support arises to enable application code portability across different plat-
forms and to reduce the complexity of the application development task.
Moreover, issues of process migration arise in mobile entertainment appli-
cations such as the so-called participatory simulation applications [6].
These applications implement role-playing cooperative activities that sim-
ulate the evolution of complex dynamic systems in the time domain [7,8].

Additional design issues originate from the use of both mobile devices
and communication networks. These issues derive from the limited com-
puting power a mobile device may offer, its energy consumption, the
limited availability of network bandwidth, the possibility of intermittent
operation of the device, and the unreliability of the communications. In
particular, modern entertainment applications require notable CPU power
to run 3D graphic libraries and complex compression algorithms for
encoding and decoding the application content. Adding more powerful
processors to mobile devices can add complexity to these devices, making

Figure 44.12 Using the development tool provided by Unreal Engine 3.

AU3833_C44.fm Page 1207 Monday, August 21, 2006 9:34 AM

1208 ■ Mobile Middleware

them more expensive and, above all, increasing their power consumption,
possibly causing heating problems. Thus, currently, research is underway
on the development of hardware technologies that can augment the mobile
device capabilities, as well as the implementation of software solutions
that can reduce CPU usage and its power consumption. As to these latter
solutions, it has been pointed out in Mohapatra et al. [9] that issues of
power saving can be addressed at the middleware level by implementing
middleware services that, for example, select an appropriate video quality
and carry out the fine tuning of the device parameters to meet specific
power-saving requirements.

Also, the bandwidth that the current wireless network technologies
can make available to mobile applications has notably increased in recent
years; however, almost at the same time, advanced multimedia capabilities
have been introduced in mobile devices that have increased the bandwidth
requirements of these devices. These requirements are not yet fully met
by the current wireless network technologies. Because a lack of sufficient
network bandwidth can turn out to be a severe limitation for some online
entertainment applications (e.g., full-motion content applications), content
adaptation coding techniques are necessary to reduce the bandwidth
requirements of those applications.

Relatively low network bandwidth is not the only limitation for mobile
entertainment applications. Usually, problems are very likely to occur in
dense urban areas during peak hours; for example, fast movements may
decrease both the communication rate (see Figure 44.13) and reliability

Figure 44.13 Wireless access technology transmission rate versus user movements.

AU3833_C44.fm Page 1208 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1209

perceived by the mobile device. As handovers may occur more frequently
when a device moves, the probability increases that the device will enter
a cell with insufficient resources; thus, a handover may cause short
transmission breaks, resulting in delayed or possibly lost packets. Longer
delays and breaks may cause interruptions in the application synchroni-
zation and playback or, in the worst case, may result in breaking an entire
TCP connection between a mobile device and a server.

Finally, the simultaneous presence of different network technologies
(and providers) introduces such new challenges as intersystem handovers.
Techniques for providing always-best-connected (ABC) services aim at
selecting and using the best connection available when the user’s device
holds two or more wireless interfaces of possibly different technologies [10].

The issues introduced here may have different consequences on dif-
ferent entertainment applications, depending on the application require-
ments. A discussion on the effects of the mobility requirement on the
diverse application categories we consider is provided later in this chapter,
along with a number of research topics relevant in the design of middle-
ware platforms for mobile entertainment.

A Middleware-Based Approach
to Mobile Entertainment
This section aims at describing the currently most popular research guide-
lines in the development of middleware for mobile entertainment appli-
cations. As discussed earlier, each application class in our earlier taxonomy
presents specific open problems; hence, the solutions proposed for each
of these problems are discussed in the following, in isolation.

On-Demand Applications

In essence, media downloading and playing require reliable data transfer
from a server to a client. In general, this operation can be implemented
using the most popular reliable transport protocol; namely the Transmis-
sion Control Protocol (TCP).

Nomadic Behavior and Handovers

Unfortunately, when TCP is deployed in a mobile environment, five con-
ditions negatively affect its behavior and limit its reliability and download
continuity. The first condition occurs when the client device is equipped
with a single wireless interface and changes the provider providing it with

AU3833_C44.fm Page 1209 Monday, August 21, 2006 9:34 AM

1210 ■ Mobile Middleware

the network connectivity services at runtime. The new provider assigns a
different IP address to the wireless network interface of the device, thus
changing the identifier of one of the endpoints of the TCP connection that
links the device to the server. This is the only condition that the Mobile
IP approach [11] can deal with, as illustrated in Figure 44.14.

The second condition occurs when the mobile device moves outside
the wireless coverage. For example, when the device user utilizes a lift,
the device wireless interface cannot detect the wireless carrier signal; thus,
the wireless interface becomes unavailable. Typically, signal losses can
interfere with the TCP communications in progress at the time those losses
occur. Some operating systems (e.g., Linux™ and Linux-based operating
systems for handheld devices, such as Familiar [12] and Intimate [13])
tolerate carrier signal losses by waiting until the carrier returns available.
Other operating systems (e.g., Windows CE), when a carrier signal loss
occurs, disable the wireless interface and notify the applications of the
signal loss problem. When the wireless interface is disabled by the
operating system, any application-level TCP socket becomes unusable,
even if the carrier signal returns available (thus, with this operating system
class, the Mobile IP approach mentioned above cannot be deployed to
solve signal loss problems).

The third condition affects the TCP connections maintained by the
operating systems that do not disable the unavailable mobile device
interfaces (e.g., the Linux-based operating systems mentioned above).

Figure 44.14 Mobile IP scenario.

AU3833_C44.fm Page 1210 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1211

When a device embodies two or more wireless network interfaces, a TCP
connection can be set up between that device and a server so the data
flows through one of the available device interfaces (e.g., the first interface
that correctly detects its wireless network carrier signal). It is possible that
this interface could move outside the coverage of its wireless network,
losing the carrier signal. As an additional wireless interface is available in
the device, one can observe that, to maintain connectivity, the application
might resume all its currently active communications through that addi-
tional interface. Unfortunately, as the operating system masks the loss of
the carrier signal to the application, the application is forced to wait for
communications occurring through the unavailable interface.

The fourth condition occurs when the mobile device incorporates two
or more wireless interfaces, the operating system disables a network
interface as it becomes unavailable, and another interface remains available
for communications. As in the previous case, communications in progress
cannot be resumed through the interface that is still available, as the use
of a different network interface requires that each TCP connection through
that interface must be identified by a new and unique IP address that
identifies the endpoint of the connection at the mobile device end.

Finally, a fifth condition exists in which the application cannot perform
as effectively as it might. When a mobile device incorporates more than
one wireless interface and more than one of them is operational, it is
preferred that the device concurrently use all the available interfaces so
as to maximize the overall bandwidth usage. In other words, the appli-
cation should perform bandwidth load balancing among all the available
wireless interfaces.

Seamless and Always-Best-Connected

The solution to the five problems above is to provide the application with
ABC service. This means selecting and using the best network connection
from those available when the user’s device holds two or more wireless
interfaces of possibly different technologies. ABC protocols do not have
a defined position in the classic Internet protocol stack and are shifted
from the data link layer to the application layer, depending on the
application context. Typically, ABC protocols at the data link level may
exercise control over the wireless link, only; hence, these protocols cannot
be designed to deal with issues of performance of the complete path
between the mobile device and the server. To overcome this problem,
ABC management can be implemented either at the network level [14] or
at the transport level [15]; however, neither Fodor et al. [14] nor Eddy [15]
addresses issues of nomadic computing, and both require modifications
of the TCP/IP infrastructure.

AU3833_C44.fm Page 1211 Monday, August 21, 2006 9:34 AM

1212 ■ Mobile Middleware

Another ABC-type proposal is the Stream Control Transmission Protocol
(SCTP) [16,17]. This protocol provides applications with an advanced and
reliable transport-level service supporting multi-homing at the end systems,
as well as ensuring congestion avoidance. As illustrated in Figure 44.15,
SCTP must assume the role of TCP, which may cause the following four
main shortcomings:

■ Packet dropping — Firewalls present in the path between a mobile
device and a server may drop IP packets that carry no TCP data
units.

■ Application transparency — The applications typically rely on TCP;
if SCTP is used instead, the application developers need to replace
the TCP system calls with SCTP function calls.

■ Implementation availability — SCTP implementations are not avail-
able for all the architectures.

■ No load balancing — SCTP uses only one of the available network
interfaces; the other interfaces are used only in case of failure of
the primary connection.

An alternative approach to the provision of ABC services can be
obtained by implementing the ABC management protocols in a middle-
ware layer constructed on top of the standard TCP transport layer. The
responsibilities of that middleware layer, instantiated in a mobile device,
should include the monitoring of:

■ The occurrence of possible IP configuration changes in the network
interfaces hosted by that device

■ The availability of the communications along the different paths
between each device network interface and the server

The monitoring middleware can detect interruptions in the TCP con-
nection and hide them to the application. In particular, in a media
download scenario, the middleware can resume the download from the
point at which it has been interrupted by using a new connection estab-
lished through the best available device interface. Frequently, the word
best just implies larger bandwidth or lower delay; however, it can be more
generally related to a complex set of application requirements that must
be met at the middleware level. Figure 44.16 shows the protocol stack
that implements the solution proposed above. That protocol stack has
been developed, implemented, and tested in the context of a music
distribution application [18].

AU3833_C44.fm Page 1212 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1213

Fi
gu

re
 4

4.
15

SC
TP

 p
ro

to
co

l
st

ac
k.

AU3833_C44.fm Page 1213 Monday, August 21, 2006 9:34 AM

1214 ■ Mobile Middleware

Transparency

Any middleware solution can be implemented by resorting to libraries.
Following this approach, the introduction of an ABC-type communication
service entails replacing each call to a given TCP function with a call to
the corresponding middleware-based module implementing that service.
This raises a transparency problem for mobile entertainment applications
where ABC services should be introduced at the lowest implementation
cost. The challenge is designing a sort of hidden middleware able to
implement an ABC service for mobile entertainment applications that do
not have to be aware of this. The basic idea is to split the middleware
core over two separate communicating software modules running on both
the server and the mobile client.

As illustrated in Figure 44.17, an appropriate module, termed Filter,
would be in charge of (1) intercepting any TCP segment generated at the
application level, and (2) redirecting it to the companion module, namely
the connection manager. The connection manager, in turn, has the respon-
sibility of managing a session protocol implementing the ABC service.
That service may implement complex ABC strategies, including, for exam-
ple, monitoring the availability of multiple network accesses, controlling
the link availability, managing the use of different IP interfaces, and
balancing the communication load over different network interfaces. Mov-
ing the responsibility of implementing an ABC service to a separate
software module offers the following great advantage: A separate module
(i.e., the configuration manager) deals with problems deriving, for exam-
ple, from a TCP disconnection, and the application may continue com-
puting without any interruption.

Figure 44.16 A middleware-based protocol stack.

AU3833_C44.fm Page 1214 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1215

A prominent example of that approach is provided in Zandy and Miller
[19], where the filter and the communication manager modules have been
implemented based on a Linux kernel. The filter module was implemented
by exploiting the functions provided by the Netfilter routine and the Linux-
based IP tables [20]. These tools enable several actions, including packet
filtering, network address (and port) translation, and other packet manip-
ulation activities. Unfortunately, technical problems still remain with this
approach; for example, the decision to bind each TCP connection to a
given local IP interface can be detrimental when a reconfiguration of that
IP interface is needed, as in this case when the operating system typically
annuls all the TCP sockets associated with that interface.

A possible solution to this specific problem has been presented by
Schulist [21], where the use of a virtual interface (based on the Linux-
based Ethertap module) is exploited to keep the IP interface separated
by the TCP connection. Another typical problem with this proposal is that
of portability, as only specific Linux-based system calls can be exploited.
We claim that a solution to this problem may rest upon the use of the
LibPcap libraries [22] for packet capturing and of the LibNet libraries [23]
for packet injection.

Live Streaming Applications

A live streaming application typically delivers data using UDP. As the
communication is assumed to be unreliable, a small percentage of packets
can be lost, still maintaining a satisfactory transmission quality. Obviously,
an important requirement to be met is that of bandwidth availability.

Figure 44.17 A hidden middleware architecture.

AU3833_C44.fm Page 1215 Monday, August 21, 2006 9:34 AM

1216 ■ Mobile Middleware

Bandwidth Availability and Distribution Trees

To cope with the problem of bandwidth availability, the 3GPP Packet-
Switched Streaming Service proposes to adapt media contents to the
context where the device operates. Unfortunately, this cannot always be
the one, unique solution. Take, for example, the case when the number
of simultaneous consumers wishing to enjoy a live event is very large. In
this case, the scarcity of available bandwidth at the producer side may
represent a serious problem even if the media has been reduced in size.
Here, the problem is that sending a different copy of each data packet
to each different client is not a viable strategy. A possible solution amounts
to organizing the set of all clients based on an IP multicast distribution
tree, with the root at the producer side. Unfortunately, the IP multicast
technology is often disregarded by network providers as impractical due
to the amount of traffic it produces. To surpass this problem, an applica-
tion-level multicast solution can be developed, and an overlay distribution
tree may be established at the application layer to interconnect participants.
The main advantage of this solution is that the overlay multicast tree can
be constructed on the top of any network, providing a simple, unicast
transport service, like UDP. An overlay distribution tree offers the further
advantage of a greater flexibility in terms of network resource utilization,
as simple end hosts can be employed rather than routers.

Hybrid solutions can also be devised where an overlay distribution
tree is implemented mixed with the use of IP multicast. The implemen-
tation of hybrid approaches rests upon the use of RTP [24]. Two different
RTP entities are usually exploited. A mixer can encode audio/video data,
adapting the size to the available bandwidth. A translator can set up IP
tunnels with the aim of delivering IP multicast packets passing through
networks that do not allow IP multicast. Following this strategy [25,26],
all data relays happen via unicast, and a variety of end-to-end streaming
adaptation techniques (e.g., frame dropping, transcoding) can be exploited
to control in a much finer granularity the streaming rate directed to each
client. Second, the overlay multicast tree can be rearranged on the fly, on
a session basis, so as to better accommodate requirements of diverse and
heterogeneous networks.

Many application-level multicast systems have been proposed for dif-
ferent target applications. Each of them creates a distribution tree in a
particular way, yet they generally fall into a specific category, depending
on which of the following two metrics is adopted to construct the tree:
(1) delay reduction [26–29] or (2) throughput increase [30–32]. They all
share the common characteristic of using unreliable protocols to distribute
data from a single producer to a variety of different consumers. Although
this approach can be effective in cases where only fixed links are exploited,
this does not appear to be so for environments characterized by a high

AU3833_C44.fm Page 1216 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1217

mobility. The main drawback here is that when an application-level
connection fails, a large number of end systems may become unreachable,
thus resulting in disconnection until a point in time when a new distri-
bution tree is recreated (see Figure 44.18). This addresses the further
problem of fault tolerance.

Fault Tolerance
A very general solution for the problem mentioned above amounts to the
use of a multiple description coding (MDC) technique for producing data
to be delivered to final consumers through a set of nonoverlapping paths
(multiple path transport, or MPT). The MDC technique entails manipulating
media streams to obtain multiple substreams based on the following
requirements [33]: (1) Each substream must be smaller than the primary
stream; (2) each substream can be played out separately at the receiver
side, at a lower quality than the primary stream; (3) two or more sub-
streams can be reassembled together at the receiver side for play out; and
(4) different substreams can follow different paths (on different distribution
trees) to reach their final destinations. As a result, network failures do not
significantly affect media transmissions, thus allowing each final consumer
to receive a number of substreams that are enough to play the media at
a satisfactory quality.

Combining the MDC technique with an MPT service aids traffic dis-
persion and load balancing and can effectively relieve congestion, increase
network utilization, and enable better integration of both wired and
wireless links. The benefits of MDC come at a price, however, as devel-
oping a multiple description coder is usually more complex than devel-
oping a traditional one. An MD coder typically uses more bits. This excess
of redundancy is inserted intentionally to make the bitstream more robust
to transmission errors; hence, the primary objective in designing an MD

Figure 44.18 An overlay multicast tree (left) may leave many nodes unreachable
(right).

AU3833_C44.fm Page 1217 Monday, August 21, 2006 9:34 AM

1218 ■ Mobile Middleware

coder is to maintain control over this redundancy while meeting the
requirement of minimizing end-to-end distortion. In recent years, a variety
of practical MD compression algorithms have been proposed that use
subsampling strategies in the spatial, temporal, or frequency domains,
mixed with improved quantization techniques [34]. MPT is a convincing
approach also for wireless entertainment, because: (1) a path can break
down frequently because of movements of the device, (2) wireless links
can cause frequent packet losses, and (3) wireless links may not have an
adequate capacity to support high-bandwidth services.

Several researchers explored the problem of an efficient integration of
MDC with MPT, especially in the field of wireless video [35–37], yet a
number of issues remain unsolved. The most important one is how to
manage, at the middleware level, the construction of a multipath distribution
tree. This problem is further exacerbated by the need for a quick tree
reconfiguration as soon as a given node becomes unavailable. We feel that
suitable tools that might be good candidates for managing a multipath
distribution tree at the middleware layer include Pastry [38] and all its
companions (Chord [39], FreePastry [40], and Tapestry [41]), as well as Scribe
[42] and SplitStream [43]. Pastry is an example of a generic, scalable, self-
organizing substrate for peer-to-peer applications, and Scribe and SplitStream
provide group communication and event notification capabilities, respec-
tively, for constructing separate multicast trees with disjoint interior nodes.

Games

Besides the typical problems of available bandwidth and delay, a number
of specific issues should be addressed at the middleware layer to make
the development of mobile games easier. Some of them refer to the ability
to run the game on devices that exhibit very different characteristics, in
terms of monitor resolution, graphic cards capability, CPU power, and
graphical libraries availability. Other complementary issues are related to
the need to simplify the game development efforts when complex math-
ematical and physics models have to be implemented with the aim of
making the game as realistic as possible. These latest issue are typically
addressed by exploiting scripting languages and interpreters for high-level
control of the implementation of the application logic.

Gaming Architectures

Multiplayer games form a very challenging class of entertainment appli-
cations. Existing commercial products are usually based on a centralized
client–server architecture where a server maintains the game state. The

AU3833_C44.fm Page 1218 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1219

game clients run on the devices of the individual players. They receive
information about the game state from the server and may influence it
by sending their local actions to the server. Recently, prototypes have
been proposed for developing networked games based on replicated
architectures without the need of a centralized server [44]. Along this line,
distributed gaming architectures may be devised that are based on the
use of mirrored servers. Each mirror maintains a redundant state of the
game. The client connects to a given server communicating in a traditional
centralized model. Mirrored servers, on the other hand, communicate with
each other in a P2P fashion to keep the game state consistent throughout
the entire system [45]. Mirrored server architectures are clearly scalable
and do not present any single point of failure. When a server crashes,
the system has implicit mechanisms to redirect the connected clients to
other mirrors, thus ensuring service continuity.

Whether based on a centralized architecture or deployed over a dis-
tributed infrastructure, games should also guarantee a high degree of
playability independent of the user’s location, type of connection, utilized
device, and number of players. Unfortunately, especially in the wireless
case, network characteristics can have a negative impact on the gaming
organization. Obviously, a scarce bandwidth limits the quantity of infor-
mation that clients and servers may exchange. The definition of an area
of interest within a game for a given player may coincide with selecting
what information this player needs to receive, thus reducing the need for
bandwidth. To determine those players who are interested in a given
game event, several group selection and maintenance strategies have been
proposed [5,46].

In all gaming architectures, the user’s actions are first propagated to
the server and then to the other clients; therefore, game events can arrive
late at other clients depending on the delay experienced over the network.
The problem of managing delay and jitter makes even more crucial the
need to maintain a shared and consistent view of the game state for all
the players. A middleware approach has been recently introduced aimed
at alleviating delay and jitter problems. A proxy-based architecture was
proposed where game events are managed in terms of different levels of
urgency and relevance [47–49]. Highly urgent events are sent with higher
precedence than all the other events, thus reducing their presence in the
network. Highly relevant events, on the other hand, are sent via a loss-
prevention technique to ensure guaranteed delivery. Other interesting
schemes have been proposed to cope with problems deriving from
network latency and bandwidth limitations. Among them, it is worth
mentioning the dead reckoning strategy, which was developed to solve
the problem of how to predict the game evolution for situations where
the actual information updates do not arrive at the destination on time.

AU3833_C44.fm Page 1219 Monday, August 21, 2006 9:34 AM

1220 ■ Mobile Middleware

Multiple-Platform Support

To cover a wider market, games should be developed so they can run
on different devices and operating systems. A middleware layer can be
interposed between the application and the operating system to resolve
issues of application portability across different platforms. This layer would
be responsible for driving different hardware devices, as well as for
guaranteeing better use of operating system capabilities. A critical example
is represented by those gaming applications that greatly utilize thread
programming. Given the variability of behavior and performance obtained
when threads are run on different operating systems, a middleware layer
should be able to provide a harmonized solution. Recently, an open-
source, object-oriented development platform was proposed that features
a portable application programming interface (API) offering a unique
threading model with the ability to manage typical problems, including
thread starvation and deadlocks [50].

Graphical Libraries

Displaying game events on different wireless devices can be a serious
problem. A usual solution amounts to the use of portable graphical
libraries, such as OpenRM [51] and OpenGL [52]. Using the OpenRM
library, complex graphical scenes can be incrementally built by means of
objects to be rendered, along with rendering parameters, such as the
position of the viewer, the lights illuminating the scene, textures of the
objects, and so forth. OpenRM works on top of OpenGL and is essentially
a three-dimensional triangle-based rendering engine. Support is provided
for complex images, such as sprites, bitmaps, and depth pixels. Semipro-
cedural primitives are included that manage both two- and three-dimen-
sional representations, such as spheres, cones, cylinders, boxes, glyph-
based markers, and text. OpenRM is extensible as it supports application-
supplied raw drawing code fragments, as well as a rich array of callbacks
that can be used to implement advanced features, including view-depen-
dent operations. It is worth mentioning that other open-source, platform-
independent, game-oriented graphical libraries exist, such as, for example,
OpenSceneGraph [53] (see Figure 44.19).

CPU Workload

Often, mobile devices are equipped with a low-power CPU with the intent
of limiting energy consumption. This constraint must be taken into con-
sideration when games are developed, in particular for those operations
that overload the CPU. This is typical for graphic rendering. Using OpenRM

AU3833_C44.fm Page 1220 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1221

and OpenGL, a new approach has been recently developed that tries to
select the objects to be rendered on each device, based on its relative
position within the scene [54]. The idea is to make it possible to visualize
only a part of a scene when an entire renderable model cannot reside
on a given device due to its hardware and software limitations. This
strategy performs rendering actions by issuing OpenGL commands. Level-
of-detail techniques are a good example of how that approach works.
Portions of the scene that should look far away from the viewer can be
rendered using representations at a lower resolution than those apparently
closer to the viewer, thereby reducing the rendering load. Another
approach aiming to limit the CPU overload for wireless gaming is described
in Cacciaguerra et al. [8]. The novelty is that the rendering engine on the
wireless device is able to display state updates at a variable frame rate
while scaling down the graphical quality when the CPU load increases.
Moreover, the rendering engine may drop scene updates to cope with
large transmission delays.

Conclusions
Analysts indicate that consumer demand for entertainment will constantly
increase. This demand will be characterized by a growing need to enjoy
entertainment content on mobile devices. Following this trend, industrial
investments are expected for the development of services that can effec-
tively meet this demand. Also, designers of online entertainment applica-
tions are following the evolution of user expectations by shifting their
attention from the fixed to the mobile environment. We have argued that
the majority of the design issues emerging from a mobile entertainment
scenario can be dealt with in a middleware layer designed to support
both the application development and its execution.

Figure 44.19 An OpenSceneGraph-based flight simulator.

AU3833_C44.fm Page 1221 Monday, August 21, 2006 9:34 AM

1222 ■ Mobile Middleware

References
[1] Kozbe, B., Roccetti, M., and Ulema, M., Entertainment everywhere: system

and networking issues in emerging network-centric entertainment systems,
part I and II [guest editorial], IEEE Commun. Mag., 43(6), 67–68, 73–74, 2005.

[2] Bellavista, P., Corradi, A., and Magistretti, E., Lightweight autonomic dis-
semination of entertainment services in wide-scale wireless environments,
IEEE Commun. Mag., 43(6), 94–101, 2005.

[3] Nareyek, A., AI in computer games, ACM Queue, 1(10), 58–65, 2004.
[4] Blow, J., Game development: harder than you think, ACM Queue, 1(10),

29–37, 2004.
[5] Ferretti, S. and Roccetti, M., A novel obsolescence-based approach to event

delivery synchronization in multiplayer games, Int. J. Intelligent Games
Simul., 3(1), 7–19, 2004.

[6] Kanter, T.G., Attaching context-aware services to moving locations, IEEE
Internet Comput., 7(2), 43–51, 2003.

[7] Wilensky, U. and Stroup, W., Networked gridlock: students enacting com-
plex dynamic phenomena with the HubNet architecture, in Proc. 4th Ann.
Int. Conf. on the Learning Sciences, Ann Arbor, MI, June, 2000.

[8] Cacciaguerra, S., Lomi, A., Roccetti, M., and Roffilli, M., A wireless software
architecture for fast 3D rendering of agent-based multimedia simulations
on portable devices, in Proc. IEEE Consumer Communications and Net-
working Conference (CCNC’04), Las Vegas, NV, January 5–8, 2004.

[9] Mohapatra, S., Venkatasubramanian, N., Dutt, N., Periera, C., and Gupta, R.,
Energy-aware adaptations for end-to-end video streaming to mobile hand-
held devices, in Ultra Low Power Electronics and Design, Macii, E., Ed.,
Kluwer Academic, Boston, MA, 2004.

[10] Gustafsson, E. and Jonsson, A., Always best connected, IEEE Commun.
Mag., 10(1), 49–55, 2003.

[11] Perkins, C., IP Mobility Support for IPv4, Request for Comments 3344, Internet
Engineering Task Force (IETF), 2002 (http://www.ietf.org/rfc/rfc3344.txt).

[12] The Familiar Project, http://familiar.handhelds.org/.
[13] The Intimate Project, http://intimate.handhelds.org/index.html.
[14] Fodor, G., Eriksson, A., and Tuoriniemi, A., Providing quality of service in

always best connected networks, IEEE Commun. Mag., 41(7), 154–163, 2003.
[15] Eddy, W.M., At what layer does mobility belong?, IEEE Commun. Mag.,

42(10), 155–159, 2004.
[16] Xie, Q. et al., Stream Control Transmission Protocol, Request for Comments

2960, Internet Engineering Task Force (IETF), 2000 (http://www.ietf.org/rfc/
rfc2960.txt).

[17] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and Conrad, P., Stream
Control Transmission Protocol (SCTP) Partial Reliability Extension, Request
for Comments 3758, Internet Engineering Task Force (IETF), 2004 (http://
www.ietf.org/rfc/rfc3758.txt).

[18] Ghini, V., Pau, G., Roccetti, M., Salomoni, P., and Gerla, M., For here or to
go? Downloading music on the move with an ultra reliable wireless internet
application, Comput. Networks, 49(1), 4–26, 2005.

AU3833_C44.fm Page 1222 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1223

[19] Zandy, V.C. and Miller, B.P., Reliable network connections, in Proc. of the 8th
ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBICOM’02),
Atlanta, GA, September, 2002.

[20] Netfilter framework, http://www.netfilter.org/.
[21] Schulist, J., Ethertap Programming mini-HOWTO, Linux Kernel Documen-

tation, http://www.hu.kernel.org/pub/linux/kernel/v2.6/patch-2.6.12.
[22] LibPcap, http://www.tcpdump.org/pcap3 man.
[23] Libnet, http://www.packetfactory.net/Projects/Libnet/.
[24] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V., RTP: A Transport

Protocol for Real-Time Applications, Request for Comments 3550, Internet
Engineering Task Force (IETF), 2003 (http://www.ietf.org/rfc/rfc3550.txt).

[25] Amir, E., McCanne, S., and Katz, R., An active service framework and its
application to real-time multimedia transcoding, in Proc. of ACM SIGCOMM’98,
Vancouver, Canada, October, 1998.

[26] Banerjee, S., Bhattacharjee, B., and Kommareddy, C., Scalable application
layer multicast, in Proc. of ACM SIGCOMM’02, Pittsburgh, PA, August, 2002.

[27] Chawathe, Y. and Seshadri, M., Broadcast Federation: an application-layer
broadcast Internetwork, in Proc. of the 12th Int. Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV 2002),
Miami Beach, FL, May 12–14, 2002.

[28] Chu, Y., Rao, S.G., Seshan, S., and Zhang, H., Enabling conferencing
applications on the Internet using an overlay multicast architecture, in Proc.
of ACM SIGCOMM’01, San Diego, CA, August, 2001.

[29] Pendarakis, D., Shi, S., Verma, D., and Waldvogel, M., ALMI: an application
level multicast infrastructure, in Proc. of the 3rd USENIX Symp. on Internet
Technologies and Systems (USITS’01), San Francisco, CA, March 26–28, 2001.

[30] Jannotti, J., Gifford, D.K., Johnson, K.L., Kaashoek, Jr., M.F., and O’Toole,
J.W., Overcast: reliable multicasting with an overlay network, in Proc. of
the 4th Symp. on Operating Systems Design and Implementation, San Diego,
CA, October, 2000.

[31] Cui, Y., Li, B., and Nahrstedt, K., oStream: asynchronous streaming multicast
in application-layer overlay networks, IEEE J. Selected Areas Commun.,
22(1), 91–106, 2004.

[32] Kim, M.S., Lam, S.S., and Lee, D., Optimal distribution tree for Internet
streaming media, in Proc. of IEEE Int. Conf. on Distributed Computing Systems
(ICDCS’03), Providence, RI, May, 2003.

[33] Wang, Y., Reibman, A.R., and Lin, S., Multiple description coding for video
delivery, Proc. IEEE, 93(1), 57–70, 2005.

[34] Goyal, V.K., Multiple description coding: compression meets the network,
IEEE Signal Process. Mag., 18(5), 74–93, 2001.

[35] Gogate, N., Doo-Man, C., Panwar, S.S., and Yao, W., Supporting image and
video applications in a mobile multihop radio environment using route
diversity and multiple description coding, IEEE Trans. Circuits Syst. Video
Technol., 12(9), 777–792, 2002.

[36] Padmanabhan, V.N., Wang, H.J., and Chou, P.A., Resilient peer-to-peer
streaming, in Proc. of Int. Conf. on Network Protocols (ICNP’03), Atlanta,
GA, November 4–7, 2003.

AU3833_C44.fm Page 1223 Monday, August 21, 2006 9:34 AM

1224 ■ Mobile Middleware

[37] Mao, S., Lin, S., Panwar, S.S., Wang, Y., and Celebi, E., Video transport over
ad hoc networks: multistream coding with multipath transport, IEEE J.
Selected Areas in Commun., 21(10), 1721–1737, 2003.

[38] Rowstron, A. and Druschel, P., Pastry: scalable, distributed object location
and routing for large-scale peer-to-peer systems, in Proc. of IFIP/ACM Int.
Conf. on Distributed Systems Platforms (Middleware), Heidelberg, Germany,
November, 2001.

[39] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek,
F., and Balakrishnan, H., Chord: a scalable peer-to-peer lookup protocol
for Internet applications, IEEE/ACM Trans. Networking, 11(1), 17–32, 2003.

[40] FreePastry, http://freepastry.rice.edu/.
[41] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., and Kubiatow-

icz, J., Tapestry: a resilient global-scale overlay for service deployment, IEEE
J. Selected Areas in Commun., 21(1), 41–53, 2004.

[42] Rowstron, A., Kermarrec, A.M., Castro, M., and Druschel, P., SCRIBE: the
design of a large-scale event notification infrastructure, in Proc. of the Third
Int. Workshop on Networked Group Communication (NGC’01), London,
November, 2001.

[43] Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., and
Singh, A., SplitStream: high-bandwidth multicast in a cooperative environ-
ment, in Proc. of the 19th ACM Symp. on Operating Systems Principles
(SOSP’03), Lake George, NY, October 19–22, 2003.

[44] Diot, C. and Gautier, L., A distributed architecture for multiplayer interactive
applications on the Internet, IEEE Networks Mag., 13(4), 6–15, 1999.

[45] Cronin, E., Filstrup, B., Jamin, S., and Kurk, A.R., An efficient synchronization
mechanism for mirrored game architectures, Multimedia Tools Appl., 23(1),
7–30, 2004.

[46] Zou, L., Ammar, M., and Diot, C., An Evaluation of Grouping Techniques
for State Dissemination in Networked Multi-User Games, Technical Report,
Georgia Institute of Technology, Atlanta, GA, 1999.

[47] Griwodz, C., State replication for multiplayer games, in Proc. of the First
ACM Workshop on Network and System Support for Games (NetGames’02),
Braunschweig, Germany, April 16–17, 2002.

[48] Griwodz, C., Halvorsen, P., and Munthe-Kaas, E., MiSMoSS: Middleware
Services for Management of Shared State in Large-Scale Distributed Interac-
tive Applications, http://www.ifi.uio.no/dmms/mismoss/missmoss.html.

[49] Mauve, M., Fischer, S., and Widmer, J., A generic proxy system for networked
computer games, in Proc. of the First ACM Workshop on Network and System
Support for Games (NetGames’02), Braunschweig, Germany, April 16–17,
2002.

[50] Internet Communications Engine (ICE), http://www.zeroc.com/ice.html.
[51] Bethel, W., RM Scene Graph, White Paper, R3vis Corp., Novato, CA, 1999

(http://www.r3vis.com/RM/index.html).
[52] Segal, M. and Akeley, K., The OpenGL Graphics Systems: A Specification

(Version 1.4), http://www.opengl.org.
[53] OpenSceneGraph, http://www.openscenegraph.org/.

AU3833_C44.fm Page 1224 Monday, August 21, 2006 9:34 AM

Middleware for Mobile Entertainment Computing ■ 1225

[54] Bethel, E.W., Humphreys, G., Paul, B., and Brederson, J.D., Sort-First Dis-
tributed Memory Parallel Visualization and Rendering, White Paper, R3vis
Corp., Novato, CA, 2003 (http://www.r3vis.com/Downloads/PVG2003-
OpenRMChromium.pdfRM).

AU3833_C44.fm Page 1225 Monday, August 21, 2006 9:34 AM

AU3833_C44.fm Page 1226 Monday, August 21, 2006 9:34 AM

1227

Chapter 45

Software Support for
Application Development
in Wireless

Sensor Networks

Chien-Liang Fok, Gruia-Catalin Roman,
and Chenyang Lu

CONTENTS

Introduction... 1228
Operating System Support ... 1229
Basic Building Blocks... 1231

Sensor Network Application Construction Kit.. 1231
Hood: A Neighbor List ... 1233

Data-Centered Abstractions.. 1235
Mobility-Centered Abstractions .. 1237

EnviroTrack.. 1237
MobileQuery.. 1239

Dynamic Reprogramming .. 1240
Emerging Strategies .. 1244

AU3833_C45.fm Page 1227 Monday, August 21, 2006 10:21 AM

1228

■

Mobile Middleware

Quality of Service Management... 1244
Macroprogramming ... 1245
Integration with Traditional Networks .. 1246

Conclusion... 1247
Acknowledgments... 1248
References ... 1248

Introduction

Middleware for wireless sensor networks (WSNs) may seem misplaced in
a book on mobile middleware. After all, most existing WSNs are installed
on static objects such as, for example, the nests of the Leach’s Storm Petrels
on the Great Duck Island [61], three feet underground at the Pickberry
Vineyard in California, and on the housing of semiconductor machinery
at Intel. Yet, upon closer inspection, it becomes readily apparent why
WSNs are relevant. First, WSNs need not be static; they can be just as
easily installed on moving objects; for example, in ZebraNet [48], a WSN
was installed on a herd of zebras to track their movement. As the zebras
move, the nodes opportunistically create wireless

ad hoc

 links for distrib-
uting code and data updates. Mobile middleware in the form of Impala [54]
was used to ensure flexible and adaptable applications in such a dynamic
context. Second, there are many applications that involve a WSN interacting
with a mobile user [29,44,47,48,57] or tracking a mobile entity [18,32,38].
Third, as mobile applications mature, they must exhibit context awareness;
that is, they must not only understand what their users are doing but also
perceive properties about their environment. This collection of context
information must be done in real time and at resolutions only WSNs are
capable of cost-effectively providing. The combination of user, entity, node,
data, and code mobility, along with the reliance of traditional mobile
devices on WSNs for information about the surrounding physical environ-
ment, render WSN middleware relevant to this book.

Wireless sensor networks are relatively new, having only recently been
made possible by advances in microelectromechanical systems (MEMS),
battery technology, wireless technology, and system-on-chip (SoC) designs.
They consist of tiny autonomous nodes each containing a variety of sensors,
microprocessor, memory, battery, and wireless communication interface.
They are less expensive to deploy than wired networks and can potentially
offer greater reliability and agility by routing data through a wireless mesh
rather than fixed hard-wired links. Because each node is nominal, WSNs
can scale to thousands of nodes offering higher sensing resolutions than
was previously possible. WSNs are currently used for habitat monitoring
on the Great Duck Island [61] and James Reserve [27] and for microclimate

AU3833_C45.fm Page 1228 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1229

research around redwood trees [20]. Emerging uses include surveillance
[38], emergency medical care [55], and structural integrity monitoring [77].
In the future, WSNs may help automate highways [43] and coordinate
military operations [53,72]. As WSNs mature, they will revolutionize the
way humans and computers interact.

Programming WSNs is challenging. To ensure seamless integration with
the environment, each node must be physically small. Many nodes are
the size of a matchbox, if not smaller, severely limiting the capabilities
of a node; for example, the Tmote Sky [1] runs on two AA batteries and
measures 5.45 cm

2

 without the battery pack. It contains a slow 16-bit,

8-MHz Texas Instruments MSP430 processor with a mere 10 KB of data
memory, 48 KB of instruction memory, and 1 MB of external flash memory.
It is programmable using an onboard USB port, communicates using an IEEE
802.14.4-compliant Chipcon CC2420 radio, and has built-in light, temperature,
and humidity sensors, as well as SPI and I

2

C interfaces for attaching periph-
erals. The Tmote Sky is relatively new; older nodes such as the MICA2 [2],
MICAz [3], NMRC [21], M2030 [4], M1030 [5], Smart Dust [6], ESB platform
[7], and Intel iMote [8] share similar, if not weaker, specifications.

Many WSN applications such as habitat and infrastructure monitoring
require long deployment intervals, often without human intervention.
Throughout this time, the nodes are continuously subjected to a poten-
tially harsh environment, resulting in some nodes dying early and new
nodes being deployed to replenish those that have failed. This variability
further complicates the already unreliable wireless links. In all, pro-
gramming applications for WSNs is difficult because they must achieve
extraordinarily high levels of efficiency, reliability, and autonomy in an
environment that is highly dynamic and resource deprived. Such chal-
lenges are further amplified when a WSN must handle all of the
aforementioned forms of mobility.

Middleware is often relied upon to address the difficulties associated
with programming WSNs. It offers more sophisticated abstractions and
often includes very high-level programming languages. This chapter pre-
sents an overview of the key principles behind various types of WSN
middleware.

Operating System Support

Prior to discussing WSN middleware, we must first understand the basic
services provided by the underlying operating system. Although many
operating systems work in embedded systems, such as LynxOS [9], ChorusOS
[10], Contiki [30], VxWorks [11], NetBSD [12], OSE [13], QNX, OS-9 [14],

FreeDOS [15], and eCos [16], not all of them work in the highly resource-

AU3833_C45.fm Page 1229 Monday, August 21, 2006 10:21 AM

1230

■

Mobile Middleware

constrained setting of WSNs or are flexible enough to work in a dynamic
WSN environment. Instead, we focus on TinyOS [42], which is a repre-
sentative example and arguably the most popular WSN operating system
used today. TinyOS is a highly efficient minimalist operating system
originally developed for the Atmel Atmega series of microprocessors but
ported to the TI MP430. It is event based, with a two-level thread hierarchy
consisting of tasks and events. Tasks contain long-running computations
that may be preempted by time-critical events. To minimize overhead, a
single task queue forces tasks to run sequentially. When an event occurs,
other events are disabled until the current event completes. Blocking is
avoided using split-phase operations; for example, when the application
makes a system call, TinyOS immediately passes control back to the
application while it processes the command and later signals completion
of the command using an event.

TinyOS provides a component-based programming language called

NesC

. NesC divides an application into components that may be modules
or configurations. Program behavior is encapsulated within modules,
which are wired together using configurations. Configurations can wire
other configurations together, allowing the formation of component trees.
An application is implemented as a tree of components, where the root
is the TinyOS kernel, branches are configurations, and leaves are modules
or hardware components. For simplicity, TinyOS does not provide dynamic
memory management. Instead, memory is statically allocated to each
module and parameterized interfaces are used in place of multiple com-
ponent instantiations. To maximize efficiency, TinyOS uses active messages
for network communication [25]. Active messages contain an identifier
specifying how the receiver should process the message. This, along with
the event-based execution model of TinyOS, avoids the need for compo-
nents to block or poll for messages.

Although programming WSNs using TinyOS is simpler than using assem-
bly or C, it still is not easy. As pointed out in Levis and Culler [52], TinyOS
has a high learning curve, particularly for nonprogrammers. It requires one
to become familiar with tasks, events, commands, split-phase operations,
and component hierarchy in addition to subtle race conditions involving
asynchrony and atomicity between tasks and events. Many features are
common to other programming languages, such as component instantia-
tions and private state, that are not provided by NesC, mostly to ensure
that applications can attain maximum efficiency. Furthermore, TinyOS
components tend to encapsulate low-level services; for example, many of
the components of TinyOS are part of the hardware presentation layer
(HPL) that interfaces directly with the hardware. Other components encap-
sulate the network stack (

GenericComm

), flash memory (

ByteEEPROM

),
timers (

TimerC

), and kernel (

Main

). In addition, the hardwiring of TinyOS

AU3833_C45.fm Page 1230 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1231

components makes it difficult to develop flexible applications that can
adapt to a changing context. To change the behavior of a program, either
the new behavior must be precoded into the program or the nodes must
be retrieved and reprogrammed, neither of which is scalable. Middleware
is clearly needed to provide higher level programming abstractions that
hide the complexities of TinyOS and allow programmers to quickly imple-
ment, test, and deploy their WSN applications.

Basic Building Blocks

We now discuss middleware packages that provide basic building blocks.
Two middleware packages we focus on are the Sensor Network Applica-
tion Construction Kit (SNACK) [36] and Hood [76]. SNACK provides a high-
level language and a library of components that offer application-level
services. Hood provides a neighbor list abstraction commonly used by
many applications.

Sensor Network Application Construction Kit

Object-oriented programming languages are sometimes not used to write
software for embedded systems due to concerns about efficiency. In an
object-oriented program, a component may have multiple instantiations,
each with private state. This results in a redundancy of state that could
otherwise be shared, increasing memory utilization. To avoid this, many
WSN applications are written using non-object-oriented languages such
as NesC and C. These languages do not allow multiple instantiations of
a component; instead, each component and all of its variables are statically
defined. When programming applications using these languages, devel-
opers need to maintain the state of each virtual instance manually through
complex programming constructs such as state arrays and parameterized
interfaces. A typical example is the timer within TinyOS. The timer is
independently used by many components, but because only one timer
exists it relies on a parameterized interface and an internal state array for
remembering when the timer of each component should fire. The pro-
grammer is given fine-grain control over which variables are shared and
can thus maximize memory reuse. Doing this manually, however, is tedious
and results in complex code.

SNACK is a middleware that provides a high-level language and a library
of application-level services. Like object-oriented languages, SNACK allows
multiple instantiations of a component. It is implemented on top of TinyOS
but can be ported to other operating systems. To reduce overhead, the
SNACK compiler aggressively detects variables that can be shared and

AU3833_C45.fm Page 1231 Monday, August 21, 2006 10:21 AM

1232

■

Mobile Middleware

reorganizes the program to maximize efficiency. SNACK uses a fairly simple
but aggressive mechanism for determining whether state can be shared.
When a component is instantiated, all of its state is shared unless the
instance is declared using the keyword “my.” If “my” is present, all variables
inside the component are private.

The SNACK programming language gives the compiler greater flexi-
bility in rearranging components for higher efficiency. Many WSN appli-
cations consist of numerous independent components. Changing the
control flow between them can significantly reduce overhead; for example,
consider the application shown in Figure 45.1a. The figure shows two
components that generate messages at a rate of 1 message per second
each. Both components send their messages to the radio stack, which
forwards them at a rate of two messages per second. If each message
contains little data, this will result in high overhead. Rearranging the
message flow to that shown in Figure 45.1b can halve the number of
transmissions; however, programming components to adhere to this
arrangement is tedious and may not be possible if the two components
were developed independently. Instead, SNACK provides a messaging
service that works with the compiler to achieve the control flow shown
in Figure 45.1b.

Figure 45.1 Alternative message control flows: (a) Two components, A and B,
are independently sending messages, resulting in two messages per second; (b)
In a more efficient flow, the two components share the same message, halving
the number of messages broadcast over the radio.

AU3833_C45.fm Page 1232 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1233

Allowing the compiler to reorganize the control flow of an application
is not trivial. The programming language of SNACK enables this by
providing a richer syntax for specifying parameter values and using
transitive links. Instead of specifying a specific value for a parameter, the
SNACK programming language allows a range to be specified (e.g., “at
most,” “at least,” or “in between”). By relaxing the constraints on the
parameter, the compiler is more likely to find values that intersect, allowing
it to rearrange the control flow. Transitive links are used to specify links
that can be arranged by the compiler. A transitive link simply indicates
that one component should be wired to another; it allows the compiler
to insert any number of components in between.

SNACK provides a library of components consisting of a messaging
service, timer service, and a hash table data structure. The messaging service
provides support for the control flow shown in Figure 45.1b. It includes

MsgSrc

,

Network

, and

AttrM

 components. The

MsgSrc

 generates empty
messages and is transitively linked to the

Network

. As the message travels
from the

MsgSrc

 to the

Network

, other components can use

AttrM

 to
add their data to the message, merging multiple messages into one. The
compiler decides how the final program is structured. The timer service
reduces the number of independent timers used by an application. By
relying on transitive links, a single timer may pass through multiple com-
ponents. Finally, SNACK provides a hash table data structure keyed by node
ID. The SNACK implementation is much simpler as it can be instantiated
using the keyword “my,” ensuring all state within it is unshared.

Hood: A Neighbor List

The lack of fixed infrastructure in WSNs coupled with uncertainties asso-
ciated with individual sensor readings result in algorithms that exhibit a
high degree of locality. Nodes need to collaborate with their neighbors
to route and aggregate data. They also have to compare their sensor
readings to verify and improve accuracy. The localized algorithms that
perform these tasks require neighborhood information — namely, a list
containing the addresses of nearby nodes whose attributes match certain
application-specific criteria. The neighborhood discovery and maintenance
protocol is frequently used across a broad range of applications and is,
thus, provided as middleware in the form of Hood.

Hood is a middleware for WSNs that provides a neighbor list abstraction.
It handles all of the underlying details of neighbor discovery, message
passing, and data caching. By using Hood, an application developer can
treat the neighbor list as a programming primitive and operate on data
shared by the neighbors, thus simplifying programming. Until now, the
messaging protocols and filtering algorithms required to create and maintain

AU3833_C45.fm Page 1233 Monday, August 21, 2006 10:21 AM

1234

■

Mobile Middleware

this list were done from scratch and customized for each application. This
was necessary because each application required different algorithms and
data structures. Hood avoids this problem by allowing the developer to
plug in application-specific code for distributing a node’s profile, called
the

push policy

, and for processing discovered profiles, called a

filter

.

Hood allows a node to specify a list of attributes to share and a push
policy that determines how these attributes are broadcast. The attributes
may include anything, such as sensor readings, application state, or
remaining power. The push policy may broadcast a message whenever
an attribute is set, perform periodic broadcasts, or perform reliable broad-
casts (e.g., broadcast an attribute several times whenever it is set). If
attributes are rarely broadcast, a bootstrap mechanism may be imple-
mented that broadcasts notifications whenever a node joins a neighbor-
hood. Whenever a bootstrap message is received, the node broadcasts its
attributes. To ensure maximum flexibility, the push policy is implemented
in native NesC and is passed as a parameter to Hood.

To create a neighborhood, a node passes a filter to Hood. The filter
receives all of the attributes broadcast by neighbors and determines which
neighbors should be included in the neighbor list. Note that each node
independently creates and maintains a neighborhood, meaning neighbor-
hoods are not symmetric. It is possible for node A to consider node B to
be a neighbor, but not

vice versa

. A node does not know who considers
it to be a neighbor. This decouples the owner of an attribute from the
observers that consider the owner a neighbor. Achieving symmetric neigh-
borhoods would require more complex protocols with transactional seman-
tics which may prove infeasible in an environment as dynamic and
unreliable as a WSN. The unreliability of WSNs also means Hood cannot
provide any consistency guarantees; that is, it cannot guarantee that every
node within a certain distance will receive every broadcast.

Hood allows applications to append scribbles to each neighbor. A
scribble is a locally derived value like an estimate link quality based on
the neighbor’s attributes. The filters may include scribbles in their analysis
of determining when to include a node in the neighbor list. Complications
arise when the filter requires multiple attributes and scribbles because
some may be defined while others remain undefined. To address this, a
hierarchy of neighborhoods may be created where the members of one
neighborhood are dependent on the neighbors in another neighborhood.

Hood is a specific middleware that has been shown to be useful in
object-tracking applications. It represents a general class of middleware
that provides an abstraction for facilitating neighbor discovery. The key
idea of this middleware is that it allows the application developer to

specify application-specific details such as the push policy and filtering
algorithm, but it provides a generic infrastructure for putting these policies

AU3833_C45.fm Page 1234 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1235

to work. The middleware with a neighbor list abstraction can be easily
generalized to provide multiple neighbor lists, each with different attributes,
or to provide higher level operations that operate over all members of a
particular list.

Data-Centered Abstractions

The primary purpose of a WSN is to gather data about an environment
and relay that information to the consumers. Two key challenges to
distributing sensor information are (1) mobility and (2) limited resources.
The data consumers may include external users, internal nodes, or a
combination of both. Many applications such as safe-route navigation and
a museum tour guide involve multiple external users that transiently
connect to the network and physically move through the sensor field. To
complicate matters, WSNs operate under severe resource limitations in
terms of power, memory, and computational ability, all of which should
be sparingly used. This prevents simply porting existing

ad hoc

 routing
protocols developed for laptops and PDAs into a WSN. The underlying
operating system, in minimizing overhead, provides little support; for
example, TinyOS only offers one-hop unicast and broadcast. Clearly, new,
more efficient and agile algorithms for distributing sensor data and higher-
level programming models to use these algorithms are required. Many
types of middleware provide this. We consider two algorithms, geographic
hash tables [68] and directed diffusion [39,46], and two models, WSN as
a database [35,59,69,79] and abstract regions [75], all of which are available
as middleware.

In a WSN, both the sender and the receiver may be transient and
mobile. Traditional routing protocols for wireless

ad hoc

 networks, such
as

Ad Hoc

 On-Demand Distance Vector (AODV) [66] and Dynamic
Source Routing (DSR) [23], are not ideal because they have high over-
head and latency, especially when the network is dynamic. This has
resulted in the development of many novel routing algorithms that use
data caching and forward pointers to efficiently deliver a message to a
moving consumer [51]. Forward pointers, however, leave control state
scattered through the network and may still fail if the receiver is moving
too rapidly. A geographic hash table does not suffer from this problem.
It takes advantage of the spatial property of a WSN. Whenever a sender
wishes to send a message to a particular destination, the destination’s
address is hashed to a particular location. The data is sent to that
location, and any node within one hop stores the message, serving as
a mailbox. The destination periodically checks its mailbox to receive
the message. A geographic hash table guarantees that the message will

AU3833_C45.fm Page 1235 Monday, August 21, 2006 10:21 AM

1236

■

Mobile Middleware

be delivered as long as no message loss occurs. By choosing a proper
hash function, data can be distributed evenly across the entire network,
providing load balancing. Drawbacks include the need for each con-
sumer to periodically query its mailbox, the possibility that the mailbox
and consumer may be located on opposite sides of the network, and
the additional overhead of dealing with node mobility.

Wireless sensor networks consist of potentially thousands of nodes.
Many of them will fail mid-deployment, and new nodes may be added.
This highly dense and dynamic environment calls for applications that
place less emphasis on the data collected by each individual node and
instead treat the nodes as an aggregate. Applications for WSNs tend not
to require data from a specific sensor but rather from sensors that have
certain properties such as, for example, being located in a particular region
or having sensor readings above a certain threshold. This observation led
to the development of content-based routing where data is not sent to a
particular address but is routed based on its attributes. One system that
provides this is directed diffusion [46]. Directed diffusion introduces the
idea of routing data down interest gradients. When a consumer is interested
in a particular type of data, it broadcasts a description of its interest, which
is propagated throughout the network. By propagating the interest, a
downhill gradient is produced where the consumer is at the bottom. Any
data matching the interest is forwarded down the gradient to the consumer.
The middleware handles all of the distribution of interests and configuring
of “flows” for delivering data down interest gradients. To save power, it
also performs in-network data aggregation to reduce the number of
packets sent back to the consumer; for example, instead of receiving all
of the raw data, it only receives the average over a certain epoch.

Wireless sensor network middleware may also change the fundamental
model presented to the application programmer. One example is a data-
base. Using this model, a programmer need not program individual sensors
or debug complex data aggregation and routing algorithms. Instead, a
WSN is treated like a single table in a database consisting of the aggregate
data collected across all WSN nodes. Many middleware packages provide
this abstraction. They include TinyDB [59], SINA [69], Cougar [79], and
IrisNet [35]. All of these middleware packages implement a distributed
query processor that spans the entire network. They provide a Structure
Query Language (SQL)-like language tailored to WSNs. A primary differ-
ence between implementing a virtual WSN database versus a real database
is the fact that the data is continuously generated, often only after a query
is issued. Also, in-network data aggregation is necessary in WSNs to reduce
message transmissions and save power. To account for this, the database
query language is augmented with

EPOCH

,

SAMPLE_PERIOD

, and func-
tion modifiers that allow a programmer to specify how aggregate data

AU3833_C45.fm Page 1236 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1237

should be generated within the network. To account for the spatial
properties of a network, a

WHERE

 modifier is also provided. Recent work
in this area has produced more powerful aggregation operations [41] and
techniques for compressing aggregate data [71].

Another type of middleware is the notion of abstract regions [75], which
provides a new model in place of individual nodes in a WSN. It allows
programmers to define regions in the network and to treat each region
as if it were an individual sensor. A region may in reality contain many
sensors, but all of them aggregate their data, and the application is only
given the aggregate. Abstract regions still give application programmers
control over resource consumption and provide feedback on how suc-
cessfully requested aggregate operations were carried out. It uses a tuple-
space-like model for distributing data and provides a thread-like model
where applications can perform blocking operations. Together, this greatly
simplifies the programming model, allowing even non-computer scientists
to program a network.

Mobility-Centered Abstractions

A common application for WSNs is to track a mobile entity as it travels
through a sensor field. The entity can be, among many other things, a
soldier in a field or a car in a parking lot. In the simplest implementation,
any node that detects an entity would report to a central base station. This
implementation is less accurate as the sensors do not collaborate to verify
their readings. Some entities are difficult to track and can only be accurately
sensed by multiple sensors concurrently [38]. The simple implementation
is also not energy efficient as redundant notifications may be routed through
the network when multiple sensors detect the same entity. Other challenges
arise when the nodes operate on a sleep schedule. If a node is asleep, it
will not be able to detect the entity; thus, complex motion prediction and
forewarning algorithms are required to wake up nodes ahead of the entity
so they can participate in the event detection process. Tracking mobile
entities is a complex process used by many applications. Several middle-
ware packages have been developed to reduce this complexity. One such
package is EnviroTrack [18]. Another middleware package that allows
mobile users to access the WSN is MobileQuery [57].

EnviroTrack

EnviroTrack provides a context-label abstraction for each entity. A context
label is distinguished by type (e.g., “car”) and contains a user-defined
aggregate state about the entity and application-specific code that operates

AU3833_C45.fm Page 1237 Monday, August 21, 2006 10:21 AM

1238

■

Mobile Middleware

on this state. The context label is dynamically created when the entity is
first detected and logically follows the entity as it moves through the
sensor field. EnviroTrack simplifies programming by hiding the details
associated with internode communication and group maintenance neces-
sary to detect and track an entity. Programmers interact with the static
context label rather than with a continuously changing set of nodes that
sense the entity. This is done using a directory service based on a
geographic hash table. The type of context label is hashed to a specific
location, and nodes within one hop of this location serve as directory
objects. Each context label periodically updates its state with its directory
objects, and programmers interact with the directory objects.

To use EnviroTrack, the programmer must specify the possible types
of context labels. For each type, the programmer must provide a

sense

function, a

state

 function, and, optionally, tracking objects. The

sense

function takes the raw sensor readings and determines whether the entity
is present. It includes a freshness constraint that determines the maximum
age of a sensor reading for it to be considered and a critical mass constraint
that determines the minimum number of sensors that sense the entity for
the detection to be considered valid. The

state

 function produces the
aggregate data to maintain within the context label. The tracking objects
perform local processing on the nodes that comprise the context label,
allowing them to perform context-sensitive tasks that may directly affect
the entity (e.g., forming a barrier if the entity is an intruder or activating
a sprinkler system if the entity is a fire).

EnviroTrack provides a group maintenance algorithm for organizing
nodes that can sense the entity. Ideally, the algorithm will produce a
single context label per entity, each with a single leader who is responsible
for aggregating the data and updating the directory service of the context
label. A context label is formed whenever a node detects an entity using
the sense function and is not already part of, or aware of, a group for
the entity. Whenever this occurs, it creates a context label and declares
itself leader. As the leader, it periodically broadcasts a heartbeat that is
propagated a certain number of hops beyond the group’s boundary. The
heartbeat serves the dual purpose of telling members the leader is still
alive and providing a forewarning system. If a member node can sense
an entity but does not hear a heartbeat within a certain time, it creates a
new group. Whenever a node receives a heartbeat, it remembers the last
time it received it. If the entity is sensed within a certain time of receiving
the last heartbeat, the node joins the group by periodically sending its
sensor readings to the leader. Multiple leaders may occur when the entity
is initially detected by multiple nodes or when the heartbeat fails to
propagate. To account for this, each leader maintains a weight correspond-
ing to the number of updates it has received from group members. The

AU3833_C45.fm Page 1238 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks

■

1239

leader with the lower weight concedes to the one with the higher weight.
As the entity moves, the leader may lose the ability to sense the entity.
When this occurs, it hands off its leadership to a node that inherits the
former leader’s weight, thereby reducing the probability that spurious
leaders will remain active.

EnviroTrack has been implemented on top of TinyOS. To further
simplify programming, it provides a preprocessor that translate EnviroTrack
code into NesC. Through simulations and actual implementations on MICA
motes, EnviroTrack has been shown to simplify WSN programming.

MobileQuery

MobileQuery [57] is a middleware supporting user mobility. MobileQuery
is best motivated using an example. Imagine a user carrying a PDA and
traveling through a sensor field. As the user travels, what is the simplest
task the user may want to do that is useful to many applications? One
such task is to simply query the sensor readings of nodes within a certain
vicinity; for example, a possible query could be “What is the average of
all temperature readings within a one-mile area?” This requires the dis-
semination of a query to a certain geographic region and routing and
aggregation algorithms for delivering the results back to the user. Because
the user continuously moves, this query process should be periodic.
MobileQuery provides this service.

Implementing MobileQuery may at first appear simple: Just broadcast
a query, and wait for a reply. In networks that do not operate on a
sleep schedule and applications that do not require real-time operation,
this is probably sufficient. However, many WSN applications such as
hazard detection and safe-route navigation software require real-time
context information. Also, WSNs often operate on a sleep schedule to
prolong network lifetime where the nodes remain asleep for the majority
of the time, only briefly waking up to perform application-specific tasks.
If the user issues a query when the nodes just went to sleep, the latency
will be high. Furthermore, as the query area expands, a naive flooding
solution will result in greater energy consumption due to duplicate
broadcasts and more message being lost due to contention. To avoid
these problems, MobileQuery adapts a prefetching and tree-building
scheme where prefetching messages are sent ahead of the user to
predefined pickup points (i.e., the location where the user expects to
receive query results), and a routing tree rooted at the pickup point is
created to collect and aggregate the results. MobileQuery assumes that
a user’s movements are predictable and that a prefetch message can
travel faster than the user. A user’s movements may be predictable

AU3833_C45.fm Page 1239 Monday, August 21, 2006 10:21 AM

1240

■

Mobile Middleware

based on history or in certain scenarios such as driving on the highway
or hiking on a trail, when the motions may follow a predefined map. To
ensure that prefetch messages can travel faster than the user, a backbone
overlay network [28,74,78] is used.

The two types of prefetching are all-at-once and just-in-time. All-at-
once prefetching sends the prefetch messages as far as the user will travel.
It assumes that the user travels a fixed distance along a known path. By
sending the prefetch messages immediately, it can guarantee that all of
the nodes in future query areas will be ready to supply sensor readings
by the time the user arrives.

Dynamic Reprogramming

The aforementioned middleware systems simplify programming by pro-
viding commonly used services. They are integrated into the application
at compile time and do little to increase network runtime flexibility.
Flexibility is important in WSNs because of their highly dynamic topology
and lengthy deployment intervals throughout which the user require-
ments, or the users themselves, may change. Knowing all possible uses
of a WSN prior to deployment is not possible. A network initially deployed
for habitat monitoring may later be used for wildfire detection. Large
WSNs covering a wide geographic area may be deployed for a single
use initially but later may be divided into regions, each running software
specialized to features within each environment. Anticipating and incor-
porating all possible behaviors into an application prior to deployment
is not feasible. Many aspects such as algorithms and data structures are
difficult to parameterize. Memory constraints prevent including extra-
neous behavior. To address this, middleware packages have been
created to facilitate the dynamic reprogramming of a predeployed network.
By enabling dynamic reprogramming, the network can assume any behav-
ior, and can serve transient users as they arrive and move through the
sensor field.

Embedded systems often adhere to a Harvard architecture with separates
data and instruction memories. This naturally leads to the ability to repro-
gram a node by reflashing the instruction memory and can be provided
at the operating system level [45]. The problem is that: (1) some nodes do
not employ rewritable instruction memory due to cost, (2) reflashing
memory consumes a lot of power and is unreliable when the batteries are
not fully charged, and (3) it requires the transmission of the entire operating
system and application over a lossy low-bandwidth radio. Some middleware
packages provide a more efficient way to reprogram a WSN. They either
allow the instruction memory to be partially reprogrammed or, more often,

AU3833_C45.fm Page 1240 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1241

provide a virtual machine that interprets lightweight mobile control scripts.
Middleware packages of this sort include Agilla [33], Impala [54], Maté [52],
SensorWare [22], and Smart Messages [50]. A summary of their features is
shown in Table 45.1.

Among them, Agilla [33] provides a virtual machine that supports
mobile agents and highly flexible capabilities for in-network reprogram-
ming. Its middleware architecture is shown in Figure 45.2. Unlike tradi-
tional programs that are statically installed on a specific node, mobile
agents can move and clone themselves across the network performing

Table 45.1 Middleware Supporting Network Reprogramming

Name
Execution

Unit
Execution

Model
Network

Reprogramming
Communication

Model

Agilla Agent Agent
thread

Strong
migration

Tuple space

Impala Modules Event Flood code Message passing

Maté Capsules Event Floor code Message passing

SensorWare Script Event Weak migration Message passing

Smart
Messages

Smart
message

Single
thread

Strong
migration

Remote:
migration

Local: tag space

Figure 45.2 The Agilla model.

Agilla middlware Agilla middlware

AU3833_C45.fm Page 1241 Monday, August 21, 2006 10:21 AM

1242 ■ Mobile Middleware

application-specific tasks. Two types of migration operations are provided:
strong and weak. Strong migration captures the entire state of an agent
including its program counter and stack. The agent resumes execution at
the destination uninterrupted. A weak migration, on the other hand, only
captures data state, all execution state is lost, and the agent resumes
running at the beginning when it arrives at the destination. Although
strong migration may simplify programming, it entails higher overhead.

An application often consists of multiple agents; for example, in a fire
detection application, multiple mapping agents may be used to form a
perimeter around the fire [32]. When multiple agents are used to carry
out an application’s task, they must coordinate with each other. In Agilla,
coordination is achieved through local Linda-like tuple spaces [34]. A tuple
space is a special type of shared memory where the data is addressed by
content using templates. One agent can insert a tuple, and another can
later read or remove it using pattern matching via a template. To prevent
polling, Agilla augments the tuple space with reactions [26,31,49,64] that
notify an agent of a tuple matching a particular template when it appears
in the tuple space. Tuple spaces decouple agents ensuring that they remain
autonomous. The autonomy of an agent is vital in a dynamic environment
such as a WSN because inter-agent interactions tend to be highly transient.

The tuple space also serves as a convenient mechanism for agents to
discover their context; for example, in Agilla, the tuple space stores the
types of sensors available and the identities of the other colocated agents.
Tradeoffs regarding what to store in the tuple space versus through a
dedicated data structure must be expected; for example, because the address
of neighboring nodes is frequently accessed by many applications, Agilla
provides an acquaintance list abstraction, but a list of available sensors is
accessed less frequently, so it is stored in the tuple space. Providing a
dedicated data structure reduces latency but increases memory overhead.

Unlike other mobile middleware [64], Agilla does not support a global
tuple space that spans across multiple nodes primarily due to bandwidth
and energy constraints. Instead, it supports local tuple spaces where each
node maintains a distinct and separate tuple space. If agents were restricted
to operate only on the local tuple space, they would only be able to
coordinate with colocated agents, but in many applications, agents need
to communicate with agents residing on different hosts. Although this may
be accomplished by having the agent migrate to the other agent’s host,
agent migration is relatively expensive; thus, Agilla provides special
instructions that allow an agent to perform operations on a remote host’s
tuple space. These instructions rely on simple mutihop unicast commu-
nication and are thus scalable. Sequentially accessing each neighbor’s
tuple space, however, entails significant overhead. To address this, Agilla
provides a group instruction that uses single-hop multicast to query the

AU3833_C45.fm Page 1242 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1243

tuple spaces of all one-hop neighbors. Scalability is ensured because this
operation operates only over one hop.

Wireless sensor networks are unique in that spatial properties are impor-
tant. Sensor nodes detect certain properties of the environment. The location
at which they take the measurement is necessary when, for example,
determining where the intruder is; in other words, many WSN applications
must know their spatial placement to make sense of the sensor data they
collect. Agilla embraces this reliance on spatial information by addressing
nodes by their geographic location. Sensors can obtain their location through
global position system (GPS) or any number of other localization schemes
[24,62,67]. As a side benefit, addressing nodes by location enables Agilla
primitives to be easily extended to operate over geographic regions and to
use geographic routing for multihop interactions.

Agilla is implemented on top of TinyOS and tested on MICA2 motes.
It has been shown that careful engineering of the middleware makes
programming flexible applications consisting of mobile agents not only
feasible but easier. In its current implementation, standard coordination
mechanisms such as tuple spaces and acquaintance lists are used. In the
future, agents may be able to communicate directly with each other,
thereby further reducing overhead, or they may be able to mutate their
code, taking on additional capabilities as they gain experience within the
network. The possibilities are endless.

Impala [54] and Maté [52] are two similar middleware systems that
divide the code of an application into capsules that are then distributed
throughout the network. The main difference is that Impala uses native
code, whereas Maté uses a virtual machine. Unlike Agilla agents, Impala
and Maté capsules have no control over where they execute. When an
updated capsule is issued, it is flooded throughout a network. This
prevents multiple applications from running concurrently and different
areas of the network from running different code. Both Impala and Maté
use an event-based programming model where each capsule remains
inactive unless an event to which it is sensitive occurs; for example, one
capsule within Maté is a timer capsule, and the code within this capsule
is executed whenever the timer fires. Another capsule is sensitive to the
arrival of a message. By using an event-based model, these middlewares
achieve high efficiency by avoiding polling and allowing the execution
unit to remain dormant during periods of no events.

Smart Messages [50] and SensorWare [22] are similar to Agilla in that
they allow their execution units to control where they are located. Smart
Messages allow its execution units, known as a smart message, to perform
strong migrations. SensorWare uses mobile scripts as its execution unit,
but only supports weak migration. Both systems are implemented as virtual
machines on relatively powerful PDAs. Unlike Agilla, Smart Messages only

AU3833_C45.fm Page 1243 Monday, August 21, 2006 10:21 AM

1244 ■ Mobile Middleware

provides a single thread per node and separates local communication (via
a tag space) from remote communication (via migration). By having a
single thread, multiple applications cannot run concurrently on a node,
and the need for a smart message to migrate to communicate with a
remote node incurs higher overhead than simply remotely accessing the
node. SensorWare, on the other hand, uses an event-based execution
model like Impala and Maté. Also like Impala and Maté, SensorWare uses
direct message passing for communication between its mobile scripts.

Emerging Strategies
Wireless sensor networks are continuously evolving as technology improves
and new applications become feasible. In recent years, WSNs have evolved
from rigid application-specific deployments to flexible embedded comput-
ing platforms. As WSN nodes improve, they will run more sophisticated
applications that demand better middleware support. Middleware designers
are currently investigating several emerging strategies, which include pro-
viding quality of service (QoS), macroprogramming, and connecting WSNs
with traditional networks.

Quality of Service Management

As WSNs mature, they will run more sophisticated applications and
multiple applications at a time. Existing middleware such as Agilla
already allows multiple applications to be dynamically loaded into a
network. Little attention, however, has been paid to QoS, specifically
as related to message delivery latency, sensing accuracy, energy con-
sumption, and data throughput. Most existing middleware packages
provide services on a best-effort basis and do not consider application-
specific semantics when making tradeoffs between QoS and resource
consumption. Many applications share the same types of tradeoffs (e.g.,
decrease sensing accuracy or increase message latency for additional
power savings). Programming these tradeoffs within each application is
tedious and error prone. Furthermore, when multiple applications share
the same network, interactions across applications must be accounted for;
for example, if one application is tracking a raging wildfire, it should be
given better QoS than an application monitoring the migration patterns
of monarch butterflies. Middleware provides a convenient mechanism for
adding these QoS provisions.

Two middleware projects that provide QoS are MiLan [40,63] and
AutoSec [37]. MiLan takes a specification on the minimum QoS an
application requires and adapts the network to achieve this QoS while

AU3833_C45.fm Page 1244 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1245

minimizing resource consumption. Instead of simply observing network
parameters and adapting the application, MiLan attempts to control the
network; for example, consider a habitat monitoring application running
on a WSN deployed throughout a forest. The majority of the time nothing
interesting is going on, so the middleware selects a sparse subset of the
nodes to monitor the environment at a low resolution to save power;
however, when an interesting event is detected, the middleware increases
the QoS by activating additional nodes near the phenomenon of interest.
This proactive approach allows MiLan to provide high QoS while still
consuming low resources. AutoSec differs from MiLan in that it focuses
on resource allocation to ensure maximum system throughput. It relies
on a directory service that stores information about the current state of
the network and, based on this information, chooses a resource allocation
policy that divvies up the resources such that each application achieves
its desired QoS. Part of the challenge with AutoSec lies in determining
how to maintain the directory service and what resource allocation policies
should be provided.

Real-time behavior is a specific type of QoS that many applications
require. In a real-time application (e.g., surveillance, fire monitoring,
and intruder detection), messages and actions must be precisely cho-
reographed for the application to function correctly. Messages must be
delivered on time at the right place carrying data of a certain freshness.
Two middleware projects that provide real-time functionality are DSWare
[58] and RAP [56]. DSWare is a publish–subscribe middleware that relies
on standard real-time packet scheduling mechanisms, such as earliest
deadline first (EDF). It also provides group management, event detec-
tion, data caching, and data storage services, reducing the burden of
application developers. RAP is a real-time query service for WSNs. It
introduces velocity monotonic scheduling, which takes advantage of the
spatial properties of the network to provide real-time message delivery.
RAP allows a user to issue a query with certain period, deadline, and data
freshness requirements. As data is delivered, its velocity, as measured by
how far it has traveled over how long, is used as a local indicator of how
urgently the packet must be forwarded. A message that will barely make
or miss its deadline traveling at its current velocity will have a higher
priority than a message that will easily make its deadline. Both middleware
projects are still in the prototype phase, having only been evaluated in
simulators.

Macroprogramming

Another emerging strategy being embraced by developers of WSN mid-
dleware is the idea of macroprogramming. Macroprogramming relies on

AU3833_C45.fm Page 1245 Monday, August 21, 2006 10:21 AM

1246 ■ Mobile Middleware

new programming languages that allow a programmer to describe, at a
high level, what the sensor network should do. The middleware and
compiler would then determine the low-level code that executes on each
individual node. By hiding the distributed nature of the network, pro-
gramming it is greatly simplified. Agilla can be viewed as a form of
macroprogramming where developers create agents without worrying
about precisely where they are installed. Other middleware projects based
on macroprogramming include abstract regions [75], virtual markets [60],
Regiment [65], and MagnetOS [19].

Abstract regions were discussed earlier. They allow programmers to
reason about abstract regions that map to collections of nodes. Virtual
markets take a unique approach to achieving new behavior in a WSN.
Instead of introducing new code into the network, a virtual market simply
changes the value of performing certain tasks. In a virtual market, intel-
ligent agents are distributed throughout the network that can perform
certain actions (e.g., take a sensor reading, aggregate data, and forward
data). Each action has a value associated with it. By programming the
agents to seek maximum profits, the overall system behavior can be
controlled by simply changing the value of each action. Regiment and
MagnetOS are both high-level programming languages that allow a devel-
oper to program a WSN application as if it ran on a single node. The
underlying middleware and compiler take the program and determine
how it can be divided and distributed across multiple nodes within the
WSN. They differ in that Regiment provides a functional language whereas
MagnetOS is written in Java.

Integration with Traditional Networks

Another emerging area of WSN middleware research involves developing
platforms that allow the seamless integration of WSNs with traditional
networks. For WSNs to gain widespread use, they must be easily integrated
with the existing computing infrastructure. Currently, the code that bridges
WSNs with traditional networks is proprietary relying on custom protocols
tailored to each application. Furthermore, as WSNs gain widespread use,
more sophisticated applications will want to harness the power of multiple
potentially heterogeneous WSNs. These applications are often distributed
across multiple administrative domains; for example, a company’s inven-
tory management system may reside on servers belonging to the company,
supplier, and shipping company. Applications running on traditional net-
works are mature. They operate across administrative domains by adhering
to common protocols and languages such as those proposed by the Open
Grid Services Architecture (OGSA) [17]. OGSA, however, introduces too

AU3833_C45.fm Page 1246 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1247

much overhead for use in WSNs. Developing and maintaining custom
protocols that facilitate the interactions between WSNs and the fixed
infrastructure is a formidable task. It is a service that WSN middleware is
just beginning to provide.

One middleware package that links WSNs with traditional networks
is Agilla. In Agilla, mobile agents can easily migrate between WSNs and
traditional networks. Another project is Hourglass [70]. Hourglass oper-
ates over the Internet and handles the delivery of data between con-
sumers and sources located across multiple WSNs. In creates an overlay
network over the fixed Internet infrastructure and provides a circuit
abstraction that connects the sources with the destinations. Circuits are
tailored to handling WSN data by allowing various services to operate
over the data flowing through them; for example, some of the services
provided by Hourglass include filtering, aggregating, compressing, and
buffering. Because Hourglass nodes are more powerful than WSN nodes,
they are capable of performing more complex operations on the data.
An application developer simply tells Hourglass its data needs, and the
middleware takes care of discovering the networks that provide the
raw data and assembling the necessary services to produce the required
data. Hourglass is still in the prototype stage, having only been simulated
in ModelNet [73].

Conclusion
Wireless sensor networks promise to revolutionize the way humans inter-
act with their physical environment. They will soon gain widespread use
because they provide many benefits and are relatively inexpensive to
deploy; however, to gain widespread use, new middleware solutions are
required. Programming WSNs is difficult because they have extremely
limited resources and exhibit many forms of mobility involving the users,
entities being sensed, sensor nodes, data, and code. To help simplify
application development, many middleware packages have been created.
Initial WSN middleware provided basic building blocks such as high-level
programming languages, neighbor lists, and libraries of components that
provide application-level services. As applications matured and gained
complexity, new middleware for handling the various forms of mobility
and increasing network flexibility through in-network reprogramming
were developed. WSNs are relatively new and are rapidly evolving, forcing
middleware designers to embrace new strategies. These emerging strate-
gies include providing QoS, macroprogramming, and providing a foun-
dation for connecting WSNs to traditional networks.

AU3833_C45.fm Page 1247 Monday, August 21, 2006 10:21 AM

1248 ■ Mobile Middleware

Acknowledgments
This research was supported in part by the Office of Naval Research under
MURI research contract N00014-02-1-0715 and by the NSF under ITR
contract CCR-0325529. Any opinions, findings, and conclusions expressed
in this paper are those of the authors and do not necessarily represent
the views of the research sponsors.

References
[1] http://www.moteiv.com.
[2] http://www.xbow.com/Products/productsdetails.aspx?sid=72.
[3] http://www.xbow.com/Products/productsdetails.aspx?sid=101.
[4] http://www.dustnetworks.com/docs/M2030.pdf.
[5] http://www.dustnetworks.com/docs/M1030.pdf.
[6] http://robotics.eecs.berkeley.edu/~pister/SmartDust/.
[7] http://www.scatterweb.com/.
[8] http://www.intel.com/research/exploratory/motes.htm.
[9] http://www.lynuxworks.com/.

[10] http://www.experimentalstuff.com/Technologies/ChorusOS/.
[11] http://www.windriver.com/.
[12] http://www.netbsd.org/.
[13] http://www.ose.com/.
[14] http://www.microware.com/.
[15] http://www.freedos.org/.
[16] http://sourceware.org/ecos/.
[17] http://www.globus.org/ogsa/.
[18] Abdelzaher, T., Blum, B., Cao, Q., Chen, Y., Evans, D. et al., EnviroTrack:

towards an environmental computing paradigm for distributed sensor net-
works, in Proc. of IEEE Int. Conf. on Distributed Computing Systems (ICDCS’04) ,
Tokyo, Japan, March, 2003, pp. 582–589.

[19] Barr, R., Bicket, J.C., Dantas, D.S., Du, B., Kim, T.W.D. et al., On the need
for system-level support for ad hoc and sensor networks, SIGOPS Oper.
Syst. Rev., 36(2), 1–5, 2002.

[20] Batalin, M.A., Rahimi, M., Yu, Y., Liu, D., Kansal, A. et al., Towards Event-
Aware Adaptive Sampling Using Static and Mobile Nodes, Technical Report
38, Center for Embedded Networked Sensing, University of California, Los
Angeles, 2004.

[21] Bellis, S., Delaney, K., O’Flynn, B., Barton, J., Razeeb, K., and O’Mathuna,
C., Development of field programmable modular wireless sensor network
nodes for ambient systems, Computer Commun., 2005 (special issue on
wireless sensor networks).

[22] Boulis, A., Han, C.-C., and Srivastava, M., Design and implementation of a
framework for efficient and programmable sensor networks, in Proc. of the
First Int. Conf. on Mobile Systems, Applications, and Services (MobiSys’03),
San Francisco, CA, May, 2003.

AU3833_C45.fm Page 1248 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1249

[23] Broch, J., Johnson, D.B., and Maltz, D.A., The Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks, Internet Draft, Internet Engineering
Task Force (IETF) Mobile Ad Hoc Networking Working Group, 1998.

[24] Bulusu, N., Heidemann, J., and Estrin, D., GPS-Less Low-Cost Outdoor
Localization for Very Small Devices, Technical Report 00-729, University of
Southern California, Los Angeles, 2000.

[25] Buonadonna, P., Hill, J., and Culler, D., Active Message Communication for
Tiny Networked Sensors, http://www.tinyos.net/papers/ammote.pdf.

[26] Cabri, G., Leonardi, L., and Zambonelli, F., Reactive Tuple Spaces for Mobile
Agent Coordination, Vol. 1477, Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, 1998, pp. 237–252.

[27] Cerpa, A., Elson, J., Estrin, D., Girod, L., Hamilton, M., and Zhao, J., Habitat
monitoring: application driver for wireless communications technology,
SIGCOMM Comput. Commun. Rev., 31(2, Suppl.), 20–41, 2001.

[28] Chen, B., Jamieson, K., Balakrishnan, H., and Morris, R., Span: an energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless
networks, in Proc. of the 7th ACM/IEEE Int. Conf. on Mobile Computing and
Networking (MOBICOM’01), Seattle, WA, August, 2001, pp. 85–96.

[29] Curino, C., Giani, M., Giorgetta, M., Giusti, A., Murphy, A.L., and Picco,
G.P., TinyLime: bridging mobile and sensor networks through middleware,
in Proc. of the 3rd IEEE Int. Conf. on Pervasive Computing and Communi-
cations (PerCom’05), Kauai Island, Hawaii, March 8–12, 2005, pp. 61–72.

[30] Dunkels, A., Grnvall, B., and Voigt, T., Contiki: a lightweight and flexible
operating system for tiny networked sensors, in Proc. of the First IEEE
Workshop on Embedded Networked Sensors (IEEE EmNetS-I), Tampa, FL,
November, 2004.

[31] Fok, C.-L., Roman, G.-C., and Hackmann, G., A lightweight coordination
middleware for mobile computing, in Proc. of the 6th Int. Conf. on Coor-
dination Models and Languages (Coordination 2004), DeNicola, R., Ferrari,
G., and Meredith, G., Eds., Vol. 2949, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 2004, pp. 135–151.

[32] Fok, C.-L., Roman, G.-C., and Lu, C., Mobile agent middleware for sensor
networks: an application case study, in Proc. of the Fourth Int. Conf. on
Information Processing in Sensor Networks (IPSN’05), Los Angeles, CA, April
25–27, 2005, pp. 382–387.

[33] Fok, C.-L., Roman, G.-C., and Lu, C., Rapid development and flexible
deployment of adaptive wireless sensor network applications, in Proc. of
the 25th Int. Conf. on Distributed Computing Systems (ICDCS’05), Columbus,
OH, June, 2005, pp. 653–662.

[34] Gelernter, D., Generative communication in Linda, ACM Trans. Program.
Lang. Syst., 7(1), 80–112, 1985.

[35] Gibbons, P., Carp, B., Ke, Y., Nath, S., and Seshan, S., IrisNet: an architecture
for a worldwide sensor Web, IEEE Pervasive Comput., 2(4), 22–33, 2003.

[36] Greenstein, B., Kohler, E., and Estrin, D., A sensor network application
construction kit (SNACK), in Proc. of the 2nd Int. Conf. on Embedded
Networked Sensor Systems (SenSys’04), Baltimore, MD, November 3–5, 2004,
pp. 69–80.

AU3833_C45.fm Page 1249 Monday, August 21, 2006 10:21 AM

1250 ■ Mobile Middleware

[37] Han, Q. and Venkatasubramanian, N., AutoSec: an integrated middleware
framework for dynamic service brokering, IEEE Distributed Syst. Online,
2(7), 2001.

[38] He, T., Krishnamurthy, S., Stankovic, J.A., Abdelzaher, T., Luo, L. et al.,
Energy-efficient surveillance system using wireless sensor networks, in Proc.
of the Second Int. Conf. on Mobile Systems, Applications, and Services (Mobi-
Sys’04), Boston, MA, June, 2004, pp. 270–283.

[39] Heidemann, J., Silva, F., and Estrin, D., Matching data dissemination algo-
rithms to application requirements, in Proc. of the First Int. Conf. on Embed-
ded Networked Sensor Systems (SenSys’03), Los Angeles, CA, November 5–7,
2003, pp. 218–229.

[40] Heinzelman, W., Murphy, A., Carvalho, H., and Perillo, M., Middleware to
support sensor network applications, IEEE Network Mag., 18, 6–14, Jan. 2004.

[41] Hellerstein, J., Hong, W., Madden, S., and Stanek, K., Beyond average:
towards sophisticated sensing with queries, in Proc. of the Second Int. Conf.
on Information Processing in Sensor Networks (IPSN’03), Palo Alto, CA,
April 21–23, 2003.

[42] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., and Pister, K., System
architecture directions for networked sensors, in Proc. of Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Cam-
bridge, MA, November 12–15, 2000, pp. 93–104.

[43] Hsieh, T.T., Using sensor networks for highway and traffic applications,
IEEE Potentials, 23(2), 13–16, 2004.

[44] Huang, Q., Lu, C., and Roman, G.-C., Spatiotemporal multicast in sensor
networks, in Proc. of the First Int. Conf. on Embedded Networked Sensor
Systems (SenSys’03), Los Angeles, CA, November 5–7, 2003, pp. 205–217.

[45] Hui, J. and Culler, D., The dynamic behavior of a data dissemination protocol
for network programming at scale, in Proc. of the 2nd Int. Conf. on Embed-
ded Networked Sensor Systems, Tampa, FL, November, 2004, pp. 81–94.

[46] Intanagonwiwat, C., Govindan, R., and Estrin, D., Directed diffusion: a
scalable and robust communication paradigm for sensor networks, in Proc.
of the 6th ACM/IEEE Int. Conf. on Mobile Computing and Networking (MOBI-
COM’00), Boston, MA, August, 2000, pp. 56–67.

[47] Jea, D., Somasundara, A., and Srivastava, M., Multiple controlled mobile
elements (data mules) for data collection in sensor networks, in Proc. of
the Int. Conf. on Distributed Computing in Sensor Systems (DCOSS’05),
Marina del Rey, CA, June 30–July 1, 2005.

[48] Juang, P., Oki, H., Wang, Y., Martonosi, M., Peh, L.S., and Rubenstein, D.,
Energy-efficient computing for wildlife tracking: design tradeoffs and early
experiences with ZebraNet, ACM SIGPLAN Notices, 37(10), 96–107, 2002.

[49] Julien, C. and Roman, G.-C., EgoSpaces: facilitating rapid development of
context-aware mobile applications, IEEE Trans. Software Eng., 32(5),
281–298, 2006.

[50] Kang, P., Borcea, C., Xu, G., Saxena, A., Kremer, U., and Iftode, L., Smart
messages: a distributed computing platform for networks of embedded
systems, Comput. J., 47, 475–494, 2004 (special issue on mobile and per-
vasive computing).

AU3833_C45.fm Page 1250 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1251

[51] Kim, H.S., Abdelzaher, T.F., and Kwon, W.H., Minimum-energy asynchro-
nous dissemination to mobile sinks in wireless sensor networks, in Proc.
of the First Int. Conf. on Embedded Networked Sensor Systems (SenSys’03),
Los Angeles, CA, November 5–7, 2003, pp. 193–204.

[52] Levis, P. and Culler, D., Maté: a tiny virtual machine for sensor networks,
in Proc. of the Tenth Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’02), San Jose, CA, November,
2002, pp. 85–95.

[53] Lin, T.-H., Sanchez, H., Kaiser, W.J., and Marcy, H., Wireless integrated
network sensors (WINS) for tactical information systems, in Proc. of the
1998 Government Microcircuit Applications Conf. (GOMAC’98), Arlington,
VA, March 16–19, 1998.

[54] Liu, T. and Martonosi, M., Impala: a middleware system for managing
autonomic, parallel sensor systems, in Proc. of ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming (PPoPP’03), San Diego,
CA, June, 2003.

[55] Lorincz, K., Malan, D., Fulford-Jones, T.R.F., Nawoj, A., Clavel, A. et al.,
Sensor networks for emergency response: challenges and opportunities,
IEEE Pervasive Comput., 3(4), 16–23, 2004 (special issue on pervasive
computing for first response).

[56] Lu, C., Blum, B.M., Abdelzaher, T.F., Stankovic, J.A., and He, T., Rap: a real-
time communication architecture for large-scale wireless sensor networks,
in Proc. of the 8th IEEE Real-Time and Embedded Technology and Applica-
tions Symp. (RTAS’02), San Jose, CA, September 24–27, 2002.

[57] Lu, C., Xing, G., Chipara, O.L., Fok, C.-L., and Bhattacharya, S., A spatiotem-
poral query service for mobile users in sensor networks, in Proc. of IEEE
Int. Conf. on Distributed Computing Systems (ICDCS’05), Columbus, OH,
June, 2005, pp. 381–390.

[58] Lu, S., Son, S., and Stankovic, J., Event detection services using data service
middleware in distributed sensor network, in Proc. of the Second Int. Conf.
on Information Processing in Sensor Networks (IPSN’03), Palo Alto, CA,
April 21–23, 2003.

[59] Madden, S., Franklin, M., Hellerstein, J., and Hong, W., The design of
an acquisitional query processor for sensor networks, in Proc. of ACM
SIGMOD Int. Conf. on Management of Data, San Diego, CA, June, 2003,
pp. 491–502.

[60] Mainland, G., Kang, L., Lahaie, S., Parkes, D., and Welsh, M., Using virtual
markets to program global behavior in sensor networks, in Proc. of the 11th
ACM SIGOPS European Workshop, Leuven, Belgium, September, 2004.

[61] Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., and Anderson, J.,
Wireless sensor networks for habitat monitoring, in Proc. of the 1st ACM
Workshop on Wireless Sensor Networks and Applications(WSNA’02), Atlanta,
GA, September, 2002.

[62] Moore, D., Leonard, J., Rus, D., and Teller, S., Robust distributed network
localization with noisy range measurements, in Proc. of the 2nd Int. Conf.
on Embedded Networked Sensor Systems (SenSys’04), Baltimore, MD, Novem-
ber 3–5, 2004.

AU3833_C45.fm Page 1251 Monday, August 21, 2006 10:21 AM

1252 ■ Mobile Middleware

[63] Murphy, A. and Heinzelman, W., MiLAN: Middleware Linking Applications
and Networks, Technical Report TR-795, University of Rochester, 2002.

[64] Murphy, A.L., Picco, G.P., and Roman, G.-C., Lime: a middleware for physical
and logical mobility, in Proc. of IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’01), Phoenix, AZ, April, 2001, pp. 524–533.

[65] Newton, R. and Welsh, M., Region streams: functional macroprogramming
for sensor networks, in Proc. of the 1st Int. Workshop on Data Management
for Sensor Networks (DMSN), Toronto, Canada, August 30, 2004.

[66] Perkins, C. and Royer, E., Ad hoc on-demand distance vector routing, in
Proc. of the Second IEEE Workshop on Mobile Computing Systems and Appli-
cations (WMCSA’99), New Orleans, LA, February 25–26, 1999, pp. 90–100.

[67] Priyantha, N., Chakraborty, A., and Balakrishnan, H., The cricket location-
support system, in Proc. of the 6th ACM/IEEE Int. Conf. on Mobile Computing
and Networking (MOBICOM’00), Boston, MA, August, 2000, pp. 32–43.

[68] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D. et al., GHT: a geographic
hash table for data-centric storage in sensornets, in Proc. of the 1st ACM
Workshop on Wireless Sensor Networks and Applications (WSNA’02), Atlanta,
GA, September, 2002.

[69] Shen, C.-C., Srisathapornphat, C., and Jaikaeo, C., Sensor information net-
working architecture and applications, IEEE Pers. Commun. Mag., 8(4),
52–59, 2001.

[70] Shneidman, J., Pietzuch, P., Ledlie, J., Roussopoulos, M., Seltzer, M., and
Welsh, M., Hourglass: An Infrastructure for Connecting Sensor Networks and
Applications, Technical Report TR-21-04, Harvard University, Boston, MA,
2004.

[71] Shrivastava, N., Buragohain, C., Agrawal, D., and Suri, S., Medians and
beyond: new aggregation techniques for sensor networks, in Proc. of the
2nd Int. Conf. on Embedded Networked Sensor Systems (SenSys’04), Balti-
more, MD, November 3–5, 2004, pp. 239–249.

[72] Simon, G., Maroti, M., and Ledeczi, A., Sensor network-based countersniper
system, in Proc. of the 2nd Int. Conf. on Embedded Networked Sensor Systems
(SenSys’04), Baltimore, MD, November 3–5, 2004.

[73] Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., and
Becker, D., Scalability and accuracy in a large-scale network emulator, in
Proc. of 5th Symp. on Operating Systems Design and Implementation
(OSDI’02), Boston, MA, December 9–11, 2002.

[74] Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., and Gill, C., Integrated
coverage and connectivity configuration in wireless sensor networks, in
Proc. of the First Int. Conf. on Embedded Networked Sensor Systems (Sen-
Sys’03), Los Angeles, CA, November 5–7, 2003, pp. 28–39.

[75] Welsh, M. and Mainland, G., Programming sensor networks using abstract
regions, in Proc. of the First USENIX/ACM Symp. on Networked Systems
Design and Implementation (NSDI 2004), San Francisco, CA, March 29–31,
2004.

AU3833_C45.fm Page 1252 Monday, August 21, 2006 10:21 AM

Application Development in Wireless Sensor Networks ■ 1253

[76] Whitehouse, K., Sharp, C., Brewer, E., and Culler, D., Hood: a neighborhood
abstraction for sensor networks, in Proc. of Second Int. Conf. on Mobile
Systems, Applications, and Services (MobiSys’04), Boston, MA, June, 2004,
pp. 99–110.

[77] Xu, N., Rangwala, S., Chintalapudi, K.K., Ganesan, D., Broad, A. et al., A
wireless sensor network for structural monitoring, in Proc. of the 2nd Int.
Conf. on Embedded Networked Sensor Systems (SenSys’04), Baltimore, MD,
November 3–5, 2004, pp. 13–24.

[78] Xu, Y., Heidemann, J., and Estrin, D., Geography-informed energy conser-
vation for ad hoc routing, in Proc. of the 7th ACM/IEEE Int. Conf. on Mobile
Computing and Networking (MOBICOM’01), Seattle, WA, August, 2001, pp.
70–84.

[79] Yao, Y. and Gehrke, J., The cougar approach to in-network query processing
in sensor networks, SIGMOD Rec., 31(2), 9–18, 2002.

AU3833_C45.fm Page 1253 Monday, August 21, 2006 10:21 AM

AU3833_C45.fm Page 1254 Monday, August 21, 2006 10:21 AM

1255

Chapter 46

Mobile Middleware for

Automotive Applications

Francesco Lilli

CONTENTS

Introduction ...1255
Description of an Automobile Architecture ...1257
Middleware Between On-Board Applications and the Vehicle............................1260
Middleware Between On-Board Applications and the Vehicle HMI...................1260
Middleware Between On-Board Applications and a Service Center...................1262
Middleware Between On-Board Applications and Location and Navigation1264
Middleware Between On-Board Applications
and Surrounding Infrastructure and Vehicles...1266
Acknowledgments...1267
References..1267

Introduction

Automotive telematics will be a challenge over the next 10 years. In the
1980s, automobile manufacturers and system suppliers initiated research
activities aimed at introducing information and communications systems
within vehicles. They began with autonomous systems such as car radios

AU3833_C46.fm Page 1255 Monday, August 21, 2006 10:49 AM

1256

■

Mobile Middleware

and navigation systems. The continuous growth and availability of inno-
vative technologies such as communication with short and long coverage
capabilities, localization systems, and human–machine interface devices
allowed improvement of the telematic platform. The integration of ICT
required a revision of the in-vehicle architecture to consolidate the tech-
nologies in a single open platform. The various systems must communicate
and exchange data with each other, and this is possible thanks to common
hardware and software platforms. The development of an in-vehicle
platform for components belonging to the car as well as for those installed
on the external infrastructure represents the killer topic that will propel
the penetration of telematics into the automotive market. This chapter is
focused on the contribution of mobile middleware to this goal.

The technological challenge requires consolidating the entire telematics
platform and services, as well as wide utilization of the platform, at least
at a continental level. Many potential services are based on having access
to external information, and the application of telematics technologies
within automotive and roadside infrastructures will guarantee the avail-
ability of such information. In this chapter, we focus on middleware
applicable to the automotive telematics platform, but particular attention
has to be focused on the relevance of the roadside infrastructure as well
as the service and content provider.

Such integration requires compatibility among the different components
of the platform but must also address the quality of services and security
of the exchanged data. This chapter discusses an appropriate middleware
for the in-vehicle architecture, as well as specific issues relevant to the
standards for each telematics technology (e.g., 802.11x standards).

It is not sufficient to address only the technologies, quality of services,
and security with regard to inclusion of the telematics concept within the
automobiles. Legal aspects should also be addressed, which means certi-
fication of software platforms and applications, especially as they affect
the safety of the driver and other vehicle occupants.

Today’s cars are obviously different from personal computers, work-
stations, or smart mobile phones. All of these devices have clearly defined
roles, local computational power, and a set of well-defined peripherals.
The car and its contents have radically changed in the last 20 years [1];
if we think about telematics devices in vehicles in the 1970s, we can recall
the car radio. At first, they were introduced as aftermarket (AM) products,
but then they quickly became original equipment manufacturing (OEM)
products. The high penetration of radios in the market and the consequent
reduction of costs allowed car manufacturers to include radios as a
component of their vehicles. Since then, newer telematics technologies
have contributed to shifting the attention of the engineers toward inno-
vative audio functions such as digital audio broadcasting (DAB) receivers

AU3833_C46.fm Page 1256 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1257

or multimedia media players (MP3). The same transition has occurred
with the introduction of car navigation systems, following the market
model adopted by the Japanese of anticipating OEM products with AM
ones.

Today, several computational devices are installed in vehicles, but they
have different functional aims, technologies, and system architectures.
Some of them (independent systems) perform their tasks with minimal
interaction with other systems, such as, for example, the automatic air-
conditioning system. Others operate in a strong cooperative mode but
within a closed group of devices; these vehicle-related systems include
the powertrain controller and the braking system. Yet others perform
functions not directly related to vehicle functionalities; these non-vehicle-
related systems include an integrated mobile phone. Finally, some systems
(dependent systems), such as the dashboard controller, are quite depen-
dent on all the other systems to perform their tasks.

To further illustrate the degree of automotive complexity, a standard
rule for integrating devices within the car does not exist, due to the fact
that the introduction of devices will depend on the vehicle model (low
versus high price), customer choice (standard or optional components),
and style (sport versus luxury cars). Sometimes some of the functions are
grouped within the same controller, but sometimes they are split among
more than one, so the scenario is constantly evolving with the introduction
of new functionalities and electronic units. We therefore decided to include
a section in this chapter that describes the architecture of a vehicle and
will provide the basis for our discussion in the rest of this chapter.

Description of an Automobile Architecture

What we really need here is a simplified vehicle, different from any existing
(or future) one but useful for defining the common terminology for in-
vehicle devices. Figure 46.1 shows the architecture of our simple vehicle.
Our car will have a certain number of vehicle-specific controllers that are
interconnected in some way with one or more vehicle networks, which
will be considered as a single entity. One of the devices in the car will
have the capability to remotely connect with the external world through
both a cellular phone system and some kind of short-range communica-
tions technology. Such functions can be performed by different devices
in a vehicle, but here we will imagine them grouped into a single device
we will call the

InfoTelematics Unit

 (ITU). For the sake of simplicity, we
will assume this unit has a direct connection with the entertainment and
the car navigation systems. Also, all interactions with the driver or pas-
senger (except those involving drive-related information such as vehicle

AU3833_C46.fm Page 1257 Monday, August 21, 2006 10:49 AM

1258

■

Mobile Middleware

speed or light lamp status) are provided by a central

human–machine
interface

(HMI) controller directly connected and controlled by the ITU.
Now we can examine the internal software architecture of our vehicle.

The ITU is the only place in which will reside the telematics applications
designed for mobile communications. This device and its peripherals are
integrated in a way that is transparent to the user. (Note that detailed
information about the software architecture for the next-generation
telematics platform of FIAT vehicles will be not explained here for obvious
reasons related to intellectual properties rights.) We can imagine that a
certain number of telematics building blocks, for the management of
internal and external telematics modules, are realized above a software
framework; these building block are enablers of the telematics services
and application.

In a real implementation, this kind of application can actually be hosted
in more than one device, integrated in the car and external to it. The link
between these devices can have different characteristics, such as being
wired or wireless and having specific peer-to-peer connections or standard
buses. Furthermore, as we will describe later on, localization and com-
munication systems or the HMI could also be characterized by external
devices [2]. As an example, the driver might wish to use a Bluetooth

®

global position system (GPS) device, a mobile phone, and a personal
digital assistant (PDA) plugged into the dashboard. Adding together all
these variables only increases the complexity of the system (and adds to
the confusion of the reader).

For such an ideal system, a similarly ideal (albeit simplified and
hypothetical) software architecture could be described by the diagram
shown in Figure 46.2. As the reader can see, the choice here was to hide
most of the complexity of the system; we have omitted all of the lower
levels of the protocols and all parts of the operating system. Throughout

Figure 46.1 In-vehicle architecture.

AU3833_C46.fm Page 1258 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1259

this chapter, we focus primarily on the middleware needs of applications,
digging into the lower levels only when a specific topic demands it. Refer
to Figure 46.2 throughout the rest of the chapter.

We begin our discussion about automotive middleware by addressing
aspects related to accessing vehicle data and operating some of the vehicle
devices. We then focus on access to the vehicle HMI, investigating the
management of providing information to the driver and its impacts on
safety. We also investigate how the intelligent agent technology can have
a positive impact on the driver’s cognitive load.

We then examine middleware for a service center by illustrating ongo-
ing activities directed toward telematics service access, taking into account
general-purpose services, location-based services, and traffic information
services. The management of telematics applications through the service
center helps to provide the appropriate level of quality of service and
security. Applications are downloaded from authorized service centers,
and the services are accessible by registered users. The quality of infor-
mation and the timing of their dispatching are controlled, especially for
audio and video multimedia applications, to minimize the allocation of
in-vehicle resources that are limited. A certain level of trust within the
telematics network is necessary to ensure the security of data exchanged
between the different architecture components and to authenticate com-
ponents within the network.

The automotive world is a dynamic network in which vehicles repre-
sent dynamic nodes. All aspects related to positioning and navigation,
such as location information and digital road map formatting and access-
ing, are covered on the section devoted to the middleware for location
and navigation. Finally, we provide a broad analysis of topics related to
short-range communication, the road infrastructure, and surrounding vehi-
cles, with an emphasis on driver assistance.

Figure 46.2 Middleware in the software in-vehicle architecture.

AU3833_C46.fm Page 1259 Monday, August 21, 2006 10:49 AM

1260

■

Mobile Middleware

Middleware Between On-Board
Applications and the Vehicle

The vehicle has evolved from primarily a mechanical device, with some
electrical support device such as a lamp or windshield wiper, to a complex
system integrating its mechanical parts with electronic devices able to
manage or to control them [3]. The evolution did not followed a straight
path. Electronics have been added whenever they allowed a task to
perform better, such as for electronic engine control, or could add new
functionalities, such as the antilock brake system (ABS). In some cases,
the addition of new electronics has been feasible only when the cost of
the device was lower than the equivalent mechanical or electrical solution,
as in the case of the dashboard controller. Initially, the electronics were
usually applied as single components, but it became apparent that better
results and new functions would be obtained by connecting together
different systems, such as the engine, gearbox, and brake controllers.

This led to the development of vehicle serial connections and networks,
based on proprietary solutions. Then, some standards began to be used [4].

Today, the most widely used vehicle serial connection is the

local inter-
connect network

 (LIN), and the most frequently used network is the

controller area network

(CAN), even when several different solutions (for
historical, performance, or economical reasons) are in use. CAN has gained
such wide application in cars that people consider it to be the

de facto

standard, but CAN specifies only the two lower layers of the ISO/OSI
stack: physical and link. We can assume that new car models have a
significant portion of their electronic devices connected to one of the
vehicle networks, which are interconnected by one or more gateways.

Several steps must be taken to allow our middleware to access the
vehicle data. If, in the future, car makers utilize a standard network (in
terms of a single physical network or a common communications protocol)
for connecting vehicle electronic devices, then mobile middleware could
be enabled by the car’s computer, which would manage the vehicle
devices and allow access to vehicle data. Various applications will be
enabled by knowledge of the vehicle data, such as, for example, preventive
diagnoses of the vehicle that could help the driver perform necessary
maintenance and avoid unexpected breakdowns.

Middleware Between On-Board
Applications and the Vehicle HMI

The growth of in-vehicle system complexity requires accurate studies for
the design and the development of a human–machine interface. A suitable
HMI, in fact, impacts the operation of different applications and can reduce

AU3833_C46.fm Page 1260 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1261

the workload of drivers, thus improving road safety [5]. The operation of
various applications could be made available to users through graphical
and acoustic devices, could be activated by traditional input devices, or
could be provided by the emerging voice recognition technologies. More-
over, dedicated mechanisms are required to manage modalities and pri-
orities for dispatching information; these strategies help the driver to use
the applications correctly and at the same time avoid confusion that could
jeopardize road safety.

The mobile middleware concept might be quite suitable for HMI
devices that are used as portable means for dispatching application
functionalities. Car makers are developing devices that are fully inte-
grated in the dashboard but which are also portable devices such as
PDAs or smart mobile phones (see Figure 46.3). The connection of
these devices with the in-vehicle platform requires the appropriate
middleware to set up and handle the communication link to enable the
collection of user data or to show graphical information. Some prelim-
inary products have been based on a wired connection, but some
exploitation of short-range communication technologies, such us WiFi
or Bluetooth

®

, is occurring. Broadband wireless technologies could
allow the transmission of a huge amount of data between the telematics
platform and multimedia devices. The possibility of using flexible solu-
tions for the HMI system architecture via portable devices and suitable

Figure 46.3 COMUNICAR European Project, an innovative HMI concept for
telematics services [6].

AU3833_C46.fm Page 1261 Monday, August 21, 2006 10:49 AM

1262

■

Mobile Middleware

mobile middleware offers users the ability to download multimedia
information about in-vehicle applications as well as general-purpose
functions (when not in the vehicle).

HMI mobile middleware is not simply focused on the management
of input and output devices (e.g., hardware and software connections
and information priorities); in fact, an emerging concept is the provision
of information based on the context and location awareness of users.
Behind this concept is intelligent agent technology that, with regard to
their application in the automotive sector, is able to run different telemat-
ics modules (e.g., localization system) and functions (e.g., traffic infor-
mation) on the basis of user preferences. The user could select application
preferences and at the same time choose the modalities for suitable
output; for example, the driver could ask an application to get information
about points of interest (POIs) during the drive and show them on the
digital road map used by the car navigation system. The context and
location are used by the in-vehicle system for automatically selecting user
preferences in terms of application content and modalities.

Middleware Between On-Board
Applications and a Service Center

An innovative concept for vehicles that has been developed over the last
several years by vehicle manufacturers is telematics. Within the automotive
sector, car manufacturers began to develop the telematics concept during
the 1990s in response to the emerging wireless communication technol-
ogies and satellite localization systems. The idea was to integrate within
the vehicle a telematics platform able to connect the car with the external
world. Early work was concerned with communication between the vehi-
cle and a roadside infrastructure through radiofrequency (RF) technology
(Figure 46.4); this approach represented a first tentative step toward the
so-called vehicle-to-infrastructure cooperative system.

With the introduction of the Global System for Mobile Communications
(GSM) and the growing penetration of the U.S. military satellite GPS in
the civilian world, car manufacturers and their research and development
centers began to address carrying the telematics concept a step further
by connecting vehicles with operations centers to exchange voice and
data. Such services (e.g., traffic information, emergency calls, anti-theft
alarms) have been studied by specific consortia (e.g., GATS, WAP) and
launched on the market by car manufacturers or service providers (e.g.,
Webraska, TrafficMaster, Tegaron) in the last several years.

Most in-vehicle autonomous applications have benefited from the
telematics platform; for example, in-car navigation systems were launched

AU3833_C46.fm Page 1262 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1263

in the 1980s as stand-alone systems offering suggestions for reaching
destinations based on static optimized routes. Since then, the availability
of traffic information via a telematics platform (e.g., radio tuners that receive
RDS–TMC broadcast information from radio operators) has improved the
navigation function, because routes can be dynamically updated according
to reported traffic congestion.

In-vehicle applications, then, have been improved thanks to their
connection with a service center, and several telematics services have
been established based on the navigation platform, where information
coming from the service center is matched with the vehicle location or
directly filtered in the service center to establish so-called location-based
service (LBS). In addition to this beneficial concept, other services have
been studied and developed for the mobility sector. The availability of
information coming from a private or public fleet equipped with a telemat-
ics platform has been leveraged, for example, to identify traffic congestion
in urban areas (floating car data concept) and to monitor the quality of
freight transport service (freight fleet management).

From a technological point of view, middleware providing the con-
nection to the service center has been designed to manage a single
communication device used in different modalities; for example, telematics
services based on the GSM technology take advantage of its short message
service (SMS), data, and voice capabilities. Over the past several years,
the trend for telematics platforms is to be open and expandable for

Figure 46.4 Communication technologies for telematics services.

AU3833_C46.fm Page 1263 Monday, August 21, 2006 10:49 AM

1264

■

Mobile Middleware

integrating different wireless communication technologies, so middleware
designed to access the service center must be designed to manage different
communications devices, as well as the different modalities for using each
of those.

Middleware Between On-Board
Applications and Location and Navigation

On-board navigation was a killer application for the automotive sector
in the 1990s. Navigation applications [8] have been able to penetrate
the automotive market because of the availability of a worldwide
technology that provides the absolute position of a vehicle everywhere
and any time, such as the U.S. GPS system and the future European
Global Navigation Satellite System (GNSS) (EGNOS and GALILEO) [7],
as well as the fact that most of the major digital map companies (Navteq
and TeleAtlas) have invested in the production of a road database.

Although telematics services have contributed to development of the
navigation application itself, the navigation system has become a build-
ing block of the in-vehicle telematics platform. The navigation applica-
tion has become an off-board navigation service that decentralizes some
components of the system in the service center. The fundamental blocks
are still in the vehicle, such as the vehicle positioning and route guidance
tools, but the digital maps database and the route calculation tools have
been moved from the service center. The result is an in-vehicle navi-
gation unit that allows the utilization of updated digital maps and
dynamic routes, including traffic information. With regard to road trans-
port and safety, the navigation system has become integral to the in-
vehicle platform for location-based services as well as for advanced
driver assistance systems (ADAS) that provide location data, as well as
information about the surrounding area.

One of the first prototypes of such a platform was developed as part
of the GALLANT European project in which a traditional ADAS applica-
tion — cruise control — was integrated with the EGNOS system [9] (see
Figure 46.5). The middleware for the on-board application, which
provides functions to the driver and information to the service center,
accommodates the navigation system and location receiver. Behind the
navigation system, relevant component hardware and software charac-
terize the platform; in particular, from the hardware point of view, the
most relevant of these are the digital road map database, supported by
the physical storage format (PSF), and the human–machine interface
(HMI). Digital mapping is not foreseen as being a feature of off-board

AU3833_C46.fm Page 1264 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1265

navigation, as the HMI can show only the textual and graphical infor-
mation downloaded by the service center. At the software level, the
building blocks characterizing the navigation application are the vehicle
position, map matching, route calculation, and route guidance. For off-
board navigation, map matching is performed on the route that is
downloaded from the service center, and route calculation is completely
handled by the service center. In this case, the route could be updated
dynamically taking into account traffic information that might be avail-
able. The location receiver could be a stand-alone device designed to
work with those LBSs that do not any information other than the position
itself (e.g., a point of interest on a digital road map). Obviously, the
navigation system is an in-vehicle application that uses the location
receiver to determine the vehicle position.

Figure 46.5

GALLANT European Project: integration of ADAS and GNSS systems.

AU3833_C46.fm Page 1265 Monday, August 21, 2006 10:49 AM

1266

■

Mobile Middleware

Middleware Between On-Board Applications
and Surrounding Infrastructure and Vehicles

We will now take a look at the possibilities, as well as the issues and
concerns, raised by the availability of short-range communication links with
surrounding infrastructures and vehicles [10]. The range of applications is
indeed quite wide, covering such aspects as local-area communication links
between vehicle occupants and virtual Tamagotchis living in the car multi-
media system and exchanged with (or stolen by) nearby vehicles. Rather
than trying to cover all the possibilities, we focus here on a particularly
challenging and interesting one: the functions that support ADAS.

Advanced driver assistance systems commonly include several kinds
of functions that support the driver while driving. The most well-known
ADAS function is adaptive cruise control (ACC). The ACC function is
viewed by the driver as a normal cruise control that maintains the car at
a certain speed without user intervention. A big advantage offered by the
ACC is that, by utilizing a frontal radar (or laser), the system is able to
vary the speed of the vehicle according to the speed of the vehicles in
front of it.

Several other functions have been developed or investigated to support
the driver. Some examples are the lane departure warning system, which
alerts drivers when they deviate from their lane; a curve and speed limit
information system to alert drivers to the maximum allowable speed for
the road; a lane-keeping assistant that helps the driver, through an active
intervention on the steering wheel, to follow the correct path in the lane;
an obstacle and collision warning system, which warns drivers of sudden,
unseen obstacles; and various kinds of intersection support to aid in the
perception of infrastructures (signs and lamp) and the behavior of sur-
rounding vehicles. A complete analysis and description of the ADAS
functions was developed by the ADASE project. The interested reader will
find a longer list of ADAS functions with descriptions and further details
in Reference 11.

From a functional viewpoint, ADAS applications can be classified into
two main types: one that uses visual, acoustic, and haptic feedback to
help drivers make correct choices and another that actively substitutes for
the driver. The active function can act on longitudinal control, lateral
control, or both of them. Another important classification of ADAS func-
tions depends on the application; most of the ADAS functions simply
support drivers and reduce their workload, but others have been devel-
oped to take over in emergency situations to the extent necessary. The
communications channel requirements for ADAS systems are extremely
challenging, resulting in much research into middleware devoted to this
kind of service.

AU3833_C46.fm Page 1266 Monday, August 21, 2006 10:49 AM

Mobile Middleware for Automotive Applications

■

1267

Not all of the ADAS functions have to be based on some kind of
wireless short-range connection, but in the vast majority of them the
information coming from the other vehicles or from the roadside infra-
structure and vulnerable users could represent an added value; the wireless
link is precious for bringing the knowledge available from these other
sensors [12]. For some applications, such as revealing the presence of a
vehicle just beyond a curve in the road or vulnerable pedestrians crossing
the road, the communication link will represent the core technology of
the system (Figure 46.6).

Acknowledgments

I particularly thank my colleague Walter Savio for his valuable contribution
to the production of this chapter. Acknowledgments are also addressed
to the ElectroTelematics Systems team of Centro Ricerche FIAT, which
over the years has developed the telematics mentioned in this chapter.

References

[1] RocSearch, London (telematics and automotive communications), http://roc-
search.ecnext.com/.

[2] SRI Consulting Business Intelligence,

Portable Intelligence: 2004 a Year of
Growth for Location Technology Applications in PI Devices

 (http://www.sric-
bi.com/Explorer/PI-archive.shtml).

[3] AUTOSAR, http://www.autosar.org.
[4] Society of Automotive Engineers (SAE), www.sae.org.
[5] PTV Traffic Mobility Logistics,

The Technology and Trends in Automotive
HMI Design

 (http://www.english.ptv.de/cgi-bin/mobility/mob_report.pl).

Figure 46.6 Communication technologies for ADAS application.

AU3833_C46.fm Page 1267 Monday, August 21, 2006 10:49 AM

1268

■

Mobile Middleware

[6] COMUNICAR European Project, http://www.comunicar-eu.org.
[7] European Space Agency (ESA), www.esa.int/esaNA/index.html.
[8] Research and Markets,

European Telematics: Market Trends and Analysis
of Embedded and Portable Navigation Systems

, 2005 (http://www.research-
andmarkets.com/reports/c18210).

[9] GALLANT (GALileo for safety of Life Application of driver assistaNce in road
Transport) European Project, http://ec.europa.eu/dgs/energy_transport/gali-
leo/applications/pilotprojects_en.htm.

[10] Car-to-Car Communication Consortium (C2C CC), http://www.car-to-car.org.
[11] ADASE European Project, www.adase2.net.
[12] Networking the world with sensors,

MIT Technology Insider

, January, 2004
(http://burgaz.mit.edu/OURPRESS/ARTICLES/Jan2004-ILPInsider.pdf).

AU3833_C46.fm Page 1268 Monday, August 21, 2006 10:49 AM

1269

Chapter 47

A QoS Framework
for Multimedia
Communication for
Wireless Mobile

Ad Hoc

Defense Networks

Raymond Paul, Waseem Sheikh,
Basit Shafiq, and Arif Ghafoor

CONTENTS

Introduction... 1270
Challenges Involved in Supporting Multimedia
Applications in Mobile

Ad Hoc

 Defense Networks... 1273
Multimedia Document Model .. 1274
User Mobility Management .. 1277

Proposed Approaches for QoS Routing and
Synchronization of Multimedia Data over MHVCs .. 1279

QoS Routing Protocol... 1279
QoSR Protocol Description .. 1280

AU3833_C47.fm Page 1269 Monday, August 21, 2006 11:16 AM

1270

■

Mobile Middleware

Route Discovery and Establishment .. 1280
Route Maintenance Phase... 1284

Scheduling of Multimedia Documents Over MHVCs .. 1284
Conclusion... 1287
References ... 1288

Introduction

According to U.S. Army’s Future Combat System (FCS) initiative, the future
battle force will consist of a large number of mobile sensing systems,
unmanned air vehicles (UAVs), unmanned ground vehicles (UGVs), manned
helicopters, manned combat vehicles, and several dismounted infantry units,
all communicating through a wireless communication network [2]. A typical
battlefield scenario and the different components of a battlefield telecom-
munication system are depicted in Figure 47.1. These components of a
battlefield telecommunication system should be able to support command,
control, communications, computer, intelligence, surveillance, and recon-
naissance (C4ISR) capabilities.

Future defense communications networks will be composed of myriad
heterogeneous networks and require the deployment of forces over a
wide geographic region where a fixed infrastructure is not available. The
support of mission-critical applications in such a scenario requires the
defense network to rely heavily on a wireless mobile

ad hoc

 network; a
typical network of this kind is depicted in Figure 47.1. These networks
provide a challenging environment for the transmission of quality of
service (QoS)-guaranteed, mission-critical, multimedia, tactical data. In a
wireless

ad hoc

network, all of the nodes are mobile and the network
topology changes with time [3]. No fixed infrastructure exists, unlike a
cellular network. Multiple access techniques such as code-division multiple
access (CDMA), frequency-division multiple access (FDMA), or time-divi-
sion multiple access (TDMA) may be used to provide multiple wireless
channels. The internode communication occurs over wireless links and is
multihop. The bandwidth of a particular link varies over time, and error
rates are very high. The network should be able to support datagram as
well as multimedia traffic. Under such an environment, delivery of QoS-
guaranteed, multimedia data becomes an extremely difficult task. In this
chapter, we address the problem of transmitting QoS-guaranteed, pre-
orchestrated, multimedia data in a wireless mobile

ad hoc

 network. The
multimedia data that we consider may consist of videos or images captured
by UAVs, images and videos captured by UGVs, or target-tracking data
accumulated by various sensors over the course of time.

Consider a battlefield scenario in which the soldiers, armored vehicles,
and aircraft maintain contact with one another via radio links using

ad

AU3833_C47.fm Page 1270 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile

Ad Hoc

 Defense Networks

■

1271

hoc

 networks. Some of the personnel may be able to maintain contact
with mobile nodes that act as mobile database servers, but others may
have to move out of the range of the servers when they enter the
battlefield. Transmission of video and audio among the different units of
command and control is critical for the success of any military operation,
as is the delivery of stored aerial images and video of enemy positions
from mobile database servers, which may be installed on UAVs or armored
vehicles, to forward-deployed forces. An example of such a network is
the Joint Network Node (JNN) built by General Dynamics [1]. Another
example of such a network is the Joint Battlespace Infosphere (JBI), which
is a system that integrates, aggregates, and distributes information to users
at all echelons, from the command center to the battlefield. One of the
goals of JBI is to deliver the right information to the right user at the right
time in the right format.

Figure 47.1 shows a wireless mobile

ad hoc

 network in a battlefield
scenario that has several multimedia database servers mounted on tanks
and armored vehicles, a population of mobile soldiers and armored
vehicles, aircraft, and a satellite connection to a command-and-control
center located in a land-based network. The goal of such a network is to
provide C4ISR capabilities.

Figure 47.1 Components of the future battlefield communication network.

AU3833_C47.fm Page 1271 Monday, August 21, 2006 11:16 AM

1272

■

Mobile Middleware

Multimedia applications in general are not monolithic in nature and can
consist of several objects integrated together, such as video clips, images,
text, and audio segments. A multimedia application consisting of multiple
objects can be represented as a multimedia document maintained by data-
base servers [4]. An example of a multimedia document is an MPEG-4-based
application. MPEG-4 encompasses all types of media and uses scene and
object descriptors (SDs and ODs) to define the spatiotemporal features of
the component media object. Figure 47.2 shows a collection of multimedia
documents of a geographical information system (GIS) map organized for
a Web-based browsing environment. Typically, such an environment con-
sists of a collection of documents or SDs for MPEG4-based applications,
integrated to allow random browsing by mobile users.

To deliver multimedia data and knowledge for C4ISR-based, mission-
critical information with the desired presentation quality, virtual channels
are established between the multimedia server and end terminal. In a
wireless

ad hoc

 defense network, a single virtual channel may not have
sufficient bandwidth capacity to satisfy the desired bandwidth requirement
of a given multimedia session. In such a case, multiple virtual channels
can be used for multimedia data transmission. These virtual channels may
differ in their bandwidth capacity, end-to-end delays, and path lifetime.
The path lifetime of a virtual channel is the duration for which the channel
can provide a communication link between the multimedia server and
the mobile user. Due to the diverse characteristics of virtual channels,
delivery of QoS-guaranteed, multimedia data over multiple heterogeneous
virtual channels (MHVCs) in a mobile

ad hoc

 defense network poses
additional networking challenges.

Figure 47.2

Browsing graph of a multimedia document of geographical informa-
tion system (GIS) map.

AU3833_C47.fm Page 1272 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile

Ad Hoc

 Defense Networks

■

1273

In this chapter, we propose a QoS framework for supporting multime-
dia traffic in a mobile

ad hoc

 defense network. Such a framework can be
deployed for battlefield management and supporting mission-critical appli-
cations over a large geographical area. The QoS parameters such as
bandwidth and end-to-end delay can be derived from multimedia docu-
ment schema stored at multimedia database servers, as shown in Figure
47.1. Our proposed QoS Routing (QoSR) protocol, with the help of
mobility management, establishes and maintains multiple heterogeneous
virtual channel in an

ad hoc

 defense network infrastructure similar to that
shown in Figure 47.1. In addition, we present a scheduling scheme for
transmitting multiple data streams over established MHVCs in an efficient
and timely manner.

Challenges Involved in Supporting Multimedia
Applications in Mobile

Ad Hoc

 Defense Networks

Transmission of QoS-guaranteed, multimedia data in a wireless

ad hoc

defense network involves numerous challenges; in this chapter, we con-
sider and propose solutions using our QoSR protocol for mobility man-
agement and the scheduling of multimedia data over MHVCs. A flat
network architecture as shown in Figure 47.1 is well suited for our QoSR
scheme, as MHVCs may exist between source and destination nodes. This
architecture does not subdivide the overall network. Routing in a flat
architecture may be easier to accomplish but such an architecture has
certain limitations with regard to its scalability. In a hierarchical architec-
ture, nodes are partitioned into different clusters, and a hierarchical
network has the advantages of spatial reuse of shared channels, minimal
amount of control information exchanged to maintain routing information,
power control, and mobility management [5]. Routing, however, is sub-
optimal in a hierarchical network because of the limited number of routes
between source and destination nodes.

A major challenge for multimedia services in a mobile

ad hoc

 defense
network is the characterization of the bandwidth requirements of multi-
media documents. Different objects such as video clips, text, and images
in a multimedia document can have different bandwidth requirements.
Depending on the concurrency level of objects, the quality parameters
associated with individual multimedia objects, and the presentation dura-
tion of these objects, the overall bandwidth profile of a multimedia
document may change considerably over a period of time. Accordingly,
the network resource requirements also vary. To provide quality-based
multimedia services, the underlying network must accommodate such
changes by allocating bandwidth resources in an efficient and timely

AU3833_C47.fm Page 1273 Monday, August 21, 2006 11:16 AM

1274

■

Mobile Middleware

manner. Prestored data provides considerable flexibility in allocating
resources for managing multimedia traffic. By identifying the temporal
characteristics and the required presentation quality of the multimedia
information being accessed by users, the overall resources required can
be determined in advance.

Another important issue to be considered in ensuring seamless trans-
mission of multimedia data is the breakdown of already established MHVCs
as a result of user’s mobility. Typically, the lifetime of a multimedia session
can be greater than the lifetime of MHVCs. In this case, the mobility
management scheme should be able to predict the lifetime of MHVCs,
and the QoSR protocol should find new MHVCs before the expiry of old
ones to ensure QoS guaranteed transmission.

In addition to addressing the above-mentioned challenges, we also
present a solution for the scheduling of multiple data streams belonging
to a multimedia document over MHVCs [9]. During the transmission of
video and audio data streams, network delays must be bounded to
maintain inter-stream and intra-stream temporal synchronization. Inter-
stream synchronization deals with the synchronized playback of related
streams, whereas intra-stream synchronization is required for the contin-
uous jitter-free presentation of each stream. The scheduling scheme dis-
cussed in this article helps to achieve these objectives.

Past research in

ad hoc

 networks has focused on efficient routing for
data traffic, particularly on finding the minimum hop path from source
to destination; however, not much work has been done on the transmis-
sion of multimedia data in mobile

ad hoc

 networks. Alwan et al. [6] have
considered the problem of delivery of real-time multimedia traffic in an

ad hoc

 network, but they have addressed this problem in a clustered
architecture. Resource management for multimedia data in a fixed cellular
wireless network is considered in Shafiq et al. [7], and the problem of
network resource management for land-based networks is addressed in
Baqai et al. [8]. Scheduling the transmission of multimedia streams over
MHVCs is presented in Woo et al. [10], but their work deals only with
land-based networks. Not much research has been done on the problem
of scheduling multimedia data streams over MHVCs in an

ad hoc

 network
environment.

Multimedia Document Model

In this section, we present a multimedia document model for documents
stored in database servers, including Internet-based Web servers. This
model helps reserve network resources in advance and provides better
control for synchronization purpose. Traffic patterns generated by pre-

AU3833_C47.fm Page 1274 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile

Ad Hoc

 Defense Networks

■

1275

orchestrated multimedia data are different from the traffic variations exhib-
ited by a monolithic multimedia object such as a variable bit rate (VBR)
video stream. In the latter case, the bandwidth variations are due to
interframe compression. Data streams generated by a multimedia docu-
ment server, on the other hand, can have drastic bandwidth variations
due to the presence of multiple objects as well as the random retrieval
of documents by a user, as illustrated in Figure 47.2. Document-level
variations result from the changing levels of concurrency and character-
istics of the component objects within the multimedia document. Figure
47.3b illustrates the bandwidth profile of a multimedia document.

Effective capacity approximation can be used to estimate the bandwidth
profile at the object level. Because objects within a multimedia document
can generate diverse traffic patterns, such an approximation cannot fully
characterize document-level variations. In addition, bandwidth variations
at the browsing level are the most difficult to characterize, as these
variations are dependent on the random browsing activity of the user. In
summary, the random nature of the browsing process, the changing levels
of concurrency, and the quality and time attributes of component objects
within a multimedia document result in a statistically varying workload.

Various document specification models, such as eXtensible Markup
Language (XML) and graphical models [4], have been proposed in the
literature for specifying temporal, synchronization, and quality parameters
for all objects in a document. One such emerging model for multimedia
documents is the Synchronized Multimedia Integration Language (SMIL).
SMIL is a collection of XML elements and attributes that can be used to
describe the temporal and spatial coordinates of multimedia objects in a
multimedia document. SMIL belongs to the family of XML-related standards
and is used to create multimedia documents. The various features of SMIL
consist of media content, layout, timing, linking, and adaptivity. The most
important among these is the timing feature that is used to describe the
temporal behavior of a multimedia document. A SMIL presentation uses
three basic timing containers to model temporal constraints among various
media objects: sequential, parallel, and exclusive. SMIL provides a logical
timing framework in which the structured relationship of media objects
can be used to define the timing relationships among objects. As a result,
in a SMIL presentation the structured composition of media objects deter-
mines the timeline. In addition, SMIL provides a set of attributes to control
the timing of media objects. These attributes are timing control, extended
activation, object persistence, repeating control, synchronization, and XML
timing integration [20].

 Another multimedia document specification model is the Object Com-
position Petri-Net (OCPN) [4]. Figure 47.3a shows the OCPN specification
for a multimedia document consisting of multiple objects and their temporal

AU3833_C47.fm Page 1275 Monday, August 21, 2006 11:16 AM

1276

■

Mobile Middleware

synchronization and presentation requirements. In addition, the model
allows specification of quality-of-presentation (QoP) attributes specific to
a particular object, as shown in Figure 47.3a. The QoP attributes may
include resolution, frame rate, reliability, and synchronization requirements.
The reliability requirement specifies the maximum percentage of multime-
dia document that can be dropped if the allocated link capacity is limited.

Figure 47.3

(a) OCPN of a multimedia document, and (b) bandwidth profile of
a multimedia document.

AU3833_C47.fm Page 1276 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile

Ad Hoc

 Defense Networks

■

1277

Synchronization is required for isochronous objects, such as audio and
video, to have meaningful presentation.

Given a document specification model, the bandwidth requirement of
the component objects can be extracted by either using some effective
bandwidth approximation method or specifying the peak or average
bandwidth requirements [8]. The bandwidth profile shown in Figure 47.3b
can be stored with the document when it is created [4] and can be provided
to each node in the wireless network at the time of connection establish-
ment. Because the presentation schedule is available

a priori

, the wireless
network can efficiently allocate resources in advance by evaluating the
bandwidth profile in a manner that maintains the desired QoP within
acceptable bounds.

The multimedia objects must be further decomposed into smaller units
for synchronization purposes. This decomposition into finer granularity
results in better control of the transmission and playout of isochronous
data such as video and audio. These fine-grained data units are called

synchronization interval units

 (SIUs) [9]. The transmission of an object is
basically the transmission of a stream of SIUs. The playout duration of an
SIU is referred to as the

synchronization interval

. This is the atomic unit
for the presentation process, and it depends on the type of object to
which such an SIU belongs; for example, an audio object can be decom-
posed into SIUs where each SIU may consist of an audio sample.

The media type and QoS requirements of an SIU are the same as those
of the multimedia object from which it is derived. The QoS requirements
may include bandwidth and bounds on end-to-end delays and jitter for
the object. From the QoS parameters, a bound on end-to-end transit delay
that includes both propagation delay and jitter can be derived for each
SIU. Similarly, the size of SIUs for uncompressed data can be found from
the overall size of the object, its duration, and the length of the synchro-
nization interval. For compressed data, we assume that information regard-
ing the size of SIUs is stored with the data.

User Mobility Management

In a wireless

ad hoc

 defense network, the path between source and
destination nodes changes with the movement of the nodes. In such an
environment, traditional QoS routing protocols cannot function properly
because the established virtual channels may not be available for the
entire duration of the multimedia session. To ensure continuous delivery
of multimedia data to mobile users regardless of their mobility patterns,
the expiry time of a particular route has to be predicted so new routes
can be established before the old routes expire. Several schemes have
been proposed to predict the mobility pattern of a user [13].

AU3833_C47.fm Page 1277 Monday, August 21, 2006 11:16 AM

1278

■

Mobile Middleware

Due to the rapidly changing network topology in a mobile

ad hoc

 defense
network, link information has to be updated regularly to guarantee uninter-
rupted data delivery. By predicting the lifetime (the time duration for which
the two nodes remain connected) of a link, alternative routes can be
established well in advance between source and destination nodes to avoid
any disruption in the connection. If the motion parameters (e.g., speed,
direction, radio propagation range) of two neighboring nodes are known,
we can determine the lifetime of the link between the two nodes [13]. We
assume that all nodes are global position system (GPS) equipped and,
hence, these parameters are known. Suppose two nodes

i

 and

j

 are within
transmission range

r

 of each other, with their coordinates given as (

x

i

,

y

i

)
and (

x

j

,

y

j

). Let

ν

i

 and

ν

j

 be the speed and

θ

i

 and

θ

j

 (0

≤

θ

i

,

θ

j

≤

 2

π

) be
the moving directions of nodes

i

 and

j

, respectively. Then, the

link lifetime

(LLT) can be predicted as follows [13].

(47.1)

where

a

 =

ν

i

cos

θ

i

 –

ν

j

cos

θ

j

;

b

 =

xi – xj; c = νisinθi – νjsinθj; and d = νi –
νj . Note that when νi = νj and θi = θj, LLT becomes ∞.

The lifetime of a route (RLT) is the minimum LLT over all the links
along the route. A route selection example is shown in Figure 47.4. Two
routes are available from the source node (node 1) to the destination

Figure 47.4 Route selection based on the values of LLT.

LLT =
− + + +() − −

+

() ()ab cd a c r ad bc

a c

2 2 2 2

2 2

AU3833_C47.fm Page 1278 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1279

node (node 8). Route A consists of nodes 1–2–9–10–11–7–8, and route B
goes along the nodes 1–2–3–4–6–7–8. The LLT values are shown in Table
47.1. The lifetime of route A is 2(min(2,5,3,4,8,2)), and that of route B is
1(min(2,1,3,7,6,2)).

Proposed Approaches for QoS Routing and
Synchronization of Multimedia Data over MHVCs
In the following, we describe the QoS routing protocol and the scheduling
scheme for transmitting multimedia data streams over MHVCs.

QoS Routing Protocol

Various routing protocols have been proposed for mobile ad hoc
networks [14]. Most of these protocols minimize only the hop distance
metric and do not support QoS. For multimedia traffic, the underlying
network protocol has to take into consideration the QoS characteristics
of different paths between source and destination nodes [12]. In this
section, we propose a QoSR protocol based on mobility prediction.

Most of the existing ad hoc network routing protocols can be broadly
classified into two categories: proactive and reactive protocols. The
former are table-driven routing protocols that maintain consistent up-to-
date routing information from each mobile node to every other mobile
node in the network. Examples of proactive protocols include Destina-
tion Sequenced Distance Vector (DSDV) routing, Clusterhead Gateway
Switch Routing (CGSR), and Wireless Routing Protocol (WRP) [14]. Reac-
tive protocols are source-initiated, on-demand protocols that create a
route only when desired by the source mobile node. Examples of reactive
protocols include Ad Hoc On-Demand Distance Vector (AODV) routing,
Dynamic Source Routing (DSR), Temporally Ordered Routing Algorithm
(TORA), Associativity-Based Routing (ABR), and Signal Stability Routing
(SSR) [14].

Table 47.1 Route Lifetime (RLT) Values of Routes A and B

A B

Path 1–2–9–10–11–7–8 1–2–3–4–6–7–8
Link lifetime 2 1

AU3833_C47.fm Page 1279 Monday, August 21, 2006 11:16 AM

1280 ■ Mobile Middleware

The choice between proactive and reactive protocols involves a tradeoff
between latency of route discovery and route discovery/maintenance
overhead. Proactive protocols have a lower latency of route discovery
because routes are maintained at all times; however, these protocols have
high routing overhead. In a mobile ad hoc defense network, resources
such as bandwidth, battery power, and buffer size are limited; therefore,
proactive protocols are not well suited for this scenario [15]. Reactive
protocols may have a higher latency of route discovery because a route
from source to destination will be found only when a source node attempts
to send data to the destination node. These protocols have generally lower
routing overhead than proactive protocols. Which approach achieves a
better tradeoff depends on the traffic characteristics, mobility patterns, and
applications. Because, in this chapter, we are considering the transmission
of pre-orchestrated multimedia data, the initial session setup delay could
be tolerated by delaying the playout time at the destination; however, in
the case of applications such as video conferencing involving VBR video
stream, the initial setup delay becomes a critical issue.

QoSR Protocol Description

As mentioned earlier, QoS requirements (bandwidth and delay) are specified
by the OCPN parameters of the multimedia document. These requirements
must be satisfied during data transmission to ensure QoS-guaranteed trans-
mission. The proposed QoSR protocol takes this information into consider-
ation and proceeds in two phases: route discovery and establishment and
route maintenance. Figure 47.5 is a flow diagram of the QoSR protocol for
the establishment of MHVCs in a multimedia ad hoc defense network. This
is a distributed protocol, as its various blocks are executed by different nodes.

Route Discovery and Establishment

When a mobile user requests a document, the database server initiates a
route discovery process to determine potential paths to the requesting
node. It broadcasts a route request packet (RREQ) to its neighbors, which
then forward the request to their neighbors, and so on, until the RREQ
packets reach the destination node. Each RREQ packet carries detailed
information, including the location of server and client nodes, the QoS
information of the document to be transmitted, and some mobility esti-
mates. In particular, the packet has the following fields:

■ SEQ_ID, the sequence number of the RREQ packet
■ Route_record, the IDs of all the nodes over which the packet

has traversed

AU3833_C47.fm Page 1280 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1281

■ (xi, yi), the current coordinates of the node sending the RREQ
packet

■ θI, the direction of motion of the node with respect to some
reference direction

■ vi, the velocity of the node
■ SRC_ID, the source node’s ID

Figure 47.5 Flow diagram of QoSR protocol for (a) source node, (b) destination
node, and (c) intermediate node.

AU3833_C47.fm Page 1281 Monday, August 21, 2006 11:16 AM

1282 ■ Mobile Middleware

■ DEST_ID, the destination node’s ID
■ OCPN, which contains the QoS requirements of the multimedia

document which include bandwidth and delay information
■ node_info, which includes related information for the node (e.g.,

link delay, available link bandwidth)

Each node receiving the RREQ packet adds its own ID to the
Route_record of the packet and then forwards the packet along its
outgoing links. To limit the number of RREQs propagated on the
outgoing links of a node, a mobile node forwards the RREQ packet
only if the request has not yet been seen by the node and if the mobile’s
address does not already appear in the route record. When an inter-
mediate node (a node that is neither source nor destination node)
receives the RREQ packet, it performs the following procedure. If the
link between the transmitting and receiving nodes cannot satisfy the
QoS requirements specified by OCPN parameters, then the RREQ packet
is discarded; however, if the link can satisfy these requirements and
the receiving node is not the destination node, then the RREQ packet
is forwarded to all of its neighbors. This forwarded packet will have
its Route_record, xi, yi, νi, θi, OCPN, and node_info fields updated.
The RREQ packet is forwarded in the above manner until it reaches
the destination node. Every node along the path from source to desti-
nation calculates the link lifetime (LLT) and the link delay and appends
it to the RREQ packet. The destination node, on receiving the RREQ
packet, finds the route lifetime (RLT), which is the minimum of all of
the LLTs along the path, and the total delay of the route.

Each RREQ packet that reaches the destination has a route record
consisting of the sequence of hops taken by it to reach the destination.
A destination node may receive multiple copies of a RREQ packet having
different Route_record entries corresponding to multiple routes
between source and destination. The destination node selects MHVCs that
satisfy the required bandwidth and delay information from the set of all
discovered MHVCs. Destination sequence numbers may be employed to
ensure all routes are loop free and contain the most recent route infor-
mation. Figure 47.6a shows a typical scenario of the propagation of RREQ
packets through a network.

When the destination node receives the RREQ packet, it reverses the
Route_record field contained in the RREQ packet and places it into
the route reservation (RREV) packet. Because we assume that all links are
bidirectional, then by reversing the Route_record field we can obtain
the path from the destination to the source node. Figure 47.6b shows the
transmission of the RREV packet. The RREV packet reserves resources on
each node along the path. When the source node receives the RREV

AU3833_C47.fm Page 1282 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1283

packet, then resources are reserved along the established paths that satisfy
the QoS requirements. MHVCs may be established as a result of the above-
mentioned procedure. When the RLTs of all of the available paths are
known, the scheduler schedules multimedia streams over the established
MHVCs.

We assume that every node along the path established maintains a
dynamic routing table that contains information for the next hop node
for the destination. When the RREV packet backtracks on the established
path, it sets the next hop node for every node along its path accordingly.
This way we avoid the excessive overhead of appending the route to
every data packet that we send. The LLT and RLTs can also be updated
periodically during the flow of data packets, and new route discovery can
be initiated if a route is near expiration.

Figure 47.6 (a) Propagation of RREQ packet along with the Route_record
during the route discovery phase, and (b) propagation of a RREV packet with the
Route_record along two MVCs.

AU3833_C47.fm Page 1283 Monday, August 21, 2006 11:16 AM

1284 ■ Mobile Middleware

The aforementioned scheme does have some drawbacks. First, the
packet header size grows with route length due to source routing; how-
ever, we only use packet header during the route discovery and estab-
lishment phase. Second, the flood of RREQs may reach all nodes in the
network, but the scope of the route request flood can be reduced by
using schemes such as location-aided routing (LAR) [16] and query local-
ization [17]. Third, collisions may occur between route requests propagated
between neighboring nodes, but this problem can be resolved by inserting
random delays between the forwarding of RREQ packets.

When the route has been established and resources have been
reserved, data packets are forwarded using routing tables at each node
along the path established using the next hop information for a particular
destination. The second phase of the QoSR protocol consists of route
maintenance.

Route Maintenance Phase

When the source node receives the RREV packet, it checks if the route
has expired. In this case, a new RREQ packet is transmitted again;
otherwise, the document is transmitted over the established routes for the
period of the MHVC’s lifetime. If the multimedia document session time
(MMST) exceeds the route lifetime of any one of the established MHVCs,
then the source node reinitiates the route discovery phase. We define the
new route discovery offset (NRD_offset) as the time period before the
expiry of a route that is dedicated to finding new routes so data can be
redirected to the new routes before the expiry of the current existing
route to ensure seamless transmission of multimedia data.

Scheduling of Multimedia Documents Over MHVCs
When MHVCs have been established between a multimedia database server
and mobile users, the server-based scheduler transmits multiple data streams
over MHVCs in some optimal manner. In particular, the problem of sched-
uling transmission of multimedia data can be viewed as the problem of
optimally scheduling the transmission of synchronization interval units
(SIUs) while maintaining the temporal relations between SIUs to ensure a
synchronized playout of the multimedia data at the destination.

As mentioned earlier, synchronization of a multimedia document has
to be achieved at two levels — that is, at the inter-stream and intra-stream
levels [9]. This can be achieved by delivering the SIUs to the destination
before their playout deadline; however, the deadline of each SIU can only
be met when the network provides a set of channels with enough

AU3833_C47.fm Page 1284 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1285

bandwidth and bounded delay. Because a wireless ad hoc defense network
is a resource-constrained system in which bandwidth and buffer capacity
are severely limited, it is essential to use some efficient scheduling scheme
to present multimedia documents synchronously without extensive buff-
ering at the destination node.

In a mobile ad hoc defense network, a channel may not have sufficient
bandwidth and bounded delay to deliver the document in a synchronized
fashion. In some cases, the required number and type of MHVCs may not
be available, so the document cannot be delivered in a synchronous
manner. One way to address this problem is to prefetch data at the
destination node and play it out later. This scheme has the drawback of
initial session setup delay incurred due to buffering. This delay has to be
long enough to ensure both inter-stream and intra-stream synchronization
after the destination node begins presentation. Minimizing the initial startup
delay becomes an important consideration in an ad hoc defense network
environment in which a mobile user may have limited buffering capability.

We assume that the multimedia document requested by the mobile
user consists of multimedia objects having a total of n SIUs. Let the set
of n SIUs be denoted by S = {SIU1, SIU2, …, SIUn}. Each SIUi has two
scheduling-related parameters: its size si and its playout deadline di. Let
C = {C1, C2, C3, …, Cm} be a set of m MHVCs available during a time
interval ∆t, where:

In our scheme, the time interval ∆t defines the scheduling horizon (i.e.,
the set of SIUs is rescheduled for transmission after ∆t time units). During
this time interval, the number of channels available as well as their
characteristics remain the same. It can be assumed that each channel Cj

provides a guaranteed effective bandwidth rate cj and bound on the transit
delay δj for a time interval ∆t.

Suppose SIUi is scheduled for transmission on channel Cj at some time
αj according to some scheduling policy. Let Ai denote the arrival time of
SIUi at the destination node. Then, this arrival time is given as follows:

(47.2)

The transit delay δj of channel Cj may not be the same as the required
transit delay of SIUi. The tardiness of SIUi with respect to its playout deadline
is defined as Ti = max[0, Ai – di]. If Ti > 0, then SIUi misses its playout
deadline, resulting in intra-stream as well as inter-stream asynchrony. One

∆t
i m i=

≤ ≤
min
1

RLT

A
s

ci j
i

j
j= + +α δ

AU3833_C47.fm Page 1285 Monday, August 21, 2006 11:16 AM

1286 ■ Mobile Middleware

way to avoid this is to delay the start of presentation until the tardy SIUs
become available at the destination node. In this case, the playout of each
SIU has to be delayed by the maximum tardiness Tmax = max1≤i≤n{Ti}. In
other words, the earliest feasible playout start time of a multimedia object
is equal to di + Tmax. The quantity Tmax in the induced playout deadlines is
the initial delay in the presentation process. This delay is the end-to-end
delay in the network that is incurred if the network does not provide
sufficient MHVCs with the required bandwidth.

The scheduling problem is defined as follows. Given a set of n SIUs,
S = {SIU1, SIU2, …, SIUn} along with their sizes and playout deadlines,
and a set of m channels C = {C1, C2, C3, …, Cm} with their bandwidth
and transit delays and the scheduling horizon ∆t, find a schedule for
the n SIUs on the m channels that would result in minimizing maximum
tardiness Tmax.

The above scheduling problem can be formulated as a parallel pro-
cessor scheduling problem in which m heterogeneous channels can be
modeled as m uniform processors with different speeds. A set of SIUs is
equivalent to a set of independent jobs. The processing time of a job i
on channel j is given as (si/cj). Because the server can access the desired
multimedia data at any time, it can be assumed that all SIUs have the
same release time, although they have different playout deadlines. Because
the playout deadlines of SIUs are known a priori, this is a deterministic
scheduling problem. We assume that an SIU is transmitted on a channel
without interruption, corresponding to a non-preemptive environment.
The transit delay δt associated with each channel distinguishes this prob-
lem from other processor scheduling problems. This transit delay is
independent of the SIU being transmitted; hence, using the notation of
Lageweg et al. [19], the scheduling problem may be represented as
Qm/δj/Tmax. Here, Qm represents m heterogeneous channels, δj represents
the presence of transit delays, and Tmax is the performance measure of
max tardiness.

A special case of Qm/δj /Tmax is scheduling n jobs on m parallel
identical processors to minimize max tardiness (Pm//Tmax), which is an
NP-hard problem. Therefore, the scheduling problem Qm/δj /Tmax is also
NP hard [10].

Different heuristic algorithms have been proposed for the above-
mentioned scheduling problem [9]. These heuristics involve a tradeoff
between SIU deadline misses and buffer overflow. One of the heuristic
algorithms in Baqai et al. [9] results in reduced buffer usage while mini-
mizing the maximum tardiness. This heuristic algorithm given in Figure
47.7 is more suited for a mobile ad hoc defense network environment
because of the limited buffer capacity at mobile nodes. This algorithm
first orders SIUs in increasing order of their playout deadlines, then a

AU3833_C47.fm Page 1286 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1287

tentative schedule is constructed by scheduling an SIU closest to its
deadlines on a channel that results in the earliest completion time (ECT);
that is, the one that minimizes its arrival time at the destination. The
maximum tardiness Tmax among all SIUs is calculated and is subtracted
from the tentative schedule to obtain the final schedule.

The overall QoS framework presented in this chapter is depicted in
Figure 47.8. This framework consists of various QoS-related functional
components that interact with one another to ensure QoS-guaranteed
transmission of multimedia data in a wireless mobile ad hoc defense
network.

Conclusion
In this chapter, we presented a QoS framework for the transmission of
multimedia data in a battlefield wireless mobile ad hoc defense network
for supporting mission-critical applications over large geographical areas.
This framework consists of a QoS routing component that establishes
multiple virtual channels between a multimedia database server and mobile
user that satisfy user-specified QoS requirements of a given session.
Heterogeneity may exist in these virtual channels as a result of differences

Figure 47.7 Heuristic scheduling algorithm for minimizing maximum tardiness.

; Lj represent the

AU3833_C47.fm Page 1287 Monday, August 21, 2006 11:16 AM

1288 ■ Mobile Middleware

in the available bandwidth and end-to-end delay of virtual channels due
to a high degree of mobility. We have formulated the multimedia data
scheduling problem over multiple heterogeneous virtual channels as a
uniform processor scheduling problem. We also discussed a heuristic
algorithm to minimize the maximum tardiness of the multimedia document.
The proposed technique can be used for developing viable mobile multi-
media applications for defense networks.

References
[1] Tiboni, F., Battlefield communications, Federal Commun. Week (FCW),

March 14, 2005 (http://www.fcw.com/article88262).
[2] Jameson, S.M., Architectures for distributed information fusion to support

situation awareness on the digital battlefield, in Proc. of the Fourth Int.
Conf. on Data Fusion, Montreal, Canada, August 7–10, 2001 (http://www.atl.
external.lmco.com/overview/papers/1030.pdf).

[3] Perkins, C.E., Ad Hoc Networking, Addison-Wesley, Boston, MA, 2000.
[4] Little, T.D.C. and Ghafoor, A., Multimedia synchronization protocols for

broadband integrated services, IEEE J. Selected Areas Commun. (JSAC), 9,
1368–1382, 1991.

[5] Lin, C.R. and Gerla, M., Adaptive clustering for mobile wireless networks,
IEEE J. Selected Areas Commun. (JSAC), 15(7), 1265–1275, 1997.

[6] Alwan, A. et al., Adaptive mobile multimedia networks, IEEE Pers. Commun.
Mag., 3(2), 34–51, 1996.

[7] Shafiq, B., Ghafoor, A., Baqai, S., Fahmi, H., and Khokhar, A., Wireless
network resource management for Web-based multimedia document ser-
vices, IEEE Commun. Mag., 41(3), 138–145, 2003.

Figure 47.8 Functional components and information flow in QoS framework

AU3833_C47.fm Page 1288 Monday, August 21, 2006 11:16 AM

QoS Framework for Wireless Mobile Ad Hoc Defense Networks ■ 1289

[8] Baqai, S., Woo, M., and Ghafoor, A., Network resource management for
enterprise-wide multimedia services, IEEE Commun. Mag., 34, 78–85, 1996.

[9] Baqai, S., Khan, M.F., Woo, M., Shinkai, S., Khokhar, A.A., and Ghafoor,
A., Quality-based evaluation of multimedia synchronization protocols for
distributed multimedia information systems, IEEE J. Selected Areas Commun.
(JSAC), 14(7), 1388–1403, 1996.

[10] Woo, M., Uzsoy, R., and Ghafoor, A., Media streams scheduling for syn-
chronization in distributed multimedia systems, J. Parallel Distributed Com-
put., 53(3), 272–295, 1999.

[11] Woo, M., Qazi, N., and Ghafoor, A., A synchronization framework for
communication of pre-orchestrated multimedia information, IEEE Network,
8, 52–61, 1994.

[12] Shah, S.H. and Nahrstedt, K., Predictive location-based QoS routing in
mobile ad hoc networks, in Proc. of IEEE Int. Conf. on Communications
(ICC’02), New York City, April 28–May 2, 2002, pp. 1022–1027

[13] Su, W., Lee, S.-J., and Gerla, M., Mobility prediction in wireless networks,
in Proc. of Military Communications Conf. (MILCOM 2000), Los Angeles,
October, 2000.

[14] Royer, E. and Toh, C.-K., A review of current routing protocols for ad hoc
mobile networks, IEEE Pers. Commun. Mag., 6(2), 46–55, 1999.

 [15] Kim, Y.-W., Ryu, J.-H., and Cho, D.-H., A novel adaptive routing scheme
for the QoS-based multimedia services in mobile ad hoc networks, in Proc.
IEEE Vehicular Technology Conf. (VTC’99), Houston, TX, May, 1999, pp.
396–400.

[16] Ko, Y. and Vaidya, N., Location-aided routing in mobile ad hoc networks,
in Proc. of the 4th ACM/IEEE Int. Conf. on Mobile Computing and Networking
(MOBICOM’98), Dallas, TX, October, 1998.

[17] Castaneda, R. and Das, S.R., Query localization techniques for on-demand
routing protocols in ad hoc networks, in Proc. of the 5th ACM/IEEE Int.
Conf. on Mobile Computing and Networking (MOBICOM’99), Seattle, WA,
August, 1999

[18] Little, T.D.C. and Ghafoor, A., Synchronization and storage models for
multimedia objects, IEEE J. Selected Areas Commun. (JSAC), 8, 413–427, 1990.

[19] Lagewag, B.J., Lenstra, J.K., and Rinnooy Kan, A.H.G., Computer-Aided
Complexity Classification of Deterministic Scheduling Problems, Research
Report No. BW 138/81, Mathematisch Centrum, Amsterdam, 1981.

[20] Bulterman, D.C.A., SMIL 2.0, part 1: overview, concepts, and structure, IEEE
Multimedia, 8, 82–88, 2001.

AU3833_C47.fm Page 1289 Monday, August 21, 2006 11:16 AM

AU3833_C47.fm Page 1290 Monday, August 21, 2006 11:16 AM

1291

Chapter 48

Mobile Middleware
for Rescue and

Emergency Scenarios

Ellen Munthe-Kaas, Ovidiu Drugan,
Vera Goebel, Thomas Plagemann, Matija Puzar,
Norun Sanderson, and Katrine S. Skjelsvik

CONTENTS

Introduction... 1292
Application Scenario and Requirements ... 1292

Rescue Scenarios... 1292
Requirements ... 1295
Applications ... 1296

Middleware Framework and State of the Art... 1297
Knowledge Management and Context Management 1298

Knowledge Management and Context Management Subconcerns..... 1299
State of the Art ... 1301

Communication Infrastructure.. 1303

Communication Infrastructure Concerns.. 1303
State of the Art ... 1305

Resource Management.. 1308

Subconcerns for Resource Management.. 1308

AU3833_C48.fm Page 1291 Monday, August 21, 2006 11:45 AM

1292

■

Mobile Middleware

State of the Art ... 1309

Security Management.. 1310

Security and Middleware ... 1310
State of the Art ... 1311

Conclusions and Open Issues ... 1313
Acknowledgments... 1315
References ... 1315

Introduction

Efficient collaboration among rescue personnel from various organizations
is a mission-critical key element for a successful operation in emergency
and rescue situations. The two central requirements for efficient collabo-
ration are the incentive to collaborate, which is a given situation for rescue
personnel, and the ability to efficiently communicate and share informa-
tion. Mobile

ad hoc

 networks (MANETs) could provide the technical
platform for efficient information sharing in such scenarios, assuming that
all rescue personnel are carrying and using mobile computing devices
with wireless network interfaces. Appropriate applications are needed to
turn a working infrastructure of a MANET into a useful system; however,
application development for MANETs is far from easy. MANETs are typi-
cally very dynamic networks in terms of available communication partners,
available network resources, connectivity, etc. Furthermore, the end-user
devices are very heterogeneous, ranging from high-end laptops to low-
end PDAs and mobile phones. CPU storage space, bandwidth, and battery
power represent important resources. The diversity of organizational affil-
iations of end users and their roles within their respective organizations
also introduces heterogeneity to the system. Finally, many application
scenarios, such as coordination of rescue teams, also have quite hard
nonfunctional requirements, such as availability (including reliability, fault
tolerance, and survivability), dependability, efficient resource utilization,
integrity, security, and privacy. Thus, providing sufficient quality in infor-
mation access and sharing in such an environment faces many obstacles.
Obviously, solving these issues in every new MANET application from
scratch is not meaningful; instead, a set of middleware services that support
the development of applications for MANETs is needed.

Application Scenario and Requirements

Rescue Scenarios

Rescue scenarios typically involve rescue personnel from various organi-
zations, such as policemen, firemen, physicians, and paramedics, who
must collaborate across organizational boundaries. This forces a variety

AU3833_C48.fm Page 1292 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios

■

1293

of heterogeneity upon the network, and the middleware must therefore
find a way to present the information so all organizations can understand
it. This implies supporting functionality akin to high-level distributed
database system functionality, keeping track of what information is avail-
able in the network and supporting querying of available information.
The participating rescue organizations may use different domain ontolo-
gies, standards, etc., so a major challenge for knowledge management is
to support such information sharing across organizations.

Each organization has its own portfolio of procedures, tailored to fit
the nature and size of the rescue operation. The rescue procedures, among
other things, cover the command structure in force. Cross-organizational
procedures comprise governmental and other authorities and include a
cross-organizational command structure. Thus, the middleware should
support both intra- and interorganizational structures. An obvious benefit
would be to have contextual support, in that contexts can be used for
reflecting specific rescue procedures in force; for supporting user role and
device profiling and personalization; for providing temporal and spatial
information, movement patterns, etc.

Another concern is that of security, integrity, and privacy. The need
for security services that span across the organizations involved is obvious.
Depending on the nature of the incident, the rescue leaders can also
involve voluntary personnel from idealistic and private organizations. Such
parties might depend on being able to partake in some of the information
exchange, but it is unlikely that an

a priori

 understanding would have
been reached with the authorities and core organizations with regard to
security credentials, data formats, and the like. Even for non-volunteer
personnel, the security precautions should still be fairly flexible. Different
organizations may have conflicting security policies; in such cases, privi-
leged users could supply input on how to resolve the conflict. Also, if
security slows things down or conflicts with issues of higher priority, it
must be possible to relax the security precautions.

In such a scenario, a multitude of devices are brought into the area by
rescue personnel. There may also be elements of a fixed infrastructure (e.g.,
sensors or devices) already present on the rescue site. Some of these devices
might serve as a gateway between the MANET and the Internet, provided
the necessary security requirements are fulfilled; however, we cannot assume
or rely on a fixed backbone of devices running the middleware services in
a MANET. When a train accident takes place inside a tunnel, one cannot
expect radio, mobile phone, or global position system (GPS) coverage. In
such cases, the services will probably have to run on mobile devices that
might lose contact due to network partitioning resulting from, for example,
topological obstacles. Because the middleware should provide basic services
to support a mission-critical task (i.e., information sharing), it has to be

AU3833_C48.fm Page 1293 Monday, August 21, 2006 11:45 AM

1294

■

Mobile Middleware

designed in such a way that it is of high availability. In the case of network
partitioning, the services should support information sharing in the different
network partitions, and it should work as well as possible if arbitrary devices
are switched off, including nodes running the middleware services; there-
fore, a centralized solution is not possible, and a distributed solution has
to provide a sufficient degree of redundancy through replication. The
dynamic nature of MANETs means that middleware services based on
synchronous communication are not a good choice, because they are too
vulnerable with respect to communication disruptions. The alternative is
systems based on message passing or event-based systems; thus, middleware
support for a distributed event notification system is required.

The number of devices expected to be part of a MANET in emergency
and rescue applications probably would not exceed several hundred, but
small sensors might increase the number of devices up to tens of thousands.
Even though this covers a spectrum of several magnitudes, it is still signif-
icantly smaller than Internet scale. These devices are typically of a hetero-
geneous nature also with respect to available memory and disk space. It is
necessary, therefore, to design the middleware services to be configurable
such that small, resource-weak devices run only a minimal set of protocols
or subsets or simplified, lightweight versions of the services contained in
the protocols; devices with sufficient resources might implement full-scale
services. Furthermore, it is necessary to keep track of which resources are
available so other devices can be used as proxies or to make meaningful
decisions on where to place replicas to increase the system availability.

Performance and efficient resource utilization are also important, but
typically a tradeoff exists between these two requirements and availability.
There is no general solution for this tradeoff, and its resolution often
depends on the particular application and even on the particular emer-
gency situation; therefore, it is necessary to allow the application to define
policies on how to handle these tradeoffs.

Even though the collection of possible rescue scenarios is diverse, with
respect to the size and type of incident, the personnel skills required, the
rescue procedures to be followed, etc., it is still possible to extract out
some commonalities. We have identified six different phases in such a
scenario:

■

Phase 1. A priori

 — Before the incident, the different organizations
in cooperation with the authorities will exchange information on data
format and make agreements on procedures and working methods.

■

Phase 2. Briefing

 — The first step after an incident has occurred
involves gathering information about the disaster. Some preliminary
decisions about rescue procedures and working methods are made,
according to the nature of the incident.

AU3833_C48.fm Page 1294 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios

■

1295

■

Phase 3

.

Bootstrapping the network

 — This phase takes place at
the rescue site. Events such as registrations of nodes and appointing
rescue leaders take place.

■

Phase 4. Running the network

 — Different events may happen that
will affect the middleware services: A node may join or leave the
network, the network may be partitioned, and network partitions
may be merged again. Information is collected, exchanged, and
distributed. In the earlier stages of this phase, the role as rescue
leader may be transferred from one person to another. New orga-
nizations or personnel groups may appear at the site. Interorgani-
zational

ad hoc

 personnel groups may form.

■

Phase 5. Closing the network

 — At the end of the rescue operation,
all services must be terminated.

■

Phase 6. Postprocessing

 — After the rescue operation, it might be
useful to analyze resource use, user movements, and how and
what type of information was shared to gain knowledge for future
situations.

Notice that, although one cannot rely on fixed networks or Internet access
during a rescue operation (phases 3 to 5), this is not the case during the
initial phases (phases 1 to 2). This means that a lack of networks and
fixed resources during the rescue operation can be compensated for by
careful preparation in the initial phases.

Requirements

The challenges presented are reflected in a number of requirements for
the middleware: We need support for intra- and interorganizational infor-
mation flow and knowledge exchange, as well as the means to announce
and discover information sources. Contextual support enables applications
to adapt better to particular scenarios and allows them to fine-tune
according to spatial and temporal data. Profiling and personalization can
assist in filtering and presenting information in accordance with the needs
of the users and devices, as well as displaying their capabilities. The
middleware should provide support for an organizational structure and
for the creation of groups on the fly. Security must be dynamic, enabling
privileged users to grant group memberships at the rescue site, as well
as to influence changes to the security regime when circumstances demand
it. Communication must be available, reliable, and efficient even in the
presence of frequent network partitioning. Extensive support for resource
sharing between devices is necessary, including ways to register and
discover available resources of different types. To allow graceful degra-
dation, the middleware must monitor and prepare for it.

AU3833_C48.fm Page 1295 Monday, August 21, 2006 11:45 AM

1296

■

Mobile Middleware

This leaves us with nine articulated requirements and goals for the
middleware: (1) intra- and interorganizational information flow, (2) service
availability, (3) context management, (4) profiling and personalization, (5)
group and organizational support, (6) dynamic security, (7) communication,
(8) resource sharing, and (9) graceful degradation. In addition, a tenth
requirement is the ever-present need for (10) data sharing and storage.

Applications

Applications range from being special-purpose, organization-internal to
cross-organization and general-purpose, from ones that push data to
ones that collect data to be pulled at need, from low-priority and low-
resource applications to applications that multicast high-priority data to
a selected group. Some concrete examples are monitoring sensors (e.g.,
tracking heartbeats, temperature, oxygen flow, or position and move-
ment of casualties); dispatching and coordinating rescue personnel and
equipment (e.g., by pushing information from a team leader to the rest
of his group or from the rescue leader to all team leaders across
organizations); providing access to stored data, documents, and multi-
media material (e.g., rescue procedures, passenger lists, freight lists,
explosives handling procedures, maps, building plans); publishing mul-
timedia material (e.g., sharing of medical information, surveillance cam-
era output, VoIP); and collecting evidence (e.g., logging facts for
forensics reports). From the point of view of an application, the phases
contain the following activities:

■

Phase 1. A priori

 — Required certificates are installed. The appli-

cation is installed and run, allowing it to complete an initial self-
configuration phase. The middleware prepares an application-

tailored communication and knowledge environment. Contexts reflect-
ing different scenarios are prepared. Based on user profiles, group
memberships are set up and data replication strategies are chosen.

■

Phase 2. Briefing

 — It is possible to configure and prepare the
application further, based on information collected during the
briefing phase. The relevant rescue contexts and profiles are put
in force. Security levels are chosen.

■

Phase 3. Bootstrapping the network

 — The middleware enriches
the application’s working environment by preparing communica-
tion, taking care of security restrictions in force.

■

Phase 4. Running the network

 — The application can now com-
municate, using whatever knowledge is provided by the middle-
ware about available resources and capabilities of the nodes in the

AU3833_C48.fm Page 1296 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios

■

1297

network. It can update to changes to the resource landscape as
the network is evolving, query for more data or information as it
becomes available, and adjust its configuration and behavior
accordingly. Computing resources, processing environments, and
applications of neighbors can be utilized by using resource infor-
mation provided by the middleware and obeying accepted policies
for resource sharing. Replicas and proxies can be placed at strategic
nodes in the network. Interorganizational groups can be formed
on an at-need basis. The nodes in the network will receive event
notifications based on relevance and priority. As nodes join and
leave the network, the middleware keeps track of the available
resources and adjusts its communication and knowledge environ-
ment accordingly.

■

Phase 5. Closing the network

 — The application adapts to closing
of the network by acting on received information about degradation
of the capabilities and resources of the network.

■

Phase 6. Postprocessing

 — Depending on the nature of the appli-
cation, it may have gathered statistical or other information for
later scenario analysis or future use.

Middleware Framework and State of the Art

We address our ten requirements by identifying six middleware concerns
that together constitute a foundation for a middleware framework covering
the required services for MANETs in rescue scenarios (see Figure 48.1):

■

Knowledge management

 — to handle ontologies and support meta-
data integration and interpretation

■

Context management

 — to manage context models, context shar-
ing, profiling, and personalization

■

Data management

 — to provide distributed database-like capabil-
ities

■

Communication

infrastructure

 — to support distributed event
notification, publish and subscribe services, and message mediation

■

Resource management

 — to register and discover information
sources and Web services as well as the resources available to
handle neighbor awareness, computation and application sharing,
mobile agents, proxy and replica placement, and movement pre-
diction

■

Security management

 — to provide access control, signing and
encryption of messages, support of group and organizational struc-
tures, assignment of group keys, and dynamic security services

AU3833_C48.fm Page 1297 Monday, August 21, 2006 11:45 AM

1298

■

Mobile Middleware

An in-depth detailing of all aspects of the six concerns is outside the
scope of this chapter, so data management is primarily elaborated upon
when necessary to explain its boundaries to the other concerns. For each
of the other concerns, we provide a discussion on the main requirements
that any middleware framework for the concern should address, a selection
of issues that must be faced, problems that must be solved, the state of the
art, and approaches to solving some of the problems. As will become
evident, the middleware frameworks all rely heavily on each other’s services.

Knowledge Management and Context Management

Knowledge management covers support for the dissemination, sharing,
and interpretation of ontologies, as well as browsing and querying of
ontologies and ontology contents. Thus, a distributed knowledge base
functionality and a global view of what knowledge is available in the
network are necessary. The requirements indicate a set of issues that must
be addressed:

understanding

 across domains and organizations through
the use of knowledge management techniques; avoiding

 information
overflow

 through content filtering and personalization; managing the

avail-
ability

 of information, metadata, and ontologies; offering information

query
and retrieval

 services; and supporting

information

exchange.

 The issues
translate into the following set of subconcerns: a

semantic metadata and

Figure 48.1 The six middleware concerns.

AU3833_C48.fm Page 1298 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios

■

1299

ontology framework

 for handling the sharing and interpretation of ontol-
ogies,

data dictionary management

for the management of metadata in
local and global data dictionaries,

query management

for querying ontol-
ogy and metadata as well as for retrieval of relevant information, and

XML
parsing

 for information exchange. In addition, the

Context Management
Framework

supports filtering and personalization. An overview of sub-
concerns and issues for the

Knowledge Management Framework

 is pro-
vided in Figure 48.2.

Knowledge Management and
Context Management Subconcerns

To enable sharing of information and knowledge in a heterogeneous
environment, the different systems and domains have to understand each
other; that is, a mapping or translation of the different conceptual models,
schemas, and languages that are used is necessary. This is a well-known issue
in the distributed databases domain. In general, the three kinds of heteroge-
neity [1] are

syntactic

, which involves the data formats and languages used
and standardization of these (e.g., XML);

structural

, which concerns data
structures and schemas; and

semantic

,

which is the meaning of the infor-
mation. It can be said that ontologies provide a metaperspective on data
and information by considering a higher level of abstraction. In addition
to providing domain-specific descriptions of information, ontologies may

Figure 48.2 Knowledge management issues.

Support for
dissemination of

ontologies

Integration of
metadata from

different sources

Support for
sharing

ontologies

Global view of
available

knowledge

Support for
interpretation of

ontologies

Support for browsing and
querying of ontologies
and ontology contents

Knowledge management

Semantic
metadata

and ontology
framework

Data
dictionary

management

Query
management

Avoid information
overflow XML parser

Information
exchange

Ontology
support

Data
management

Communication infrastructure

Context management

AU3833_C48.fm Page 1299 Monday, August 21, 2006 11:45 AM

1300

■

Mobile Middleware

be used to solve problems of semantic heterogeneity [2]. The semantic
metadata and ontology framework should give certain recommendations
as to what kind of ontology and modeling languages are most appropriate
to use, but it may have to support more than one language. Requirements
for ontology languages address issues such as expressiveness, complete-
ness, correctness, and efficiency, as well as interoperability with relevant
standards [3]. For knowledge exchange, protocols such as the Knowledge
Query and Manipulation Language (KQML) and the Key Encryption Pro-
tocol (KEP) [4] are necessary.

With regard to the dissemination of ontologies, the availability of
information (here, metadata and ontologies) implies a need for the man-
agement of data dictionaries that can provide a global view of knowledge
available in the network at any one time. Three kinds of metadata originate
from different concerns:

semantic

metadata

, which describes the meaning
of information (which includes to some extent ontologies);

context and
profile metadata

, which describes current contexts and profiles of users
and devices; and

structure and content describing metadata

, which has
to do with how information items are structured and descriptions of the
intellectual content of these. Both context management and knowledge
management are producers and consumers of the metadata stored and
thus build on the services provided by data management. The main
challenges for data dictionary management are related to the availability
of partial information (e.g., for retrieval and traversal of knowledge in the
network, update propagation, and fault tolerance). Solutions will depend
largely on issues of data distribution and replication.

The structural heterogeneity inherent in cross-organizational informa-
tion sharing may require support for different approaches to querying and
retrieval (e.g., by structure, content, context, and naming) and possibly
support for both structured and unstructured query languages. Filtering
and ranking retrieved results are necessary. Due to the need for profiles
and context for filtering and personalization, query management concerns
border very closely to context management concerns.

With the advent of XML as a de facto standard for information exchange
in and among rescue organizations [5–8], parsing of XML documents is a
necessity, which implies a need for lightweight XML parsers that can
function well on mobile devices. Depending on the ontology languages
used, Resource Description Framework (RDF) parsing may also be needed
to facilitate understanding. XML parsing is typically expensive with regard
to processing and memory which presents a challenge given the scarcity
of resources for mobile devices.

The term context is used in many different ways in the literature [9–12].
Profiles viewed as contexts give information regarding the “what” and
“who” of an entity or person and are fairly static. Spatiotemporal and

AU3833_C48.fm Page 1300 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1301

situation context information is dynamic and concerns the “where,” “when,”
and “why” of an entity. Such contexts may have a short lifespan and may
not be subject to any persistency actions. Another frequent use of the term
is to denote the domain knowledge and background situation where an
information object gets semantic meaning. The Context Management
Framework must be flexible enough to allow a wide range of interpreta-
tions. It should offer a uniform context model that facilitates context sharing
and semantic interoperability and is flexible enough to accept user-defined
models. The context manager should provide the means by which to collect
context data and transform it to fit the context model, thus providing a
sharable, semantics-based format, as well as filtering facilities. An issue is
whether and how this can be achieved in light of possible resource
restrictions. To support context aggregation, discovery, query, reasoning,
and dissemination, the context manager can build on solutions from the
other frameworks. See Figure 48.3 for a representation of Context Man-
agement Framework concerns.

State of the Art

Approaches for solving syntactic and structural heterogeneity have been
addressed in standardization work [5,6,13] and in the distributed database
domain. For semantic heterogeneity, approaches for information and ontology

Figure 48.3 Context management issues.

Semantic
interoperability

for contexts

Context
dissemination

Context
aggregation

Context
gathering

Context
reasoning

Context/
context type

browsing
and

querying

Uniform context
model (ontology)

Context
discovery

Context
directory
services

Context
filtering

Filtering
language

Knowledge
management

Resource
manage-

ment

Context management Data management

Communication
infrastructureContext

(including
profile

sharing)

AU3833_C48.fm Page 1301 Monday, August 21, 2006 11:45 AM

1302 ■ Mobile Middleware

integration can be found in Stuckenschmidt and van Harmelen [1] and Wache
et al. [2]. Ontology-based solutions for information sharing and Semantic
Web are described in Davies et al. [14] and Fensel et al. [15]. Various XML
parsing paradigms are presented in References 16 and 17.

In the Shark approach [18,19], topic-based knowledge ports are used
to handle knowledge management tasks. The knowledge ports are defined
as topic types and declare topics for knowledge exchange. The (mobile)
users form groups, and knowledge is shared both within a group and
across group boundaries (i.e., both intra- and intergroup knowledge
exchange). A drawback is that the architecture relies on stationary server
nodes for knowledge and synchronization management. MoGATU [10] is
relevant for knowledge and context management with regard to the use
of profiles and ontologies for filtering and prioritization of data. For
handling metadata, information managers functioning as local metadata
repositories are used, allowing for semantic-based caching. One common
language, DARPA Agent Markup Language (DAML), is used for metadata
representation. This solution does not offer a global view of knowledge
available in the network.

Relevant for data management and context management is DBGlobe
[11,20], which is a service-oriented and data-centric approach. It relies on
fixed network servers to keep track of the movement of mobile units and
store profile and metadata describing each mobile device, including con-
text and which resources are offered. The devices form data-sharing
communities that together make up an ad hoc database of the collection
of data on devices that exist around a specific context (e.g., location or
user). For service location and query routing, distributed indexes based
on Bloom filters are used.

The reliance on a fixed network is a shortcoming with regard to
emergency and rescue scenarios. AmbientDB [21,22] adds high-level data
management functionalities to the distributed middleware layer by pro-
viding a global database abstraction over a MANET. This is a noncentral-
ized, ad hoc/dynamic approach using distributed hash tables (DHTs) for
indexing and structured queries for querying. It constitutes a full-fledged
distributed database system but does not support the use of ontologies
or methods from knowledge management.

A survey of different context models and context-aware systems as
well as a reference architecture for context-aware systems can be found
in Anagnostopoulos et al. [23]. The Cabot project [24] advocates the
importance of supporting context processing in the middleware. Both
Cabot and WASP [25] are architectures that include context models, ontol-
ogies, and subscription languages. None of these addresses the challenges
of MANETs.

AU3833_C48.fm Page 1302 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1303

Communication Infrastructure

Although synchronous communication has its uses in the application domain,
communication cannot be based on synchronism alone due to the dynamic
nature of MANETs. Synchronous communication such as remote procedure
calls, Remote Method Invocation, etc., blocks the caller until a response is
returned, which creates problems when communication disruptions are
frequent. The alternative is message-passing or event-based systems. The
availability of new important information, new resources, network partition-
ing, and merging are all events; thus, middleware support for a distributed
event notification system is necessary. In mediation-based publish–subscribe
communication, the sender (publisher) and receiver (subscriber) are decou-
pled in time, space, and synchronization; thus, they do not have to be active
at the same time, they do not need to know each other’s addresses or
identities, and senders are not blocked during communication [26]. This
loosely coupled cooperation fits the nature of MANETs. Consult Figure 48.4
for an overview of communication infrastructure issues.

Communication Infrastructure Concerns

Event-based communication and publish–subscribe services for our
scenario must be designed to handle situations where resources are

Figure 48.4 Communication infrastructure issues.

Communication infrastructure

Highly
available

Reliable

Efficient
dissemination
of notifications

Survive
network
partitions

Distributed
service

Replication

Storage policies
enforcement

Replication
policies

enforcement

Context aware
and adaptible

platform

Event notification
and/or message-
passing service

Not too
resource
intensive

At-least-once
semantics

Flexible
subscription

languagePublish and
subscribe
services

Message
mediation

Synchronous
communication

Asynchronous
communication

Security
management

Knowledge
management

Context
management

Resource
management

Data
management

Store and
resend

notifications
that cannot
be delivered

AU3833_C48.fm Page 1303 Monday, August 21, 2006 11:45 AM

1304 ■ Mobile Middleware

scarce. Still, the services provided should be highly available and work
in the presence of frequent network partitioning and merging. This
leads us to solutions providing redundancy through replication and
where communication services are run on a dynamic, distributed set of
nodes acting as mediators, collecting subscriptions, and efficiently dis-
seminating notifications. When electing suitable mediator nodes, the
Resource Management Framework might be consulted, both for evalu-
ating the resource assets of a node and for predicting its continuous
availability in the near future.

In emergency and rescue applications, information could be a life
saver and must therefore not be lost; however, in MANETs, it is not
possible to guarantee an at-least-once message delivery semantics
because of network partitionings that become permanent. Because
disconnection is the rule rather than the exception, handling network
partitioning and merging is vital. A distinction can be made between
notifications having information that is valid only around the time of
an event and information that could also be useful in the future. A
delivery semantics that comes as close as possible to at-least-once should
be implemented for notifications of the latter category. One way of
doing this is to store notifications that cannot be delivered (e.g., because
a subscriber resides in a network partition other than the publisher
when an event occurs) and to resend notifications when networks
merge. Also, the publisher or a mediator carrying the message may be
subject to network partitioning; thus, the storage management regime
is crucial. Because of limited storage space, a storage management
policy is required that determines which notifications should be stored,
where, for how long, and, if buffer overflow occurs, which ones to
delete. To have a flexible solution and to use the possibly scarce
resources wisely, the service should be adaptable to the situation at
hand. This can be achieved through context awareness; for example,
contexts can be used to decide the degree of replication or choice of
storage policy. Applications can influence policies through the provi-
sioning of context information.

To tailor message delivery to the needs of the subscriber, publish–
subscribe systems offer subscription languages for filtering messages. The
most common way to group subscription languages is by channel, subject,
or content. In content-based systems, the subscriber may filter notifications
based on the content of the notification and not just the subject; thus,
such languages are probably the most suitable for our scenario. To reduce
traffic, the framework might support subscriber-initiated filtering on or
close to the publisher node. Security issues must also be tackled, such as
making sure that a node cannot subscribe to information for which it is
not authenticated.

AU3833_C48.fm Page 1304 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1305

State of the Art

Event services are used for both small-scale centralized applications and
large-scale distributed systems. They differ in the structure of the events that
can be dispatched, the way events are observed, the mechanisms for event
subscription, and their overall runtime architecture [27]. Publish–subscribe
systems are often categorized by the type of network; subscription language;
where filtering of notifications are done; whether mediators are used and,
if so, how they are organized; how and where subscriptions are stored; and
how notifications are disseminated. Many of the first publish–subscribe
systems were tailored for static, non-mobile environments with stationary
publishers and subscribers and fixed communication paths. Some of these
systems have later been adapted to manage mobile clients, but they usually
assume a fixed infrastructure for the nodes acting as mediators for the
publishers and subscribers (i.e., the nodes running the event service).

Siena [28] is a content-based event notification system that is tailored
for a wide area network. Support for mobile clients is provided, but it
must be handled explicitly by the clients. In JEDI [29], the clients choose
one event dispatcher to connect to, and if a client moves or disconnects
it may invoke moveOut and moveIn operations at dispatchers. Cugola
and Nitto [30] describe a way to adapt the routing of notifications when a
client reconnects to another dispatcher. REBECA [31] uses virtual clients
and presubscriptions to manage mobility. Each client has several virtual
clients, but it is only connected to one at a time, the other virtual clients
will buffer received notifications. Virtual clients are started on every medi-
ator to which the client may connect in the near future, using mobility
patterns to predict movements [32]. The REBECA system also uses histories
to provide access to past notifications. TIB/Rendezvous [33] retransmits a
notification after 60 seconds to implement reliable message delivery, but,
in cases of a device being disconnected, 60 seconds will often not be
enough. Elvin [34] uses a caching proxy to manage disconnected clients;
the proxies act as normal clients to the server but as a proxy server to the
clients. A permanent connection to the Elvin server is maintained, so a
disconnected client will receive its notifications on reconnection. Pronto
[35] is a middle-ware system for mobile applications using messaging in
infrastructure-based mobile networks based on the Java Message Service
(JMS). JMS provides asynchronous communication between distributed
components. The service is topic based and uses the Java Naming and
Directory Interface (JNDI) for topic directory service.

An ad hoc setting where even the mediators running the service may get
disconnected introduces challenges on how to deliver notifications. Huang
and Garcia-Molina [36] provide an overview of different architectures, both
centralized and distributed. STEAM [37] is an event-based middleware service

AU3833_C48.fm Page 1305 Monday, August 21, 2006 11:45 AM

1306 ■ Mobile Middleware

tailored for ad hoc networks, where the middleware is fully distributed over
all machines. A publisher will send notifications directly to its subscribers in
the proximity using a multicast protocol; when a subscriber enters the area,
it may join the group and receive and filter notifications. The work is based
on the assumption that the closer subscribers are located to a publisher, the
more likely they are to be interested in its events. This assumption may not
be valid in a rescue operation where rescue personnel in charge may be
interested in events happening in the entire area.

The Epidemic Messaging Middleware for Ad Hoc Networks (EMMA) [38]
is based on JMS adapted for MANETs. If a subscriber is not reachable and
the subscription is durable, they propose using an asynchronous epidemic
routing protocol. Acknowledgment messages are sent to the senders to
inform them about successful delivery and to delete possible replicated
messages still in the network. In Vollset et al. [39], notifications are dis-
seminated using a multicast routing protocol that maps JMS topics to
multicast addresses, thus being subject based. Cugola et al. [40] presented
an algorithm for managing changes in the topology of mobile event
dispatchers for JEDI. It was developed to manage link breaks in a tree of
dispatching servers; however, it does not consider network partitions, only
partitioned subtrees where a new route merging the trees may be found.
Skjelsvik et al. [41] described the design of a content-based distributed
event notification service tailored for MANETs in a rescue operation. All
nodes may be mobile, even the nodes running the service and acting as
mediators. Monitoring agents are installed on the publisher to perform
subscription-based filtering of events. If a notification is not delivered due
to network partitioning, it will be replicated among the mediator nodes
and stored for later delivery.

Resource Management

The main task of the Resource Management Framework is to promote
sharing of all kinds of resources among the devices involved in the network,
which means that it must gather and disseminate information about avail-
able resources and facilitate resource access and sharing. Utilizing remote
access to resources can improve the availability of information and services
and promote graceful degradation behavior. Figure 48.5 provides an
overview.

Subconcerns for Resource Management

For distributed applications running in a network of many devices with
limited resources, it is imperative to make good use of all available
resources. Given the strong incitement for cooperation across organizations,

AU3833_C48.fm Page 1306 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1307

MANETs used in rescue and emergency scenarios form collaborative envi-
ronments where nodes are inclined to share resources. To keep track of
available resources and services and enable resource sharing, a distributed
solution is necessary.

The resource manager should provide the means for the applications
and frameworks to register and discover services and information
sources and make such information available throughout the network.
For this, information about locally available services and information
sources, as well as existing directory services, might be stored in a
resource sharing profile at each node. This kind of resource information
might be disseminated using the capabilities of the Data Management
Framework. Information about possible shareable physical resources
can also be stored in the resource sharing profile, but physical resources
and running services require frequent monitoring (e.g., using mecha-
nisms provided by the operating system). A means to achieve the
dissemination of frequently changing resource information is to share
(accumulated) information about available resources and running ser-
vices with neighboring nodes and have some strategy on how to perform
the information sharing. Notice, however, that certain security concerns
exist relative to information accumulation, with respect to both the
trustworthiness (quality) of the information and possible misuse (access

Figure 48.5 Resource management issues.

Support resource
sharing

Register and
discover information

sources and web
services

Monitor
resources

Neighborhood
awareness

Handle mobile
agents

Proxy
placement

Replica
positioning

Movement
prediction

Generalized
directory services

Support service
composition

Disseminate
resource

information

Resource management

Data management

Security management

Communication infrastructure

Context
management

Support for
resource prediction

and graceful
degradation

Storage,
computation,

application sharing

Data and
computation
replication

Discover and register
available storage and
computing resources

AU3833_C48.fm Page 1307 Monday, August 21, 2006 11:45 AM

1308 ■ Mobile Middleware

rights). Such concerns must be addressed in close cooperation with the
Security Management Framework. The Resource Management Frame-
work should facilitate remote resource access by providing mechanisms
to request, negotiate, and administer remote resource access. Allowing
access to remote resources involves diverse security-related measures
such as access control, user traceability, and data integrity, which are
all in the realm of the Security Management Framework.

Due to the dynamic nature of MANETs, sharing distributed resources
based on traditional resource reservation is not a good choice because
such a system is too vulnerable with respect to communication disruptions.
Instead, resource reservation might be treated as a soft state that is only
valid for a specified time, either for the time period the resource is needed
exclusively by a process or for the time period the resources are (with
high probability) accessible.

A resource management middleware for MANETs can benefit from
predicting the future availability of resources, not only to establish mean-
ingful time-outs for soft-state reservations but also to increase the avail-
ability of information and services through replication and graceful
degradation, if necessary. Several approaches may be used to address the
prediction of future connectivity and, through this, future access to
resources and services. One approach is to analyze the location and
movement of nodes with GPS information; however, GPS devices might
not always work (e.g., in buildings and tunnels). An alternative is the use
of history information on neighborhood relations to predict the future
adjacency or non-adjacency of nodes and, thus, network partitions, as
well. Such neighborhood awareness information can be used together
with the resource sharing profile of the node to create a resource-oriented
context. This context can be exploited by the applications and frameworks
to achieve pervasive data storage and computation and increase service
availability and quality.

To further increase availability and allow for graceful degradation,
services should be able to detect and react to the imminent loss of
resources. Receiving a warning regarding the absence of resources, a
service might choose to downscale and eventually terminate in a controlled
manner; however, if it knows that suitable alternative resources are avail-
able, a service might instead attempt to survive by exporting applications
for execution in another node’s environment or by using mobile agents,
proxies, or the like. Service composition facilities can help applications
make better use of available services by supporting the composition of
complex services from more simple ones. They can also enhance service
availability by reacting to a missing service by replacing it with a similar
service provided by another node.

AU3833_C48.fm Page 1308 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1309

State of the Art

Most of the existing work on resource sharing in MANETs is oriented toward
studies of quality of service (QoS) [42–44], bandwidth management [45],
and mobility management [46]. Some of the existing works suggest the use
of node mobility information to improve information accessibility in
MANETs. For example, Chen et al. [47] propose a framework for a distrib-
uted data accessibility service to access multimedia data within a hetero-
geneous cooperative group. It is assisted by a predictive, location-based
routing protocol that tries to maintain a specific set of QoS parameters.
For this, they assume that nodes move in groups and follow predictable
movement patterns. Each node constructs movement patterns of its neigh-
boring nodes, relying on information such as the geographical location of
nodes, movement direction and velocity, transmission range of the node,
and received periodic positions broadcast from the nodes. Using movement
patterns, each node participating in a transmission is capable of predicting
the future location of the intermediate nodes and destination. Under similar
assumptions, NonStop [48] constructs the movement patterns for a set of
mobile nodes that exhibit similar mobility patterns in their movements.
They are used to guarantee the continuous availability of multimedia
streaming. NonStop estimates the occurrence of network partitioning to
replicate data to a streaming server that has a low probability of being
disconnected from a requesting client during a streaming session.

The network Media Access Control (MAC) layer is an important source
of information. Hu and Johnson [49] propose a solution based on the use
of congestion information to avoid network hotspots by locally monitoring
the network interface transmission queue length and MAC layer behavior
at each node. For optimization, MARE [50] tries to reduce bandwidth
requirements by moving operations rather than data across a network;
information on available resources is shared by periodically announcing
their availability through distributed tuple spaces. Allia [51] uses peer-to-
peer caching and policy-driven agents to facilitate cross-platform service
discovery. Relevant work on replication strategies for MANETs includes
strategies proposed by Hara [52]; the emphasis is on access frequency and
network topology, and the proposed strategies also consider the periodic
updating of replicated data.

The above approaches cannot be used directly in our scenario. For
example, Chen et al. [47] and Li and Wang [48] assume that every node
has a means of determining its position, which does not apply in our
case. Additionally, the nodes possess highly heterogeneous capabilities,
and it is reasonable to believe that not all of them have the ability to
predict partitions or to participate in replications.

AU3833_C48.fm Page 1309 Monday, August 21, 2006 11:45 AM

1310 ■ Mobile Middleware

Security Management

Wireless communication is by nature more susceptible to eavesdropping
than wired media. In most cases the data involved should not be available
to third parties. At the same time, some data should not even be shared
between all of the rescue personnel. Examples of sensitive data to which
access should be controlled include medical and police records and
confidential voice communication. Some services are intra-application or
even intra-organizational within an application. In these cases, a group
concept is of immense value [53,54]. Support for an organizational structure
and for ad hoc groups across organizations is also desirable. Much of this
can be achieved through the use of group keys and accessibility strategies
and so is in the natural realm of security services. Applications must be
allowed to require different levels or types of security policies. This may
lead to incompatible policies (e.g., across organizations). Security policies
may even change during the cause of an operation (e.g., due to a lack
of resources). It should be ensured that such situations do not present a
problem for the operation. A problem that always emerges when bringing
up the subject of security is user friendliness. Security should be automated
and transparent to users as much as possible, especially rescue operations
where human lives are involved and there is no time to think about
synchronizing network keys, for example. Security management subcon-
cerns and issues are illustrated in Figure 48.6.

Security and Middleware

To achieve highly efficient and truly integrated and appropriate security
services, security must be considered from an early stage in the develop-
ment of applications, middleware services, and all their components. In
our case, this means integrating security with all the other concerns. In
addition to basic security requirements, such as the authentication of nodes
and message integrity, the Security Management Framework provides
direct services to the aforementioned components. For example, the
resource manager might need to evaluate the trustworthiness of data
received, the communication infrastructure might have to implement
restricted subscription to certain events, etc. It is of great importance to
provide simple, yet efficient, protocols for such purposes.

The main characteristics of the traditional layered architecture [55] is
its strict separation of layers, preventing the unauthorized leaking of data
between different layers. Although the layered approach provides a high
level of security, it lacks flexibility and thus places many limitations on
both development and usage — for example, how to establish an IPsec
security association dynamically between a fireman and a policeman and
how to relate that to trust as defined in the system at the application layer.

AU3833_C48.fm Page 1310 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1311

The limitations of the layered approach are most notable in a heteroge-
neous, dynamic environment, making an adaptable and cross-layer mid-
dleware solution a logical alternative. Extension techniques, such as
reflection [56,57], allow middleware services to adapt to the environment
and target some of the challenges faced. Some solutions, such as Open
ORB 2 [58] and ReMMoC [59], are lightweight examples of such architec-
tures, suitable for mobile devices. The programming language OBOL [60]
is a step toward solving security issues in middleware-based architectures.
Aspect-oriented programming [61] allows the incorporation of cross-con-
cerns in the development phase and might therefore address some of the
challenges faced. The mentioned approaches by themselves do not present
complete solutions for the integration of security with the other concerns
but might provide a good starting point.

The Security Management Framework makes use of services from the
other frameworks. Some examples are use of the communication infra-
structure for the distribution of keys, data management for the storage of
keys and certificates, context management and resource management to
get information on changes in the environment, and knowledge manage-
ment to possibly analyze security conflicts.

State of the Art
Possible security and privacy attacks can be roughly divided into external
and internal [62]. Most of the problems related to external attacks in
MANETs can be solved relatively easily by means of standard encryption

Figure 48.6 Security management issues.

Security management

Confidentiality
within groups

Assigning and
managing group

keys

Dynamic security
schemes

Creation and
maintenance of
dynamic groups

Signing and
encrypting
messages

Protect against
external and

internal attacks

Protect routing
protocol

Authorization of
nodes and/or

users

Security policies,
application/user guided

security solutions

Group membership
assignment at site

Resolve security
conflicts, relax

security at need

Power friendly
cryptography

Handling
lost/stolen nodes

User friendliness in
presence of

heterogeneous,
dynamic

environments
(Semi)-automatic

handling of
protocols and

algorithms

Blacklisting,
certificate
revocation

Communication
infrastructure

Resource
management

Data
management

Context
management

Access control

Protection against
message replay

Knowledge
management

AU3833_C48.fm Page 1311 Monday, August 21, 2006 11:45 AM

1312 ■ Mobile Middleware

and digital signature techniques; however, denial-of-service attacks on
lower layers that cause battery drain or network congestion, such as
jamming or flooding, cannot be handled at the middleware layer. Internal
attacks are more difficult to detect and a much bigger threat because such
attacks come from nodes that have previously been authenticated but later
either lost or stolen.

Authorized nodes have to be distinguished from foreign nodes, so some
form of authentication has to be ensured [63,64]. This can be achieved
through use of public key infrastructures that allow nodes to authenticate
each other without the need for an online server. Capkun et al. [65]
proposed a fully self-organized public key management system that does
not rely on trusted authorities; however, in contrast to pure ad hoc net-
works, in our scenario the a priori phase can be used to preinstall
certificates with a common certificate authority on the devices to ensure
the privacy of sensitive data. The advantages are twofold: The data in the
network is rendered more secure, and establishing trust becomes much
more efficient.

Whether the certificates on the nodes will identify devices or actual
users handling them (who would then present the certificate to the device
by means of a token such as a smart card) is another issue. The decision
made impacts the way lost and stolen nodes are handled (e.g., revoking
certificates and blacklisting such nodes). One can cryptographically bind
a node’s IP address to its certificate [66] to prevent nodes from imperson-
ating others. Because no central authority exists, a way to decide which
node, person, or role/rank can perform the task of revoking certificates is
necessary. It might be safe to assume that the devices of the leaders will
be physically better protected than the others, making such devices a
possible candidate.

In MANETs, protecting the routing protocol is of particular importance,
as incorrect routing messages could cause the network to function improp-
erly [62]. To sign and verify messages, a shared network key can be used.
It is highly probable, though, especially during the bootstrap procedure,
that several networks with different keys will form, causing network key
inconsistency. Solutions based on the Diffie–Hellman key exchange [67]
do not have this problem due to the very nature of the algorithm. In such
protocols [68–71], all nodes contribute to the final shared key, causing
rekeying every time a node joins or leaves the group. Most of these
protocols rely on some kind of hierarchy and a group manager to deploy
and maintain shared keys. In the presence of frequent network partitioning
and merging, however, the use of contributory protocols would cause
significant computational and bandwidth costs which cannot be afforded,
and centralized key management is inappropriate. Also, in such protocols
a fully working routing infrastructure has to be established prior to key

AU3833_C48.fm Page 1312 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1313

exchanges. Because the routing protocol is one of the main things to be
protected, this requirement is a major drawback; however, these protocols
might be very useful for the creation of dynamic groups or teams.

A characteristic of key predistribution protocols is that a group of nodes
can compute a shared key out of predistributed sets of keys present on
each node. These sets of keys are either given by a trusted entity before
the nodes come to the scene [72,73] or chosen and managed by the nodes
themselves, as is done in the Distributed Key Predistribution Scheme
(DKPS) [74]. Designed for emergency and rescue operations, the SKiMPy
protocol [75] makes use of preinstalled certificates to perform authentication
of nodes and to produce shared keys while aiming at keeping the com-
putational and bandwidth costs of the protocol low. Nevertheless, having
signed messages does not necessarily mean they are valid. A malicious
node could listen to all traffic, save certain messages locally, and decide
to replay them at a later point, easily causing disruption of the network;
therefore, protection from replayed messages (such as time-stamp checking
in the OLSR security plug-in [76]) is also of extreme importance.

Including the devices of bystanders in the network might be a desired
feature, but a challenging issue to solve with regard to security. This
would introduce an even wider heterogeneity of devices and operating
systems, making the compatibility problem a major issue. In addition,
such devices would not have proper application support nor would they
carry valid credentials to be able to join the network. The latter problem
could be solved by means of leaders having the ability to install necessary
software packages and issue certificates valid only for a short period of
time and giving such devices restricted access.

With regard to bandwidth, messages carrying certificates could become
large if several levels in the certificate chain are present, and as such their
presence in the air should be reduced to a minimum. Authentication
processes using asymmetric cryptography are computationally very expen-
sive, which in our case becomes a problem with regard to battery power.
Special care has to be taken when choosing algorithms for both symmetric
and asymmetric cryptography [77]; for example, elliptic curve cryptography
[78,79] is a good alternative to RSA [80] with regard to power consumption,
offering equivalent security with smaller key sizes and thus faster com-
putation, lower memory consumption, and lower bandwidth usage [81].

Conclusions and Open Issues
By analyzing the current state of research and applications for MANETs,
we have identified a strong need for middleware services to facilitate
efficient development of applications over MANETs. For MANETs used in

AU3833_C48.fm Page 1313 Monday, August 21, 2006 11:45 AM

1314 ■ Mobile Middleware

rescue and emergency scenarios, we have performed a thorough analysis,
including studies of today’s approach of rescue teams to collaborate in
operations. Through this analysis we have distinguished ten requirements
and goals for middleware services for MANETs, and we have identified
six middleware concerns that together constitute a foundation for a
middleware framework covering the required services for MANETs in
rescue scenarios. The analysis has resulted in the following insights:
Information sharing is a key element for successful collaboration, knowl-
edge management must address distribution and the various data repre-
sentations and models being used, and information and resources have
to be protected with security mechanisms. Furthermore, a decentralized
solution is needed that builds on an asynchronous event-notification/mes-
sage-passing system and that uses sufficient redundancy to reach high
availability.

Valuable sources of requirements can be found within the areas of
mobile distributed systems and ubiquitous and mobile computing. Mascolo
et al. [82] provide a categorization of ad hoc systems and review various
middleware systems designed to support mobility. Modahl et al. [83]
introduce a five-class infrastructure taxonomy based on orthogonal func-
tionalities of the most commonly occurring ubiquitous computing sub-
systems. The taxonomy is comparable to our six concerns but places
registration and discovery (service availability) and computation sharing
(resource sharing) in different taxonomy classes, whereas we (although
definitely recognizing them as different requirements) place both within
the Resource Management Framework. Grace et al. [59] and Sørensen et
al. [84] advocate the importance of providing ad hoc networking middle-
ware that is flexible and adaptable and propose reflection as an appro-
priate technology to accomplish adaptability and self-configuration. Grace
et al. [59] and Mascolo et al. [82] provide a number of references to related
work, although none of them is concerned with rescue scenarios. Plage-
mann et al. [85] discuss application requirements for rescue scenarios and
propose an architecture that consists of five main building blocks: knowl-
edge management, a local and a distributed event notification service,
resource management, and security and privacy management.

Little work can be found that covers the entire problem area, and (with
the exception of Plagemann et al. [85]) they barely (if at all) touch upon
security issues; at most, the need for security is noted but no details are
provided. We believe that security should be addressed in particular, even
if it belongs to any standard set of general critical-system engineering
requirements, because of the particular challenges posed by security in
MANETs. To the extent that knowledge management issues are recognized
in work on middleware platforms for MANETs, they are related to the
presence of context awareness, through context ontologies and reasoning.

AU3833_C48.fm Page 1314 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1315

On the other hand, state-of-the-art information and knowledge manage-
ment solutions provide for sharing and integration of information and
content but do not consider challenges posed by MANETs. Our claim is
that dynamic environments will benefit from combining the middleware
infrastructure provided by MANETs with solutions provided by information
and knowledge management for information sharing.

An alternative approach to realizing some of the concerns can be found
in the Limone coordination model [86]. It is based on Linda tuple spaces [87]
but is tailored toward MANETs. It supports context awareness by being
reactive to tuple space changes and asynchronous communication by
using timeouts, and it can also accomplish message passing and data
sharing through the appropriate use of tuple spaces. We believe, however,
that the notion of tuple spaces, although a middleware issue, is better
implemented on top of a framework as sketched in this chapter, thus
providing application developers with a particular application program-
ming model and environment that can coexist with other computational
models, such as publish–subscribe models and object-oriented models
(e.g., the sentient object programming model [84]).

Acknowledgments
This work was funded by the Norwegian Research Council in the IKT-
2010 Program, Project No. 152929/431, and by a sabbatical year grant
from the Faculty of Mathematics and Natural Sciences, University of Oslo.

References
[1] Stuckenschmidt, H. and van Harmelen, F., Information Sharing on the

Semantic Web, Springer-Verlag, Heidelberg, 2005.
[2] Wache, H. et al., Ontology-based integration of information: a survey of

existing approaches, in Proc. of Int. Joint Conf. on Artificial Intelligence
(IJCAI’01), Workshop on Ontologies and Information Sharing, Seattle, WA,
August 4–10, 2001, pp. 108–117.

[3] Fensel, D. et al., OIL: an ontology infrastructure for the Semantic Web, IEEE
Intelligent Syst., 16(2), 38–45, 2001.

[4] Schulz, S. et al., Towards trust-based knowledge management in mobile
communities, in Agent-Mediated Knowledge Management, Technical Report
SS-03-01, Stanford University, Stanford, CA, 2003.

[5] Informasjonsteknologi for helse og velferd [in Norwegian], http://www.kith.no/.
[6] European Standardization of Health Informatics, http://www.centc251.

org/.
[7] KITH rapport nr R25/02 [in Norwegian], http://www.kith.no/arkiv/rap-

porter/rammeverk-v09-testing-2.pdf.

AU3833_C48.fm Page 1315 Monday, August 21, 2006 11:45 AM

1316 ■ Mobile Middleware

[8] OASIS, http://www.oasis-open.org/.
[9] Schwotzer, T., Context driven spontaneous knowledge exchange, in Proc.

of the First German Workshop on Experience Management (GWEM’02),
Berlin, Germany, 2002, pp. 131–138.

[10] Perich, F. et al., Profile driven data management for pervasive environments,
in Proc. of the 13th Int. Workshop on Database and Expert Systems Applications
(DEXA’02), Aix-en-Provence, France, September 2–6, 2002, pp. 361–370.

[11] Pfoser, D., Pitoura, E., and Tryfona, N., Metadata modeling in a global
computing environment, in Proc. of the 10th ACM Int. Symp. on Advances
in Geographic Information Systems, McLean, VA, 2002, pp. 68–73.

[12] Chen, H., Finin, T., and Joshi, A., An ontology for context-aware pervasive
computing environments, Knowledge Eng. Rev., 18(3), 197–207, 2003.

[13] OASIS news, http://www.oasis-open.org/news/oasis_news_03_29_04.php.
[14] Davies, J., Fensel, D., and Van Harmelen, F., Eds., Towards the Semantic Web:

Ontology-Driven Knowledge Management, John Wiley & Sons, New York, 2003.
[15] Fensel, D. et al., On-to-knowledge: ontology-based knowledge manage-

ment, IEEE Comput., 35(11), 56–59, 2002.
[16] XML and Perl: Now Let’s Start Digging, http://www.informit.com/arti-

cles/article.asp?p=30010.
[17] A Survey of APIs and Techniques for Processing XML, http://www.xml.

com/pub/a/2003/07/09/xmlapis.html.
[18] Schwotzer, T. and Geihs, K., Shark: a system for management, synchroni-

zation and exchange of knowledge in mobile user groups, in Proc. of the 2nd
Int. Conf. on Knowledge Management (I-KNOW’02); J. Universal Comput.
Sci., 8(6), 644–651, 2002.

[19] Schwotzer, T. and Geihs, K., Mobiles verteiltes Wissen: Modellierung, Spe-
icherung und Austausch [in German], Datenbank-Spektrum 5, 30–39, 2003.

[20] Pitoura, E. et al., DBGlobe: a service-oriented P2P system for global com-
puting, ACM SIGMOD Rec., 32(3), 77–82, 2003.

[21] Fontijn, W. and Boncz, P., AmbientDB: P2P data management middleware for
ambient intelligence, in Proc. of the Second IEEE Int. Conf. on Pervasive Com-
puting and Communications (PerCom’04), Workshop on Middleware Support for
Pervasive Computing (PerWare’04), Orlando, FL, March 14, 2004, pp. 203–207.

[22] Boncz, P.A. and Treijtel, C., AmbientDB: Relational Query Processing in a
P2P Network, Technical Report INS-R0306, CWI, Amsterdam, The Nether-
lands, 2003.

[23] Anagnostopoulos, C., Tsounis, A., and Hadjiefthymiades, S., Context aware-
ness in mobile computing environments: a survey, in Proc. of Mobile
eConference, August, 2004.

[24] Xu, C. et al., Cabot: on the ontology for the middleware support of context-
aware pervasive applications, in Proc. of IFIP NPC Workshop on Building
Intelligent Sensor Networks (BISON 2004), Vol. 3222, Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg, 2004, pp. 568–575.

[25] Rios, D. et al., Using ontologies for modeling context-aware services plat-
forms, in Proc. of ACM Conf. on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2003), Workshop on Ontologies to
Complement Software Architectures, Anaheim, CA, October, 2003.

AU3833_C48.fm Page 1316 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1317

[26] Eugster, P. et al., The many faces of publish/subscribe, ACM Comp. Surv.,
35(2), 114–131, 2003.

[27] Rosenblum, D.S. and Wolf, A.L., A design framework for Internet-scale event
observation and notification, in Proc. of the 6th European Software Engi-
neering Conf., Zurich, Switzerland, September 22–25, 1997, pp. 344–360.

[28] Carzaniga, A., Rosenblum, D.S., and Wolf, A.L., Design and evaluation of
a wide-area event notification service, ACM Trans. Comp. Sys., 19(3),
332–383, 2001.

[29] Cugola, G., Nitto, E.D., and Fuggetta, A., The JEDI event-based infrastructure
and its applications to the development of the OPSS WFMS, IEEE Trans.
Software Eng., 27, 827–850, 2001.

[30] Cugola, G. and Nitto, E.D., Using a publish/subscribe middleware to support
mobile computing, in Proc. of the Workshop on Middleware for Mobile
Computing, Heidelberg, Germany, November 16, 2001.

[31] Fiege, L. et al., Dealing with uncertainty in mobile publish/subscribe mid-
dleware, in Proc. of the First Int. Workshop on Middleware for Pervasive
and Ad Hoc Computing (MPAC’03), Rio de Janeiro, Brazil, June, 2003.

[32] Cilia, M. et al., Looking into the past: enhancing mobile publish/subscribe
middleware, in Proc. of Int. Workshop on Distributed Event-Based Systems
(DEBS’03), San Diego, CA, June, 2003, pp. 1–8.

[33] TIBCO, TIB/Rendezvous Concepts, http://www.tibco.com.
[34] Segall, B. et al., Content based routing with Elvin4, in Proc. AUUG2K,

Canberra, Australia, June 28–30, 2000.
[35] Yoneki, E., Pronto: mobile gateway with publish-subscribe paradigm over

wireless networks, Middleware’03 Work in Progress Session, IEEE Distrib-
uted Syst. Online, 4(5), 2003.

[36] Huang, Y. and Garcia-Molina, H., Publish/subscribe in a mobile environment,
in Proc. of the 2nd ACM Int. Workshop on Data Engineering for Wireless
and Mobile Access (MobiDe’01), Santa Barbara, CA, May, 2001, pp. 27–34.

[37] Meier, R. and Cahill, V., Steam: event-based middleware for wireless ad hoc
networks, in Proc. of Int. Workshop on Distributed Event-Based Systems
(DEBS’02), Vienna, Austria, July 2–3, 2002, pp. 639–644.

[38] Musolesi, M., Mascolo C., and Hailes, S., EMMA: epidemic messaging
middleware for ad hoc networks, Pers. Ubiquitous Comput. J., 10(1), 28–36,
2006.

[39] Vollset, E., Ingham, D., and Ezhilchelvan, P., JMS on mobile ad hoc networks,
in Proc. of Personal Wireless Communications (PWC’03), Venice, Italy,
September, 2003, pp. 40–52.

[40] Cugola, G., Picco, G., and Murphy, A., Towards dynamic reconfiguration
of distributed publish-subscribe middleware, in Proc. of the 3rd Int. Work-
shop on Software Engineering and Middleware (SEM’02), Orlando, FL, May
20–21, 2002, pp. 187–202.

[41] Skjelsvik, K.S., Goebel, V., and Plagemann, T., Distributed event notification
service for mobile ad hoc networks, IEEE Distributed Syst. Online, 5(8), 2004.

[42] Phanse, K.S., DaSilva, L.A., and Midkiff, S.F., Design and demonstration of
policy-based management in a multi-hop ad hoc network, Ad Hoc Networks,
3(3), 389–401, 2005.

AU3833_C48.fm Page 1317 Monday, August 21, 2006 11:45 AM

1318 ■ Mobile Middleware

[43] Cardei, I. et al., Resource management for ad hoc wireless networks with
cluster organization, J. Cluster Comput. Internet, 7(1), 91–103, 2004.

[44] Lee, S.-B. et al., INSIGNIA: an IP-based quality of service framework for mobile
ad hoc networks, J. Parallel Distributed Comput., 60(4), 374–406, 2000.

[45] Ahn, K.-M. and Kim, S., Optimal bandwidth allocation for bandwidth
adaptation in wireless multimedia networks, Comput. Operations Res.,
30(13), 1917–1929, 2003.

[46] Pei, G. and Gerla, M., Mobility management for hierarchical wireless net-
works, Mobile Networks Appl. Arch., 6(4), 331–337, 2001.

[47] Chen, K., Shah, S.H., and Nahrstedt, K., Cross-layer design for data acces-
sibility in mobile ad hoc networks, J. Wireless Personal Commun., 21(1),
49–76, 2002.

[48] Li, B. and Wang, K.H., NonStop: continuous multimedia streaming in wire-
less ad hoc networks with node mobility, IEEE J. Selected Areas Commun.,
21(10), 1627–1641, 2003.

[49] Hu, Y.C. and Johnson, D.B., Exploiting MAC layer information in higher
layer protocols in multihop wireless ad hoc networks, in Proc. of the 24th
Int. Conf. on Distributed Computing Systems (ICDCS’04), Tokyo, Japan,
March, 2004, pp. 301–310.

[50] Storey, M., Blair, G., and Friday, A., MARE: resource discovery and config-
uration in ad hoc networks, Mobile Networks Appl., Kluwer Academic Pub-
lishers, 7(5), 377–387, 2002.

[51] Ratsimor, O. et al., Allia: alliance-based service discovery for ad hoc envi-
ronments, in Proc. of the 2nd ACM Mobicom Int. Workshop on Mobile
Commerce (WMC’02), Atlanta, GA, September, 2002, pp. 1–9.

[52] Hara, T., Replica allocation methods in ad hoc networks with data update,
J. Mobile Networks Appl. (MONET), 8(4), 343–354, 2003.

[53] Jung, E., Liu, X.-Y.A., and Gouda, M.G., Key bundles and parcels: secure
communication in many groups, in Proc. of the 5th Int. Workshop on
Networked Group Communications (NGC’03), Vol. 2816, Lecture Notes in
Computer Science, Springer-Verlag, Heidelberg, 2003, pp. 119–130.

[54] Zhou, D. and Wu, J., Survivable multi-level ad hoc group operations, in
Proc. IEEE Int. Conf. on Distributed Computing Systems (ICDCS’03), Provi-
dence, RI, May, 2003, pp. 70–75.

[55] Gutmann, P., The design of a cryptographic security architecture, in Proc.
of the 8th USENIX Security Symp., Washington D.C., August, 1999.

[56] Maes, P., Concepts and experiments in computational reflection, in Proc.
of ACM Conf. on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 1987), Orlando, FL, October 4–8, 1987, pp. 147–155.

[57] Blair, G. S. et al., An architecture for next generation middleware, in Proc.
of IFIP Int. Conf. on Distributed Systems Platforms and Open Distributed
Processing (Middleware’98), The Lake District, England, September, 1998.

[58] Blair, G. S. et al., The design and implementation of Open ORB 2, IEEE
Distributed Syst. Online, 2(6), 2001.

[59] Grace, P., Blair, G.S., and Samuel, S., Interoperating with Services in a Mobile
Environment, Technical Report (MPG-03-01), Lancaster University, Lan-
caster, U.K., 2003.

AU3833_C48.fm Page 1318 Monday, August 21, 2006 11:45 AM

Mobile Middleware for Rescue and Emergency Scenarios ■ 1319

[60] Andersen, A. et al., Reflective middleware and security: OOPP meets Obol,
in Proc. of the 2nd Workshop on Reflective and Adaptive Middleware, Rio
de Janeiro, Brazil, June 17, 2003, pp. 100–104.

[61] Kiczales, G. et al., Aspect-oriented programming, in Proc. of the 11th
European Conf. on Object-Oriented Programming (ECOOP’97), Jyväskylä,
Finland, June, 1997, pp. 220–242.

[62] Kärpijoki, V., Security in ad hoc networks, in Seminars on Network Security,
Telecommunications Software and Multimedia Laboratory, Helsinki Univer-
sity of Technology, Helsinki, Finland, 2000.

[63] Balfanz, D. et al., Talking to strangers: authentication in ad hoc wireless
networks, in Proc. of the 9th Annual Network and Distributed System Secu-
rity Symp. (NDSS’02), San Diego, CA, February 6–8, 2002.

[64] Stajano, F. and Anderson, R., The resurrecting duckling: security issues for
ad hoc wireless networks, in Proc 7th Int. Workshop on Security Protocols,
Vol. 1796, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg,
1999, pp. 172–194.

[65] Capkun, S., Buttyán, L., and Hubaux, J.-P., Self-organized public-key man-
agement for mobile ad hoc networks, IEEE Trans. Mobile Comput., 2(1),
52–64, 2003.

[66] Montenegro, G. and Castelluccia, C., Statistically unique and cryptographi-
cally verifiable (SUCV) identifiers and addresses, in Proc. of the 9th Annual
Network and Distributed System Security Symp. (NDSS’02), San Diego, CA,
February 6–8, 2002.

[67] Diffie, W. and Hellman, M.E., New directions in cryptography, IEEE Trans.
Inform. Theory, 22(6), 644–654, 1976.

[68] Becker, K. and Wille, U., Communication complexity of group key distri-
bution, in Proc. of the 5th ACM Conf. on Computer and Communications
Security (CCS’98), San Francisco, CA, November 3–5, 1998, pp. 1–6.

[69] Bresson, E., Chevassut, O., and Pointcheval, D., Provably authenticated
group Diffie–Hellman key exchange: the dynamic case, in Proc. of the 7th
Int. Conf. on the Theory and Application of Cryptology and Information
Security (ASIACRYPT ’01), Vol. 2248, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 2001, pp. 290–309.

[70] Di Pietro, R., Mancini, L.V., and Jajodia, S., Efficient and secure keys
management for wireless mobile communications, in Proc. of the 2nd ACM
Int. Workshop on Principles of Mobile Computing (POMC’02), Toulouse,
France, October, 2002, pp. 66–73.

[71] Steiner, M., Tsudik, G., and Waidner, M., CLIQUES: a new approach to
group key agreement, in Proc. IEEE Int. Conf. on Distributed Computing
Systems (ICDCS’98), Amsterdam, The Netherlands, May, 1998, pp. 380–387.

[72] Blom, R., An optimal class of symmetric key generation system, in Advances
in Cryptology (Eurocrypt’84), Vol. 209, Lecture Notes in Computer Science,
Springer-Verlag, Heidelberg, 1985, pp. 335–338.

[73] Matsumoto, T. and Imai, H., On the key predistribution systems: a practical
solution to the key distribution problem, in Advances in Cryptology
(CRYPTO’87), Vol. 293, Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, 1988, pp. 185–193.

AU3833_C48.fm Page 1319 Monday, August 21, 2006 11:45 AM

1320 ■ Mobile Middleware

[74] Chan, A.C.-F., Distributed symmetric key management for mobile ad hoc
networks, in Proc. of IEEE INFOCOM’04, Hong Kong, March, 2004.

[75] Puzar, M. et al., SKiMPy: a simple key management protocol for MANETs
in emergency and rescue operations, in Proc. of the 2nd European Workshop
on Security and Privacy in Ad Hoc and Sensor Networks (ESAS 2005), Vol.
3813, Lecture Notes in Computer Science, Springer-Verlag, Heidelberg, 2005,
pp. 14–26.

[76] Hafslund A. et al., Secure extension to the OLSR protocol, in Proc. of OLSR
Interop & Workshop, San Diego, CA, August 6–7, 2004.

[77] Potlapally, N.R. et al., Analyzing the energy consumption of security pro-
tocols, in Proc. of IEEE Int. Symp. on Low Power Electronics and Design,
Long Beach, CA, August, 2003, pp. 30–35.

[78] Aydos, M., Sunar, B., and Koç, Ç.K., An elliptic curve cryptography based
authentication and key agreement protocol for wireless communication, in
Proc. of the 2nd Int. Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, Dallas, TX, October 30, 1998.

[79] Aydos, M., Sunar, B., and Koç, Ç.K., Implementing network security pro-
tocols based on elliptic curve cryptography, in Proc. of the 4th Symp. on
Computer Networks, Instanbul, Turkey, May, 1999, p. 130–139.

[80] Rivest, R.L., Shamir, A., and Adelman, L.M., A method for obtaining digital
signatures and public-key cryptosystems, Commun. ACM, 21(2), 120–126, 1978.

[81] Gupta, V. et al., Performance analysis of elliptic curve cryptography for SSL,
in Proc. of the 8th ACM/IEEE Int. Conf. on Mobile Computing and Networking
(MOBICOM’02), ACM Workshop on Wireless Security (WiSe), Atlanta, GA,
September, 2002, pp. 87–94.

[82] Mascolo, C., Capra, L., and Emmerich, W., Mobile computing middleware,
in Advanced Lectures on Networking, Vol. 2497, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 2002, pp. 20–58.

[83] Modahl, M. et al., Toward a standard ubiquitous computing framework, in
Proc. of the ACM 2nd Workshop on Middleware for Pervasive and Ad Hoc
Computing (MPAC’04), Toronto, Canada, October 18–22, 2004, pp. 135–139.

[84] Sørensen, C.-F. et al., A context-aware middleware for applications in mobile
ad hoc environments, in Proc. of the ACM 2nd Workshop on Middleware
for Pervasive and Ad Hoc Computing (MPAC’04), Toronto, Canada, October
18–22, 2004, pp. 107–110.

[85] Plagemann, T. et al., Middleware services for information sharing in mobile
ad-hoc networks: challenges and approach, in Proc. of IFIP World Computer
Conf., Workshop on Challenges of Mobility, Vol. 169, International Federation
for Information Processing (IFIP), Laxenburg, Austria, 2005, pp. 225–236

[86] Fok, C.-L., Roman, G.-C., and Hackmann, G., A lightweight coordination
middleware for mobile computing, in Proc. of the Sixth Int. Conf. on Coor-
dination Models and Languages, Vol. 2949, Lecture Notes in Computer
Science, Springer-Verlag, Heidelberg, 2004, pp. 135–151.

[87] Gelernter, D., Generative communication in Linda, ACM Trans. Program-
ming Languages Syst., 7(1), 80–112, 1985.

AU3833_C48.fm Page 1320 Monday, August 21, 2006 11:45 AM

1321

Index

A

abstract regions, 1237, 1246
abstraction policy, 1128
abstractions, 988, 1146, 1154

data-centered, 1235–1237
high-level, 134
low-level, 148
mobility-centered, 1237–1240

access
authorization revocation, 783
bridges, 325
latency,

see

 latency: access
location-dependent, 819–847
modes of, 45
multiple, 63–65
networks, 548, 549, 551, 553, 554,

556–558, 559, 560, 565, 866
point name (APN), 867
points, 105, 106, 160, 312, 323, 388,

390, 394, 494, 548, 551, 552,
553, 554, 559, 560, 583, 618,
732, 771, 775, 779, 781, 785,
795, 822, 946, 962, 996, 1066,
1091

probability, 412, 413, 414
router, 994
transparency, 493

access control, 391, 497, 609, 779, 1041,
1297, 1308

database, 932, 933
lease-based, 391

access control lists (ACLs), 304, 326,
402, 403

accounting, 852–872
application domain, for roaming

services, 861
for location-dependent services,

862–868
functional model for, 865
intra-, inter-domain, 858, 863
mobile middleware for, 859–862
QoS-aware, 862
service, 1205
usage-based, 859–861

accuracy degree, 529–533
combined, 531, 532, 533

accuracy-merging functions, 531
ACE ORB, 346
acknowledgments, 317, 1306
ACT, 367, 373
action state, 1147, 1152
actions, 1146–1148, 1149, 1152

in Dynamically Programmable and
Reconfigurable Software, 349

Active Badge, 913
Active Bat system, 913
active contexts, 37
Active Enterprise, 506

AU3833_C49.fm Page 1321 Monday, August 21, 2006 4:25 PM

1322

■

Mobile Middleware

active mobile probabilities, 651
active spaces, 252–253
ActiveCast, 630
ActiveProxies, 319
ActiveSync

®

, 208, 212, 216, 220, 690
actor mobility, 29

ad hoc

 communication, 40
approaches to, 77–80
middleware for, 161–162
mobile, issues with, 75–98
sample scenario, 85–98

ad hoc

 networks, 18, 78–80, 103–122;

see also

 mobile

ad hoc

 networks
architectures for, 181–183

evaluation of, 201
characteristics of, 178–179
name resolution, and, 172–188
proactive, 185
reactive

name resolution in, 184–188
service discovery in, 200

service discovery in, 188–204

Ad Hoc

 On-Demand Distance Vector
(AODV), 179, 180, 184, 535, 536,
537, 579, 583, 584, 623, 1235, 1279

ad hoc

 protocols, 19
adaptability, 42, 48, 490, 700, 703,

721–722, 723, 1314
agents, 84, 85
code, 441–461
content,

see

 content adaptation
coordinated, 357–359
dynamic, 363–382
functionality,

see

 functionality
adaptation

helpers, 1156
levels of, 1051
manager, 372
middleware, 242–244, 248–250
mobile code, and, 296
policies supporting, 921–924
policy, 373
proxy-based, 311–334
quality of service, 976, 977, 982, 984

unified cross-layer platform for,
987–994

reactive vs. proactive, 960–962

service, 960
service, dynamic, 943
service to context, 792–793

adaptation, 29, 34, 153, 499, 959, 993,
1049, 1114;

see also

 middleware
Adaptation Coordinator, 1158
adapters, 328

data link, 555
development of, 328–329
execution of, 330–331
handoff, 552, 559
loading of, 330–331
repositories of, 329, 330
selection of, 329

Adaptive and Context-Aware Services
(ACAS), 1107, 1109, 1113, 1118,
1132–1133

field trial, 1131–1132
adaptive cruise control (ACC), 1266
adaptive proximity marketing, 925
Adaptive Reliability Manager, 1157,

1158, 1160
Adaptive Server Anywhere (ASA),

see

Anywhere™

adaptive services, 1105–1134
Adaptive Wireless Service and

Infrastructure (AWSI), 1107
ADASE, 1266
address of record (AoR), 480
address resolution, 192
addressing, associative, 234
administration control database, 686
administrator, of agent-based system,

774, 780, 781, 782, 783
admission control, 940, 949, 954, 975,

995
distributed call (DCAC), 650–651
local, 648

advanced driver assistance system
(ADAS), 1264, 1266, 1267

Advanced Mobile Phone System
(AMPS), 553

advertisements, 468, 529, 630, 631
cache of, 529, 530
context request, 1073, 1074
service request, 1075, 1078
unsolicited, 925, 927

AU3833_C49.fm Page 1322 Monday, August 21, 2006 4:25 PM

Index

■

1323

advice, 369
agent cloning, 85
Agent Communication Language

(ACL), 82, 87, 88, 93
Agent Message Transport (AMT), 628
agents, 1078;

see also

 individual types
of agents

adaptability, 84, 85
administrator, 774
back-to-back user,

see

 back-to-back
user agent

broker agent, 608
client, 691, 1051

MobiPADS, 1068
connector, 775, 781
context provider, 888
device, 1093
directory, 189, 190, 193, 392, 393,

503
foreign,

see

 foreign agent
forwarding, 625
home,

see

 home agent
intelligent,

see

 intelligent agent
location privacy, and, 773, 774
lookup, 775
manager, 775, 779
mapping, 1242
message, 692
migratory, 315
mobile,

see

 mobile agents
mobility, 604
mobility support, 629
multicast, 629
personal, 90, 91
platform, 83
proxy,

see

 proxy: agent
quality of service, 984–985
remembrance, 1175
rover, 775, 779, 780, 782, 783
server, 691, 1051

MobiPADS, 1068
service,

see

 service agent
service aware, 1079–1080

software, 294, 1053–1054, 1073, 1179

state, 1242
technology, 82–85
user,

see

 user agents

aggregation, 658, 918–921
aggressive router selection (ARS), 617
Agile Operating Environment (AOE),

1155–1160, 1164, 1165
Agilla, 1241, 1242–1243, 1244, 1246,

1247
aging daemon, 413
aging window, 674
air interface, 554, 559, 564, 565
algorithm robustness, 763
ALICE,

see

 Architecture for Location-
Independent CORBA
Environments

all-IP networks, 1022–1031, 1033
all-optical network (AON), 9
Allia, 1309
Alliance Service Platform, OSGi, 459
ALOHA, 64
always-best-connected (ABC), 965,

1209, 1211–1212, 1214
ambient awareness, 42, 47–48
ambient information, types of, 47–48
ambient profile, 790–791
AmbientDB, 1302
AmbieSense, 914
amnesic terminals, 415
amnestic terminals, 678
analog-to-digital converters (ADCs),

561, 565
annealing, simulated, 753–754
announcements, 91

cooperative objects, and, 43–44
multicast, 632
scope of, 201, 202, 203
service coordinator, 199, 201, 202,

203
anonymity, 871
anonymization, 933
Anonymizer proxy, 1128–1129
anonymous ID, 771
antenna systems, multiple, 60–62
antennas, smart, 61–62
Anthill, 247
anti-entropy sessions, 675
antilock brake system (ABS), 1260
ants, 246, 247
Anywhere™, 664, 692–694

AU3833_C49.fm Page 1323 Monday, August 21, 2006 4:25 PM

1324

■

Mobile Middleware

AOE,

see

 Agile Operating Environment
AOP,

see

 aspect-oriented programming
AppleTalk

®

, 189, 192
applets, 30, 321
application

adaptation, 1051
bundles, 1094, 1097, 1100
development tools, 1103
domain accounting, 861
layer, 317, 394, 523, 524, 538, 540,

561, 574, 575, 580, 601, 603,
605, 607, 608, 609, 610, 620,
626, 631, 659, 773, 784, 785,
854, 971, 994, 1109, 1190, 1211

level, 152, 263, 314, 399, 456, 504,
524, 861, 862, 941, 975, 1110,
1160, 1214

logic, 1206
migration, 323–324
network, 972, 986–987, 996
profile, 375
programming interfaces (APIs), 39,

43, 231, 238, 326, 329, 352, 353,
379, 488, 490, 498, 565, 701,
702, 705, 706, 793, 798, 799,
809, 811, 812, 815, 816, 817,
867, 890, 1004, 1010–1021,
1033, 1109, 1112, 1115, 1154,
1220

proxy servers, 972–973
server, 866, 984, 1022, 1028, 1029,

1091
profiles, 1025
SIP, 1024

application/service providers (ASPs),
794, 796, 797, 799, 800, 803, 804,
806, 812, 865, 866

application-specific resolvers (ASRs),
671

app-synchronized, 1162
AQuAM, 862
architectural constraints, 344, 345
architecture descriptors, 1149–1153
Architecture for Location-Independent

CORBA Environments (ALICE),
340, 364, 376, 378–381, 477–478,
484, 702, 1066

architecture metamodel, 344, 345
architectures

agent-based, 774–775, 971
Agile Operating Environment,

1156–1158
automobile, 1257–1259
cache, 411–414
CAMEL, 1008
CARE, 917–918
centralized, 190, 770
child mobile network, 563
client–server, 11, 81, 221;

see also

client–server model

cooperative object, 43
coordinator-based, 182
Daedalus/BARWAN, 551
defense network, 1273
dispatcher, distributed, 259
distributed, 182, 183, 186, 190, 198,

200, 201–204, 248, 313, 770
distributed system, 146;

see also

distributed systems

facet, 453–454
for resolving host and service names

in

ad hoc

 networks, 181–183
gaming, 1218–1219
generic user profile, 794
Harvard, 1240
hybrid, 183, 190

service location, 198, 199–204
intermediate node caching, 183
IP Multimedia Subsystem (IMS),

1023–1026
Lancaster Context, 354
location-dependent service

middleware, 827–829
location privacy, 772–775
mediation-based for resource

discovery, 942–945
middleware-level proxy, 324
mobile streaming, 1196
Mobiware, extended, 558
model-driven, 503, 504, 509
multi-agent, 775
naming services, 173–176
online entertainment, 1190,

1204–1206

AU3833_C49.fm Page 1324 Monday, August 21, 2006 4:25 PM

Index

■

1325

Open Service Access, 866, 867,
1014;

see also

 Open Service
Access

predictive, 80
proxy-based, 312, 313–315, 321,

326, 331, 1219;

see also

 proxy-
based adaptation

classification of, 314–316
proxy-based security, 326
publish–subscribe, 262;

see also

publish–subscribe
reflective, 343–347
replication, 702–706
Semantic Web, 892;

see also

Semantic Web

service, 1109–1118
service location, 198

evaluation of, 201
service-coordinator-based, 198, 201
service-oriented, 502–503, 1060
situation-aware, 789
SOMA, 860
Traffic Flow Measurement, 863
wireless mobile data

communication, 411–414
area coverage, 56–57
artificial intelligence (AI), 295, 297, 309,

657, 1047, 1062, 1079, 1201, 1202,
1204, 1206

aspect-oriented programming (AOP),
341, 355–357, 367, 369–373, 459,
1311

invasive vs. noninvasive, 355–357
aspect weaver, 459
AspectJ, 369, 371, 373, 374
aspects, 355, 369, 370, 372, 374
assignment statements, 556

Associativity-Based Routing (ABR), 1279

Asymmetrical Digital Subscriber Line
(ADSL), 9, 25

asynchronous
code, 32
communication, 489, 494–495, 499,

502, 1315
feedback, 996
invalidation, 677
replication, 667

scalable cache consistency, 416–431
stateful algorithm, 416, 417, 420,

423, 425–431, 436
stateful caching, 322–323

Asynchronous Transfer Mode (ATM),
558

at least once, 151, 1304
at most once, 151
AT&T Mobile Network (AMN™), 321
atomicity, consistency, isolation, and

durability (ACID), 667, 702

attractors, technology evolution and, 19

attribute-based naming, 389, 396, 398
attribute–value pairs, 400, 402, 854,

856, 908, 910, 919
attributes, 389, 906, 919, 920–921, 1146,

1149, 1151, 1234
dynamic, 400

Aura, 1108
AutevoSpaces, 245
authentication, 173, 200, 309, 312, 326,

356, 357, 391, 496, 522, 524, 607,
609, 611, 613, 622, 771, 774, 779,
802, 816, 869, 872, 891, 1041,
1128, 1310, 1312, 1313

authentication and authorization, 324,
327, 869

authentication, authorization, and
accounting (AAA), 505, 601, 602,
607, 608, 609, 610, 611, 613, 854,
855, 856, 864, 994, 1022, 1023,
1025

Authentication, Authorization, and
Accounting (AAA) Working
Group, 853, 855, 871

Authentication Header (AH), 505
authentication server, 854
authoritative DNS server, 176
authorization, 400, 401, 402, 404, 783,

1016, 1128
context-sensitive, 401

authorized-anonymous-ID, 771, 772,
775, 779–784, 785

phases of, 779
autoconfiguration, 325–326, 604, 610
automated teller machine (ATM), 306
automatic runtime adaptation, 137

AU3833_C49.fm Page 1325 Monday, August 21, 2006 4:25 PM

1326

■

Mobile Middleware

automotive middleware, 1255–1267
autonomic computing, 359
autonomous migration, of code, 288
autonomous system, 11, 14, 15, 178

requirements for, 1143–1144,
1153–1154

AutoSec, 1244–1245
availability, security and, 869, 1041
AvantGo, 131
awake state, 417, 419, 420

B

back-to-back user agent (B2BUA),
620–621, 1028

bandwidth
availability, 491, 1195, 1198, 1199,

1207, 1208, 1215, 1216–1217,
1218, 1219, 1272, 1273–1274,
1285

broker, 995, 996
estimation, 910–911
limited, 30, 32, 71, 82, 118, 126, 153,

163, 179, 213, 242, 322, 410,
664, 707, 870, 941, 952, 973,
1065, 1199, 1207, 1280, 1285

management, 1309
profile, 1273, 1275, 1277

barcode scanners, 1175
barcode shopping, 1140
Barker sequences, 67
base level, 342, 355
base station, 61, 65, 66, 105, 312, 320,

411, 414, 417, 443, 549, 565, 602,
640, 654, 657, 658, 732, 737, 866,
870, 942, 976, 1237

Bat location system, 889, 894–895, 913
battery, 19, 29, 48, 85, 104, 179, 214,

238, 239, 322, 905, 906, 940, 962,
1052, 1132, 1173, 1183, 1229, 1312

energy, 940, 961, 962–963, 1173
life, 411, 642, 666, 904, 963
power, 184, 214, 263, 322, 341, 353,

354, 410, 411, 416, 431, 664,
666, 881, 962, 963, 1042, 1065,
1078, 1155, 1173, 1183, 1280,
1292, 1313

smart, 152

battlefield analysis, 835
battlefield communications, 76, 112,

113, 114–116, 179, 1175,
1269–1288

Bayou, 323, 675–676, 702
beacon producer, 556
beaconing systems, handoff control,

553, 556
beacons, 468
beans, 1094
Belief, Goal, and Plan Maintenance

System (BGP-MS), 909
best effort, 151
billing, 852, 853–857, 860, 861, 864,

865, 867
binary phase-shift keying (BPSK), 62, 63
binary space partitioning (BSP), 845
binding, 173, 174, 175, 176, 181, 182,

183, 184, 192, 194, 196, 197, 200,
204, 298, 467, 478, 552, 555, 556,
559, 565, 601, 602, 604, 608, 609,
610, 613, 614, 616, 617, 620, 623,
827, 828, 830, 1159

dynamic, 292, 449
model, 550, 565
service, 200
static, 292

bit-error rates (BERs), 642
bit-sequence algorithm, 415, 678
bit vector, 403
Bitemporal Conceptual Data Model

(BCDM), 825
BitTorrent, 116, 117, 118
BlackBerry™, 214, 882, 893, 907
blackboard, 303, 304
blind signature, 771, 775–778, 783, 785

protocol, 777–778
blindly negative trust, 532
blindly positive trust, 532
blocking, 232
Blocks Extensible Exchange Protocol

(BEEP), 857
Bloom filter, 403
Bluetooth

®

, 17, 69, 80, 110, 113, 208,
504, 570, 666, 784, 882, 906, 912,
913, 965, 1121, 1122, 1123, 1124,
1129, 1176, 1180, 1258, 1261

AU3833_C49.fm Page 1326 Monday, August 21, 2006 4:25 PM

Index

■

1327

Bluetooth

®

 Human Interface Devices
(BT-HID), 1180

body area networks (BANs), 69, 853
boot server, 574
bootstrapping, 119, 468, 476, 582, 1142,

1234, 1295, 1296, 1312
Border Gateway Control Function

(BGCF), 866, 867, 1026
Border Gateway Multicast Protocol

(BGMP), 628
Border Gateway Protocol (BGP), 509
boundary cells, 764
bounds checks, 990
breakpoints, 369, 370
broadcast, 820

channel, 677, 680
delivery, 676, 677
disks, 412, 413
frequency, 412
multiversion, 680
of attributes, 1234
of signatures, 678
reading from, 679, 680–681

broker agent, 608
brokers, 259, 260–262, 264, 266, 267,

268, 269, 270, 271, 273, 274, 275,
276, 277, 278, 279, 280, 293, 393,
490, 608, 958, 959

bandwidth, 995, 996
event, 499
failure of, 266, 269, 278
message, 393
middleware acting as, 390
mobile, 265–275
Salutation Managers as, 392
service, 393, 499
spectrum, 561

BrowserUA, 906
buffering, 1196, 1285
bundles, 459, 1093, 1094–1095, 1096,

1097, 1099, 1100, 1103, 1180
Business Process Execution Language

(BPEL), 1047
Business Process Execution Language

for Web Services (BPEL4WS),
1049, 1154–1155

business support system (BSS), 856

C

cache
advertisement, 529, 530
asynchronous stateful, 322–323
attribute, 89
binding, 173, 174, 175, 181, 183,

184, 190, 200
broker, 269, 273, 274, 275
client-side, 322
Coda file system, 224
consistency, 314, 321–323, 409–437,

677–678
mobile, schemes for, 414–416

content, 986
data, 98, 669, 314, 317, 321–323,

409–437, 669, 676, 1233, 1235,
1245

device identities, 522
directory agent as, 190
facet, 454, 455, 456, 457
gateway, 119
hit probability, 421, 422, 423, 424
home location (HLC), 323
intermediate node, 183, 186
invalidation, 322, 323, 413, 417,

677–679
cost, 413
scheme, 411

replacement algorithm, 412, 413
miss, 673, 674
mobile host, 669, 670, 672, 673, 676
multicast packet, 197
peer-to-peer, 1309
policy definitions, 1128
Pong, 575–577
predictive, 323
proxy, 87, 196, 312, 322, 434, 454,

456, 944, 1305
facets and, 454, 455, 456, 457

push-based, 224
quasi-, 679
-related consistency, 673–674
replacement, 412–413
routing, 560
server-side, 322

code unit, 1158
server stream, 110

AU3833_C49.fm Page 1327 Monday, August 21, 2006 4:25 PM

1328

■

Mobile Middleware

cache (cont.)
signaling system modules, 558–559,

560–561, 564
SSDP client, 196
stream, multimedia, 434
trust degree, 534
user update, 224
Web, 412, 572, 574, 1158
XML file, 88, 93

Caching Coordinator Entity (CCE), 174,
175–176, 181, 182, 183, 186, 198

affiliated, 182
CALAIS, 1063
call admission control, 642–644, 651,

659
classification of, 651–653
deterministic vs. stochastic, 643–644

call arrivals, 742, 743, 762
call blocking, 641, 644

probability, 641, 643
call control, 1016
call delivery, 732, 1129–1130
call diversion, automatic, 1130
call dropping probability, 641, 643,

644, 645, 651
call model (CM), 1006
Call Programming Language (CPL),

1026
call queuing, 644–645
Call Session Control Function, 866, 867
Call State Control Function, 1023, 1025,

1029
CAMEL, 396
CAMEL Application Protocol (CAP),

1006, 1008, 1009
CAMEL Service Environment (CSE),

1008, 1028
capability manager, 402
Capability Profiler, 1158
CapProbe, 109–111
capsules, 1243
care-of address, 470, 471, 552, 560, 604,

619
CARISMA,

see

 Context-Aware
Reflective Middleware System for
Mobile Applications

CARMEN, 929

Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA), 64

CarTorrent, 117–121
causally connected self-representation

(CCSR), 342
CC/PP,

see

 Composite
Capability/Preference Profiles

CDMA,

see

 code-division multiple
access

CDMA1XEVDO, 615
CDMA1XRTT, 614, 615
CDPD,

see

 cellular digital packet data
cell handoff, 602
cell ID, 913, 914
cell sizes, 65
cellphones, 6, 12, 13, 17, 20, 211, 235,

470, 520, 835, 879, 880–882, 884,
1092

2G standards for, 65
3G standards for, 66
as terminals, 17
as wearable computers, 1170–1172
middleware for, 349, 1137–1167

mobile, 1143
next-generation, 1140–1143
platform openness, and, 1141–1142
resource availability, 1142
sales of, 12
sensors in, 24
shared service access, and,

1142–1143
storage in, 1178
voice-based dialing, 1182

cells, 640–652
types of, 762

cellular digital packet data (CDPD), 614
Cellular IP, 551, 552, 554, 559–560, 604,

608, 618, 626, 976, 987
cellular systems, 65–72
centralized architecture, 190
centralized systems, 146, 151
certain state, 417
certifiability, global, 672
certificate, 305
certification, 305
certification authority, 305, 309, 327,

521

AU3833_C49.fm Page 1328 Monday, August 21, 2006 4:25 PM

Index

■

1329

certification report, 679
Challenge Handshake Authentication

Protocol (CHAP), 854
change data table, 686
channel, 259

borrowing, 644
locking, 644
quality measurements, 553

Characteristic Polynomial Interpolation
Synchronization (CPISync),
219–220

charging, 852, 853–857, 861, 865–868
collection functionality (CCF), 865,

867, 868
data record, 865, 867
gateway, 867
gateway functionality (CGF), 865,

867, 868
profile, 791
protocols for, 868

checkpointing, 328
checks, 990, 996, 1097
child wireless service provider,

562–563, 566
chips, 64
Chisel, 364, 376–378, 379–381
Chord, 572
chromosomes, 755
chunks, 119, 300, 674, 709, 710

repository of, 710–711
circuit-switched domain, 640, 645, 866,

867
circuit-switched systems, 64, 66, 1023
clearinghouses, 865
clear-to-send (CTS), 535
client query,

see

 query: client
client–server model, 40, 118, 147, 179,

197, 214–215, 292–294, 297, 378,
443, 444, 468, 473, 476, 482, 492,
497, 506, 520–521, 674, 676, 691,
692, 702, 811, 820, 854, 855, 950,
1051, 1066, 1068, 1091, 1096,
1113, 1142, 1143, 1156, 1157,
1163, 1165, 1205, 1218, 1280

requests, extensions and, 357
vs. agent models, 82, 85
wine purchasing example, 293

client-side caching, 322
client-side proxy, 315, 321, 322, 330

Venus, 323
client stack, 1092, 1101
client stubs, 475, 478
client-synchronized, 1162
client updates, 680
clients, 259, 260, 264, 276, 279, 281,

293, 388, 389, 390
AOE, 1156, 1157
cache capability of, 676
consistency, and, 674
invalidation reports, and, 677–679
mobile,

see

 mobile clients
mobile enterprise, 1092–1093
pull vs. server push, 214–215, 820
replica, 1161, 1162, 1165
roaming, 599–634
sleeper, 678
SSDP, 196
thin, 827
ultimate thin, 442–443
virtual, 1305
workaholic, 678

cloning, process, 289
Clusterhead Gateway Switch Routing

(CGSR), 1279
clusters, 536, 538, 649, 670, 709, 722,

1273
shadow, 651, 652
static vs. dynamic, 651

coarse wavelength-division
multiplexing (C-WDM), 8, 9

Cocoon, 915
Coda file system, 224–225, 315, 323,

354, 669, 671, 674, 702, 712
code

adaptation, 441–461
asynchronous, 32
cloning, 297
convolutional, 63
dynamically generated, 307
intermediate, 291
interpreted, 291
low-density parity check, 63
machine vs. interpreted, 291
migration, 288, 290, 302

AU3833_C49.fm Page 1329 Monday, August 21, 2006 4:25 PM

1330

■

Mobile Middleware

code (cont.)
migration, types of, 288
mobile,

see

 mobile code
mobility, 28, 30–33, 287–310

application-assisted, 32
transparent, 32

native machine, 291
on demand, 294, 441–461
program, 31
segment, facet, 453
source, 291
tangled, 355
transportable, 555
turbo, 63

Code Collection Project, 458
code-division multiple access (CDMA),

63, 64, 67, 618, 1270
cognitive radio, 70–72
collaboration, 302, 303
collaborative queries, 525–527
collections, 1146, 1148, 1150
collective protocol, 22
collector, 715, 856
combined path and server selection

(CPSS), 950
command statements, 556
command, control, communications,

computer, intelligence,
surveillance, and reconnaissance
(C4ISR), 1270, 1271, 1272

commercial application servers, 915–916

Common Data Representation (CDR),
475

Common Gateway Interface (CGI),
621, 1026, 1028

common interaction abstraction, 352
Common Management Information

Protocol (CMIP), 854
Common Object Request Broker

Architecture (CORBA™), 148, 314,
324, 340, 346, 348, 365, 367,
475–477, 478, 479, 484, 491, 497,
498, 504, 506, 509, 555, 702, 860,
941, 1002, 1004, 1011, 1013, 1015,
1017, 1066, 1075

Common Open Policy Service (COPS),
972, 986, 1027, 1028

common policy repository (CPR), 991,
994

Common Warehouse Metamodel
(CWM), 505

communication

ad hoc

,

see ad hoc

 communication
asymmetric, 666

in wireless systems, 410
asynchronous, 489, 494–495, 499,

502, 1315
complexity of, 214, 220
direct, 303, 304
event-based, 500–502
evolution of, 8–10
extent, 240–242, 244–247
indirect, 303, 304
infrastructure, 1297, 1303–1306
level, proxies and, 314
local, 303
models, broadcast vs. point-to-

point, 413
opportunistic, 1130–1131
peer-to-peer, 11
remote, 303
space, 34–36, 41, 47
subsystem, 1206
synchronous, 489, 1303
transparency, 494
wireless, 506–507

compact storage, 524
compacts, 672
complementary code keying (CCK), 67
complete refresh, 689
complexity, 137
component, 348, 349, 350, 367, 369,

449, 451, 459, 565, 906, 919, 988,
1073, 1074, 1076, 1093, 1095,
1096, 1231, 1232, 1233

-based middleware, 445, 458
configurators, 346
connecting, 1190
defined, 344
framework, 344, 345
framework model, 345
graph, 344, 345
library, software, 1021
trees, 1230

AU3833_C49.fm Page 1330 Monday, August 21, 2006 4:25 PM

Index

■

1331

componentization, 127, 133
composer, 141
Composite Capability/Preference

Profiles (CC/PP), 504, 896,
906–908, 919, 920, 929, 932

-based architectures, 914–915
Content Customization Module, 915

Composite Service Specification
Language (CSSL), 1047

compression, 709, 720
lossy, 319

computational environments, 30–33
computational reflection, 156, 1145
computational unit, 290–291, 292, 302
computers, molecular, 7
Concurrent Versions System (CVS), 210
condition–action model, adaptive, 374
conditional granting, 933
Conduit, 128
cone of silence, 304
confidentiality, 870
configurability, 344, 348, 349, 1144
configurable proxy, 330, 331
configuration, 46, 607, 610, 622, 1230

cooperative objects and, 42
management, 504
methods, 552, 559

conflict resolution, 353, 375, 683–684,
687, 689, 691, 693, 694, 917,
922–923, 928, 1052, 1158, 1166,
1293

on demand, 323
profile aggregation, and, 920–921

conflict triggers, 693
conflicts, 671, 680, 681, 683, 686, 691,

694, 903, 915, 1052
classification of, 222
data synchronization, 211–212
types of, 689, 922–923

conjunctive normal form (CNF), 990
Connected Services Framework,

1019–1020, 1033
connecting component, 1190
connection-based synchronization, 668
Connection Device Configuration, 512
Connection Limited Device

Configuration, 512

connection management, 157–158
connection protocol, 22
connection table, 575

ConnectionManager

 component,
277

connectivity, 341
challenges, to mobility, 30
layer, 1091
in infrastructure-based networks,

547–566;

see also

 seamless
connectivity

intermittent, 297
weak, 672–676

connector agent, 775, 781
consistency

asynchronous scalable cache,
416–431

cache, 314, 321–323, 409–437,
677–678

cache-related, 673–679
checks, 990
clients, and, 674
data, 209
Hood, and, 1234
hybrid cache, 414
in hybrid environments, 676–681
in mobile computing, 665–668

in mobile database systems, 681–694

latest value model, of, 679
maintaining, 667–668
management, 312, 314, 321–323,

664, 694
pessimistic vs. optimistic, 670–671,

679–680
-related policies, 722
seamless, 663–695
semantic coherency, 680
stateful cache, 414, 416
stateless cache, 414–415
support, in commercial systems,

681–694
transaction-oriented, 674–676,

679–681
update, 680–681
weak connectivity, and, 672–676
weak vs. strong, 676

consistent state, 667

AU3833_C49.fm Page 1331 Monday, August 21, 2006 4:25 PM

1332

■

Mobile Middleware

constant bit rate (CBR), 615

Container

 meta objects, 373, 374
container, 446, 447, 1154, 1155

content, 109–111, 1190, 1191, 1196, 1198

-addressable network, 572
-based publish–subscribe, 257–282
-based replication, 710
-based routing, 251, 1236
creation, 327
distribution, 627–633
distribution network, 972, 983
negotiation, 320
provider charging function, 868
selection, 915
semantic, 318
services network, 972, 995
VANET delivery of, 117–118

content adaptation, 318–321, 328, 331,
1208

distillation/refinement, 318–319
intelligent filtering, 320
summarization, 319–320
transcoding, 320–321

contents, application, 446
context, 36, 76, 80–81, 135, 353, 397,

461, 902, 1061–1074, 1107,
1176–1177, 1182–1183, 1242,
1262, 1300–1301

acquisition, 884–885, 895, 1063, 1067,
1072, 1073, 1080, 1110, 1128

active, 37
adaptation, 495–496
-aware call delivery, 1129–1130
-aware computing, 835, 894, 929,

1062, 1063, 1078
-aware mobile audio, 1131
-aware mobile services, 893–894

platform for, 890–892
-aware service discovery, 1120–1127
awareness,

see

 context awareness
-based reconfigurations, 353, 354
-based storage, 885
changes in, 340, 364
collection, adaptive, 942, 945–949
data, 127, 917, 1107, 1301

management of, 886
source-independent, 140–141

defined, 789, 878–879, 1061
dependence, 390
description language, 1113–1117
device, 880–881
discovery, 895, 1063, 1067, 1073,

1074
discovery protocol (R-CDP), 1073,

1074
environment, 882
functionality adaptation, and, 448
in mobile environments, 152
inference, 887
information,

see

 context information
label, 1237–1238
levels of, 1044
management,

see

 context
management

manager,

see

 context manager
markup language, 892
middleware, 1105–1134
modeling, 504–505, 1302
monitoring, 330, 887
prediction, 1177
provider lookup service, 1073
quality of service, 985
reasoning, 887, 895
reasoning engine, 880, 893, 894
refinement, 1114, 1115, 1118, 1133
registrar servers (CRSs), 1121,

1127–1128
relation, 1118
repository, 944, 946, 1115,

1117–1118, 1119, 1120
requests, 1073
rescue, 1293
resource discovery, and, 942
resource-oriented, 1308
role of, 1042–1044
selection, 454
sensing, 1112–1113
-sensitive authorization, 401
-sensitive name, 397, 398, 399
-sensitive query, 397
-sensitive service deployment, 1042
sensitivity, 450
servers, 1115–1117
service composition, 1037–1055

AU3833_C49.fm Page 1332 Monday, August 21, 2006 4:25 PM

Index

■

1333

services, 930, 1112, 1115
sockets, 1131
storage, 885
subscriptions, 1119
synthesizers, 1074
tags, 914
transparency, 155, 494
trust information, and, 523
types of, 880–883, 1048, 1049
user, 881–882
widgets, 1108
zone, 803, 805, 806, 807, 808, 810,

811, 814, 815, 817
Context Aggregation and REasoning

(CARE), 916–928
Context-Aware Reflective Middleware

System for Mobile Applications
(CARISMA), 347, 352–354, 375,
1052

Context-Aware Service Allocator
(CASA), 1125, 1126, 1134

context awareness, 80, 91, 127, 134,
135, 136, 156, 162, 231, 234, 236,
237, 240, 241, 243, 244, 252, 263,
280–282, 331, 380, 381, 397–399,
456, 494, 495, 524, 788–793,
796–811, 877–897, 902, 1052,
1053, 1063, 1069, 1077, 1080,
1107, 1108, 1110, 1114, 1128,
1130, 1191, 1228, 1302, 1304,
1314, 1315

enabling, 888–893
mobile service platform for, 890–892
reference model for, 883–888
service, 1049

Context Broker Architecture (CoBrA),
929

Context Data eXchange Protocol
(CDXP), 1112, 1113

context information, 1115, 1124, 1134,
1239, 1304

managing, 1127–1129
network, 1109–1112
processing, 1118–1120

context management, 155–157, 705,
721, 1072–1074, 1109, 1296, 1297,
1298–1302, 1311

-enabled entities (CMEs), 1110–1112,
1114, 1115–1118, 1121, 1128

framework for, 1299, 1301
context manager, 380, 722, 884, 886,

888–890, 892, 1067, 1073, 1109,
1112, 1113, 1114–1115, 1118, 1301

discovery, 1109
Context Toolkit, 1063, 1065, 1108, 1177
contextual attributes, 1077
contextware, 883, 887, 893
continuous queries, 831
continuous service, to roaming clients,

599–634
contract, functionality, 446–447
control matrix, 681
control plane, of QoS framework, 982,

984–986, 995
control point, 391, 393
control segment, GPS, 826
controlled connection protocol, for

location privacy, 779, 781–784
controller, 129, 130, 131, 474, 482, 484

base station, 640
dashboard, 1257, 1260
distributed, 554
network, 652
platform-independent, 138–139
service, 556

controller area network (CAN), 501,
1260

convolutional codes, 63
CoolTown, 1063, 1065
cooperative objects, 40–42, 43–46

event notification, and, 46
service configuration, and, 46
service discovery, and, 43–45
service interfaces, 41–42
service monitoring, and, 45–46
service reservation, and, 45
system architecture, 43

coordination primitives, 231
coordination, tuple-based, 229–253

mobility, and, 232–236
Coordinator announcement scope,

182, 183
copies, weak vs. strict, 675
copy sync, 218, 221, 225

AU3833_C49.fm Page 1333 Monday, August 21, 2006 4:25 PM

1334

■

Mobile Middleware

CORBA™,

see

 Common Object Request
Broker Architecture

CORBA™ Component Model, 498
CORBA™ Notification Service, 498
Core Base Tree, 628

Core

 component, 276–277
core network, 866
Correlate, 367–368, 373
corresponding host, 1113
corresponding node, 471
CORTEX, 1051, 1052
CPISync, 219–220, 225
credentials, 403, 404
Cricket, 894, 913
cross-layer

information exchange, 993–994
information processing, 538–539

cross-layer adaptation platform (CLAP),
987–994, 996

cross-layer tag, 993–994
cross-layering, 571, 587–595, 596
CrossROAD, 590–595, 596
cruise control, 1264, 1266
cryptography, 151, 777, 785, 869, 1312

asymmetric, 1313
elliptic curve, 1313

cryptosystems, 774
symmetric, 780

currency, 680
current time, 824–825
Customer Relationship Management

(CRM), 910, 925
customization, 116, 314, 321, 328, 329,

330, 333, 343, 356, 368, 444, 552,
553, 554, 555, 793, 799, 804–808,
817, 914, 929, 948, 1052, 1141,
1144, 1145, 1165

Customized Logic for Mobile Enhanced
Logic (CAMEL), 1002, 1006–1010,
1028–1029, 1031

phases of, 1009

D

Daedalus/BARWAN architecture, 551
dangling references, 714
DARPA Agent Markup Language

(DAML), 1302

dashboard controller, 1257, 1260
data

aggregation, 870
analog to digital, 8
assessments, by devices, 524
broadcasting, push- vs. pull-based,

410
cache, 98, 669, 314, 317, 321–323,

409–437, 669, 676, 1233, 1235,
1245

utility-based, 431–435
capturing, 10–11
-centered abstractions, 1235–1237
compression, 318, 321
context, 127, 140–141, 1107
cube, 395–396
delivery

pull- vs. push-based, 676
push-based, 677–680

dictionary management, 1299, 1300
graphs, 701, 702, 706
hoarding,

see

 hoarding
identifier, 572
inconsistency/consistency, 209
instance, 829, 830, 831, 839, 844, 845
invalidation, 413
item, 209, 411, 412, 413, 414, 415,

416, 417, 419, 420, 423, 424,
668, 669, 670, 676, 677, 678,
679, 680, 681, 829

link layer, 507, 1211
programmability of, 554–555, 564

logging, 1178–1179
management, 496, 1297, 1298, 1302,

1311
framework for, 1307

master, 672
multimedia, 1269–1288
mutable/immutable, 1161, 1162
object, 318, 322, 323, 418, 420–431,

500, 668, 1184
open, 1141–1142
ownership, master vs. group, 668
packet, 180, 640, 1196, 1196, 1198,

1284
plane, of QoS framework, 982–984,

994

AU3833_C49.fm Page 1334 Monday, August 21, 2006 4:25 PM

Index ■ 1335

proximity, 296
rates, 56–57, 62, 63, 64, 66, 67, 68, 69
record, 856
region, 822, 830, 831, 839, 845
replication, 210, 667, 1052–1053,

1142, 1296, 1309
request, 676
secret, 308
sensing of, 135
session control, 1016
shallow profile vs. ontology based,

919
sources of, 135, 141
stale, 120
static vs. dynamic, 929
streams, 1273, 1274, 1275
structures, overlay, 251–252
synchronization, 157–158, 207–225,

1090; see also synchronization:
data

tentative, 672
time-varying, 824
types of, 822–825

database
access, location-dependent, 819–847
engine, 1096
management system (DBMS), 693,

1117, 1128
wireless sensor network, 1236

data-centric naming, 140
DataGrid, 14, 21
DataPropagator, 686
DataSpace, 395
DB2® Everyplace® (DB2e), 664, 681,

684–687, 1098
log files, 686

DBGlobe, 1302
D-BLAST, 62
dead reckoning, 1219
debugger, 370
decomposition, 840–842
decompression, 413, 720
decryption, 305, 308, 413, 777, 783, 962
defense wireless mobile ad hoc

networks, 1269–1288
deferred unsubscription, 271

protocol for, 272

degradation, graceful, 1296, 1306, 1308
delegates, 371
∆1, ∆2, ∆3, 618, 620, 630
denial-of-service attacks, 300, 301, 496,

538, 869, 1061, 1134, 1312
Deno, 676, 702
dense wavelength-division

multiplexing (D-WDM), 8, 9
dependability, 869
dependencies, facet, 449
deregulation, 561
DERMI, 702
descriptive naming, 140
descriptors, 1146; see also individual

types of
design-time adaptation, 138
destination nodes, 402–403
Destination Sequenced Distance Vector

(DSDV), 1279
detection algorithms, handoff control,

553, 556, 558
deterministic call admission control,

643–644
device agent, 1093
device context, 155, 880–881
Device Independence Activity, 1180
device management, 1179–1181

server, 1093, 1095, 1096, 1097
device migration, 323
device mobility, 470–472, 476, 477,

480, 481, 482, 483, 484
Device Monitor, 107–108
device profiles, 891, 902, 904–908
device provisioning, 1142
device resources, change in, 450
device transparency, 494
devlets, 321, 891
Diameter, 609, 613, 854, 855–856, 867,

868, 871, 1019, 1022, 1023, 1025
differentiated services (Diff-Serv), 970,

971, 972, 983
Diffie–Hellman key exchange, 1312
diffusion, directed, 1235, 1236
digest, positive vs. negative, 273
digital audio broadcasting (DAB), 1256
Digital Living Network Alliance

(DLNA), 508

AU3833_C49.fm Page 1335 Monday, August 21, 2006 4:25 PM

1336 ■ Mobile Middleware

digital maps, 1262, 1264, 1265
digital short-range communications

(DSRC), 113, 117
digital signaling processing (DSP), 565
digital signatures, 305, 779, 1312
Digital Subscriber Signaling #1 (DSS1),

1023
direct sequence code-division multiple

access (DS-CDMA), 64
direct sequence spread spectrum

(DSSS), 64, 67
directed acyclic graph (DAG), 840
directed diffusion, 1235, 1236
directory, 389, 394, 395, 396

agent, 189, 190, 193, 392, 393, 503
SSDP proxy, 196

name, 398
objects, 1238
service, 403, 404, 1238, 1245

disappearing computing, ubiquitous,
3–26

disaster recovery, 76, 113, 114, 570
disconnected operation, 668–672, 675,

694
disconnections, 28, 116, 118, 128, 153,

154, 155, 157, 158, 208, 224, 258,
263, 264, 313, 317, 322, 323, 340,
365, 366, 375, 378, 379, 390, 410,
411, 414, 416, 418, 421, 423, 502,
524, 664, 666, 669, 670–671, 674,
675, 676, 678, 685, 712, 858, 859,
941, 959–962, 1042, 1053, 1054,
1143, 1217, 1305

discovery, 387–404; see also individual
types of

automatic, 391
content, 119
cooperative objects, and, 42
decentralized vs. centralized, 44–45
dynamic service, 42
event, 136
general model for, 388–390
information source, 529
location, 586, 1176
lookup, 480
message, 529
path, 585

peer, 119, 523, 574, 575–577
Pings, 575, 577
protocol, 391
service, see service discovery
source, 529

disjunctive normal form (DNF), 990
dispatcher, 258, 259, 260

distributed, 264
Distance Vector Multicast Routing

Protocol (DVMRP), 628
distillation, content, 318–319
distributability, 490
distributed

artificial intelligence (DAI), 295
architecture, 182, 183, 186, 190, 198,

200, 201–204, 208, 248, 259,
313, 770

call admission control (DCAC),
650–651

directories, 389, 396
garbage collection, 714, 715–720
hash table (DHT), 116, 396, 398,

468–469, 500, 1302
messaging, 593
objects, handoff and, 555
quad-tree, 572
reputation model, 527, 541
storage, 13–15
systems, see distributed systems
trust management, 523, 525

Distributed Component Object Model
(DCOM), 498, 509, 556

Distributed Computing Environment
(DCE), 498

Distributed Key Predistribution Scheme
(DKPS), 1313

Distributed Management Task Force
(DMTF), 990

distributed systems, 146–148, 161, 210,
222, 224, 244, 263, 288, 290, 295,
296, 322, 333, 364, 365, 398, 489,
494, 501, 503, 556, 571, 572,
648–653, 670, 702, 709, 770, 896,
1052, 1065, 1293

classification of, 651–653
database, 1302
event notification, 1303

AU3833_C49.fm Page 1336 Monday, August 21, 2006 4:25 PM

Index ■ 1337

fixed, middleware requirements for,
150–151, 154, 155

distribution trees, 1216–1217, 1218
diversity, 60–62, 67
DNS, see Domain Name System
DNS Secure Dynamic Updates, 176
domain, 1146, 1148–1149

circuit-switched, 640
descriptor, 1146, 1150
handoff, 602, 610, 611, 613, 614, 631
MBBs, and, 349
memory, 1149
name space, 176
packet-switched, 640
trust, 524

Domain Name System (DNS), 173, 174,
175, 176, 178, 181, 191, 192, 210,
392, 478, 480, 604, 608, 611, 626,
1121, 1180, 1204

-based service discovery, 1180
lookups, 318
multicast, 177
name space, 186
resolver, 176
resource records, 193–194
Secure Dynamic Updates, 176
server, 173, 175, 176, 177, 178, 182,

187, 213
dominance checks, 990
Doppler effect, 58
downlink, 61, 820

channel, 1040
Drishti, 1175
DSWare, 1245
D-tree, 844
Duplicate Address Detection (DAD),

616, 617, 618
dynamic adaptation, of mobile

services, 363–382
aspect-oriented approaches to,

369–372
issues with, 364–366
policy-based management of,

372–376
dynamic aspect-oriented

programming, see aspect-oriented
programming

dynamic binding, 292; see also binding
dynamic channel allocation, 65
dynamic code analysis, 305
Dynamic Execution Layer Interface

(DELI), 915
dynamic handoff, 564–565
Dynamic Host Configuration Protocol

(DHCP), 176, 261, 392, 468, 508,
602, 603, 604, 609, 610, 614, 626,
633

dynamic integration, 1060
dynamic link libraries, 560
Dynamic Properties Framework (DPF),

1180
dynamic proxy, 330, 331
Dynamic Rapid Configuration Protocol

(DRCP), 602, 603, 626
Dynamic Registration and Configuration

Protocol (DRCP), 614
dynamic service discovery, 42
Dynamic SLS Negotiation Protocols

(DSNP), 617
Dynamic Source Routing (DSR), 179,

180, 535, 536, 537, 623, 1235, 1279
dynamic voltage scaling (DVS), 963
dynamic wireless networks, 233
Dynamically Programmable and

Reconfigurable Software (DPRS),
349

dynamicity, 871
DynamicTAO, 346–347

E
eager update, 667
earliest completion time (ECT), 1287
earliest deadline first (EDF), 1245
eavesdropping, 79, 300, 301
ECCO, 501
Eclipse™, 1101, 1102–1103
EDGE, see Enhanced Data Rates for

GSM Evolution
edges, 1146, 1147, 1148
eDiamond, 14
efficiency

code execution, 298
service discovery, 1065
Tryton, and, 1120

AU3833_C49.fm Page 1337 Monday, August 21, 2006 4:25 PM

1338 ■ Mobile Middleware

eFlow, 1047
EGNOS, 1264
EgoSpace, 248, 1065
elaboration nodes, 146
elliptic curve cryptography (ECC), 505
Elvin, 1305
emergencies, mobile middleware for,

1291–1315
Encapsulating Security Payload, 505
encrypted functions, 306–307
encryption, 305, 306, 308, 309, 326,

500, 609, 774, 777, 782, 783, 855,
870, 962, 1297, 1311

end state, 1148
energy-aware admission control, 955
energy management, 1183
energy stretch, 435
Enhanced Data Rates for GSM

Evolution (EDGE), 66
enhanced observed time difference

(E-OTD), 800
enterprise application integration,

1011, 1013, 1031
Enterprise JavaBeans (EJB), 129, 130,

498
Enterprise Messaging Network (EMN®),

891
Enterprise Privacy Authorization

Language (EPAL), 892
enterprise transactions, mobile,

requirements for, 1090
entertainment computing, 1192–1204;

see also mobile entertainment
computing

entity, 878, 885, 921, 1069, 1080, 1109,
1111, 1114, 1118, 1121, 1162,
1163, 1204, 1205, 1237, 1238, 1239

entry handoffs, 560
envelopes, message forwarding and,

303, 304
environment, changes in, 450
environment context, 882, 1177
EnviroTrack, 1237–1239
epidemic algorithms, 273, 277
Epidemic Messaging Middleware for

Ad Hoc Networks (EMMA), 1306
epidemic propagation, 673, 676

epidemic routing protocol,
asynchronous, 1306

eRACE, 315, 327
error control, 62–63
e-tags, 23
etiquettes, radio, 562–563
event

-based systems, 1243, 1294, 1303
discovery, 136
handlers, 128
handling, 705
loss, 274
notification, 46, 393, 394, 490, 494,

797, 798, 801, 810, 1068, 1110,
1205–1206, 1294, 1297, 1303

content-based, 1305
profiling-dependent, 815–817
remote, 391

register, 1073
sources, 1069
tuple, 246

event–condition–action (ECA), 373, 1069
EventHeap, 246
Everyplace®, 664, 684–687

DB2® Everyplace® (DB2e), 664, 681,
684–687, 1098

log files, 686
Websphere® Everyplace®,

1089–1104
exactly once, 151
exception handling statements, 556
execution environment, 290, 302, 303
execution state, 1148, 1149

restoring, 31
execution units, 30, 32
exit handoffs, 560
ExORB, 347, 349–350, 359
explorative composition, 1046
exporter, 856
expressiveness, 132, 141
extended time stamp (ETS) algorithm,

423–431
Extensible Authentication Protocol

(EAP), 854
eXtensible Markup Language (XML),

80, 87, 88, 93, 196, 246, 327, 329,
330, 349, 375, 389, 391, 498, 504,

AU3833_C49.fm Page 1338 Monday, August 21, 2006 4:25 PM

Index ■ 1339

681, 789, 791, 812, 813, 857, 906,
1017, 1019, 1068, 1072, 1076,
1113, 1121, 1150, 1152, 1159,
1177, 1180, 1275, 1299, 1300

-based naming, 389, 390
trees, 250
Web services, 194–195

eXtensible Stylesheet Language (XSL),
915

eXtensible Stylesheet Language
Transformations (XSLT), 916

extensions, 357
external middleware, 238–239
externalization, 349, 1144–1146

F
facet dependency tree, 449
facet execution tree, 450
facet servers, 455
facets, 446–461

architecture for, 453–454
fading, fast, 60, 65
failure handling, 421–422, 722
fast handover, 985
Fast Handover for Mobile IP (FMIP),

976
fast power control, 65, 67
fast refresh, 689
FastStartup, 963
fastsync, 216
fault tolerance, 278, 297, 368, 490, 493,

571, 1015, 1041, 1155, 1159–1160,
1217–1218

FDMA, see frequency-division multiple
access

feasibility checks, 990
feedback, 976, 982, 984, 987, 996
fetching, 1126
Ficus, 674, 702, 720
fields, 246
file

-based synchronization, 668
defined, 701
model, 701, 702, 705, 706, 709–711,

712–713, 723
resolution, 671

File Transfer Protocol (FTP), 864, 865

File Transfer, Access, and Management
(FTAM), 865

filter control, 320
Filter module, 1214
filtering, intelligent, 320
filtering phase, facet, 453
filters, 259, 260, 273, 274, 276, 320, 329,

330, 399, 459, 494, 1234, 1295,
1298, 1299, 1300, 1301, 1302,
1304, 1305, 1306

active media, 320
adaptive forward error correction

(FEC), 320
Bloom, 403

fingerprints, 710
FIPA-OS, 83, 87
first-in/first-out (FIFO), 423, 645
Fisheye State Routing (FSR), 115
fixed channel allocation (FCA), 65
fixed hosts, 378, 379, 665–669,

671–672, 675–677, 681, 683–686,
689–692, 693, 1040

Fixed Mobile Convergence (FMC), 1031
fixed networks, publish–subscribe and,

268–270
flag bits, 417, 419, 423, 425, 426, 436
flash memory, 6
flooding, 184, 186, 187, 280, 281, 301,

308, 352, 468, 559, 573, 589, 1239,
1284, 1312

flooding scope, 182, 201, 202, 203
flow, 1154, 1155
flow bundle, 558
flow classifier, 983
flow control, 317, 1233
flow identification, 997
fluctuation, in resources, 341
Fluid Computing, 1052–1053
F-matrix, 681
FOKUS, 1033
forced termination, 641
foreign agent, 324, 470, 471, 554, 603,

604, 605, 616
form factor, 1172
forward error correction (FEC), 320,

329
forward pointers, 1235

AU3833_C49.fm Page 1339 Monday, August 21, 2006 4:25 PM

1340 ■ Mobile Middleware

Foundation for Intelligent Physical
Agents (FIPA), 83, 87, 309–310,
504, 508

fourth-generation (4G) technology, 5,
98, 443, 601, 607

fractional guard channel, 647
FreePastry, 583, 585, 587, 588, 593, 596
frequency allocation, 733
frequency-division multiple access

(FDMA), 63, 64, 1270
frequency hopping (FH), 64
frequency-hopping spread spectrum

(FHSS), 67
fully qualified domain name (FQDN),

186
functionality, 446–448

adaptation, 448–454
categories of, 313
discarding, 452, 456
facet, 453
filtering, 454
portfolio of, 450–452

functionality ID (funcID), 447
functions, encrypted, 306–307
function-shipping systems, 715, 717, 723
Future Combat System (FCS), 1270

G
Gaia, 134, 1063, 1066, 1072, 1073, 1078
GALLANT, 1264
games, 1200–1204, 1218–1221

architectures for, 1218–1219
garbage collection, 700, 701, 704, 705,

713
distributed, 714, 715–720, 723
local, 714, 716, 719
of replicated files, 720–721
scions, 703, 705, 715–716, 718
stubs, 703, 705, 715–716, 718

Gateway Mobile Location Center
(GMLC), 799

gateway mobile-service switching
center (GMSC), 866

gateways, 105, 118, 119, 120, 121, 178,
187, 313, 378, 379, 477, 484, 560,
774, 866, 886, 891, 994, 996, 1004,
1011, 1013, 1015, 1026, 1096, 1260

cache, 119
charging, 867
Internet, see Internet gateways
location, 886
mobility, 378, 379
OSA, 892
OSA/Parlay, 1012, 1013, 1020
synchronization of, 1096
WAP, 317

Gaussian blur, 457
General Inter-ORB Protocol (GIOP),

325, 476, 477
General Packet Radio Service (GPRS),

66, 116, 153, 218, 340, 366, 866,
867, 882, 911, 1007, 1027, 1028,
1202

General User Modeling System
(GUMS), 909

generic service elements, 42–43
generic user profile (GUP), 794, 803
genetic algorithm, 755
geocoding, 822, 836
geographical information system (GIS),

799, 800, 839, 890, 1272
geography, 654
geometric location, 821–822
geosynchronous orbit (GEO), 630
get, 705, 717
GigaSpaces, 245
global certifiability, 672
Global Navigation Satellite System

(GNSS), 1264
global position system (GPS), 158, 161,

520, 798, 800, 821, 826–827, 880,
912, 914, 920, 925, 927, 932, 933,
1140, 1175, 1178, 1243, 1258,
1264, 1278, 1293, 1308

global services table, 593
Global System for Mobile

Communications (GSM), 57, 66,
365, 507, 666, 733, 734, 735, 746,
763, 764, 865, 866, 883, 913, 1007,
1008, 1020, 1027, 1262, 1263

Globe, 395
GloMoSim, 525, 536
Gnutella, 116, 571, 573–579, 586, 588,

596

AU3833_C49.fm Page 1340 Monday, August 21, 2006 4:25 PM

Index ■ 1341

performance of, in MANETs, 577–579
state maintenance, 574–575

Gold-Rush, 702
goodness, measure of, 295
gossip, 119, 120, 273

pull, 274–275
push, 273–274

gossiper, 273, 274, 275
GoToMyPC, 482
GPRS, see General Packet Radio Service
GPRS support nodes (GSNs), 867, 868
GPRS Tunneling Protocol (GTP), 868
graceful degradation, 1296, 1306, 1308
granularity, 298, 394, 539, 653, 656,

669, 670, 678, 823, 827, 836, 885,
893, 933, 994, 1092, 1216, 1277

graphical libraries, 1220
graphical user interface (GUI), 84, 86,

93, 94, 95, 97, 98, 126, 130, 324,
370, 456, 474, 684, 1101–1102

rich, 1101
graphics, entertainment, 1205
GreedyDual (GD), 433
GreedyDual Least Utility (GD-LU),

431–435, 437
grids, 13, 14, 21–22, 162, 163–164, 502,

503
proxies, and, 951–957
vehicle communication, 116–117
wireless, 164

grounding, 1077
GroupLens, 910
Gryphon, 278, 500
guard channels, 644, 645, 646, 647, 648,

651, 659
fractional, 647

H
handoff, 106–111, 152, 320, 324, 328,

393, 394, 420, 548, 550, 558, 602,
604, 605, 608, 609, 610, 614, 615,
616, 617, 630, 641–651, 657, 733,
737, 1184

adapters, 552
control, 548, 549, 551–552, 555, 560

decomposition of, 552–553
model, 553, 556

objects, 556–558
types of, 556

detection, 553, 556
state, 553, 566

domain, see domain handoff
dynamic, 564–565
enabling phase, 732
execution interface, 551, 552, 559,

560
failure, 560
failure probability, 641, 649
fast, 618–622, 629, 630–633
hard vs. soft, 602
initialization, 732
management, 732
managing server rate/content,

109–111
methods, 552
multi-, 549
objects, programmable, 555
prioritization, 549
proactive, 622–623
proxy-assisted, 633
reflective, 549, 552, 553, 555,

558–561, 564–565, 566
seamless, 106
smart vertical, 107–109
time, maximum acceptable (MAHT),

602
types of, 560, 602
vertical, 1131
vertical vs. horizontal, 106

Handoff Aware Wireless Access
Internet Infrastructure (HAWAII),
551, 554, 604, 608, 618

Handoff Control Center (HCC), 107, 108
Handoff Executor, 108
handover, 66, 312, 316, 331, 333, 602,

615, 629, 1120, 1209
differentiation, 985–986
horizontal/vertical, 973, 976
hyper, 973–977, 982, 983, 984, 985,

986, 987, 994, 996
management, 324–325, 802
nomadic, 1209–1211

Handover Support Overlay Network,
987

AU3833_C49.fm Page 1341 Monday, August 21, 2006 4:25 PM

1342 ■ Mobile Middleware

hard drives, 1-TB, 6
hard problems, 295
hard–soft conflict, 222
hardware presentation layer (HPL), 1230
HardwarePlatform, 906, 907
hash function, 308, 396, 398, 403, 580,

593, 709
hash summarization, 403
hash tables, 1125, 1233

geographic, 1235–1236, 1238
hash value, 308, 710
HAWAII, see Handoff Aware Wireless

Access Internet Infrastructure
health care, wearable computing and,

1174
Health Insurance Portability and

Accountability Act (HIPAA), 1175
heartbeat, 1238
Hermes, 278, 500
heterogeneity, 493–494

of mobile devices, 340
support, 503–507
types of, 1299

hierarchical forwarding, 260
Hierarchical Mobile Internet Protocol

(HMIP), 618, 976
hierarchy

cluster-based, 536
granularity, 933
of attribute–value pairs, 402
of attributes, 389
of directories, 395, 396

highest-one answer, 532
high-speed circuit-switched data

(HSCSD), 66
history, of sensor readings, 885
hoard keys, 670
hoarding, 224, 323, 668, 669–670, 712,

713, 723
holographic storage, 6
home address, 470
home agent, 603, 605, 614, 616, 623,

629, 630
home location agent (HLA), 324, 325
home location cache (HLC), 323
home location register (HLR), 604, 627,

794, 804, 865, 1025

home proxy (HP), 325
home subscriber service (HSS), 794,

804, 1025, 1026
home zones, 803, 804, 807, 808, 814,

816
Hood, 1231, 1233–1235
Hopfield neural network, 748–753, 764
Host Mobility Management Protocol

(HMMP), 607
HotSwap, 369, 370
HotSync®, 208, 212, 216, 220, 681–684
Houdini, 928–929
Hourglass, 1247
HSCSD, see high-speed circuit-switched

data
HTML, see Hypertext Markup Language
human–machine interface, 496, 1256,

1258, 1259, 1260–1262, 1264
hybrid architecture, 190
hybrid cache consistency, 414
hybrid routing protocols, 79
hybrid server delivery, 820
Hyperlan, 80
Hypertext Markup Language (HTML),

22, 129, 293, 701, 719, 1102, 1157
Hypertext Transfer Protocol (HTTP),

81, 194, 196, 315, 317, 318, 320,
321, 328, 391, 471, 690, 691, 857,
864, 1061, 1102, 1156, 1157, 1164

headers, 904–905, 915, 917, 1165
Hypertext Transfer Protocol Multicast

(HTTMU), 196
Hypertext Transfer Protocol Unicast

(HTTPU), 196

I
iAnywhere™, 211
IBM Everyplace®, see Everyplace®

I-centric communication, 39, 42, 46–47
I-centric services, 35, 36, 37, 38, 39, 40,

42, 47–48
IDemandee/IDemander, 705
identifier, 292, 417, 436, 447, 529, 530,

554, 558, 564, 565, 572, 579, 580,
581, 583, 590, 592, 593, 678, 1040,
1114, 1230

tree, 269

AU3833_C49.fm Page 1342 Monday, August 21, 2006 4:25 PM

Index ■ 1343

IEEE 802.11, 67, 80, 109, 113, 135, 388,
535, 548, 570, 588, 609, 614, 615,
619, 770, 784, 972, 1106

IEEE 802.11a, 67, 68, 105
IEEE 802.11b, 67, 87, 105, 106, 340, 613
IEEE 802.11e, 105
IEEE 802.11g, 68, 105
IEEE 802.11n, 9, 105
IEEE 802.11s, 105
IEEE 802.15, 69
IEEE 802.15.1, 69, 113
IEEE 802.15.4, 69, 113
IEEE 802.16, 69, 105
ignorant peers, 521
Iguana/J, 377
iMobileEE, 315
i-mode, 1155
Impala, 1241, 1243, 1244
implementation repository, 477
impulse radio, 69
incentive model, 521, 533
inconsistency, tolerance for, 213–214
indexing, 837–847
indirect reference counting (IRC), 715
industrial, scientific, and medical (ISM),

588
infolets, 321, 891
information

advertisement, 529
processing, cross-layer, 538–539
searching, 15–16
sharing, 15–16
source discovery, 529
technology evolution, 1002–1004

Informed Link Activation Protocol, 272
InfoTelematics Unit (ITU), 1257, 1258
infrared

appliance control, 1140
credit card payment, 1139
location system, 894, 913

infrastructure
access network, 866
autonomous service, 1143
-based networks, 547–566, 942; see

also seamless connectivity
communication, 1297, 1303–1306

ad hoc, 161–162

context aware, 1113
context-aware services, 1109
core network, 866
distributed system, 146
Domain Name System, 181, 193
fixed, nomadic, 159
grid, 163, 951
handheld, 235
legacy, 104
micro building block, 1147
middleware, 244–250

classifying, 237–244
Mowgli, 321
network, 1060–1061, 1068
network-based, 18
pervasive communications, 23
physical, 39
presence of, 657
proxy, 313, 316
public key (PKI), 779, 1312
QoS, 982–987, 994–996

unified, 977–981
SIP telephony, 1129
software, 3–26
Sparkle, 454
storage, 13–15
ubiquitous computing, 14, 772
Universal Mobile

Telecommunications System
(UMTS), 796

untraceable routing, 784
vs. ad hoc wireless networks,

103–122
wireless, 105, 112

InPropList, 704, 705, 718, 718–719
input queue, 686
INS/Twine, 396, 398
Integrated Drive Electronics (IDE),

1103
integrated services (Inte-Serv), 970,

971, 983
Integrated Services Digital Network

(ISDN), 1007
integration, 17

dynamic, 1060
QoS, 981

integrity, 870, 1293

AU3833_C49.fm Page 1343 Monday, August 21, 2006 4:25 PM

1344 ■ Mobile Middleware

intelligence
functionality, and, 451
weak vs. strong, 295

intelligent agents, 82, 294–295, 309,
310, 1246, 1259, 1262

intelligent filtering, 320, 321
Intelligent Network Application

Protocol (INAP), 1005, 1006, 1008,
1023

intelligent networks (INs), 1002, 1005,
1006–1010, 1011, 1012, 1014,
1024, 1026, 1028, 1031; see also
Customized Logic for Mobile
Enhanced Logic (CAMEL)

intelligent vehicles, 1051
Intellisync®, 684
Intentional Name Resolver (INR), 394,

402
intentional naming, 140
Intentional Naming System (INS), 394,

402, 895
interaction abstraction, common, 352
interaction mechanisms, 237
interactions, proxy, 313
interactive applications, 126
interactive voice response (IVR), 1016
interactivity, among game players, 1202
interception, 157
interception metamodel, 344, 345
interceptor model, 315
interceptors, 345, 357

rule-based, 367
inter-domain accounting, 863
interest gradients, 1236
Interface Definition Language (IDL),

475
interface metamodel, 344
interface tuple space (ITS), 248
interference, mitigation of, 60–62
intermediary, 313
intermediate code, 291
intermediate node caching, 183
internal handoffs, 560
internal middleware, 240
International Organization for

Standardization (ISO)/Open
Source Initiative (OSI) model, 148

International Telecommunication
Union (ITU), 491, 507, 610, 1006,
1019

Internet Assigned Number Authority
(IANA), 192

Internet Engineering Task Force (IETF),
113, 178, 192, 328, 392, 507,
508–509, 601, 602, 618, 623, 627,
630, 853, 868, 887, 1022, 1025,
1110

Internet gateways (IGWs), 105, 187,
188, 558, 560, 774

Internet Group Management Protocol
(IGMP), 629, 631, 632

Internet Information Server (IIS), 690,
691

Internet Inter-ORB Protocol (IIOP),
325, 340, 349, 350, 477, 497, 1066

Internet Key Exchange (IKE), 613
Internet Protocol (IP), 352, 391, 470,

555, 560, 589, 627, 630, 970, 1002,
1014, 1061, 1141

address, 172, 173, 179, 180, 181,
182, 184, 186, 187, 188, 196,
197, 200, 470, 471, 472, 476,
477, 478, 481, 482, 483, 484,
560, 581, 590, 592, 602, 604,
605, 607, 609, 610, 611, 613,
614, 615, 618, 619, 620, 621,
622, 623, 627, 631, 633, 983,
1113, 1204, 1312

privacy and, 771
-based mobile networks, 560
-based wireless networks, 106
communication subsystem, 38, 39
multicast, 193
name resolution, and, 172
standards, 80
transport layer, 39
tunnels, 558

Internet Protocol Security (IPsec), 500,
505, 609, 613, 614, 615, 1310

Internet, service discovery on, 191–195
Internet Service Providers (ISPs), 175,

852, 856, 972, 1031
Internet Streaming Media Alliance

(ISMA), 1196

AU3833_C49.fm Page 1344 Monday, August 21, 2006 4:25 PM

Index ■ 1345

Internet Transcoding for Universal
Access, 321

interoperable object reference (IOR),
325, 476–477, 484

interpreted code, 291, 298
interpreter, 291, 298
Interrogating Call State Control

Function (I-CSCF), 1025
interservice adaptation, 1051
interworking function (IWF), 866
Intra-Domain Mobility Management

Protocol (IDMP), 604, 608
intraservice adaptation, 1051
introductions, 369
introspection, 157
intrusion detection, 305, 524, 870
invalid services, 958
invalidated state, 417
invalidation, 824

asynchronous, 677
cache, 322, 323, 413, 417, 677–679

cost, 413
scheme, 411

data, 413
synchronous, 677

invalidation reports, 322, 323, 414–423,
426, 436, 677–679, 680

clients, and, 677–679
message, 415

INVITE message, 480, 481, 613
invocation, 343, 371, 381, 475, 552, 708

messages, 367
remote, 720
service, 1079

IP Detail Record (IPDR), 856–857
IP Flow Information eXport (IPFIX)

Working Group, 863
IP Multimedia Subsystem (IMS), 1002,

1019, 1022–1031, 1033
architecture, 1023–1026
standards, 1027–1031
value-added services in, 1028–1031

IP multimedia subsystem (IMS), 866,
867, 868

iPod®, 19, 1176, 1178, 1184, 1193, 1194
IP-Public Switched Telephone

Network (IP-PSTN), 607

IProvider, 705
IProviderRemote, 705
IPsec, see Internet Protocol Security
iptables, 621, 622
IPv4, 172, 470, 602, 609, 618
IPv6, 5, 107, 172, 470, 500, 508, 602,

604, 609, 616–617, 618, 623, 784,
993, 994

iQueue, 399
ISDN User Part (ISUP), 1011, 1023
isolation-only transactions, 671, 675
iTunes®, 1193

J
JADE, 83
Java, 87, 1093, 1096

user interface widgets, 1101
Java 2 Enterprise Edition (J2EE), 504,

505, 506, 509, 1002, 1004, 1011,
1013, 1090, 1094, 1103

Java APIs for Integrated Networks
(JAIN), 1002, 1012, 1013, 1014,
1020–1021

Java Community Process (JCP), 512
Java Database Connectivity (JDBC),

1094, 1098
Java Message Service (JMS), 498, 501,

506, 512, 1160, 1305, 1306
Java Micro Edition (J2ME™), 497, 501,

506, 512, 1092, 1101, 1102, 1103
Java Naming and Directory Interface

(JNDI), 1305
Java Platform Debugger Architecture

(JPDA), 369
Java Server Pages (JSPs), 129, 130, 1094
Java Telnet Application/Applet, 379
Java Virtual Machine (JVM), 304, 370,

498, 720, 860, 1092, 1093, 1094,
1097, 1101, 1103

Java Virtual Machine Debug Interface
(JVMDI), 370

java.net.Socket, 379, 380, 381
JavaBeans™, 343
Javanaise, 702
JavaSpaces™, 157, 244–245, 249, 500
Javassist, 370, 373
JEDI, 264, 500, 1305, 1306

AU3833_C49.fm Page 1345 Monday, August 21, 2006 4:25 PM

1346 ■ Mobile Middleware

JGroups, 278
Jini™, 195, 326, 391, 392, 478–480, 484,

503, 504, 1063, 1109
encryption package, 393
lookup service, 391

JIT compiler, 356
jitter, 940, 950, 960, 1219, 1274, 1277
join message, 582
join point, 369, 370, 372, 374

hooks, 369
join protocol, 391
join query, 834
joins, 692
Joint Battlespace Infosphere (JBI), 1271
Joint Network Node (JNN), 1271
JORAM, 278, 506
just-in-time (JIT), 356

compilation technology, 291
JXTA™, 247, 941

K
Kazaa, 573
k-dimensional tree (kd-tree), 842–844
Kerberos, 779
key distribution centers (KDCs), 521
Key Encryption Protocol (KEP), 1300
key value, 581, 582, 593, 595
key–value pairs, 209, 210, 212, 215,

468–469
KeyNote, 528
keyword, 1064, 1126
Kirkpatrick’s algorithm, 840
know-how, 443
knowledge management, 1297,

1298–1302, 1311, 1314, 1315
framework for, 1299

Knowledge Query and Manipulation
Language (KQML), 1300

knowledge workers, 1090

L
Lancaster approach, to reflective

middleware, 344–346, 350, 354
landmark, 523
Landmark Ad Hoc Routing (LANMAR),

115
landmarking, 114–116

Lasagne, 356–357
last-hop wireless networks, 105–111
latency, 106, 153, 155, 163, 208, 218,

294, 317, 322, 324, 340, 365, 444,
483, 491, 600, 956, 976, 1106,
1158, 1235, 1242

access, 312, 410, 412, 413, 415, 434,
435, 437

binding update, 624
factors, 618
handoff, 625
hiding, 498
improvement, 605
join, 631, 632, 633
message delivery, 1244
multicast, 630
network, 209, 294, 296, 397, 931,

941, 1196, 1206, 1219
query response, 399, 527, 677, 1239
replication, 707, 711
request processing, 396
route discovery, 1280
Solar, and, 399
transport, 299
user-perceived, 321, 444

latest value model, of consistency, 679
lazy update, 667
leaders, 1238–1239
leaf peers, 573
leaf set, 581, 582
learning, 1074
leases, 391, 392, 393, 394, 714
least recently used (LRU), 418, 436, 713
left site frontier (LSF), 845, 846
Liberty Alliance, 513
licensed vs. unlicensed spectrum,

70–72
Lightweight Directory Access Protocol

(LDAP), 929
Lightweight Extensible Agent Platform

(LEAP), 83
Limbo, 250
LIME, see Linda in a Mobile

Environment
Limone, 1066, 1078, 1315
Linda coordination language, 230, 231,

232, 235, 246, 1315

AU3833_C49.fm Page 1346 Monday, August 21, 2006 4:25 PM

Index ■ 1347

Linda in a Mobile Environment (LIME),
248, 500, 1066, 1078

line-of-sight (LOS) channel, 58
link failure, 266, 267, 270, 278
link layer, 971, 1260
link lifetime (LLT), 1278, 1282, 1283
Link Local Multicast Name Resolution

(LLMNR), 177, 178, 186
link-state update (LSU)

messages, 590
packets, 590, 591

live streaming, 1192, 1195–1200, 1205,
1206, 1215–1218

living cells, 762
load balancing, 153, 154, 164, 210, 288,

296, 368, 950, 1015, 1211, 1212,
1217, 1236

load sharing, multipath, 971
local admission control, 648
local area network (LAN), 67, 87, 197,

218, 365, 601, 603, 610, 614, 615,
666, 971, 1120–1121

local garbage collection, 714, 716, 719
local interconnect network (LIN), 1260
local services table, 592
localization mechanisms, 235
localization, of processing power, 26
location, 1243

-aided routing (LAR), 1284
area, 735, 736

costs associated with, 738–739
genetic algorithm for, 755–757
Hopfield neural network, and,

750–753
simulated annealing, and,

753–754
-aware content delivery, 835
-aware query (LAQ), 830
-aware service deployment, 812–813
awareness, 280–282, 788, 859, 871,

911–914, 965, 1262
-based routing, 251, 1309
-based service differentiation,

787–817
-based services, 886, 890, 893, 1259,

1263, 1264, 1265
binding, 830

-dependent data (LDD), 822–825,
829

-dependent database access,
819–847

-dependent query (LDQ), 820, 822,
828–831, 835, 837, 839,
845–846

-dependent service (LDS), 827–829
-dependent service accounting,

851–872
middleware for, 857–862

-dependent services manager
(LDSM), 828

discovery, 586, 1176
failure, 949
gateway, 886
geometric, 821–822
granularity mismatch problem, 836
information, collection of, 946–949
inquiry, 734, 736
leveling (LL), 836
management, see location

management
manager, 797–802, 814, 816
middleware, and, 247–248,

1264–1265
modeling, 835–836
semantic, 821–822
privacy, 401

architecture for, 772–775
protection, 769–785

registers, 604, 732
servers, 914
service, 76, 388, 390, 394, 395, 480,

481, 827, 828, 829, 835, 866,
867, 1125

table, 281
tracking systems, 894–895
transparency, 493
trees, 822
uncertainty, 833
update, see location update

location management, 157, 601, 602,
607, 610, 611, 654, 731–764

cost, 736–742
location area strategy, 738–739
PC scheme, 740–742

AU3833_C49.fm Page 1347 Monday, August 21, 2006 4:25 PM

1348 ■ Mobile Middleware

location management (cont.)
solving problem of, 746–753, 755

analytical approaches, 747
heuristic approaches, 747–753,

761–764
static vs. dynamic, 746

location update, 732, 737, 740, 764
costs, 736, 737, 738, 739, 742
dynamic vs. static, 734
number of, 738, 739, 740–741, 742,

743, 762
strategies for, 734–736

logic, 1072, 1144, 1145, 1146, 1148,
1149, 1150, 1153, 1154, 1206

logic descriptor, 1146, 1149, 1150,
1152–1153

logic externalization, 1144
logical mobility, 289
lookup

agent, 775
content-based, 573
discovery, 480
message, 580
protocol, 391
service, 391, 393, 467–469, 478, 480,

483, 775
centralized, 467–468
context provider, 1073

subject-based, 572
LOS, see line-of-sight channel
lossy compression, 319
lost messages, recovery of, 272–275
low-density parity check codes

(LDPCCs), 63
LSU, see link-state update

M
M-services, 1038
MACAW, 535
machine code, 291, 298
macroprogramming, 1245–1246
magnetic storage, 6
MagnetOS, 1246
mailboxes, 593
maintainability, of security, 870
maintenance, QoS, 975, 981, 982
make-before-break algorithm, 615

malicious activity, detection of,
534–539

response mechanisms for, 536
malicious devices, 521, 523, 524, 527
management interfaces, CO, 41–42
management plane, of QoS framework,

986–987, 995
manager agent, 775, 779
MANTIS kit, 87, 88, 91, 93
many for one, 12
MAODV, see Mobile Ad Hoc On-

Demand Distance Vector
MAPGrid, 951–953, 962
mapping, 175, 191, 572, 580, 722, 1090,

1299
reverse, 173
table, 472
user entity, and, 174

MARCH, 328, 329, 330, 331
MarconiNet, 630–633
MARE, 1309
mark-dirty flags, 215, 216, 218, 220
market push, 5, 19

vs. pull, 4
MARS, see Mobile Agent Reactive

Spaces
MASocket, 379, 381
masquerading, 301
master, 668
matching rule, 231
matchmaking, 1063, 1075, 1076, 1080
Maté, 1241, 1243, 1244
mathematical models, trust, 527,

528–534
maximum acceptable handoff time

(MAHT), 602
MBB descriptor, 1146, 1149, 1150, 1151
MBB scheduler, 1147, 1148, 1154
measurement producer, 556
measurement systems, handoff control,

553, 556
measurement, vs. pattern matching,

658
Media Access Control (MAC), 114, 121,

281, 399, 507, 529, 539, 555, 771,
784, 1123, 1309

Media Gateway, 866, 1026

AU3833_C49.fm Page 1348 Monday, August 21, 2006 4:25 PM

Index ■ 1349

Media Gateway Control Function
(MGCF), 866, 867, 1026

media players, 1196
Media Resource Function (MRF), 1026
Media Resource Function Controller

(MRFC), 1026
Media Resource Function Processor

(MRFP), 1026
memory leaks, 714
memory management, 700, 703, 705,

713–721
manual, 714
TinyOS, 1230

Mervlets, 1143, 1155–1160, 1164, 1167
message agent, 692
message forwarding, 259, 268, 274,

280, 281, 303, 574, 591
message integration checks, 308
message-oriented middleware (MOM),

498, 506
message queuing, 1094, 1099
message routing, subject-based, 580
messages

bye, 575, 632
discovery, 529
invalidation report, 415
join, 582, 632
link-state update, 590
MIP-LR update, 627
Pastry, 580
Ping, 575–577, 582
Pong, 575–577
query, 577
recovery of lost, 272–275
RTCP, 632
signaling, 625
SIP register, 613

messaging service, 1233
messaging system, reliable,

1159–1160
meta level, 342, 367–368, 377
meta object, 366, 367, 371, 373, 374,

377
Meta Object Facility (MOF), 504
Meta Object Protocol (MOP), 342, 345,

347, 366, 368, 377
metachannels, 564–565

metadata, 13, 138, 156, 209, 215, 218,
220, 221, 366, 434, 453, 1052,
1126, 1297, 1298, 1299, 1300, 1302

context, 353
types of, 1300
repositories, 1302

metaheuristics, 763
metamodels, 344
metaradios, 564–565
MetaSocket, 371
metaspace, 249, 344
metatuple space, 249
metatype association, 377
metatypes, 377, 379
metering, 852, 860, 861, 864
metropolitan area network (MAN), 9,

317, 443, 1120–1121
MICA mote, 1123, 1239
micro building blocks (MBBs), 349,

350, 1144, 1145, 1146–1155
autonomic middleware services,

and, 1153–1154
flow languages, and, 1154–1155

microelectromechanical systems
(MEMS), 492, 1228

MicroFIPA-OS, 83, 87
Micromobility Protocol (MMP), 626, 627
Microsoft® Connected Services

Framework, 1019–1020, 1033
Microsoft® Message Queuing (MSMQ),

506
Microsoft® SQL Server CE, see SQL

Server CE
Microsoft® Media Center (MC), 1192
MIDAS, 356, 370
middleware

accounting, for location-dependent
services, 857–862

adaptability, 242–244, 340, 341, 347,
350, 352, 353, 354, 357, 360,
365

aspects, and, 355–356
-based mobile entertainment,

1209–1221
component-oriented, 498
context, for adaptive mobile

services, 1105–1134

AU3833_C49.fm Page 1349 Monday, August 21, 2006 4:25 PM

1350 ■ Mobile Middleware

dynamic reprogramming,
1240–1244

external, 238–239, 244, 246, 249
externalization, 1144–1146
goals of, 489
heterogeneity, 341, 343, 347, 352

problem, 350
internal, 240, 248, 250
layer, 148–150
level, proxies and, 314
local, 240–241, 244, 248, 249, 250
location, 238–240
malicious mobile agents, and, 301
mobile enterprise, 1091–1092,

1096–1101
mobile entertainment, 1189–1221
mobile, see mobile middleware
object-oriented, 340, 498
on-board application, 1260–1267
privacy management, 1181
programmable, 242, 243–244, 248,

249, 250
proxies, and, 314
publish–subscribe, 258, 259, 263,

264, 276, 278, 279
distributed, 281

reflective, 339–360, 1052–1053,
1063, 1068, 1144, 1145; see also
reflective middleware

remote, 240, 241–242, 246, 248, 249,
250

semantics, 490
sensor network, 499
simple, 242–243, 244, 246, 248
support, for cellphones, 1137–1167
taxonomy, 236–244
traditional, 365
transaction-oriented, 498
tuple-space based, 1078, 1079
wearable computing, 1169–1185

components of, 1176–1185
WebSphere® Everyplace®,

1089–1104
wireless sensor network, 1227–1247

mid-session mobility, 469–474, 480,
482, 484, 607, 609, 618, 623, 625

migration, 323, 959, 962, 1242, 1243

migration, of code, 288, 290, 302
migration paths, tracing, 307
migratory agent, 315
MiLan, 1244–1245
MINB, 643
MINC, 643
minimal bounding box (MBB), 839
minimal bounding rectangle (MBR),

839
minimum mean square error, 648
MINO, 643
Min-SAUD, 413
mirror table, 686
mission planner, 1079, 1080
mixer, 1216
MMSCharacteristics, 906
mobile ad hoc applications, 80–85
mobile ad hoc network (MANET), 76,

79, 81, 111–114, 173, 179, 181,
184, 186, 187, 188, 233, 240, 247,
248, 262, 266, 267–268, 312, 492,
501, 508, 521, 524, 528, 529,
538–539, 942, 965, 1065, 1292,
1293, 1294, 1297, 1303, 1304,
1306, 1307, 1308, 1309, 1311,
1313–1315; see also ad hoc
communication; ad hoc networks

belief and reputation in, 527–534
Gnutella, and, 577–579
information processing in, 538–539
Pastry, and, 586–587
peer-to-peer computing in, 116–117,

569–596
publish–subscribe, and, 262, 267,

278, 279–280, 281
reactive, 181, 184–188, 199–200,

201–204
vs. proactive, 179–180

service discovery, and, 197–200
STEAM, and, 281
wireless, defense, 1269–1288

challenges of, 1273–1279
Mobile Ad Hoc On-Demand Distance

Vector (MAODV), 267, 268, 269
Mobile-Agent-Based Ubiquitous

Multimedia Middleware (MUM),
482, 484

AU3833_C49.fm Page 1350 Monday, August 21, 2006 4:25 PM

Index ■ 1351

Mobile Agent Reactive Spaces (MARS),
249, 251, 1065

Mobile Agent System Interoperability
Facility (MASIF), 309–310

mobile agents, 76, 78, 80–81, 84–85, 95,
162–163, 234, 249, 262, 287–310,
443, 444, 456, 496, 552, 570,
859–861, 871, 1053, 1069, 1070,
1072–1073, 1075, 1247, 1297, 1308

advantages of, 859
standards for, 309–310

Mobile Application Protocol (MAP), 1008
mobile-assisted handoff (MAHO), 556
mobile audio, 1131
mobile-aware server (MAS), 330
mobile brokers, 265–275
mobile clients, 105, 153, 211, 213, 214,

216, 222, 223, 224, 225, 264–265,
312, 313, 326, 328, 331, 352, 609,
687, 689, 690, 691, 692, 702, 703,
820, 830, 1040, 1066, 1140, 1142,
1160, 1214, 1305

mobile code, 287–310, 455, 1068
admission policy, 305, 308
advantages of, 295–298
disadvantages of, 298–302
frameworks, 302–309
junk, 308
malicious, 301

mobile computing, 27–49, 258, 664,
671, 721, 1061, 1062, 1064, 1065,
1068, 1070, 1078

challenges in, 29–30, 390–391, 411
consistency in, 665–668
core challenges of, 233
devices, network of, 251
model, 1040–1041
requirements for, 493–497, 1041
uncoupling, and, 234

mobile content distribution, 627–633
mobile-controlled handoff (MCHO), 556
mobile database systems, consistency

support in, 681–694
mobile enterprise client, 1092–1093
mobile enterprise middleware,

1091–1092
stack, 1096–1101

mobile entertainment computing,
1189–1221

games applications, 1199–1204
human interaction applications,

1199–1200
middleware-based, 1209–1221
passive vs. interactive applications,

1192
system architecture for, 1204–1206

mobile equipment, 798, 803, 804, 808,
814, 816

mobile hosts, 263, 312, 313, 315, 321,
322, 323, 324, 325, 328, 330, 378,
379, 470, 477, 560, 602, 604, 608,
609, 613, 618, 619, 620, 621, 622,
623, 627, 629, 632, 664–677,
680–689, 691–694, 946–949, 952,
962, 983, 984, 985, 995–996, 1113

Mobile Information Device Profile
(MIDP), 512, 1101

Mobile Internet Key Exchange Protocol
(MOBIKE), 615

mobile Interoperable Object Reference
(mobile IOR), 325

Mobile IP, 80, 105–111, 112, 261, 324,
325, 393, 470–471, 483, 502, 504,
548, 551, 553, 554, 559, 560, 602,
603, 604, 605, 607, 608, 610, 613,
614, 615, 616, 617, 618, 623, 629,
784, 853, 856, 987, 1002, 1022,
1210

privacy extension, 784
Mobile IP with Location Registers

(MIP-LR), 604, 623, 626, 627
Mobile IPv4, 107, 603, 618
Mobile IPv6, 107, 500, 604, 616–618,

623, 784
mobile knowledge workers, 1090
Mobile Location Protocol (MLP), 890
mobile middleware, 1089–1104, 1109

automotive, 1255–1267
characteristics of, 491–497
defined, 145–164
enterprise, 1091–1092
for cellphones, 1143
for service composition, 1037–1055
heterogeneity support in, 503–507

AU3833_C49.fm Page 1351 Monday, August 21, 2006 4:25 PM

1352 ■ Mobile Middleware

mobile middleware (cont.)
message-based, 1066
openness/interoperability in, 487–514
requirements, 152–159
rescue and emergency, 1291–1315
server, 1095–1096
service discovery, and, 1059–1081
situation-awareness requirements

for, 1069–1071, 1074
technologies for, 162–164
trends in, 497–507
tuple-space based, 1066

Mobile Multicast (MoM), 629
mobile networks, 267–268
mobile nodes, 76, 85, 112, 115, 116,

118–121, 161, 162, 178, 179, 261,
262, 280, 340, 358, 470, 471, 521,
525, 535, 570, 577, 586, 626, 632,
1271, 1279, 1282, 1306, 1309

security of, 79
mobile objects database queries

(MODQs), 831
mobile personal applications, 128–133
Mobile Platform for Actively

Deployable Service (MobiPADS),
1051, 1063, 1066, 1068–1069,
1072, 1073, 1078, 1080

Mobile Positioning System (MPS), 827
mobile registration, 554
Mobile Server, 687, 688, 689
Mobile Server Repository, 688
mobile-service switching center (MSC),

866, 867, 1008
Mobile SQL, 687
Mobile Station International ISDN

Number (MSISDN), 893
mobile streaming, 1196
mobile support stations (MSSs), 411,

415, 416, 417, 418, 420, 421, 430,
437, 666, 1040

Mobile Sync, 687
mobile terminal, 640, 648, 649, 652,

655, 657, 658, 732, 733, 734, 735,
736, 738, 743

predicting behavior of, 657
mobile user cache, 411, 415, 417, 418,

420, 423, 425, 426, 436

consistency maintenance, 419
management, 418–419

mobile users, 410, 411, 415, 416, 418,
419, 420, 421, 422, 423, 424, 425,
428, 430, 436, 472, 770, 771, 772,
779, 781, 782, 783, 785, 789, 796,
826, 827, 829, 835, 858, 914, 933,
943, 949, 1060, 1123, 1277, 1302

number of, 425–426
mobile wallet, 1139
Mobile Web Initiative, 896
mobile workforce management, 834–835
MobileQuery, 1237, 1239–1240
MobileRMI, 340
mobilets, 326, 1068, 1069
Mobilink®, 692, 693–694
mobility

agent, 604
awareness, 860, 871
-centered abstractions, 1237–1240
code, 30–33, 287–310
cooperative object, 40
effect on middleware, 151–162
entertainment application,

1207–1209
gateways, 378, 379
layer, ALICE, 378, 379, 477
logical, 289
management, see mobility

management
modeling, 653–655, 659, 660
network vs. physical, 289, 394
prediction, 655–658
publish–subscribe, and, 261–264
random, 653
resource management, and, 639–660
SACCS algorithm, and, 420
scale, 654
service, 36, 393–395
simultaneous, 623–625
state, 552, 554
strong, 289, 299
support stations, 312
tuple-based coordination, and,

232–236
types of, 28–29
weak, 289

AU3833_C49.fm Page 1352 Monday, August 21, 2006 4:25 PM

Index ■ 1353

Mobility Anchor Point (MAP), 618
mobility management, 551–552, 555,

560, 563, 566, 601, 608, 610, 615,
616, 618, 732, 733, 748, 1273,
1274, 1305, 1309

decomposition of, 553–554
integrated, 626–627
taxonomy for, 603–605
user, 1277–1279

Mobiscope, 394, 396
Mobisnap, 702
M-OBIWAN, 702
Mobiware, 320, 328, 329, 331, 551, 552,

558, 559, 560, 1066
model-driven architecture, 503, 504, 509
model–view–controller (MVC), 474,

482, 484
application structure, 128, 131, 137,

140
modulation, 62–63
module loaders, 559
MoGATU, 1302
molecular computers, 7
MonitoredResource, 374
monitoring

cooperative objects and, 42
of QoS, 975

Moore’s law, 8
Mosaic, 22
motes, 895, 1123
moving hosts, 107
moving object database (MOD),

831–835
Mowgli, 321
Mowser, 320
MPEG-4, 1272
MQ Everyplace®, 1099
MQSeries™, 149
MSOCKS, 604
multicast, 190, 193, 196, 267, 273, 316,

352, 358, 392, 393, 394, 434, 468,
497, 500, 501, 504, 572, 601, 620,
621, 627–633, 1216, 1306

explicit, 628
home- vs. remote-subscription-

based, 628–630
mobility support for, 628–630

source-specific (SSM), 628
tree, 629, 630, 632

multicast DNS (mDNS), 177, 178, 186,
196–197

Multicast Open Shortest Path First
(MOSPF), 628

multi-cell environment, 428–431, 436,
437

Multi-Device Authoring Technology
(MDAT), 129, 138

multi-handoff, 549, 556–558, 566
multimedia conferencing, 358
multimedia data, 1269–1288
multimedia document model,

1274–1277
multimedia document session time

(MMST), 1284
multimedia messaging service (MMS),

866, 867, 879, 906, 1017, 1030,
1138

Multimedia Resource Function
Controller (MRFC), 866, 867

multimodal applications, 131
multipath distribution tree, 1218
multiple antenna systems, 60–62
multiple description coding (MDC),

1217–1218
multiple heterogeneous virtual

channels (MHVCs), 1272, 1273,
1274, 1279–1287

multiple path transport, 1217–1218
multiple-input/multiple-output (MIMO),

60–62, 63, 69
high-spectral-efficiency systems, 62

multiprotocol label switching (MPLS),
971

Multipurpose Internet Mail Extensions
(MIME), 319

multiversion broadcast, 680
museum, as mobile computing

example, 235–236, 238, 240–241,
242–243, 243–244

music downloads, 1192–1195

N
name, attribute-based, 394
name, context-sensitive, 397, 398, 399

AU3833_C49.fm Page 1353 Monday, August 21, 2006 4:25 PM

1354 ■ Mobile Middleware

name lookups, 186
name query, 394, 399
name resolution, 172–188, 196

in ad hoc networks, 178–188
MANETs, and, 181
multicast DNS, 177
push vs. pull, 174
reply, 182, 183, 184, 185, 186–188
request, 182, 183, 184, 185, 186–187
without DNS servers, 177–178

name space, 389, 395, 396, 397
allocation, 554
partitioning of, 398

name tree, 402–403
named entity (NE), 174, 175, 181, 182,

184, 186, 187, 188, 198
naming authority, 174, 175
naming, in mobile systems, 387–404

general model for, 388–390
naming services, 193, 476, 484

architecture for, 173–176
nanostorage, 6
National Marine Electronics Association

(NMEA) 0183, 912
native machine code, 291, 298
native operating system, 1092, 1094
navigation applications, 1264–1265
Near Field Communication (NFC), 1180
nearest neighbor query, 833–834,

837–847
nearest neighbor rule, 837
negative digest, 273
negotiation, 975, 984

content, 320
neighbor list, 1233–1235

of nodes, 535
neighborhood, 523, 583, 1233, 1234

awareness, 1308
paging, 740
set, 581, 582

Neighborhood Watch, 536
neighbors, 276–277, 1282
NesC, 1230, 1231, 1234, 1239
nested radio etiquettes, 562–563
nests, 247
.NET™, 497, 498, 505, 506, 509, 707,

714, 1017, 1150, 1151

NeTraMet, 864
network

context, 155
control and management layer, 39
-controlled handoff (NCHO), 556
generation, 743
infrastructures, 1060–1061, 1068,

1190, 1201
layer, 39, 508
manager, 995, 996
migration, 323
modifier, 743
partitioning, 577, 578, 579, 593, 594,

595, 596, 670, 671, 1293, 1294,
1295, 1303, 1304, 1306, 1308,
1309, 1312

profile, 790
programmable, 549
properties, changes in, 450
terminal device, 28
terminator (NT), 25

Network Access Server (NAS), 609, 854,
855

Network Access Server Requirements
(NASREQ), 856

network address translations (NATs),
80, 500, 614, 620, 621, 622

Network Simulator, 577, 586, 605,
742–746

Network Status (NeSt), 589, 590, 591,
592, 596

NetworkCharacteristics, 906
NewSetStubs, 715, 716
next-generation cellphones, 1140–1143
next-generation networks (NGNs), 1031
next-step-in-signaling (NSIS), 973
nodeId, 579, 580, 581, 582
nodes, 492, 493, 501, 1146–1148, 1194,

1228–1229, 1231, 1233–1247,
1270, 1277, 1278, 1279,
1281–1286, 1294, 1297,
1304–1309, 1312, 1313; see also
mobile nodes

nomadic computing, 492, 501
nomadic scenarios, 261, 264
nomadic systems, middleware for,

159–161, 482

AU3833_C49.fm Page 1354 Monday, August 21, 2006 4:25 PM

Index ■ 1355

nonce, 529
nonrepudiation, 327, 496
NonStop, 1309
notification, event, see event notification
notification messages, 325, 472, 1304,

1305, 1306, 1314
notification server, 889
notification service, 889
notification subscribers, 46
notification, types of, 46
no-touch deployment, 460
now, 824–825
N-tree, 845–846

O
obfuscation, 306, 933
OBIWAN, 702
object, 701, 1067, 1068, 1072, 1113,

1238, 1275, 1301
-based index, 839
data, 318, 322, 323, 418, 420–431,

500, 668, 1184
descriptors, 1272
discovery protocols, 1079
exchange model (OEM), 1077
fault, 708, 711
graph, 700, 703, 705, 707, 713, 714,

715, 720
Java, 1066
model, 702, 706, 707–709, 711–712,

713, 723
multimedia, 1275, 1277
-oriented middleware, 498
-oriented programming, 82, 130,

276, 506, 1004, 1011, 1231
proxy, 325
reference, 555
replication, 718, 719, 721, 722, 723

management, 705
rules for, 1078

Object Composition Petri-Net (OCPN),
1275, 1280, 1282

Object Management Group (OMG),
309, 507, 509

Object Request Broker (ORB), 346,
347, 348, 349, 350, 367, 368, 475,
476, 477, 509

obligations, 933
obliviousness, 369
OBOL, 1311
obscure, a traveled trail, 307
observed time difference of arrival

(OTDOA), 800
OceanStore, 13, 702
OFDM, see orthogonal frequency-

division multiplexing
OMA Service Environment (OSE),

1019, 1033
on-demand access, 820
on-demand entertainment applications,

1192–1195, 1209–1215
on-demand migration, of code, 288
only-one answer, 531
ontological reasoning, 918, 919, 929,

931–932
ontologies, 504, 912, 918–920, 929,

930–932, 1072, 1120, 1297, 1298,
1299, 1300, 1302, 1314

ontology languages, 1300
Ontology Web Language (OWL), 505,

912, 929, 931, 932, 1076–1077
Ontology Web Language for Web

Services (OWL-S), 1076–1077
Ontology Web Language-Based

Context (OWL-C), 1050
open computing, 1141
open distributed processing, 490, 491
Open Grid Services Architecture

(OGSA), 502, 1246
Open Mobile Alliance (OMA), 220–222,

503, 507, 509, 906, 1002, 1004,
1017, 1019, 1110, 1133

Open Mobile Architecture, 1019
Open Pluggable Edge Services (OPES),

328, 333, 888
open programmable interfaces, 549
open programmable switches, 558
Open Service Access (OSA), 866, 867,

868, 890, 892, 1002, 1012, 1014,
1020

open service delivery platforms,
999–1033

Open Services Environment (OSE),
1002, 1004

AU3833_C49.fm Page 1355 Monday, August 21, 2006 4:25 PM

1356 ■ Mobile Middleware

Open Services Gateway Initiative
(OSGi), 459, 512–513, 1092–1093,
1094, 1096, 1100, 1103, 1180

Open Source Initiative (OSI), 538, 539
OpenCOM, 344, 345
OpenDocument, 507
OpenGL, 1220, 1221
openness, 342
OpenORB, 346, 499
OpenRM, 1220
operational interfaces, CO, 41–42
operations support system (OSS), 857
operator, 399, 917
operator profile manager (OPM), 917,

920
optimization, protocol, 316–318
Optimized Link State Routing (OLSR),

186, 579, 583, 584, 592, 593, 1313
optimum refresh, 689
Oracle Database Lite 10g, 687
Oracle® Lite™, 211, 664, 687–689
ordinary cells, 762
Organization for the Advancement of

Structured Information Standards
(OASIS), 508

orthogonal frequency-division
multiplexing (OFDM), 63, 67, 69

OSA/Parlay, 43, 798, 1004, 1011, 1013,
1017–1019, 1020, 1026, 1028,
1031, 1033

OSA/Parlay gateway, 1012, 1013, 1020
OSMOSE, 323
OutPropList, 704, 706, 718, 718–719
overlay networks, 116, 251–252, 259,

553, 563, 571, 574, 579, 581, 583,
593, 596, 1240, 1247

structured, 572
overlay, repairing, 266–270

P
pack formation, 523, 525–527, 541
packet, 866

authentication, 771, 779, 781, 869
-based encryption, 609, 613
data, 180, 640, 1196, 1198, 1284
dispersion, 911
dropping, 1212

encapsulation of, 604
filtering, 1215
forwarding, 784
gossip control, 120
header, 1284
IP, 471
loss, 106, 317, 614, 615, 619, 621,

854, 858, 976, 1198, 1209, 1218
multicast, 197, 1216
probing, 911
route reply, 199, 200
route request, 180, 184, 199, 200,

1280–1284
routing, 784
-switched domain, 640, 866, 867
-switched network, 1196
-switched systems, 64, 66
switching, 1021
tunneling, 629, 630, 983, 984, 986

Packet-Switched Streaming Service
(PSS), 1197, 1198, 1216

PageRank, 527
paging cells, 735, 736, 740, 741, 763

Hopfield neural network in,
748–750

paging costs, 736, 737, 738, 739, 741
paging transactions, 742
PalmPilot™, 684
PANA, 609, 611, 613, 614
PARC, 134
Parlay, 890, 1002, 1011, 1014–1020

framework, 1015, 1016
service capability features (SCFs),

1015, 1016–1017
Parlay X, 1002, 1004, 1015, 1017–1019
partial properties, 1163
participatory simulation, 1207
partners, 1154, 1155
Password Authentication Protocol

(PAP), 854
Pastry, 116, 500, 571, 572, 573,

579–587, 588, 590, 591, 593, 596,
1218

performance of in MANETs,
586–587

state management, and, 581–586
state representation, and, 580–581

AU3833_C49.fm Page 1356 Monday, August 21, 2006 4:25 PM

Index ■ 1357

path discovery, 585
path failure, 949
path lifetime, of virtual channel, 1272
path loss, 58
path recognition, 658
patient monitoring, 1174
pattern matching, 658, 660
pcAnywhere™, 482
peer degree, average, 577–578
peer discovery, 523, 524, 574, 575–577,

856, 985, 1120–1122
peer-to-peer (P2P), 11, 114, 116–117,

118, 161, 164, 178, 179, 246, 262,
268, 278, 314, 323, 358, 375, 396,
443, 454, 455, 459, 468–469, 483,
492, 499, 502, 503, 512, 520, 671,
674, 675, 702, 703, 856, 941, 1065,
1120, 1121, 1194, 1195, 1202,
1218, 1219, 1258, 1309

computing, in MANETs, 569–596
mobile middleware, 119
platforms in ad hoc environments,

571–573
structured vs. unstructured,

572–573, 596
peers

answering, 525–534
positive vs. negative experience,

532
leaf, 573
querying of, 530
root, 580
states of, 575
super vs. ordinary, 573
trusted, 523, 530, 533
types of, 521, 527

PeerWare, 250
performance challenges, to mobility, 30
permission rule set, 770
persistence, 356

of data, 885
persistent IOR, 476–477
persistent query, 397
personal agents, 90, 91
personal area network (PAN), 80, 853,

113, 178, 294, 601, 774, 1121,
1122, 1124, 1125, 1134

personal assistant framework, 83–84,
85, 87, 93, 95

personal computer (PC) sales, 12
personal context management-enabled

entity (PCME), 1124, 1129, 1133
personal digital assistants (PDAs), 11,

13, 76, 79, 93, 126, 129, 152, 208,
211, 215, 218, 219, 220, 240, 243,
356, 444–445, 520, 774, 827, 882,
1115, 1124, 1141, 1196, 1258, 1261

as terminals, 17
personal identification number (PIN),

774
personal information management

(PIM), 128, 208, 211, 213, 220,
1090, 1141

personal mobility, 28, 470, 608
components of, 49

personal service environment (PSE),
793

personal trust computing base (PTCB),
774

Personal Ubiquitous Multi-Agent
(PUMA), 785

personality, UIC, 348–349
personalization, 29, 34, 42, 46–47, 327,

860, 871, 1296, 1299, 1300
pervasive computing, 11, 23, 33, 98,

252, 401, 403, 404, 493
application models for, 125–142

device-independent views,
137–138

host-independent models, 139–140
interactive, 127–134
platform-independent

controllers, 138–139
source-independent context

data, 140–141
facets, and, 455
sense and respond, 135–136
social communities in, 522–525
trust, and, 519–541

pervasive spaces, 252–253
pervasive trust, 522–524
pheromones, digital, 252
physical challenges, to mobile

computing, 29

AU3833_C49.fm Page 1357 Monday, August 21, 2006 4:25 PM

1358 ■ Mobile Middleware

physical layer, 507, 972, 1190, 1260
programmability of, 554–555, 561,

564, 566
physical sensor, 1112
physical storage format (PSF), 1264
Ping messages, 575–577, 582
pipe, 1190
plain old telephony service (POTS),

1004
Planets, 398–399
platform, 1190

openness, cellphones and,
1141–1142

platform-independent models (PIMs),
504

Plug and Play (PnP), 391
plug-and-play functionality, 192
plug-in, 460
podcasting, 19
point cuts, 355, 356, 357, 369, 370, 374
point location, 837–847

problem, 830
queries, 830–831, 837, 840

points of interest (POIs), 1262, 1265
point-to-point management layer

(PML), 991
Point-to-Point Protocol (PPP), 602, 609,

610, 614, 615, 633
policies, 80–81, 986, 988, 992, 994, 996,

1031, 1033
policing, QoS, 975
policy-based dynamic adaptation,

372–376
Policy Common Information Model

(PCIM), 990
policy decision point (PDP), 888, 972,

984, 990, 991–993, 994, 996, 1027,
1028

policy enforcement point (PEP), 888,
972, 984, 985, 991, 992–993, 994,
996, 1027, 1028

policy engine, 705, 706, 721
policy group, 990
policy management, 887–888, 892,

1017
framework, 972
tool (PMT), 972, 986

policy manager, 626, 1049
policy repository, 972, 986, 991,

992–993
policy representation, 921–922
policy rule, 373, 990, 1027
policy templates, 368
PolicyMaker, 528
polling, 472, 1242, 1243
Ponder, 929
Pong caching, 575–577
Pong messages, 575–577
population generation, 743
port number, 181, 188, 191, 192, 197,

200
portability, 490, 701
portable-device usage-based pervasive

accounting (PUPA), 860
portfolio, user, 451, 452
position, physical vs. symbolic, 912
positive digest, 273–274
postregistration, 631
power per query (PPQ), 435
preauthentication, 622–623
pre-bind methods, 552
precise positioning service (PPS), 827
precision, 1064, 1075

location, 822
preconfiguration, 622–623
prediction, mobility, 655–658
prediction modules, 414
predictive admission control, 648
Preference Derivation Template, 1164
Preference Management, 1162–1164
Preference Manager, 1158
prefetch access ratio (PAR), 413–414
prefetching, 411, 413–414, 431–435,

460, 668, 669, 670, 829, 1126,
1158, 1239, 1240, 1285

eager, 323
passive, 434–435, 437
profile-driven data, 670

preregistration, 629, 632
pre-session mobility, 467, 480, 481,

482, 607, 609, 611, 623, 625
primitives, 231, 232
printers, 32
prioritization, 644–647

AU3833_C49.fm Page 1358 Monday, August 21, 2006 4:25 PM

Index ■ 1359

privacy, 391, 497, 869, 887–888, 917,
932–934, 1041, 1076, 1124, 1175,
1181, 1293, 1311, 1314

location, 401, 769–785
preferences, 770, 892
protecting, in public service

infrastructure, 1128–1129
requirements, 892–893
resource discovery, and, 399–404

private key, 305, 308, 777, 779
proactive routing, 179–180
probe objects, 374
probing packets, 911
process cloning, 289
process model, 1077
processing

embedded, 20
evolution of, 7–8

profile-based delivery platforms,
914–916

profile defaults, 908
profile diffs, 908, 915
profile management, 918–921
profile manager, 917, 918–919, 924, 930
profile-resolution directives, 920, 925,

927
profile updates, intra-session, 923–924
profiler, 556
profiles, 902, 906
profiling, 15, 788–793, 1296

approaches to, 904–916
integrated, 901–934
provisioning environments, 910–914
scripts, 556

program code, 31
programmability, 701
programmable networking, 549, 550,

561
programming models, 701–702
promotion, 672
Pronto, 1305
proof tree, 402
proofs, incoming code and, 306
propagation, 58, 59

large-scale effect, 58
small-scale effect, 59

property, 1154, 1155

PROSE, 356, 370, 372
Protocol for Carrying Authentication

for Network Access (PANA), 609,
611, 613, 614

Protocol Independent Multicast (PIM),
627

protocol optimization, 316–318
protocol translation, 316–318, 333

wired–wireless, 317
prototyping, rapid, 1184–1185
provisioning environment, 903

profiling, 910–914
proximity detection, 1123–1124
proxy, 703, 705, 709, 717, 722, 774,

949–950
adaptation, and, 449, 453, 959, 960,

962; see also proxy: -based
adaptation

agent, 84, 85, 87, 95, 313, 632
service, 190

Anonymizer, 1128–1129
application, 976
-based adaptation

asynchronous vs. synchronous,
315–316

centralized vs. decentralized, 315
communication, and, 315–316
extensibility and

programmability, 316
level-based, 314
placement- and distribution-

based, 314–315
single-/multi-protocol, 315
tasks, 316–328

-based architecture, 1219
-based reprovisioning, 961, 963
-based transcoding, 944, 955
caches, 456

facets and, 454
caching, 434, 944, 1305
CASA as, 1125
CC/PP client, 915
client-side, 315, 321, 322, 330, 915
content caching, 983
context-aware mobile, 929
defined, 313
DNS, 187

AU3833_C49.fm Page 1359 Monday, August 21, 2006 4:25 PM

1360 ■ Mobile Middleware

proxy (cont.)
engine, 321
failure, 958
frameworks, 328–331, 334

configurable vs. dynamic, 330, 331
grids, and, 951–957
high- vs. low-level, 320
inbound, 481
interceptor model, 315
intermediary, 604
migratory, 315
multicast, 629, 631, 632
object, 325, 479
outbound, 619, 620
resources, dynamic changes in,

958–959
server, 81, 320, 321, 403, 455, 795,

1125, 1305
server-side, 315, 321, 322, 324, 330,

331, 915
service, 479, 482
service agent, 190
service object, 391
signature, 327
SSDP, 196
synchronization server as, 223
systems, facets and, 455–456
tasks, 316–328
transcoding, 983

Proxy Call State Control Function
(P-CSCF), 1025

proxy-out/proxy-in, 703, 705, 709
ProxyFramework, 316, 328, 329, 330, 331
PrudentExposure, 403
pseudonymity, 871
pseudonymous access, 1128
pseudo-random interface identifier

(PII), 784
PTT over cellular (PoC), 1030
public key, 305, 308, 326, 777, 781, 782
public key infrastructure (PKI), 505,

528, 779, 1312
public land mobile network (PLMN),

794, 795, 803, 804, 810
Public-Switched Telephone Network

(PSTN), 33, 640, 1006, 1014, 1021
publisher-based pull, 275

publish–subscribe, 350, 352, 499, 500,
501, 506, 570, 572, 691, 692, 1044,
1111, 1119, 1138, 1245, 1297,
1303, 1305, 1306

content-based, 257–282
location-/context-aware, 280–282
MANETs, and, 262, 267, 278,

279–280, 281
middleware, 340
proxies, and, 331
reconfigurable, fault-tolerant, 278

pull-based data delivery, 676
pull communication, 1073
pull, gossip, 274–275
pull model

of name resolution, 174
of service discovery, 190

pull, publisher-based, 275
pull, subscriber-based, 274–275
Puppeteer, 354
push-based data delivery, 676, 677–680
push communication, 1073
push, gossip, 273–274
push model

of name resolution, 174
of service discovery, 190

push policy, node, 1234
Push To Talk (PTT), 1022, 1027, 1030
PushCharacteristics, 906
put, 705

Q
QoS adaptation proxy (QAP), 320
QoS Routing (QoSR), 1273, 1274,

1279–1284
quadrature amplitude modulation

(QAM), 62, 63
quadrature phase-shift keying (QPSK),

62, 63
Quality Object (QuO), 367
quality of presentation (QoP), 1276
quality of service (QoS), 70, 152, 153,

154, 155, 160, 161, 163, 164, 296,
320, 328, 340, 367, 492, 500, 506,
553, 554, 555, 601, 602, 610, 615,
617–622, 631, 642, 643, 644, 648,
659, 733, 790, 791, 793, 801, 860,

AU3833_C49.fm Page 1360 Monday, August 21, 2006 4:25 PM

Index ■ 1361

861, 862, 1017, 1023, 1027, 1030,
1033, 1046, 1050, 1053, 1061,
1063, 1064, 1065, 1133, 1138, 1309

agent, 984–985
-aware resource discovery, 939–965
control, 969–997
controller, 984–985
defense MANETs, 1269–1288
hyper handovers, and, 974–977
infrastructure for, 982–987, 994–996

unified, 977–981
initiator, 984–985
management, 1244–1245
routing, 1279–1284
signaling, 973, 985, 986, 987, 996,

997
query

client, 388, 390, 391, 392, 395, 397,
400, 401, 403, 404, 467, 468

collaborative, 525–527
answers to, 528, 529, 530, 531, 532

context-sensitive, 397, 399
continuous, 831
hit, 577
ID, 396
IGMP, 632
join, 631, 834
languages, 1300
location-dependent, 820, 822,

828–831, 835, 837, 839,
845–846

management, 1299
message, 577
mobile objects database, 831
name, 394, 399
nearest neighbor, 833–834, 837–847
persistent, 397
point location, 830–831, 837, 840
range, 833
SQL, 692, 702
stationary-location-related, 831
structured, 1302
types of, 831
uplink, 419, 425

querying by example (QBE), 684
queue, input, 686
queuing, 644–645

R
Rabin’s fingerprints, 710
radio access technology (RAT), 798,

805, 808, 814, 816
radio etiquettes, 562–563
radio network system (RNS), 866
radio resource management, 640, 642,

659
radiofrequency (RF), 1262

identification (RFID), 7, 22–23, 127,
136, 253, 881, 893, 913, 1139,
1171, 1180

sensor, 87
signals, 894

radios, software, 549, 564
RADIUS, 609
RAM, 373–375
range query, 833
RAP, 1245
RAPIDware, 328, 329, 330
Rational Application Developer (RAD),

1103
Rational Web Developer (RWD), 1103
Rational®, 1103
RCSM Object Request Broker (R-ORB),

1063, 1067, 1068, 1073
reachability graph, 709
reactive admission control, 648
reactive routing, 179–180, 203
read operation, 157
read, strict vs. loose, 674
ready-to-send (RTS), 535
Real-Time Control Protocol (RTCP), 1197
Real-Time Streaming Protocol (RTSP),

630, 1197
Real-Time Traffic Flow Measurement

(RTFM) Working Group, 863, 864
Real-Time Transport Control Protocol

(RTCP), 631, 632
Real-Time Transport Protocol (RTP),

81, 89, 601, 605, 608, 610, 614,
620, 621, 622, 625, 627, 1023,
1025, 1197, 1216

Really Simple Syndication (RSS), 894
reasoning, 1062, 1070, 1071, 1072,

1074, 1077, 1119–1120

AU3833_C49.fm Page 1361 Monday, August 21, 2006 4:25 PM

1362 ■ Mobile Middleware

REBECA, 265, 281, 1305
recall, 1064, 1075
recommendation request, 530, 533, 534
recommendation response, 530
recommender systems, 910
reconciler, 691
reconfigurability, 344, 351, 490, 504

dynamic, 1160
Reconfigurable Context-Sensitive

Middleware (RCSM), 1063, 1065,
1066–1068, 1072, 1073, 1074,
1078, 1079, 1080

Reconfigurable Dispatching System
(REDS), 275–277

reconfigurable interaction, 352
reconfigurable messaging system

(RMS), 1156, 1158, 1160
reconfiguration, 351, 352, 494, 495,

977, 991, 993, 1041, 1068, 1070,
1072, 1078

context-based, 354
coordinated, 358
dynamic, 342, 345, 352, 353, 354, 359
horizontal vs. vertical, 358
malicious/invalid, 344, 345
middleware, 358, 359
path, 271, 272

protocol for, 272
points, 1145, 1154
runtime, 346
session, 986
state, 1148
third-party, 347, 350

reconfusion, 781, 782–783
recUmess, 719
recursive DNS server, 176
redirect server, 81, 795
redirection servers, 972–973
REDS, 275–277
redundancy, 298, 777
REFEREE, 528
Reference Model of Open Distributed

Processing (RM-ODP), 490–491
referral trust, 524
refinement, content, 318–319
reflection, 341–347, 379, 499, 1311, 1314

behavioral, 378

computational, 156
structural vs. behavioral, 343, 344

Reflection for Adaptable Mobility
(RAM), 373–375

reflective handoff, 549, 552, 553, 555,
558–561, 564–565, 566

reflective middleware, 339–360,
366–368, 1052–1053, 1063, 1068,
1144, 1145

architectures, 343–347
Reflective Middleware for Mobile

Commuting (ReMMoC), 345
refresh priority, 1073
refreshes, 689
Regiment, 1246
registrar, 81, 480, 481, 620, 621, 622,

1125, 1127–1128
registration, 173, 202, 548, 560, 566,

601, 602, 604, 607–608, 610, 611,
613, 614, 620, 632–633, 801, 802,
810, 811, 816, 1307

protocol, for location privacy,
779–781, 782

service, 388, 467, 468, 479
regular expressions, 572
Rei, 929
reification, 342, 343, 346, 359, 377, 379
reintegration, 668, 671–672

aggressive, 673
asynchronous, 674
lazy, 673
trickle, 674

reINVITE message, 481, 482, 613, 619,
620, 621, 627

relation checks, 990
relationships, between entities, 885
relative utility, 434
reliability, 869, 1174, 1276

publish–subscribe, and, 263, 278
service discovery, and, 393

Reliability Manager, 1157
reliable peers, 527
remembrance agent, 1175
ReMMoC, 346, 347, 350–352, 354, 359,

1311
Remote Authentication Dial-In User

Service (RADIUS), 854–855, 1025

AU3833_C49.fm Page 1362 Monday, August 21, 2006 4:25 PM

Index ■ 1363

remote code evaluation, 294
remote desktop, 482–483, 484
remote evaluation, 443, 444
remote invocation, 475, 476
Remote Method Invocation (RMI), 148,

340, 348, 365, 371, 381, 478, 479,
484, 498, 556, 704, 1303

remote procedure calls (RPCs), 149,
195, 349, 352, 495, 497, 498, 1004,
1005, 1138, 1303

Rendezvous, 177, 178, 392, 501, 506,
1305

renegotiation, 975
repair, of tree overlay, 266–270

types of, for fixed networks,
268–270

repairable autonomous systems,
1143–1144

replacement policy, in cache design,
411, 412–413

Replets, 1143, 1160–1167
model, 1161–1162

replica management, 700, 703, 706–713
replication, 667, 673, 1308

architecture for, 702–706
asynchronous, 667, 675, 685
connection-based, 692
explicit, 712
incremental, 707, 723
merge, 691
Mervlet, 1164–1167
message-based, 691, 692
modes of, 1053
object, 691

vs. file, 706–713
on-demand, 685
policies, 722
resource, 699–724
selective, 702
session-based, 692
transparency, 494
two-tier, 672, 675
two-way (bidirectional), 688, 692
types of, 692, 1167

Replication Adapter, 1158
Replication Manager, 1157, 1158, 1165,

1166

Replication Provider, 691
Replication Server, 692
repository access function (RAF), 795
reprogramming

dynamic, 1240–1244
repudiation, 301
reputation management, 523, 524, 525,

541
reputation, 523, 528–533

in MANETs, 527–534
request admission ratio, 949
request completion ratio, 949
request failure, 958
request methods, SIP, 82
requestors, 802, 811
requests, facets and, 455
rescue

mobile middleware for, 1291–1315
requirements for, 1296–1297

phases of, 1294–1295, 1296–1297
reservation, 645–653

cooperative objects and, 42
dynamic, 647–653

local vs. distributed, 647
resolution rule, 915
resolver, 174, 176
resource

abstraction, 721
allocation, 63–65, 971

proactive, 960
context, 1048, 1049
discovery, 79, 312, 314

device constraints, and, 954–957
grid, 951
mediation-based, 942–945
QoS-aware, 939–965
reconfigurable, 351
security and privacy, and, 399–404
Solar, and, 399
static, 943, 945, 949–951, 952,

954, 956
identifier, 292
filtering, 454
management, 158–159, 639–660,

1297, 1306–1309, 1311
framework for, 1304, 1306–1309,

1314

AU3833_C49.fm Page 1363 Monday, August 21, 2006 4:25 PM

1364 ■ Mobile Middleware

resource (cont.)
manager, 374, 459, 1307, 1310
-oriented context, 1308
protocol, 22
replication, 699–724
reprovisioning, dynamic, 957–965
server, 884–885
transferable vs. nontransferable, 292

Resource Description Framework
(RDF), 906, 1300

responsiveness, 132, 141
resurrecting duckling, 774
retransmission, 625
reuse, 137, 344
reverse engineering, 306, 307
reverse geocoding, 822, 836
revocation, of access authorization, 783
rich-client application models,

131–133, 139
Rich Client Platform (RCP), 1103
right site frontier (RSF), 845, 846
ring overlay, 579
R-matrix, 681
RMI registry, 478
Roam, 702
roaming clients, 599–634
Robust Audio Tool (RAT), 88–89, 621
robustness, 977, 981, 982, 1075

algorithm, 763
mobile computing systems, and,

233, 234, 239, 240, 247, 297,
391, 393, 571

role session mobility, 29
RoleProvider, 374
role-value maps, 931
roles, 1162
root failure, 269–270
root peers, 580
round-trip times (RTTs), 317, 318
route

discovery, 184, 199, 203, 1280,
1280–1284

establishment, 1280–1284
lifetime (RLT), 1278, 1282, 1283
maintenance, 1280, 1284
reply, 180, 184, 186, 199, 267

packets, 199, 200

request, 180, 184, 186, 199, 267, 268
packets, 180, 184, 199, 200,

1280–1284
reservation, 1282, 1284

router, 609, 613, 617, 632
Router component, 277
routers, 262, 267, 554, 583, 584, 983,

985, 994, 996, 1066
routing, 570, 581, 582, 583, 588, 604

application-level, 399
caches, 560
Cellular IP, and, 560
constraint-based, 971, 986
content-based, 251, 1236
failure, 945
in ad hoc networks, 114, 178, 187
information, reconciling, 270–272
landmark, 114–116
layer, 276
location-based, 251
messages, 199
proactive, 179–180
protocol, see routing protocols
publish–subscribe, 264, 279
reactive, 179–180
subject-based, 587
subscription forwarding, 265, 266
table, 396, 580, 581, 582, 583, 586,

589, 590, 1284
tree, 1239
tree-based, 259, 260, 266
untraceable, 784

routing protocols, 161, 262, 583, 584,
585, 589, 590, 591, 592, 594, 596,
1277, 1312, 1313

epidemic, 1306
hybrid, 79
location-based, 1309
MANET, 79
multicast, 1306
proactive vs. reactive, 1279–1280
QoS, see QoS Routing (QoSR)
reactive, 184, 199
reactive vs. proactive, 179

rover agent, 775, 779, 780, 782, 783
RTP Control Protocol (RTCP), 1025
rtptrans, 621, 622, 625

AU3833_C49.fm Page 1364 Monday, August 21, 2006 4:25 PM

Index ■ 1365

rule author, 888
rule engine, 1074
Rule Markup Language (RuleML), 932
rules

context, 1115
logical, 1074

Rumor, 674, 702, 720

S
SA Processor, 1067, 1068, 1074
safety, 870
Salutation, 195, 392, 393, 1063
Salutation Manager (SLM), 195, 392
Salutation Manager Protocol (SMP), 195
sandbox, 305
savepoint, 685, 689, 691, 694
scalability, 112, 115, 118, 151, 162, 163,

184, 196, 220, 224, 239, 240, 241,
242, 247, 258, 259, 390, 393, 394,
395–397, 399, 404, 414, 415, 416,
490, 772, 854, 929, 931, 982, 992,
993, 1030, 1041, 1046, 1066, 1191,
1192, 1206, 1219, 1273

garbage collection, and, 718–719
proxies, and, 331, 333

Scalable Asynchronous Cache
Consistency Scheme (SACCS),
416–431, 436

Scalable Timed Events and Mobility
(STEAM), 281, 501, 1305

scatternet, 113
scene, 1062

descriptors, 1272
Scooby, 1049
scope, 281, 822, 839, 844, 845

-based multicast, 631
score function, 108–109
scribble, 1234
Scribe, 500, 1218
script processing, 915
seamless connectivity, 547–566

future, 561–566
principles for, 550–555
prototype for, 555–561

seamless consistency, 663–695
seamless handoffs, 106
seamless handover, 985

seamless service access, 699–724
search effort, 469
search index, 572
search requests, 91, 573

cooperative objects, and, 43–44
second-generation (2G) technology, 5,

17, 65, 607, 890, 1025
Secure and Open Mobile Agent

(SOMA), 860
Secure/Multipurpose Internet Mail

Extensions (S/MIME), 609, 613
Secure Service Discovery Service

(SSDS), 402
Secure Sockets Layer (SSL), 505, 1181
Secured Real-Time Transport Protocol

(SRTP), 609, 613
security, 368, 490, 496–497, 500,

505–506, 609, 610, 613, 871, 997,
1030, 1041, 1063, 1064, 1065,
1076, 1138, 1175, 1181, 1293,
1296, 1314

aspects, and, 355
challenges, 868–871
distributed systems, and, 151
facets, and, 461
hardware-based, 306, 307
management, 1297, 1310–1313

framework for, 1308, 1310, 1311
mobile agents, and, 860
mobile computing systems, and,

233, 234, 243, 248, 299–302,
304–309, 391, 520, 522

resource discovery, and, 399–404
snooping, and, 538
zone, 305

Security Assertion Markup Language
(SAML), 892

selection phase, facet, 453–454
selective replication, 702
self-configurability, 112, 195, 278
self-configuration, 494, 1296, 1314
self-management, 297
self-organization, 492, 870, 1218
self-organizing map (SOM), 953
self-reconfiguration, 347
self-repair, 297
self-similarity, 659

AU3833_C49.fm Page 1365 Monday, August 21, 2006 4:25 PM

1366 ■ Mobile Middleware

semantic
content, 318
distance, 713
e-Wallet, 892
heterogeneity, 1299, 1300, 1301–1302
location, 821–822
metadata, 1300
metadata and ontology framework,

1298, 1300
Semantic Web, 503, 505, 512, 527, 528,

892, 1077, 1302
Semantic Web Rule Language (SWRL),

932
SenSay, 1108
sense-and-respond applications, 126,

135–136, 142
sensor data fusion, 887
sensor interfaces, 1177–1178
Sensor Network Application

Construction Kit (SNACK),
1231–1233

sensor networks, 11, 23–24, 33, 47, 112,
251, 506, 570

Sensor Sampling Control Protocol
(S2CP), 1113

sensors, 10, 136, 141, 158, 344, 387,
398, 399, 499, 1108, 1109, 1110,
1112–1113, 1114, 1116, 1128,
1129, 1179, 1296

abstract regions of, 1237
datastream, 399
wearable, 1174, 1176, 1177–1178,

1181; see also wearable
computing

SensorWare, 1241, 1243–1244
sentences, asynchronous, 912
Sentient Computing, 889–890, 895
sentient objects, 1051
separation of concerns, 355, 372, 373
separation, QoS, 981, 982
sequence number, 274
serializability, 667, 672, 679, 680
serialization, 299
serialization graph testing, 680, 681
server

agent, 690, 691, 1051
MobiPADS, 1068

cache, 411, 415, 417, 419, 423, 436
content, 109–111
failure, 14, 421, 455
policy, 1128
rate, 109–111
-side caching, 322
-side proxy, 315, 321, 322, 324, 330,

331
-side trigger, 1099
skeletons, 475, 476, 478

servers, 891
AOE, 1156
application, 972–973, 984, 1026,

1028, 1029, 1091
authentication, 854
authoritative DNS, 176
as fixed hosts, 665
boot, 574
central, authorization and, 402
commercial application, 915–916
consistency, and, 667
context, 1115–1117
context registrar, 1121
context resource, 893
data, 411
Domain Name System, 173, 175,

176, 177, 178
facet, 455
intelligent network, 1026
location, 914
middleware, 238, 239

mobile, 110, 1095–1096
mirrored, 1219
OSA/Parlay, 1026
primary/secondary, 674, 675, 676
propagation, and, 673, 674
proxy, 1125
proxies, and, 312, 313, 315, 795
push vs. client pull, 214–215, 820
redirect, 795
redirection, 972–973
registrar, 1125, 1127–1128
reintegration, and, 674
remote, 413
replica, 1161, 1162, 1165, 1166, 1167
service distribution and

management, 972–973

AU3833_C49.fm Page 1366 Monday, August 21, 2006 4:25 PM

Index ■ 1367

stateful vs. stateless, 322, 678
streaming media, 1196
telnet, 379
voice, 1102
Web, 173, 175, 179

service
abstraction, 988
access, seamless, 699–724
accounting, location-dependent,

851–872
middleware for, 857–862

adaptation, 153, 960
dynamic, 943, 962

agent, 87, 90, 91, 189, 190, 193, 195,
198, 202, 392

SSDP service, 196
aggregator, 1134
allocation, 1124–1126, 1131
architecture, 1109–1118
availability, 203

defined, 202
capability feature (SCF), 868, 1015,

1016–1017
capability server (SCS), 1015
center, 1259, 1262–1264, 1265
chains, 1078
composition, 1037–1055, 1071,

1072, 1308
context, and, 1048–1050
mandatory vs. optional, 1046
principles of, 1044–1050
proactive vs. reactive, 1045–1046
requirements for, 1046
stages of, 1045

configuration, 46
context, 1048, 1049
continuity, 483
control points (SCPs), 1005
controller, 556, 1125
coordination, 1059–1081

adaptable, 1075
context-aware, 1078
defined, 1061, 1077
standards for, 1065

coordinator, 198, 199, 201, 202, 204
creation, 549
creation environment (SCE), 1021

creation environment, handoff
control and, 555–556

defined, 1061
delivery platforms (SDPs), 999–1033
deployment, location-aware,

812–813
description, 391–392, 479

format, 1126–1127
differentiation, location-based,

787–817
directory, 467
discovery, see service discovery
distribution and management

servers, 972–973
domain, 866
failure, 958, 959
-independent building blocks

(SIBs), 1006
-level agreements (SLAs), 970, 972,

975, 986, 991
-level specification (SLS), 983
location, 1063
lookup, 391
management, 1179–1181
mobility, 28, 608
monitoring, 45–46
name, 181, 188, 191, 192
object, 391
-oriented architecture (SOA),

502–503, 1060
platform, for mobile computing, 37,

38, 39, 41, 49
platform layer, 39–42
profile, 791, 1076
provider profile manager (SPPM),

917, 918–919, 920, 927
providers, 1076, 1108

wireless, 561–562, 563, 564, 565,
566, 903, 905, 910, 915, 917,
926

proxy-based adaptation, and,
326–327

registration, 388, 391, 393, 394, 395,
396, 398

registry, 467
requests, 548, 566
reservation, 45

AU3833_C49.fm Page 1367 Monday, August 21, 2006 4:25 PM

1368 ■ Mobile Middleware

service (cont.)
semantics, 1064, 1065, 1070, 1075,

1076, 1077
sensor, 1113
support layer, 39
switching functions (SSFs), 1008
switching points (SSPs), 1006, 1008
-to-context adaptation, 792–793

service discovery, 42, 43–45, 76, 79, 86,
90–91, 153, 161, 164, 312, 314,
325–326, 352, 359, 388, 394, 396,
399, 467–469, 476, 478, 482, 483,
484, 490, 495, 503, 504, 590, 814,
994, 1016, 1046, 1059–1081, 1126,
1180, 1204–1205, 1307, 1309

agent, 90
context-aware, 1120–1127
coordinator-based, 1122
device- vs. service-centric, 189
Domain Name System, 196
dynamic, 1066
in ad hoc networks, 188–204
on link local networks, 195–197
on the Internet, 191–195
phases of, 1075
proximity-based, 1123
push vs. pull, 190
replies, 199, 200
requests, 199, 200
semantic-based, 1064
standards, existing, 391–393

Service Discovery Protocol (SDP),
1122, 1125

Service Location Protocol (SLP),
192–193, 200, 351, 352, 392–393,
503, 504, 1063, 1120, 1121

Service Logic Execution Environment
(SLEE), 1021

Service Management Framework
(SMF), 1092, 1093, 1094, 1097,
1100, 1101

Service-Oriented Context-Aware
Middleware (SOCAM), 929–930

Service-Oriented Network Sockets
(SoNS), 394

Service Peer Discovery Protocol
(SPDP), 1120, 1121

Service Provider Access (SPA), 1012
Service Provider Access to Networks

(SPAN), 1012
Serving Call State Control Function

(S-CSCF), 1025, 1026
Servlets, 1094, 1155, 1156, 1158
Session Announcement Protocol (SAP),

630
session

continuity, 470
control, 1197
establishment, 483
guarantees, 675
initiation, 1110
key, 400
layer, 107, 317

mobility (SLM), 325
maintenance, 465–485
management, 312, 316, 323–324,

607, 891
mobility, 29, 608
reconfiguration, 986
rerouting mechanisms, 554
state, 323, 325, 484, 1025

Session Description Protocol (SDP), 81,
620, 630, 1198

Session Initiation Protocol (SIP), 80,
81–82, 95, 173, 480–482, 484, 508,
605, 607, 608, 609, 626, 866, 972,
986, 1011, 1019, 1022, 1023, 1024,
1026, 1028, 1029, 1110, 1112,
1120, 1121, 1124, 1125, 1129,
1133, 1184, 1198

-based fast handoff, 618–622
-based mobility across

heterogeneous networks,
614–615

-based mobility with QoS, 617–622
-based simultaneous mobility,

623–625
-based terminal mobility, 609–625
mobility over IPv6, 616–617

SeTA, 909–910
SETI@home, 21
setup failure, 945
shadow cluster, 651, 652
shadow, facet, 453

AU3833_C49.fm Page 1368 Monday, August 21, 2006 4:25 PM

Index ■ 1369

shadowing, 58, 59
shared keys, 1312
shared space, 303
short message service (SMS), 34, 879,

891, 1009, 1016, 1017, 1030, 1138,
1263

Siena, 500, 1305
Signal Stability Routing (SSR), 1279
signal strength monitor, 558
signal-to-interference ratio (SIR), 65
signal-to-noise ratio (SNR), 558, 632,

642
signaling, 607, 972, 973, 981, 982, 984,

985, 986, 987, 996, 997
signaling system modules, 559, 560
signaling system number 7 (SS7), 1005,

1006
signature algorithm, 415
signature generation, proxy-based, 327
signatures, broadcast of, 678
silicon-based storage, 6
Simple Mail Transfer Protocol (SMTP),

194, 864
Simple Network Management Protocol

(SNMP), 854, 864, 871
Simple Object Access Protocol (SOAP),

194, 195, 245, 348, 352, 1017,
1020, 1061, 1141

Simple Service Discovery Protocol
(SSDP), 195–196, 391, 1180

simulated annealing, 753–754
single-cell environment, 423–428, 436
single-input/multiple-output (SIMO),

60
SIP for Instant Messaging and Presence

Leveraging Extensions (SIMPLE),
1110, 1112, 1120, 1133

situation analysis, 1061, 1063, 1067,
1070, 1072–1074, 1080

Situation-Aware Interface Definition
Language (SA-IDL), 1063, 1067,
1068, 1072, 1074

situation awareness
defined, 1061
objects, 1072
service discovery, and, 1059–1081

situation calculus, 1062

situation, defined, 1061
situation semantics, 1062
skeletons, server, 475, 476, 478
SKiMPy, 1313
Skype, 9
sleep state, 417, 419, 420, 421
sleep time, 415
sleep–wake-up, 415, 416, 421–422,

423, 424, 430, 431
sleepers, 678
smart batteries, 152
Smart Decision Model, for handoffs,

107–108
Smart Dust, 895
Smart Messages, 1241, 1243–1244
smart objects, 11, 13, 252
smart space applications, 128, 133–134,

142
smart vertical handoffs, 107–109
SMIL, 791
smooth handover, 985
snapshot, of process, 299
snapshot refresh, 689
snapshots, 687, 689, 694

read-only vs. updatable, 688
simple vs. complex, 688

snooping, 535–538
social communities, in pervasive

networks, 522–525, 541
SOCKS, 604
software

adaptation of, for mobile services,
363–382

agent, 162, 294, 1053–1054, 1073,
1179

as functionalities, 451
-defined radio (SDR), 71
engineering, 549
handlers, 563
management, 1179–1181
radios, 549, 554–555, 561, 564
software stack, 1093
sensors, 1112–1113
wireless sensor network, 1227–1247

Software Development Kit (SDK), 915
SoftwarePlatform, 906
sojourn time, 428, 430–431

AU3833_C49.fm Page 1369 Monday, August 21, 2006 4:25 PM

1370 ■ Mobile Middleware

Solar, 282, 398–399, 1108
solution-based index, 839
SoulPad, 1184
source code, 291
source discovery, 529
Source-Specific Multicast (SSM), 628
space, problem, 823
space segment, GPS, 826
space, solution, 837, 839
space, types of, 882
spacetime, 822
Sparkle, 445–461
SparkleView, 457
spatial data, 822–825
spatial database (SDB), 822
spatial indexes, 824
spatial relationships, types of, 823–824
spatial routing table, 396
spatiotemporal database (STDB), 831
spawning, of networks, 563
specification, of QoS requirements, 974
spectrum

allocations, 561, 562, 565
holes, 71
licensed vs. unlicensed, 70–72

Splendor, 403
split-connection protocols, 317
SplitStream, 1218
spoofing, 79, 529, 539
Spot system, 1132
spread spectrum (SS), 64
spreading sequence, 64
SPY, 712
SQL Remote, 692
SQL Server CE, 664, 690–691
stable dynamic call admission (SDCA),

651
staging table, 686
stale cache hit, 417, 419, 421, 422, 423,

424
standard positioning service (SPS), 827
Standard Widget Toolkit (SWT), 1101,

1103
standardization, 507–513
state, 1144, 1145, 1146, 1148, 1149,

1150, 1151, 1154, 1232, 1233,
1235, 1237, 1238, 1245

agent, 1242
arrays, 1231
consistent, 667
data, 1242
data hoarding, 669
execution, 1242
externalization, 1144
management, Pastry and, 581–586
private, 1230, 1231
process, 292
reintegration, 671
representation, Pastry and, 580–581

stateful cache consistency, 414, 416
stateless cache consistency, 414–415
stateless facets, 447
static behaviors, 377
static code analysis, 305
static keyword, 377
stationary-location-related queries

(SLRQs), 831
STEAM, 281, 501, 1305
stigmergy, 247, 252
stochastic call administration control,

643–644
stochastic models, 747
storage

distributed, 13–15
management, 1304
technologies, 6–7

store-and-forward synchronization, 668
stored program control, 1004
stovepipe architectural model, 1000
strawman protocol, 270, 271
Stream Control Transmission Protocol

(SCTP), 107, 605, 856, 857, 1212
streaming, 904, 1190, 1192, 1205, 1274,

1275, 1309
live, 1192, 1195–1200, 1206,

1215–1218
Streaming Protocol, 856, 857
street-corner effect, 553
stretch, 413
strict copies, 675
strong intelligence, 295
strong mobility, 32, 289, 299
structural heterogeneity, 1299, 1300,

1301

AU3833_C49.fm Page 1370 Monday, August 21, 2006 4:25 PM

Index ■ 1371

structure, 1144, 1145, 1150, 1153, 1154
structure and content describing

metadata, 1300
structure descriptor, 1146, 1149, 1150,

1153
structure externalization, 1144
Structure Query Language (SQL), 507,

684, 687, 688, 692, 702, 825, 1119,
1236

Struts, 130, 139
stub–scion pair (SSP), 715
stupid nodes, 146
stylesheet conversion, 915
subject, 259

-based message routing, 580, 586,
591

-based systems, vs. content-based,
259

subnet, 394–395
subnet handoff, 602
subscriber content charging function

(SCCF), 868
subscriber-based pull, 274–275
subscribers, 46

paying vs. non-paying, 925
subscription forwarding, 259–260, 265,

266, 274
subscription languages, 1305

grouping of, 1304
subscription requests, 1115
subscription table, 259, 260, 264, 266,

268, 270, 271, 272, 274, 277
SubscriptionTable, 277
Subversion (SVN), 210
summarization, 319–320, 321
surrogate, 720
suspend/resume, wearable computers

and, 1183–1184
swarm intelligence, 246, 252
swarming protocol for vehicular

networks, 118–121
SwarmLinda, 246–247
switches, 262, 1066

open programmable, 558
Sybase® Anywhere™, 664, 692–694
Sybase® iAnywhere™, 211
Sync Client, 684, 686

Sync Server, 684, 685, 686
synchronization, 673, 684, 685, 687,

691, 804, 810, 811, 1053, 1090,
1098, 1099, 1156, 1164, 1165,
1209, 1275, 1276, 1277

anchors, 222
data, 157–158, 207–225, 303

applications, characterization of,
213–215

conflicts during, 211–212
host-to-host, 215–222
multiple device, 222–225
need for, 209–211
server push vs. client pull,

214–215
tolerance to inconsistency, and,

213–214
fast vs. slow, 683
fixed-host-alerted, 683
gateways, 1096
inter-stream/intra-stream, 1274,

1284, 1285
interval, 1277
interval units (SIUs), 1277, 1284–1287
management, 1302
message-based, 692
Mobilink®, 692
multimedia data, 1279–1284
objects, types of, 685
one- vs. two-way, 668–669, 683, 691
refresh, 683
session-based, 693

vs. message-based, 668
slow, 683
snapshot, 689
two-way, 685

Synchronization Helper, 1165, 1166
Synchronized Multimedia Integration

Language (SMIL), 1198, 1275
synchronous communication, 489, 1303
synchronous invalidation, 677
synchronous replication, 667
SyncML®, 220–222, 225, 681–684, 1179
syntactic heterogeneity, 1299, 1301
system architecture

online entertainment, 1204–1206
proxy-based, 313

AU3833_C49.fm Page 1371 Monday, August 21, 2006 4:25 PM

1372 ■ Mobile Middleware

system bundles, 1094, 1096, 1097
system descriptors, 1146
system log, 671, 673, 674

disconnections, and, 670
System Monitor (SM), 107–108
system-on-a-chip (SoC), 6, 7, 8, 1228
systems

autonomous, 11
circuit-switched, 64
packet-switched, 64
rule-based, 329

T
tagging, 22–23, 88, 91, 474, 913, 1180
Tamagotchis, 1266
TAOConfigurator, 346
tardiness, 1285–1286
task migration, 962
TCG Software Stack (TSS), 505
TCP-Migrate, 604
TCP split connection protocols, 317
TDMA, see time-division multiple access
technology evolution vs. market, 18–21
technology push, 4
Telecommunications-Enhanced Mobile

IP (TeleMIP), 604
Telecommunications Information

Networking Architecture (TINA),
1011

telematics services, 1258, 1259,
1262–1264

telnet server, 379
temperature, of simulated annealing

optimizer, 753
template, tuple, 231–232
temporal data, 822–825
temporal databases (TDBs), 824
temporal mobile identifier (TMI), 784
Temporally Ordered Routing Algorithm

(TORA), 1279
Terminal Access Controller Access

Control System (TACACS), 854, 855
terminal challenges, to mobility, 30
terminal devices, 28
terminal mobility, 28, 608

inter-domain secured, 611–614
SIP-based, 609–625

terminal profile, 790
terminals, as network nodes, 17–18
thin-client application models,

129–131, 139, 141
thin clients, 827
3rd Generation Partnership Project

(3GPP), 5, 17, 61, 66, 104, 443,
507, 508, 601, 607, 614, 789, 793,
794–796, 799, 803, 810, 853, 866,
890, 1007, 1012, 1014, 1019, 1020,
1022, 1027, 1108, 1110, 1133,
1196, 1198, 1216

Thor, 702
threads, 1220, 1230, 1237
threshold, cache, 434, 435
threshold modules, 414
threshold, trust, 530
time-division multiple access (TDMA),

63, 64, 1270
time hopping (TH), 64
time stamp, 196, 215–216, 218, 220,

221, 225, 415, 420, 424, 425–431,
436, 678, 694, 783, 784, 824, 825,
1025

ordering, 681
time to live (TTL), 308, 309, 418, 419,

422, 423, 436, 468, 574, 575, 577,
885

timer service, 1233
TINA, 21
TinyOS, 894, 1230–1231, 1235, 1239,

1243
Tmote Sky, 1229
Tool Control Language (Tcl), 298
topic, 259
TOTA, 250, 251
Trading Object Service, 504
trading services, 476, 484
traffic engineering (TE), 971
Traffic Flow Measurement Architecture,

863
transaction, 667

control, 691
first- vs. second-class, 671–672
model, two-layered, 675
nesting, 691, 694
scheduler, 679

AU3833_C49.fm Page 1372 Monday, August 21, 2006 4:25 PM

Index ■ 1373

tentative vs. base, 672
weak vs. strict, 675

transaction log, 692
transaction time, 824

valid time pairs, and, 825
transcoder, 329
transcoding, 129, 154, 318, 320–321,

322, 328, 331, 333, 983, 1026
dynamic, 954
proxy-based, 944, 955

transferable resource, 292
transferred account procedure (TAP),

865
transformation, 324
Transformation, Aggregation, Caching,

and Customization (TACC), 315,
319, 327, 328, 329, 330

transient IOR, 476–477
translation, 828, 835–836, 975
translator, 1216
Transmission Control Protocol (TCP),

81, 114, 188, 196, 197, 200, 263,
300, 314, 315, 317, 318, 391, 477,
507, 509, 554, 555, 583, 585, 588,
589, 593, 601, 604, 607, 608, 610,
627, 854, 855, 856, 857, 861, 971,
1028, 1061, 1141, 1209, 1210,
1211, 1212, 1214, 1215

Transmission Control Protocol/Multi-
Home (TCP-MH), 107

transmitter diversity, 61
transparency, 146, 151, 152, 490,

493–494, 720, 800, 871, 981, 982,
992, 1052, 1066, 1090, 1133, 1212,
1214–1215

context, 155
device, 134
location, 151

transparent involuntary migration, of
code, 288

Transport component, 276–277
transport layer, 107, 276–277, 317, 508,

603, 604, 857, 971, 975
Transport Layer Security (TLS), 505
Transport Manager™, 195
transportable code, 555
transportation managers, 392

TRAP/J, 371–372, 373
trapezoidal map, 840–842
tree-based routing, see routing: tree-

based
tree identifier, 269
tree overlay, repairing, 266–270
trees

binary space partitioning, 845
component, 1230
context-sensitive user profile, 807,

808
distribution, 1216–1217, 1218
facet dependency, 449
facet execution, 450
identifier, 269
k-dimensional, 842–844
location, 822
MoniteredResource object
multicast, 629, 630, 632
multipath distribution, 1218
name, 402–403
overlay multicast, 1216
proof, 402
routing, 1239
virtual connection, 651, 652
XML, 250

triangulation, 840, 845
trilateration, 912
Trivial File Transfer Protocol (TFTP),

865
truncation, 933
trust, 391, 401, 497, 869, 892, 1259

belief, updating, 532–533
blindly negative, 532
blindly positive, 532
-building scheme, 306
degrees, 529, 530, 531, 532, 534

changes in, 532–533
combined, 533

dynamics, 527
learning functions, 532
level of, 309
malicious activity, and, 534–539
management, 523, 524, 528, 540
mathematical models for, 527,

528–534
models for, 527–528

AU3833_C49.fm Page 1373 Monday, August 21, 2006 4:25 PM

1374 ■ Mobile Middleware

trust (cont.)
negotiation, 404
pervasive, 522–524
pervasive computing, and, 519–541
threshold, 530
types of, 524
-weighting, 531

Trusted Computing Group (TCG), 508
Trusted Network Connect (TNC), 505
Trusted Platform Modules (TPM), 505
truth maintenance, 909
Tryton rule language, 1118–1119
TSpaces™, 157, 245, 246, 500, 1063,

1066, 1078
tunneling, 623, 628, 629, 630
tuple, 231, 236, 238, 825, 1146, 1147,

1149, 1150, 1151, 1152, 1155
-based models, 229–253

reasons for, 234–235
center, 249–250
container, 1155
key–value, 389
pattern-matching mechanisms, 232,

234, 238, 245
reaction, 249
space, see tuple space

Tuple Centres Spread over Networks
(TuCSoN), 249

tuple space, 157, 231, 234, 235, 236,
237, 245, 252–253, 340, 341, 343,
350, 570, 1063, 1066, 1078, 1237,
1242–1243, 1309, 1315

-based coordination, 1066
-based middleware, 1078, 1079
behavior of, specifying, 250
Java implementation of, 246
network, 251
private, 248
reactive, 252
SwarmLinda, and, 246

turbo codes, 63

U
UAProf, 906–908, 914, 915
ubiquitous computing, 29, 78, 493, 495,

496, 497, 499, 1060, 1066, 1067,
1123, 1139, 1314

defined, 11
key components of, 774
location privacy, and, 770, 772–774

ubiquitous disappearing computing,
3–26

Ubiquitous Service Network, 5
UDP Multicast Tunneling Protocol

(UMTP), 628
UI Adapter, 1158, 1159
UI Composer, 1157, 1158, 1159
ultimate thin client, 442–443
ultrasound location systems, 913
ultrawideband (UWB), 9, 69, 71
uncertain state, 417, 418, 419, 420, 421,

423, 425, 430
uncooperative peers, 521
uncoupling, 234
unicast, 180, 182, 184, 185, 187, 190,

196, 199, 263, 273, 274, 279, 394,
434, 501, 620, 621, 1121, 1216,
1235, 1242

Unified Modeling Language (UML),
504, 509, 1047

Uniform Resource Identifier (URI), 478,
480, 481, 607, 608, 611, 857, 917,
1114, 1120, 1123

union message, 718
Union Rule, 718, 719
Universal Browser, 456–457
Universal Description, Discovery, and

Integration (UDDI), 194–195, 505,
508, 1064, 1180

Universal Interoperable Core (UIC),
347–349, 350

Universal Mobile Telecommunications
System (UMTS), 57, 111, 113, 796,
805, 853, 866, 911, 1020

Universal Plug and Play (UPnP™),
195–196, 351, 391, 392, 393, 503,
504, 1063, 1109, 1180

universal resource locator (URL), 81,
131, 173, 200, 327, 392

Universal Serial Bus (USB), 218
Universal Subscriber Identity Module

(USIM), 794
unmanned air vehicles (UAVs), 114,

1270, 1271

AU3833_C49.fm Page 1374 Monday, August 21, 2006 4:25 PM

Index ■ 1375

unmanned ground vehicles (UGVs),
114, 1270

unreliable peers, 527
unsolicited advertisements, 925, 927
untraceable routing, 784
update

asynchronous, 674
client, 680–681
conflicts, 222
consistency, 680–681
eager vs. lazy, 667, 673
frequency, 413
software, 1144

updateability, 349
updating cost, location management,

736; see also location update:
costs

upgradeability, 349
upgrades, 1144
uplink, 65
uplink channel, 1040
uplink validation check, 415
usage metering records (UMRs), 852
user

agent, 81, 137, 189, 190, 193, 195,
198, 200, 202, 204, 316, 392,
480, 481, 620–621, 790, 905,
1028, 1121, 1129

SSDP client, 196
agent profile (UAProf), 790
authentication, 496
characteristics, 908
context, 155, 788, 881–882, 1048,

1049
entity, 174, 176, 181, 182, 183, 184,

186, 187, 188, 198
individuality, 655
interface, 446, 448, 457, 461, 1156,

1157, 1159, 1173, 1182–1183,
1184, 1190, 1202, 1205

interface library (UIL), 1159
layer, 971
level, 975
mobility, 29, 470, 472–474, 476, 477,

478, 480, 481, 482, 483, 484
model, 908, 909
orientation, QoS, 981

policy manager (UPM), 932
preferences, 1049, 1076, 1180, 1262

changes in, 450
profile, 791
retrieving, 814–815

profile, 788, 789, 793, 797, 804–808,
809, 810, 811, 814, 815, 902,
908, 1025

3GPP, 794–796
components of, 790–792

profile data repositories (UPDRs),
803, 804, 808, 809, 810–811,
815, 817

profile data repositories access
functions (UPDRAFs), 804,
809, 810–811, 815, 817

profile manager (UPM), 797, 798,
803–811, 814, 815, 816, 817,
917, 918–919, 920, 924, 929

interfaces, 809–811
profiling, 908–910

context-sensitive, 804–808
segment, GPS, 826
session mobility, 29

User-Agent Display Attributes Headers
Internet Draft, 905

User Datagram Protocol (UDP), 81,
121, 188, 196, 200, 277, 509, 582,
583, 585, 593, 601, 605, 608, 610,
620, 627, 854, 861, 1197, 1198,
1215, 1216

V
valid state, 417, 420
valid time, 824
value chains, 24–26
value, of a resource, 292
variable bit rate (VBR), 615, 1275, 1280
V-BLAST, 62
vehicles, intelligent, 1051
vehicular ad hoc networks (VANETs)

content delivery techniques for,
117–118

swarming protocol for, 118–121
verifier, 307
version time stamps, 216
version vectors, 216–217, 218, 225

AU3833_C49.fm Page 1375 Monday, August 21, 2006 4:25 PM

1376 ■ Mobile Middleware

vertical decomposition, 840
VIC, 89
vicinity factor, 740, 741
Videoconferencing Tool (VIC), 621
video-on-demand (VoD), 1204, 1205
virtual channels, 1272, 1277, 1287–1288
virtual clients, 1305
virtual conferencing, 81
virtual connection tree, 651, 652
Virtual Home Environment (VHE), 793,

1012
virtual machine, 291, 298, 720, 1241,

1243
monitor, 1184

virtual markets, 1246
virtual network computing (VNC), 444
virtual private networks (VPNs), 261,

1005, 1008, 1009, 1091
virus, 300
Visiting Location Register (VLR), 627
vocabularies, CC/PP, 906, 919
voice access, 1102, 1103
Voice-over-IP (VoIP), 57, 173, 472, 607,

858, 866, 1005, 1011, 1013, 1023,
1131

VoiceXML, 130, 131, 1102
VoIP, see Voice-over-IP
volume, 674
volunteer server, 951–953, 956, 962,

963
Voronoi diagram, 837–839, 845
voting, node, 536, 537, 538
voting, weighted, 676
VSFactor, 953

W
WAN-of-CAN, 501
WAPCharacteristics, 906
washing machine, processing-enabled,

20
WASP Subscription Language (WSL),

1108
Watchdog, 536
watchdog, redundancy, 298
WaveLAN, 560
weak copies, 675
weak intelligence, 295

weak mobility, 32, 289
wearable computing, 1169–1185

applications of, 1174–1176
Web Architectures for Service

Platforms (WASP), 1108
Web components, 1047
Web Intermediaries (WBI), 316, 327,

328, 329, 330, 331
Web Service Choreography Interface

(WSCI), 1047
Web services, 131, 133, 351, 352, 471,

498, 501, 502, 512, 513, 1017,
1018, 1019, 1038, 1043, 1055,
1065, 1076, 1096, 1103, 1108,
1142, 1154, 1155, 1177, 1180, 1297

Web Services Coordination, 1065
Web Services Coordination Framework

(WS-CF), 1065
Web Services Description Language

(WSDL), 195, 503, 505, 791, 1017,
1044, 1076

Web Services Flow Language (WSFL),
1047

WebExpress, 318
WebPADS, 326
WebSphere®, 501, 506, 916

Everyplace®, 1089–1104
Everyplace® Access (WEA),

1095–1096, 1099, 1100, 1102,
1104

Everyplace® Connection Manager
(WECM), 1091

Studio Device Developer (WSDD),
1103

Voice Application Access Server,
1102

Voice Server, 1102
wide area network (WAN), 317, 601,

614, 615, 627, 1305
wide area replicated memory (WARM),

718
widgets, 1101, 1108, 1156
WiFi, 9, 17, 117, 153, 208, 218, 443, 585,

882, 884, 911, 913, 965, 1132, 1261
WiMax, 69, 443
wine purchase example, 293–294
wired or wireless network layer, 39

AU3833_C49.fm Page 1376 Monday, August 21, 2006 4:25 PM

Index ■ 1377

wireless access networks, 548, 549,
551, 552, 555, 556, 558, 560, 566,
974

future, 561–563
Wireless Application Protocol (WAP),

316, 505, 790, 906, 1017, 1019,
1141, 1155

gateway, 317
wireless cell, 1040
wireless communication, 263, 506–507

technical challenges of, 56–65
functional model for accounting in,

865
Wireless CORBA, 324–325
wireless grid, 164
wireless intelligent network (WINs),

1006, 1007, 1010; see also
Customized Logic for Mobile
Enhanced Logic (CAMEL)

wireless local area networks (WLANs),
28, 56, 57, 64, 67, 69, 78, 104, 113,
177, 452, 506, 548, 549, 556, 666,
770, 822, 853, 882, 941, 1106,
1122, 1129, 1142

Wireless Markup Language (WML),
906, 1141

wireless personal area networks
(WPANs), 56, 57, 69

Wireless-Profiled TCP, 317
wireless radio channels, characteristics

of, 57–59
Wireless Routing Protocol (WRP), 1279
wireless sensor networks (WSNs),

492–493, 1227–1247
operating systems for, 1229–1231

wireless technologies, 55–72
wireless transport objects, 554
Wireless World Research Forum

(WWRF), 508
WLANs, see wireless local area

networks
Wool, 369–370, 372
workaholics, 678

worker, 329
workflow, 1047, 1049, 1061, 1070,

1071, 1075, 1079, 1080
workflow planning, 1071
working cells, 762
Workplace Client Technologies, Micro

Edition (WCTME), 1102, 1104
World Geodic System 1984 (WGS84),

821
World Wide Web Consortium (W3C),

507, 509–512
World Wireless Research Forum

(WWRF), 38
worm, 300
WPANs, see wireless personal area

networks
wrappers, 357, 371
write operation, 157
write privileges, serial, 225
write/write conflicts, 671
writes, Bayou and, 675

X
XForms, 131
XHTML, 1141
XHTML+Voice (X+V), 131
XMIDDLE, 250, 352, 375
XML, see eXtensible Markup Language
XML Access Control Markup Language

(XACML), 892
XML Device-Independent Markup

Extensions (XDIME), 916
XML Metadata Interchange (XMI), 505
XML parsing, 1299, 1300, 1302
xmlBlaster, 506
XPath, 390
XQuery, 390

Z
ZeroConf, 392
ZigBee™, 69, 113
Zipf coefficient, 424, 428
zones, 803, 804, 805

AU3833_C49.fm Page 1377 Monday, August 21, 2006 4:25 PM

AU3833_C49.fm Page 1378 Monday, August 21, 2006 4:25 PM

	Preface
	The Editors
	Contributors
	Contents
	Section 1 - FUNDAMENTALS
	Toward a Software Infrastructure for Ubiquitous Disappearing Computing
	Introduction
	Technology Evolution
	Storage
	Processing
	Communications
	Data Capturing

	Paradigm Evolution
	One for Many, One Each, Many for One, Many for Everybody
	Storage Infrastructures
	Profilin
	Information Searching and Sharing
	Terminals as Network Nodes
	Terminals as Networks

	The Market View
	Technology Evolution Versus Market
	From Information to Applications: The Grid
	Tagging
	Sensor Networks
	Impacts on the Value Chains
	Getting There

	Acknowledgments

	Mobile Computing
	Mobility
	Challenges in Mobile Computing

	Code Mobility
	Personal and Service Mobility
	Reference Model for the I-Centric Service Architecture
	Communication Layer
	Service Platform Layer
	Generic Service Elements
	Service Features

	Summary
	References

	Wireless Technologies
	Introduction
	Technical Challenges in Wireless Communications
	Data Rates, Mobility, and Area Coverage
	Wireless Channel Characteristics
	Multiple Antenna Systems: Diversity, Interference Mitigation, and MIMO
	Modulation and Error Control Techniques
	Multiple Access and Resource Allocation

	Current Wireless Systems and Beyond
	Cellular Systems
	Wireless Local Area Networks
	Wireless Personal and Body Area Networks
	Licensed Versus Unlicensed Spectrum: Spectrum Regulation and Cognitive Radio

	Concluding Remarks
	Acknowledgments
	References

	Mobile Ad Hoc Communication Issues
	Introduction
	Communication Approaches
	Characteristics and Classifcations
	Networking

	Mobile
	Applications
	Context, Mobile Agents, and Policies
	Virtual Conferencing
	Session Initiation Protocol
	Agent Technology and Platforms

	Sample
	Application Scenario
	Overall Environment
	Tools and Techniques
	Service Discovery
	Samples
	Discussion

	Conclusion
	References

	Infrastructure Versus Ad Hoc Wireless Networks: Mobility Issues and Solutions
	Introduction
	Mobility Management in Last-Hop Wireless Networks: Horizontal Handoff and Mobile IP
	Handoffs
	Smart Vertical Handoff
	Managing Server Rate and Content During Handoff: CapProbe

	The Mobile
	Network (MANET)
	The Evolution of MANETs: From Battlefield to Campus Networks and Urban Grids

	Handling Large Scale and Mobility in the Battlefiel
	Landmark Routing for Group Mobility

	MANETs and P2P Mobile Middleware
	CarTorrent: Mobile Middleware for Vehicle Networks
	Content Delivery Techniques for Vehicular Networks
	A Swarming Protocol for Vehicular Networks
	The Future of VANETs

	Conclusions
	References

	Evolution of Application Models for Pervasive Computing
	Introduction
	Interactive Pervasive Computing Applications
	Mobile Personal Applications
	Smart-Space Applications

	Sense-and-Respond Pervasive Computing Applications
	Summary of Current Programming Model Approaches
	Device-Independent Views
	Platform-Independent Controllers
	Host-Independent Models
	Source-Independent Context Data

	Conclusions
	Acknowledgments
	References

	Mobile Middleware: Definition and Motivations
	Basic Concepts
	Distributed Systems
	The Middleware Layer

	Middleware Requirements for Fixed Distributed Systems
	How Mobility Affects Middleware Design
	Mobile Middleware Requirements
	Middleware for Nomadic Systems
	Middleware for
	Systems

	Available Technologies for Mobile Middleware
	Mobile Agent Technology
	Grid Computing Paradigm

	References

	Section 2 - EMERGING TECHNOLOGIES FOR MOBILE MIDDLEWARE
	Name Resolution and Service Discovery on the Internet and in Ad Hoc Networks
	Name Resolution
	An Architecture for Naming Services
	Resolving Names Without the Use of DNS Servers
	Name Resolution in
	Networks

	Service Discovery
	A Generic Model
	Service Discovery on the Internet
	Service Discovery on Link Local Networks
	Service Discovery in
	Networks

	References

	Data Synchronization
	Introduction
	Need for Efficient Data Synchronizatio
	Conflicts While Synchronizing Dat
	Characterization of DataSynchronization Applications
	Based on What Is Exchanged During Synchronization
	Based on Application Tolerance to Inconsistency
	Server Push Versus Client Pull

	Host-to-Host Data Synchronization Techniques
	Time Stamps
	Version Vectors
	Copy Sync
	CPISync
	Open Mobile Alliance (SyncML
)

	Multiple Device Synchronization
	The Coda File System

	Conclusions
	Acknowledgments
	References

	Uncoupling Coordination: Tuple-Based Models for Mobility
	Introduction
	Tuple-Based Coordination

	Tuple-Based Coordination and Mobility
	Mobile Computing Core Challenges
	Why Tuple-Based Coordination Models
	A Case Study Application

	Middleware Taxonomy
	Middleware Location
	Communication Extent
	Middleware Adaptability

	Current Middleware Infrastructures
	A Walk Along the Communication Extent Axis
	A Walk Along the Location Axis
	A Walk Along the Adaptability Axis
	Other Mixed Approaches

	Open Issues and Research Directions
	Overlay Networks and Overlay Data Structures
	Stigmergy and Swarm Intelligence
	Pervasive Spaces and Tuple Spaces

	Conclusions
	Acknowledgments
	References

	Content-Based Publish–Subscribe in a Mobile Environment
	Introduction
	Publish–Subscribe: An Overview
	Mobility and Publish–Subscribe: The Issues
	Dealing with Mobile Clients
	Dealing with Mobile Brokers: An Integrated Approach
	Repairing the Overlay
	Reconciling Routing Information
	Recovering Lost Messages

	REDS: Mobile Publish–Subscribe in Practice
	Related Approaches
	Reconfigurable and Fault-olerant Publish–Subscribe
	Publish–Subscribe on MANETs
	Locationand Context-Aware Publish–Subscribe

	Conclusions
	References

	Code Mobility and Mobile Agents
	Introduction
	Code Mobility Principles
	Taxonomy of Code Mobility
	Enabling Technologies
	Mobile Code Paradigms
	Advantages of Mobile Code
	Mobile Code Issues
	Mobile Code Frameworks
	Standards
	Concluding Remarks
	References

	Proxy-Based Adaptation for Mobile Computing
	Introduction
	Architecture-Based Classificatio
	Level
	Placement and Distribution
	Single-/Multi-Protocol
	Communication
	Extensibility/Programmability

	Common Proxy Tasks
	Protocol Translation and Optimization
	Content Adaptation
	Caching and Consistency Management
	Session Management
	Handover Management
	Discovery and Autoconfguration
	Security
	Other Tasks

	Proxy Frameworks
	Adapter Development
	Adapter Selection
	Context Monitoring
	Adapter Loading and Execution

	Conclusion
	References

	Reflective Middlewar
	Introduction
	Reflectio
	Overview of Reflectio
	Reflective Middlewar
	Fundamental Reflective Middleware Architecture

	Four Complementary Case Studies
	Overview
	Universal Interoperable Core
	ExORB
	ReMMoC
	CARISMA

	Dynamic Aspect-Oriented Programming
	Introduction to Aspect-Oriented Programming
	MIDAS/PROSE: Invasive Dynamic AOP
	Lasagne: A Noninvasive Dynamic AOP

	Future Research Challenges
	Coordinated Adaptation
	Autonomic Computing

	Summary
	References

	Techniques for Dynamic Adaptation of Mobile Services
	Introduction
	Issues in Dynamically Adaptable Mobile Applications and Middleware
	Middleware for Mobile Computing
	Difficulties with Applications and Middleware for Mobile Computing

	Reflective Middlewar
	Principals and Key Ideas
	Case Studies of Reflective Middlewar
	Discussion

	Aspect-Oriented Approaches to Dynamic Adaptation
	Principals and Key Ideas
	Case Studies of Dynamic Aspect-Oriented Systems
	Discussion

	Policy-Based Management of Dynamic Adaptation
	Principles and Key Ideas
	Case Studies of Policy-Based Middleware
	Benefits of Policy-Based Management of Dynamic Adaptations

	Chisel and ALICE: Policy-Based Reflective Middleware for Mobile Computing
	Chisel
	ALICE
	Chisel and ALICE
	Findings and Further Adaptations

	Conclusions
	References

	Section 3 - REQUIREMENTS AND GUIDELINES FOR MOBILE MIDDLEWARE
	Naming and Discovery in Mobile Systems
	Introduction
	A General Model
	Challenges for a Mobile Environment

	Existing Standards
	Mobility
	Scalability
	Context Awareness
	Security and Privacy
	Summary and Future Work
	Acknowledgment
	References

	Efficient Data Caching and Consistency Maintenance in Wireless Mobile Systems
	Introduction
	Cache and System Architecture
	Replacement
	Prefetching

	Mobile Cache Consistency Schemes
	Stateless Approach

	Scalable Asynchronous Cache Consistency Scheme
	Failure Handling
	Performance Study

	Utility-Based Data Caching and Prefetching
	GreedyDual Least Utility Caching Mechanism

	Conclusion
	Acknowledgment
	References

	Code-on-Demand and Code Adaptation for Mobile Computing
	Introduction
	The Ultimate Thin Client
	Ubiquity of Connectivity
	The Where, What, and When of Computations
	The Future

	Small Codes for Small Devices
	A New Notion of Application

	Functionality Adaptation
	Facet Architecture Based on Ontology

	Design and Implementation
	The Sparkle Project
	Universal Browser

	Related Work
	Conclusion
	Acknowledgments
	References

	Session Maintenance
	Introduction
	Service Discovery
	Centralized Service Lookup
	Peer-to-Peer Lookup

	Mid-Session Mobility
	Device Mobility
	User Mobility

	Sample Middleware Approaches
	Common Object Request Broker Architecture
	Architecture for Location-Independent CORBA Environments
	Java Remote Method Invocation
	Jini
	Session Initiation Protocol
	Mobile-Agent-Based Ubiquitous Multimedia Middleware
	Remote Desktop

	Discussion
	References

	Openness and Interoperability in Mobile Middleware
	Introduction
	Characteristics of Mobile Middleware
	Network Environments
	Specific Requirements of Mobile Computin

	Trends in Mobile Middleware Solutions
	Emergence of Event-Based, Refective and Service Architectures
	Event-Based Communication
	Service Oriented Architecture
	Heterogeneity Support

	Standardization Activities
	IETF (Internet Engineering Task Force)
	OMG (Object Managing Group)
	OMA (Open Mobile Alliance)
	W3C (World Wide Web Consortium)
	JCP (Java Community Process)
	OSGi (Open Service Gateway Initiative)
	Liberty Alliance

	Future Challenges
	Acknowledgement
	References

	Trust in Pervasive Computing
	Introduction
	Social Communities in Pervasive Networks
	Pervasive Trust
	Services To Go

	Pack Formation and Collaborative Queries
	Belief and Reputation in MANETs
	Related Work
	Reputation Model
	Answering Peers

	Malicious Activity Detection and Trust
	Malicious Activity Detection
	Cross-Layer Information Processing

	Discussion
	References

	Section 4 - MOBILE MIDDLEWARE FOR SEAMLESS CONNECTIVITY
	Seamless Connectivity in Infrastructure-Based Networks
	Introduction
	Principles for Seamless Connectivity
	Separation between Handoff Control and Mobility Management
	Decomposition of the Handoff Control Process
	Decomposition of the Mobility Management Process
	Programmability of the Physical and Data Link Layers

	Building a Prototype
	Service Creation Environment
	Multi-Handoff Access Network Service
	Reflective Handof Service

	Seamless Connectivity in the Future
	Future Wireless Access Networks
	Seamless Connectivity via Metaradios and Metachannels
	Challenges

	Conclusions
	References

	Peer-to-Peer Computing in Mobile Ad Hoc Networks
	Introduction
	Performance of Peer-to-Peer Platforms in
	Environments
	The Gnutella Protocol
	The Pastry Protocol

	Cross-Layering
	Summary and Conclusions
	Acknowledgments
	References

	Supporting Continuous Services to Roaming Clients
	Introduction
	Wireless Internet Roaming Scenario
	Mobility Management Taxonomy
	Application-Layer Mobility Management Framework
	Signaling
	Registration
	Mobility Binding
	Authentication, Authorization, and Accounting
	Security

	SIP-Based Terminal Mobility
	Inter-Domain Secured Terminal Mobility
	SIP-Based Mobility Across Heterogeneous Networks
	SIP Mobility over IPv6
	SIP-Based Mobility with Quality of Service
	Proactive Handoff Using Preconfiguration and Preauthentication
	SIP-Based Simultaneous Mobility

	Integrated Mobility Management
	Mobile Content Distribution over Multicast
	Mobility Support for Multicast
	Fast Handoff in MarconiNet

	Conclusions
	Acknowledgment
	References

	Impact of Mobility on Resource Management in Wireless Networks
	Introduction
	Wireless Communications
	Resource Management Challenges
	Call Admission Control
	Channel Borrowing Schemes
	Call Queuing Schemes
	Reservation Schemes

	Dynamic Reservation Schemes
	Local Schemes
	Distributed Schemes
	Classification of Distributed Scheme

	Mobility Modeling
	Geography
	Mobility Scale
	User Individuality

	Mobility Prediction
	Mobility Prediction Mechanisms

	Conclusion
	References

	Seamless Consistency
	Introduction
	Consistency in Mobile Computing
	System Architecture and Limitations
	Maintaining Consistency

	Consistency and Disconnected Operation
	Data Hoarding
	Disconnection
	Reintegration

	Consistency and Weak Connectivity
	Cache-Related Consistency
	Transaction-Oriented Consistency

	Consistency in Hybrid Environments
	Cache-Related Consistency
	Transaction-Oriented Consistency

	Consistency Support in Commercial Mobile Database Systems
	SyncML and HotSync
	IBM DB2 Everyplace
	Oracle Lite
	Microsoft SQL Server CE
	Sybase Anywhere

	Conclusions
	References

	Seamless Service Access via Resource Replication
	Introduction
	Programming Models
	Architecture
	Replica Management
	How To Replicate
	What To Replicate

	Memory Management
	Distributed Garbage Collection of Replicated Objects
	Garbage Collection of Replicated Files

	Adaptability
	Replication Policies

	Conclusion
	Acknowledgments
	References

	Section 5 - MOBILE MIDDLEWARE FOR LOCATIONDEPENDENT SERVICES
	An Overview of the Location Management Problem for Mobile Computing Environments
	Introduction
	Location Update Strategies
	Location Management Cost
	Location Management Cost for the Location Area Strategy
	Location Management Cost for the Paging Cell Strategy

	Network Simulator
	Network Modifie

	Solving the Location Management Problem
	Analytical Approaches
	Heuristic Approaches

	Results Explanation
	Effect of Selecting the Initial Population
	Algorithm Robustness
	PC Scheme: Separation of the Network
	PC Scheme: Thin and Thick Boundary Cells
	LA Scheme: Shape of the Location Areas
	LA Scheme: Number of Cells in a Location Area
	LA Scheme: Number of Neighbors for Each Location Area
	LA Scheme: Boundary Cells

	Conclusions
	References

	Location Privacy Protection in Mobile Wireless Networks
	Introduction
	System Architecture
	Ubiquitous Computing
	Agent-Based System Architecture

	Blind Signature
	Voting Example
	Protocol

	Authorized-Anonymous-ID-Based Scheme
	Registration Protocol
	Controlled Connection Protocol
	Improvements

	Related Work
	Summary
	References

	Location-Based Service Differentiation
	Introduction
	Context Awareness and Profilin
	Service-to-Context Adaptation
	Service-to-Terminal/Network Adaptation
	Service-to-Location Adaptation
	Service-to-User Preferences Adaptation

	The 3GPP Generic User Profil
	Proposed Framework for Context-Aware Service Provision
	The Location Manager
	The User Profile Manage

	Example Scenarios
	Location-Aware Service Deployment
	Location-Aware Service Discovery and Execution
	Retrieving User Preferences
	Profiling-Dependent Event Notications

	Conclusion
	References

	Location-Dependent Database Access
	Introduction
	Terminology
	Location-Dependent Data Versus Spatial Data Versus Temporal Data

	Architecture
	Global Position System
	LDS Middleware Architecture

	Overview of Location-Dependent Queries
	LDQ Versus Point Location Queries
	Classification of Querie

	Overview of Moving Object Queries and Databases
	Location Modeling and Translation
	Nearest-Neighbor Queries Through Point Location and Indexing
	Voronoi Diagram
	Related Work in Indexing Techniques
	The N-Tree: A New Index Structure for LDQ
	Summary of Indexing Techniques

	Conclusions
	References

	Location-Dependent Service Accounting
	Introduction
	Accounting, Billing, and Charging for the Mobile Internet: Trends in Service Accounting
	Middleware Accounting Solutions for Location-Dependent Services
	Intra-Domain and Inter-Domain Accounting
	Mobile-Middleware-Based Accounting Solutions

	Accounting, Billing, and Charging Models for Location-Dependent Services
	Functional Model for the Internet
	Functional Model for Wireless Communications
	Network Entities Involved in Charging

	Security Framework Challenges
	Conclusions
	References

	Section 6 - MOBILE MIDDLEWARE FOR CONTEXTDEPENDENT SERVICES
	Mobile Middleware: Processing ContextRelated Data in Mobile Environments
	Introduction
	What Is Context?
	Device Context
	User Context
	Environment Context
	Device–User–Environment Interactions

	A Reference Model for Context-Aware Service Platforms
	Context Manager
	Context Acquisition Through the Resource Server
	Context Storage
	Management of Contextual Data
	Context Reasoning
	Policy Management

	Enabling Context-Aware Services
	Application to Context Manager
	Context Manager to Middleware Manager Interactions
	Context-Aware Mobile Service Platform
	Middleware Manager to Applications Interactions: Context Markup Language
	Privacy Requirements

	Context-Aware Mobile Services
	Seamless Transition of Audio/Video Conference Call
	Emergency Alerts

	Research Challenges and Emerging Technologies
	Location Tracking Systems
	Context Acquisition and Discovery
	Context Reasoning and Model Building
	Other Developments

	Conclusions
	References

	Integrated Profiling of Users, Terminals, and Provisioning Environments
	Introduction
	Current Profiling Approache
	Profile Representation of Device
	User Profilin
	Profiling Provisioning Environment
	Profile-Based Delivery Platform

	CARE Mobile Middleware for the Integration of Distributed Profile Dat
	Architecture Overview
	Profile Management and Aggregatio
	Policies for Supporting Adaptation
	Case Study

	Alternative Middleware Proposals
	Open Issues and Challenges
	Ontologies and Ontological Reasoning
	Privacy Issues

	Acknowledgments
	References

	QoS-Aware Resource Discovery in Mobile Environments
	Introduction
	A Mediation-Based Architecture for Resource Discovery
	Adaptive Context Collection for Effective Resource Discovery
	Collection and Maintenance of Location Information for Mobile Hosts

	Static Resource Discovery
	Case Study: Using Grid Resources as Proxies for Mobile Multimedia Applications
	The Role of Device Constraints in Resource Discovery

	Dynamic Resource Reprovisioning
	Dynamic Changes in Proxy Resources
	Disconnections/Fluctuations in Wireless Networks
	Fluctuations at the Mobile Device
	Dynamic Changes in Device/User Mobility

	Summary
	References

	QoS Control and Management
	Introduction
	Current Status of QoS Research
	QoS Issues in Heterogeneous Networks
	Different Hyper Handovers
	QoS Issues in Hyper Handovers
	Necessity of a Unified QoS Infrastructur

	New QoS Network Infrastructure for Heterogeneous Networks
	Unified Cross-Layer Adaptation Platfor
	An Instance of QoS Network Infrastructure
	Conclusions
	References

	IT-Based Open Service Delivery Platforms for Mobile Networks: From CAMEL to the IP Multimedia System
	Introduction
	Mobile Service Delivery Platforms and Impact of the IT Evolution
	IT Evolution in a Nutshell
	SDP Evolution at a Glance

	The Intelligent Network in the Mobile Domain: CAMEL
	Some Words on the IN Concept
	CAMEL Principles and Architecture
	CAMEL Standards and Applications
	Some Words on Wireless Intelligent Networks

	Open Network Application Programming Interfaces: Parlay, OSA, JAIN
	API Motivation
	API Principles and Architecture
	API Standards and Applications

	IP Multimedia System for Emerging All-IP Networks
	IMS Motivation
	IMS Principles and Architecture
	IMS Standards and Applications

	Summary and Outlook
	Acknowledgments
	References
	Related Web Links

	Mobile Middleware and Context for Service Composition
	Introduction
	Mobile Middleware-Based Applications
	Mobile Computing Model
	Technical Challenges and Role of Context

	Principles of Service Composition
	Definition
	Taxonomy
	Requirements
	Composition Approaches in a Non-Mobile Confguration
	Using Context in Service Composition

	Integration of Mobile Middleware into Service-Oriented Applications
	Some Relevant Projects
	Using Reflective Middlewar
	Using Software Agents

	Conclusions and Future Directions
	Acknowledgments
	References

	Mobile Middleware for Situation-Aware Service Discovery and Coordination
	Introduction
	Background
	Situation Awareness
	Service Discovery and Coordination
	Mobile Middleware

	Requirements for Mobile Middleware for SA Service Discovery and Coordination
	Design Issues and Enabling Techniques for Mobile Middleware To Achieve SA Service Discovery and Coordination
	Context Management and Situation Analysis for Achieving Situation Awareness
	Incorporating Situation Awareness in Service Discovery and Coordination in Mobile Middleware

	Summary
	Acknowledgments
	References

	Section 7 - CURRENT EXPERIENCES AND ENVISIONED APPLICATION DOMAINS FOR SERVICES BASED ON MOBILE MIDDLEWARE
	Mobile Middleware for Integration with Enterprise Applications: WebSphere Everyplace Access
	Introduction
	Mobile Enterprise Middleware
	Elements of a Mobile Enterprise Client
	Things That Must Be Served
	The Server Side
	From Top to Bottom, Through the Mobile Enterprise Middleware Stack
	User Interface Considerations
	Rich Graphical User Interface
	Other User Interfaces

	Eclipse, the RCP, and SWT
	Application Development Tools
	Final Thoughts on Enterprise Integrated Mobile Middleware

	Context Middleware for Adaptive Mobile Services
	Introduction
	Motivations
	Challenges
	Adaptive and Context-Aware Services
	Related Work

	Service Architecture Framework
	Introduction
	The Context Information Network
	Context Networks Using the SIP Presence Framework
	Context Information Networks
	Context Sensing
	Distributed and Shared Context Sensing
	Context Description Language
	Context Repository

	Processing Context Information
	Context Refinemen
	Context Subscriptions
	Reasoning Issues

	Context-Aware Service Discovery
	Approach
	Peer Discovery Protocol in LANs and MANs
	Peer Discovery in Personal Area Networks
	Proximity-Based Discovery
	Proximity Detection
	Service Allocation
	Service Description Format

	Managing and Protecting Context Information
	Protecting Privacy in a Public Service Infrastructure

	Mobile Applications and Services
	Context-Aware Call Delivery
	Automatic Call Diversion
	Opportunistic Communication
	Context-Aware Mobile Audio
	Field Trial

	Conclusions
	Accomplishments
	Lessons Learned
	Future Work

	Acknowledgments
	References

	Middleware Support for Autonomous Cellphones
	Introduction
	Advanced Scenarios
	Next-Generation Cellphone Challenges
	Platform Openness
	Variation in Resource Availability
	Shared Access to Services

	Functional Requirements
	Middleware Support
	Supporting Autonomous Middleware Services
	Mervlets
	Replets

	Conclusions
	References

	Middleware for Wearable Computing
	Introduction
	Applications of Wearable Computing
	Middleware Components
	Context
	Sensor Interfaces
	Data Logging and Analysis
	Software, Service, and Device Management
	Privacy and Security
	Multimodal and Multiform User Interfaces
	Energy Management
	Suspend/Resume
	Rapid Prototyping

	Conclusions
	References

	Middleware for Mobile Entertainment Computing
	Introduction
	Entertainment Computing
	A Taxonomy: On-Demand Applications
	A Taxonomy: Live Streaming Applications
	A Taxonomy: Games

	System Architecture for Online Entertainment
	Discovery Service
	Accounting Service
	User Interface and Graphics
	Event Notification and Management
	Communication Subsystem
	Application Logic

	Mobility
	A Middleware-Based Approach to Mobile Entertainment
	On-Demand Applications
	Live Streaming Applications
	Games

	Conclusions
	References

	Software Support for Application Development in Wireless Sensor Networks
	Introduction
	Operating System Support
	Basic Building Blocks
	Sensor Network Application Construction Kit
	Hood: A Neighbor List

	Data-Centered Abstractions
	Mobility-Centered Abstractions
	EnviroTrack
	MobileQuery

	Dynamic Reprogramming
	Emerging Strategies
	Quality of Service Management
	Macroprogramming
	Integration with Traditional Networks

	Conclusion
	Acknowledgments
	References

	Mobile Middleware for Automotive Applications
	Introduction
	Description of an Automobile Architecture
	Middleware Between On-Board Applications and the Vehicle
	Middleware Between On-Board Applications and the Vehicle HMI
	Middleware Between On-Board Applications and a Service Center
	Middleware Between On-Board Applications and Location and Navigation
	Middleware Between On-Board Applications and Surrounding Infrastructure and Vehicles
	Acknowledgments
	References

	A QoS Framework for Multimedia Communication for Wireless Mobile Ad Hoc Defense Networks
	Introduction
	Challenges Involved in Supporting Multimedia Applications in Mobile
	Defense Networks
	Multimedia Document Model
	User Mobility Management

	Proposed Approaches for QoS Routing and Synchronization of Multimedia Data over MHVCs
	QoS Routing Protocol
	QoSR Protocol Description

	Scheduling of Multimedia Documents Over MHVCs
	Conclusion
	References

	Mobile Middleware for Rescue and Emergency Scenarios
	Introduction
	Application Scenario and Requirements
	Rescue Scenarios
	Requirements
	Applications

	Middleware Framework and State of the Art
	Knowledge Management and Context Management
	Communication Infrastructure
	Resource Management
	Security Management

	Conclusions and Open Issues
	Acknowledgments
	References

	Index

